继电保护第一章 绪 论

合集下载

继电保护课后习题答案

继电保护课后习题答案

第一章绪论1.什么是故障、异常运行方式和事故?它们之间有什么不同?又有什么联系?故障:危及或影响电力系统运行的安全事故异常运行方式:电力系统中电气元件的正常工作遭到破坏,但没有发生故障的情况事故:指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备损坏等。

不同:联系:故障和不正常运行状态,都可能在电力系统中引起事故。

2.常见故障有哪些类型?故障后果表现在哪些方面?各种型式的短路;雷击、鸟兽跨接电气设备;备制造缺陷;设计和安装错误;检修与维护不当。

后果:大短路电流和电弧,使故障设备损坏;短路电流产生的热和电动力,使设备寿命缩短;电压下降,使用户工作稳定性受到影响,产品质量受到影响;破坏系统并列运行稳定性,产生振荡,甚至使整个系统瓦解。

3.什么是主保护和后备保护?远后备保护和近后备保护有什么区别和特点?主保护: 保护元件内部发生的各种短路故障时,能满足系统稳定及设备安全要求,以最快速度、有选择地切除被保护设备或线路故障的保护。

后备保护:当主保护或断路器拒绝动作时,用以将故障切除的保护。

远后备保护:是指主保护或断路器拒动时,由近电源侧相邻上一级元件的保护实现的后备优点:保护范围大缺点:造成事故扩大;在高压电网中往往不能满足灵敏度的要求近后备保护:是指当主保护拒绝动作时,由本元件的另一套保护来实现的后备,当断路器拒绝动作时,由断路器失灵保护实现后备优点:不造成事故扩大;在高压电网中能满足灵敏度的要求缺点:直流系统故障与主保护同时失去作用时,无法起到“后备”的作用;断路器失灵时无法切除故障,不能起到保护作用4.继电保护的基本任务和基本要求是?继电保护装置的基本任务:(1)故障时,自动、迅速、有选择性切除故障元件,使非故障部分正常运行;(2)不正常运行状态时,发出信号(跳闸或减负荷)。

继电保护装置的基本要求:①选择性②速动性③灵敏性④可靠性5.继电保护基本原理是什么?利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值(整定值)时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。

继电保护基本知识

继电保护基本知识

第三章 电网的电流保护
1 90°接线方式
优点:① 对各种两相短路都没有死区,因为继电器加入的是非故障的相间电压,其值很高;② 适当选择内角α后,对线路上各种相间故障都能保证动作的方向性。
缺点:三相短路时仍有死区。
第四章 电网接地故障的零序电流保护
1.中性点直接接地电网发生单相接地短路时,零序电流、零序电压的分布特点;
零序电压:故障点零序电压最高,离故障点越远,零序电压越低,变压器中性点接地处为零。
零序电流:分布:与变压器中性点接地的多少和位置有关;大小:与线路及中性点接地变压器的零序阻抗有关。
零序功率:分布:短路点零序功率最大;方向:对于发生故障的线路,两端的零序功率方向为线路—母线。
第五章 距离保护
纵差动保护和电流速断保护:防御变压器绕组、套管及引出线上的故障 。
2 : 励磁涌流特点
特点:有很大成分的非周期分量;有大量的高次谐波,尤以二次谐波为主;波形经削去负波后出现间断。
防止励磁涌流造成差动保护误动的措施主要有:采用具有速饱和铁芯的差动继电器,采用二次谐波制动,采用间断角原理的差动保护,采用波形对称原理的差动保护。
2 : 发电机定子绕组单相接地特点
(1)有零序电压出现,其大小与α成正比;(2)接地点通过容性零序电流,大小与α及C0G、C0l有关; (3)当发电机定子绕组内部发生单相接地时,机端零序电流互感器中流过的电流为外接元件电容电流,方向由发电机流向母线;(4)当发生外部单相接地时,机端零序电流互感器中流过的电流为发电机本身的电容电流,方向由外部流向发电机。
3 : 线路发生故障保护和重合闸的动作情况
对于瞬时性故障,两侧保护动作,断路器断开,线路失去电压,检无压侧重合闸先进行重合。重合成功,另一侧同步检定继电器在两侧电源符合同步条件后再进行重合,恢复正常供电;

继电保护知识重点

继电保护知识重点

继电保护知识重点第一章绪论1. 继电保护装置是什么?其基本任务是什么?答:能反应电力系统中电气元件发生故障或者不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

基本任务是:自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。

反应电气元件的不正常运行状态,而动作于发出信号、减负荷或跳闸。

2. 继电保护装置的组成?答:继电保护装置中的基本组成元件——继电器(一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。

) 传统继电保护装置的组成测量部分:测量被保护设备相应的电气量,并与整定值比较,从而判断是否启动保护。

逻辑部分:根据各测量部分输出量的大小、性质等判断被保护设备的工作状态。

执行部分:完成保护所承担的任务,如跳闸、发告警信号等。

3. 试述对继电保护的四个基本要求的内容: 答:选择性:※ 保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

※ 主保护:正常情况下,有选择性切除故障· 但存在主保护不能够隔离故障元件的可能性,如断路器拒动 ※ 后备保护:主保护不能切除故障时起作用· 远后备:在远处(变电站)实现,性能比较完善,但其动作将扩大停电范围。

· 近后备:在主保护安装处实现,要同时装设必要的断路器失灵保护。

速动性:※ 力求保护装置能够迅速动作切除故障 ● 提高电力系统并列运行的稳定性 · 暂态稳定等面积定则极限切除时间 · 高压/超高压输电线路保护 ● 减轻对设备、用户的损害※ 对继电保护的速动性,不同情况有不同的要求(工程实际的考虑) ● 切除故障时间:保护装置动作时间+断路器动作时间。

·快速保护动作时间:0.01~0.04s · 断路器动作时间:0.02~0.06s 灵敏性:对于其保护范围内发生故障或不正常运行状态的反应能力。

继电保护知识要点

继电保护知识要点

第一章绪论一、基本概念1、正常状态、不正常状态、故障状态要求:了解有哪三种状态,各种状态的特征正常状态:等式和不等式约束条件均满足;不正常运行状态:所有的等式约束条件均满足,部分的不等式约束条件不满足但又不是故障的工作状态故障状态:电力系统的所有一次设备在运行过程中由于外力、绝缘老化、过电压、误操作、设计制造缺陷等原因会发生如短路、断线等故障。

2、故障的危害要求:(了解,故障分析中学过)①过短路点的很大短路电流和所燃起的电弧,使故障元件损坏.②短路电流通过非故障元件,由于发热和电动力作用,会使其的损坏或缩短其使用寿命。

③电力系统中部分地区的电压大大降低,使大量的电力用户的正常工作遭到破坏或产生废品。

④破坏电力系统中各发电厂之间并列运行的稳定性,引起系统振荡,甚至使系统瓦解。

3、继电保护定义及作用(或任务)要求:知道定义,明确作用.定义:继电保护是继电保护技术与继电保护装置的总称基本任务:①自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证无故障部分迅速恢复正常运行。

②反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。

4、继电保护装置的构成及各部分的作用要求:构成三部分,哪三部分测量比较元件、逻辑判断元件、执行输出元件。

5、对继电保护的基本要求,“四性”的含义要求:知道有哪四性,各性的含义选择性:指电力系统发生故障时,保护装置仅将故障元件切除,而使非故障元件仍能正常运行,以尽量缩小停电范围。

速动性:是指尽可能快地切除故障。

灵敏性:在规定的保护范围内,对故障情况的反应能力。

可靠性:在保护装置规定的保护范围内发生了应该动作的故障时,应可靠动作,即不发生拒动;而在任何其他不该动作的情况下,应可靠不动作,即不发生误动作。

6、主保护、后备保护、近后备、远后备保护的概念要求:什么是主保护、后备保护、近后备、远后备保护主保护:指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。

绪论1

绪论1

分析题
1. 在图中线路AB上装有电流保护1,试指出它作为主保护和后 备保护的保护范围。
2. 在图(a)、(b)、(c)中,各断路器处均装有继电保护装置, 当K点发生故障时,保护动作使哪些断路器跳闸才称有选择性动作?
3. 在图中,K1点短路时,线路保护3动作跳开断路器3,是 否可称有选择性动作?它又如何起到远后备作用?
五、几个容易被忽略的问题
• 继电保护与防止故障:继电保护并不能防止故障的发生, 继电保护的功能,只有在电力系统发生事故时才能表现出 来,它并不能预测与防止事故。 • 继电保护与继电保护装置:继电保护并不单指继电保护装 置,任何情况下,都不能脱离一次系统的需求,脱离继电 保护的电流、电压输入量,脱离继电保护对断路器的控制 以及断路器本身的动作行为(如动作速度)来讨论继电保 护的动作行为。 • 保护的用法: 继电保护装置本身不能直接用于高电压及大 电流设备上。 • 自动装置:继电保护装置属于自动动作的装置,属于自动 控制设备的一类。
2. 反应两端电气量的保护
A
E1
B
I f ( A B )
4 3 (a)正常运行情况
.
C
I f ( B C )
2 1 E2
.
A
I
E1 4
B
. ' d1
' Id 1
.
d1
'' Id 2
.
3
2
1
E2
(b) d1点短路时的9; d2
d2
'' Id 2
.
B
'' Id 2 .
4
3
2
1
E2
问答题:何谓主保护和后备保护?什么叫近后备和远后备、 有何区别?什么情况下采用断路器失灵保护? • 主保护是反应被保护元件自身的故障并以尽可能短(符合 要求)的时限切除故障的保护。 • 后备保护是指由于某种原因使故障元件保护装置或断路器 拒绝动作时,由相邻元件的保护或故障元件的另一套保护 动作。 • 近后备是指某一元件同时装设两套保护,当该元件故障时, 一套保护万一不动作,则另一套保护动作于跳闸。 • 远后备是指故障元件保护或断路器拒动时,由相邻的上一 级元件的保护动作于跳闸来实现后备作用。与之不同的近 后备是同属一地的故障元件的另一套保护来动作,此时要 求断路器不能拒动。 • 当采用近后备时,若断路器拒动,则必须通过装设在断路 器上的失灵保护,切除该线路连接母线上的所有电源线路。

《电力系统继电保护》

《电力系统继电保护》

《电力系统继电保护》《电力系统继电保护》第一章绪论一,电力系统的正常工作状态,不正常工作状态和故障状态电力系统在运行中可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是各种类型的短路.发生短路时可能产生以下后果:1)通过故障点的短路电流和所燃起的电弧使故障设备或线路损坏.2)短路电流通过非故障设备时,由于发热和电动力的作用,引起电气设备损伤或损坏,导致使用寿命大大缩减.3)电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响产品的质量.4)破坏电力系统并列运行的稳定性,引起系统振荡,甚至导致整个系统瓦解.继电保护装置的基本任务是:1)自动地,迅速地和有选择地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行.2)反应电气元件的不正常运行状态,并根据运行维护的条件(如有无经常值班人员)而动作于信号的装置. 二, 继电保护的基本原理及其组成1,继电保护的基本原理电力系统发生故障后,工频电气量变化的主要特征是:1)电流增大. 短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流.2)电压降低. 当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低.3)电流与电压之间的相位角改变. 正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°;三相短路时,电流与电压之间的相位角是由线路的阻抗角决定,一般为60°~85°;而在保护反方向三相短路时,电流与电压之间的限额将则是180°+(60°~85°).4)不对称短路时,出现相序分量, 如单相接地短路及两相接地短路时,出现负序和零序电流和电压分量.这些分量在正常运行时是不出现的.利用短路故障时电气量的变化,便可构成各种原理的继电保护.例如,据短路故障时电流的增大,可构成过电流保护;据短路故障时电压的降低,可构成电压保护;据短路故障时电流与电压之间相角的变化,可构成功率方向保护;据电压与电流比值的变化,可构成距离保护;据故障时被保护元件两端电流相位和大小的变化,可构成差动保护; 据不对称短路故障时出现的电流,电压相序分量,可构成零序电流保护,负序电流保护和负序功率方向保护等.2, 继电保护的组成及分类模拟型继电保护装置的种类很多,它们都由测量回路,逻辑回路和执行回路三个主要部分组成.3,对继电保护装置的基本要求(l) , 选择性选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒绝动作时,应由相邻设备或线路的保护将故障切除.(2),速动性速动性就是指继电保护装置应能尽快地切除故障.对于反应短路故障的继电保护,要求快速动作的主要理由和必要性在于1 )快速切除故障可以提高电力系统并列运行的稳定性.2 )快速切除故障可以减少发电厂厂用电及用户电压降低的时间,加速恢复正常运行的过程.保证厂用电及用户工作的稳定性.3 )快速切除故障可以减轻电气设备和线路的损坏程度.4 )快速切除故障可以防止故障的扩大,提高自动重合问和备用电源或设备自动投人的成功率.对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号.3 , 灵敏性灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力.所谓系统最大运行方式,就是在被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大的运行方式;系统最小运行方式,就是在同样的短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式.保护装置的灵敏性用灵敏系数来衡量.灵敏系数表示式为:l )对于反应故障参数量增加(如过电流)的保护装置:保护区末端金属性短路时故障参数的最小计算值2 )对于反应故障参数量降低(如低电压)的保护装置:保护区末端金属性短路时故障参数的最小计算值4,可靠性可靠性是指在保护范围内发生了故障该保护应动作时,不应由于它本身的缺陷而拒动作;而在不属于它动作的任何情况下,则应可靠地不动作.以上四个基本要求是设计,配置和维护继电器保护的依据,又是分析评价继电保护的基础.这四个基本要求之间,是相互联系的,但往往又存在着矛盾.因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一.第二章,电网的电流保护一, 单侧电源网络相间短路的电流保护输电线路发生相间短路时,电流会突然增大,故障相间的电压会降低.利用电流会这一特征,就可以构成电流保护.电流保护装置的中心环节是反应于电流增大而动作的电流继电器.电流继电器是反应于一个电器量而电阻的简单继电器的典型.1,继电器(1)电磁型继电器电磁继电器的基本结构形式有螺管线圈式, 吸引衔铁式和转动舌片式三种,如图2.1 所示. 电流继电器在电流保护中用作测量和起动元件, 它是反应电流超过一整定值而动作的继电器. 电磁继电器是利用电磁原理工作的,以吸引衔铁式继电器例进行分析,在线圈1 中通以电流,则产生与其成正比的磁通,通过由铁心,空气隙和可动舌片而成的磁路,使舌片磁化于铁心的磁极产生电磁吸力,其大小于成正比,这样由电磁吸引力作用到舌片上的电磁转距可表示为( 2.1 )式中比例常数;电磁铁与可动铁心之间的气隙.( a )螺管线圈式; (b) 吸引衔铁式; (c) 转动舌片式图2.1 电磁型继电器的结构原理1 —线圈;2 —可动衔铁;3 —电磁铁;4 —止挡;5 —接点;6 —反作用弹簧正常工作情况下,线圈中流入负荷电流,继电器不工作,这是由于弹簧对应于空气隙产生一个初始力矩 .由于弹簧的张力与伸长量成正比,因此,当空气长度由减小到时,弹簧产生的反作用力矩为式中比例常数.另外,在可动舌片转动的过程中,还必须克服摩擦力力矩 .因此1 )继电器动作的条件.为使继电器动作,必须增大电流,通过增大电流来增大电磁电磁转矩,使其满足关系式:2 ) 动作电流 .能够满足上述条件,使继电器动作的最小电流值称为继电器的动作电流(起动电流),记作 .3 )继电器的返回条件.继电器动作后,当减小时,继电器在弹簧的作用下将返回.为使继电器返回,弹簧的作用力矩必须大于电磁力矩及摩擦力矩之和,即或4 ) 返回电流. 满足上述条件,使继电器返回原位的最大值电流称为继电器的返回电流,记为,5 )返回系数. 返回电流和起动电流的比值成为继电器的返回系数,可表示为6 ) 动作电流的调整方法:①改善继电器线圈的匝数;②改变弹簧的张力;③改变初始空气隙的长度.7 ) 剩余力矩 .在继电器的动作过程和返回过程中,随着气隙的变化,都将出现一个剩余力矩,从而使继电器的动作过程和返回过程都雪崩式的进行,继电器要么动作,要么返回,它不可能停留在某一个中间状态,具有明显的"继电特性".同时,该力矩还有利于继电器的触点可靠的接触与断开.2,几个基本概念1 )系统最大运行方式在被保护线末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式.2 )最小运行方式在同样短路条件下,系统等值阻抗最大,而通过保护装置的电流为最小的运行方式.系统等值阻抗的大小与投入运行的电气设备及线路的多少等有关.3 )最小短路电流与最大短路电流在最大运行方式下三相短路时通过保护装置的电流为最大,称之为最大短路电流.而在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流.4 )保护装置的起动值对因电流升高而动作的电流保护来讲,使起动保护装置的最小电流值称为保护装置的起动电流,记作 .保护装置的起动值是用电力系统的一次侧参数表示的,当一次侧的短路电流达到这个数值时,安装在该处的这套保护装置就能够起动.5 )保护装置的整定所谓整定就是根据对继电保护的基本要求,确定保护装置的起动值(一般情况下是指电力系统一次侧的参数),灵敏性,动作时限等过程.3,无时限电流速断保护根据对保护速动性的要求,在满足可靠性和保护选择性的前提下,保护装置的动作时间,原则上总是越快越好.因此,各种电气元件应力求装设快速动作的继电保护.仅反应电流增大而能瞬时动作切除故障的保护,称为电流速断保护,也称为无时限流速断保护.(1),工作原理无时限速断保护是为了保证其动作的选择性,一般情况下速断保护只保护被保护线路的一部分,具体工作原来如图2.6 所示.对于单侧电源供电线路,在每回电源侧均装有电流速断保护.在输电线上发生短路时,流过保护安装地点的短路电流可用下式计算( 2.4 )图2.06 电流速断保护的动作特性分析Ⅰ—最大运行方式下三相短路电流;Ⅱ—最小运行方式下两相短路电流由式( 2.4 )和( 2.5 )可看出,流过保护安装地点的短路电流值随短路点的位置而变化,且与系统的运行方式和短路类型有关. 和与的关系如图2.6 中的曲线Ⅰ和Ⅱ所示.从图可看出,短路点距保护安装点愈远,流过保护安装地点的短路电流愈小.(2),整定计算1 )动作电流为了保证选择性,保护装置的起动电流应按躲开下一条线路出口处(如点即B 变电所短路时,通过保护的最大保护电流(最大运行下的三相短路电流)来整定.即可靠系数对保护1 ( 2.6 )把起动电流标于图2.6 中,可见在交点M 与保护 2 安装处的一段线路上短路对2 能够动作.在交点M 以后的线路上的短路时,保护2 不动作.因此,一般情况下,电流速断保护只能保护本条线路的一部分,而不能保护全线路.2 )保护范围(灵敏度)计算(校验)规程规定,在最小运行方式下,速断保护范围的相对值为15%~20% ,即式中——最小保护范围;当系统为最大运行方式时,三相短路时保护范围最大;当系统为最小运行方式时,两相短路时保护范围最小.求保护范围时考虑后者.由图2.6 可知( 2.7 )其中, 代入式( 2.7 )整理得( 2.8 )(3)动作时限无时限电流速断保护没有人为延时,只考虑继电保护固有动作时间.考虑到线路中管型避雷器放电时间为0. 04~0.06s ,在避雷器放电时速断保护不应该动作,为此在速断保护装置中加装一个保护出口中间继电器,一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作.由于动作时间较小,可认为t=0 .( 4 )电流速断保护的接线图1 )单相原理接线图电流继电器接于电流互感器TA 的二次侧,它动作后起动中间继电器,其触点闭合后,经信号继电器发出信号和接通断路器跳闸线圈.(5),对电流速断保护的评价优点:简单可靠,动作迅速.缺点:①不能保护线路全长.②运行方式变化较大时,可能无保护范围.如图2.9 所示,在最大运行方式整定后,在最小运行方式下无保护范围.③在线路较短时,可能无保护范围.4, 限时电流速断保护由于电流速断保护不能保护本线路的全长,因此必须增设一套新的保护,用来切除本线路电流速断保护范围以外的故障,作为无时限速断保护的后备保护,这就是限时电流速断保护.( 1 )对限时电流速断保护的要求增设限时电流速断保护的主要目的是为了保护线路全长,,对它的要求是在任何情况下都能保护线路全长并具有足够的灵敏性,在满足这个全体下具有较小的动作时限.( 2 )工作原理1 ) 为了保护本线路全长,限时电流速断保护的保护范围必须延伸到下一条线线路去,这样当下一条线路出口短路时,它就能切除故障.2 ) 为了保证选择性,必须使限时电流速断保护的动作带有一定的时限.3 ) 为了保证速动性,时限尽量缩短.时限的大小与延伸的范围有关,为使时限较小,使限时电流速断的保护范围不超出下一条线路无时限电流速断保护的范围.因而动作时限比下一条线路的速断保护时限高出一个时间阶段 .( 3 )整定计算1 )动作电流动作电流按躲开下一条线路无时限电流速断保护的电流进行整定( 2.9 )2 )动作时限 .为了保证选择性,时限速断电流保护比下一条线路无时限电流速断保护的动作时限高出一个时间阶段,即( 2.10 )当线路上装设了电流速断和限时电流速断保护以后,它们联合工作就可以0.5s 内切除全线路范围的故障,且能满足速动性的要求,无时限电流速断和限时速断构成线路的"主保护".3 )灵敏度校验. 保护装置的灵敏度(灵敏性),是只在它的保护范围内发生故障和不正常运行状态时,保护装置的反应能力.灵敏度的高低用灵敏系数来衡量, 限时电流速断保护灵敏度为( 2.11 )式中——被保护线路末端两相短路时流过限时电流速断保护的最小短路电流;当时,保护在故障时可能不动,就不能保护线路全长,故应采取以下措施:①为了满足灵敏性,就要降低该保护的起动电流,进一步延伸限时电流一条线路限时电流速断保护的保护范围).②为了满足保护选择性,动作限时应比下一条线路的限时电流速断的时限高一个,即速断保护的保护范围,使之与下一条线路的限时电流速断相配合(但不超过下( 4 )限时电流速断保护的接线图1 )单相原理接线如图2.11 所示,( 5 )对限时电流速断保护的评价限时电流速断保护结构简单,动作可靠,能保护本条线路全长,但不能作为相邻元件(下一条线路)的后备保护(有时只能对相邻元件的一部分起后备保护作用).因此,必须寻求新的保护形式.5,定时限过电流保护( 1 )工作原理过电流保护通常是指其动作电流按躲过最大负荷电流来整定,而时限按阶梯性原则来整定的一种电流保护.在系统正常运行时它不起动,而在电网发生故障时,则能反应电流的增大而动作,它不仅能保护本线路的全长,而且也能保护下一条线路的全长.作为本线路主保护拒动的近后备保护,也作为下一条线路保护和断路器拒动的远后备保护.如图2.13 所示,( 2 )整定计算1 )动作电流.按躲过被保护线路的最大负荷电流,且在自起动电流下继电器能可靠返回进行整定( 2.12 )2 )灵敏系数校验.要求对本线路及下一条线路或设备相间故障都有反应能力,反应能力用灵敏系数衡量.本线路后备保护(近后备)的灵敏系数有关规程中规定为( 2.13 )作为下一条线路后备保护的灵敏系数(远后备),〈〈规程〉〉中规定( 2.14 )当灵敏度不满足要求时,可以采用电压闭锁的过流保护,这时过流保护自起动系数可以取13 )时间整定.由于电流Ⅲ段的动作保护的范围很大,为保证保护动作的选择性,其保护延时应比下一条线路的电流Ⅲ段的电阻时间长一个时限阶段为( 2.15 )( 3 )灵敏系数和动作时限的配合过电流保护是一种常用的后备保护,实际中使用非常广泛.但是,由于过电流保护仅是依靠选择动作时限来保证选择性的,因此在负责电网的后备保护之间,除要求各后备保护动作时限相互配合外,还必须进行灵敏系数的配合(即对同一故障点而言越靠近故障点的保护应具有越高的灵敏系数).( 4 )对定时限过电流的评价定时限过电流结构简单,工作可靠,对单侧电源的放射型电网能保证有选择性的动作.不仅能作本线路的近后备(有时作主保护),而且能作为下一条线路的远后备.在放射型电网中获得广泛的应用,一般在35kv 及以下网络中作为主保护.定时限过电流保护的主要缺点是越靠近电源端其动作时限越大,对靠近电源端的故障不能快速切除.6, 阶段式电流保护的应用及评价电流速断保护只能保护线路的一部分,限时电流速断保护能保护线路全长,但却不能作为下一相相邻的后备保护,因此必须采用定时限过电流保护作为本条线路和下一段相邻线路的后备保护.由电流速断保护,限时电流速断保护及定时限过电流保护相配合构成一整套保护,叫做三段电流保护.实际上,供配电线路并不一定都要装设三段式电流保护.比如,处于电网末端附近的保护装置,,当定时限过电流保护的时限不大于0.5~0.7s 时,而且没有防止导线烧损及保护配合上的要求的情况下,就可以不装设电流速断保护和限时电流速断保护,而将过电流保护为主要保护.在某些情况下,常采用两段组成一套保护, ( 2 )阶段式电流保护的时限阶段式电流保护的时限特性是指各段电流保护的保护范围与动作时限的关系曲线.电流三段式保护的保护特性及时限特性如图2.14 所示.图2.14 电流三段式保护特性及时限特性分析图继电保护的接线图一般可以用原理图和展开图形式来表示.电流三段式保护单相原理接线图如图2.15 所示,( 3 )阶段式保护的选择性电流速断保护是通过选择动作电流保证选择性的,定时限过电流保护通过选择动作时限来保证选择性的,而限时电流速断保护则是通过同时选择动作电流和动作时限来保证选择性的.这是应当重点理解的环节. ( 4 )对阶段式电流保护的评价三段式电流保护的优点是简单,可靠,并且一般情况下都能较快切除故障,一般用于35kv 及以下电压等级的单侧电源电网中.缺点是它的灵敏度和保护范围受系统运行方式和短路类型的影响,此外,它只在单侧电源的网络中才有选择性.7,电流保护接线方式电流保护的接线方式就是指保护中电流继电器与电流互感器二次绕组之间的连接方式.( 1 )三相完全星型接线主要接线方式1 )三相完全星型接线方式如图2.17 所示,三个电流互感器与三个电流继电器分别按相连接在一起,形成星型.三个继电器触点并联连接,相当于"或"回路.三相星型接线方式的保护对各种故障,如三相,两相短路,单相接地短路都能动作.图2.17 完全星型接线图图 2.18 不完全星形接线图2 )相不完全星型接线方式两相不完全星型接线方式如图 2.18 所示.它与三相星形的保护的区别是能反应各种相间短路,但B 相发生单相短路时,保护装置不会动作.( 2 )各种接线方式在不同故障时的性能分析1 )中性点直接接地或非直接接地电网中的各种相间短路.前述三种接线方式均能反应这些故障(除两相电流接线不能保护变压器外),不同之处在于动作的继电器数目不同,对不同类型和相别的相间短路,各种接线的保护装置灵敏度有所不同.2 )中性点非直接接地电网中的两点接地短路图2.20 串联内线路上两点接地的示意图在中性点非直接接地电网(小接地电流)中,某点发生单相接地时,只有不大的对地电容电流流经故障点,一般不需要跳闸,而只要给出信号,由值班人员在不停电的情况下找出接地点并消除之,这样就能提高供电的可靠性.因此,对于这种系统中的两点接地故障,希望只切除一个故障.①串联线路上两点接地情况,如图2.20 所示,在和点发生接地短路,希望切除距电源远的线路.若保护1 和保护2 均采用三相星形接线时,如果它们的整定值和时限满足选择性,那么,就能保证100%地只切除BC 段线路故障.如采用两相星形接线,则保护就不能切除B 相接地故障,只能由保护2 切除BC 线路,使停电范围扩大.这种接线方式在不同相别的两点接地组合中,只能有2/3 的机会有选择地后面的一个线路.②放射性线路上两点接地情况如图2.21 所示,图2.21 放射性线路上两点接地的示意图在点发生接地短路时,希望任意切除一条线路即可.当采用三相星型接线时,两套保护(若时限整定相同)均将起动.如采用两相星型接线,则保护有2/3 的机会只切除任一线路.因此,在放射性的线路中,两相星型比三相星型应用更广泛.( 3 )各种接线方式的应用三相星形接线方式能反应各种类型的故障,保护装置的灵敏度不因故障相别的不同而变化.主要应用如下方面:1 )广泛用于发电机,变压器,大型贵重电气设备的保护中.2 )用在中性点直接接地电网中(大接地电流系统中),作为相同短路的保护,同时也可保护单相接地(对此一般都采用专门的零序电流保护).3) 在采用其它更简单和经济的接线方式不能满足灵敏度的要求时,可采用这种接线方式.两相星形接线方式较为经济简单,能反应各种类型的相同短路.主要应用于如下方面:1 )在中性点直接接地电网和非直接接地电网中,广泛地采用它作为相间短路保护在10kv 以上,特别在3 5kv非直接接地电网中得到广泛应用.2 )在分布很广的中性点非直接接地电网中,两点接地短路常发生在放射型线路上.在这种情况下,采用两相星形接线以保证有2/3 的机会只切除一条线路(要使保护装置均安装在相同的两相上,一般为AC 相).如在6 ~ 10kv 中性点不接地系统中对单相接地可不立即跳闸,允许运行2 小时,因此在6~10kv 中性点不接地系统中的过流保护装置广泛应用两相星形接线方式.两相电流差接线方式具有接线简单,投资较少等优点,但是灵敏性较差,又不能保护Y/ -11 接线变压器后面的短路,故在实际应用中很少作为配电线路的保护.这种接线主要用在6 ~ 10kv 中性点不接地系统中,作为馈电线和较小容量高压电动机的保护.二,双侧电源网络相间短路的方向性电流保护1,方向性电流保护的工作原理在单侧电源网络中,各个电流保护线路靠近电源的一侧,在发生故障时,它们都是在短路功率的方向从母线流向线路的情况下,有选择性地动作,但在双侧电源网络中,如只装过电流保护是不能满足选择性要求.( 2 )几个概念1 ) 短路功率:指系统短路时某点电压与电流相乘所得到的感性功率.。

三峡大学继电保护考试重点缩减版

三峡大学继电保护考试重点缩减版

继保课后习题整理版第一章 绪论1.2继电保护装置在电力系统中所起的作用是什么?答:作用包括:(1)自动、迅速、有选择地向断路器发出跳闸命令,将故障元件从电力系统中切除,保证其他无故障部分迅速地恢复正常运行;(2)反应电气元件的不正常运行状态,根据运行维护的具体条件和设备的承受能力,发出警报信号、减负荷或延时跳闸。

★1.8后备保护的作用是什么?阐述远后备保护和近后备保护的优缺点。

答:后备保护的作用是在主保护因保护装置拒动、保护回路中的其他环节损坏、断路器拒动等原因不能快速切除故障的情况下,迅速启动来切除故障。

远后备保护的优点是:保护范围覆盖所有下级电力元件的主保护范围,它能解决远后备保护范围内所有故障元件由任何原因造成的不能切除问题。

远后备保护的缺点是:①当多个电源向该电力元件供电时,需要在所有的电源侧的上级元件处配置远后备保护;②动作将切除所有上级电源测的断路器,造成事故扩大;③在高压电网中难以满足灵敏度的要求。

近后备保护的优点是:①与主保护安装在同一断路器处,在主保护拒动时近后备保护动作;②动作时只能切除主保护要跳开的断路器,不造成事故的扩大;③在高压电网中能满足灵敏度的要求。

近后备保护的缺点是:变电所直流系统故障时可能与主保护同时失去作用,无法起到“后备”的作用;断路器失灵时无法切除故障,不能起到保护作用。

第二章 电流的电网保护2.4在电流保护的整定计算中,为什么要引入可靠系数,其值考虑哪些因素后确定?答:引入可靠系数的原因是必须考虑实际存在的各种误差的影响;例如:①系统和线路参数的误差;②计算误差;③互感器传变误差;④继电器测量误差;⑤电动势波动;⑥裕度可靠系数K`rel=1.2~1.32.12功率方向判别元件实质上是在判别什么?为什么会存在“死区”?什么时候要求它动作最灵敏? 答:(1)功率方向判别元件实质是判别加入继电器的电压和电流之间的相位,并且根据一定关系[cos(+a)是否大于0]判别初短路功率的方向。

继电保护教材

继电保护教材

经典文档 下载后可复制编辑第一章 绪 论第一节 电力系统继电保护的作用一、电力系统的故障和不正常运行状态1. 电力系统的故障:三相短路 f (3)、两相短路 f (2)、单相短路接地 f (1)、两相短路接地 f(1,1)、断线、变 压器绕组匝间短路、复合故障等。

2. 不正常运行状态:小接地电流系统的单相接地、过负荷、变压器过热、系统振荡、电压升高、频率 降低等。

二、发生故障可能引起的后果是:1、 故障点通过很大的短路电流和所燃起的电弧,使故障设备烧坏;2、 系统中设备,在通过短路电流时所产生的热和电动力使设备缩短使用寿命;3、因电压降低,破坏用户工作的稳定性或影响产品质量;破坏系统并列运行的稳定性,产生振荡, 甚至使整个系统瓦解。

事故: 指系统的全部或部分的正常运行遭到破坏,以致造成对用户的停止送电、少送电、电能质量变坏 到不能容许的程度,甚至毁坏设备等等。

三、电保护装置及其任务1.继电保护装置:就是指反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸 或发出信号的一种自动装置。

2.它的基本任务是:(1)发生故障时,自动、迅速、有选择地将故障元件(设备)从电力系统中切除,使非故障部分继续 运行。

(2)对不正常运行状态,为保证选择性,一般要求保护经过一定的延时,并根据运行维护条件(如有 无经常值班人员),而动作于发出信号(减负荷或跳闸),且能与自动重合闸相配合。

第二节 继电保护的基本原理和保护装置的组成一、继电保护的基本原理 继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值 时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。

1、 利用基本电气参数的区别 发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护。

( 1)过电流保护:反映电流的增大而动作,如图 1-1 所示,( 2)低电压保护:反应于电压的降低而动作。

( 3)距离保护(或低阻抗保护):反应于短路点到保护安装地之间的距离(或测量阻抗的减小)而动 作。

电力系统继电保护

电力系统继电保护
电力系统继电保护
1.2 继电保护的基本原理及其组成
– 1.2.1 继电保护的基本原理 – 1.2.2 保护装置的构成 – 1.2.3 继电保护的工作回路 – 1.2.4 电力系统继电保护的工作配合
电力系统继电保护
1.2.1 继电保护的基本原理
– 区分:电力系统的正常、不正常工作和故障三种运行状态
– 1.10 从继电保护的发展史,谈与其他学科技术发展的相关性
电力系统继电保护
电力系统几个基本概念的分析与探讨
电力系统继电保护
电力系统继电保护的几个基本概念
电力系统继电保护
电力系统正常运行
– 建议电力系统正常运行的特征定义为:
(1) 电力系统或电力设备中的电流在设定的路径中流动。 (2) 电力系统的所有电力设备的运行参数都在规定的范围内。 (3) 电力系统电能质量符合规定要求。 – 电力系统正常运行更高层次的要求还应具有: ①电力系统结构有较高的可靠性。 ②电力系统经济运行。


系 统
第一章: 绪 论




南京信息工程大学 电气工程与自动化系
主要内容
– 1.1 电力系统的运行状态 – 1.2 继电保护的基本原理及其组成 – 1.3 对继电保护的基本要求 – 1.4 继电保护的发展史
电力系统继电保护
1.1 电力系统的运行状态
– 一次设备:电能通过的设备。
发电机、变压器、断路器、母线、输电线路、补偿电容器、电动机、 用电设备等
– 常见:
过负荷 频率降低 频率升高 电压升高 振荡
电力系统继电保护
1.1.3 故障状态及其危害
– 故障:断线、短路 – 短路类型
三相短路、两相短路、两相短路接地、单相接地短路 单相接地短路:发生最多,85%以上

华北电力大学国家级精品课《电力系统继电保护

华北电力大学国家级精品课《电力系统继电保护

由于要求切除故障的速度要很快,只能通过自动的继电保护 装置来完成。
3. 继电保护装置的基本任务 (1) 自动、迅速、有选择性地将故障元件从电力系统中 切除,使故障元件免于继续遭到损坏,保证其它无故障 部分迅速恢复正常运行。 即内部故障时发出跳闸命令。 (2) 反应电气元件的不正常运行状态,根据运行维护的 具体条件(例如有无经常值班人员)和设备的承受能力, 发出警报信号、减负荷或延时跳闸。 即不正常工作时发出告警信号。
反应数值上升的保护: 反应数值下降的保护:
4、可靠性
定义:当保护范围内部故障时必须动作(不拒动), 当外部故障时不动作(不误动)。 包括两个方面: (1)不拒动,即可信赖性
(2)不误动,即安全性
影响可靠性的因素: 内在:装置本身的质量,包括元件好坏、结构设计
的合理性、制造工艺水平、内外接线简明, 触点多少等;
正常运行: 电流:为负荷电流,两侧电流大小相等,方向相反(即相位相差 180)。 内部d1短路: 电流:线路BC两侧电流大小一般不等,方向相同(即相位相同); 差动保护原理
基本原理的总结
电流 I : 故障时增大 - 过电流保护 正常状态时 两侧电流相位相同 内部故障时 两侧电流相位相反 电压U :故障时降低 -低电压保护 阻抗Z :Z模值减小 -阻抗(距离)保护 -差动保护
远后备保护:位于其它变电站、发电厂中的后备保护; 近后备保护:位于本变电站、发电厂中的的后备保护;
2、速动性(迅速性)
定义:继电保护装置要以尽可能短的时间将故障从电网中切除。 优点: (1)提高电网的稳定性; (2)加快非故障部分的恢复供电; (3)减轻故障设备的损坏程度。 故障切除时间=保护装置动作时间+断路器动作时间 保护装置的动作时间为: 微机保护最快:0.01~0.04秒,即0.5~2个周期就动作;

电力系统继电保护原理(第四版)-1(最详细版)

电力系统继电保护原理(第四版)-1(最详细版)

电力系统继电保护原理
主讲人:李海锋
联系方式
第一章绪论
一、电力系统继电保护的作用
故障和不正常运行状态,都可能在电力系统中
二、继电保护的基本原理
故障分析——分析被保护对象的一些参量,故障
保护原理判据——根据被保护对象故障时不同各种保护原理可以由一个或者若干个继电器执行部分输出信号
电流保护装置制回路
电流保护装置
测量被保护设备相应的电气量,并与整定
根据各测量部分输出量的大小、性质、输
出逻辑状态、出现顺序等,确定是否跳闸三、继电保护装置的组成
完成保护所承担的任务,如跳闸、发告警信号等。

信号电源
触点
工作回路衔铁
电磁继电器
近后备:在主保护安装处实现,要同时装设必要的断路器失2. 速动性
4. 可靠性
总结:
五、继电保护工作的特点。

继电保护课后习题答案

继电保护课后习题答案

第一章绪论1.什么是故障、异常运行方式和事故?它们之间有什么不同?又有什么联系?故障:危及或影响电力系统运行的安全事故异常运行方式:电力系统中电气元件的正常工作遭到破坏,但没有发生故障的情况事故:指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备损坏等。

不同:联系:故障和不正常运行状态,都可能在电力系统中引起事故。

2.常见故障有哪些类型?故障后果表现在哪些方面?各种型式的短路;雷击、鸟兽跨接电气设备;备制造缺陷;设计和安装错误;检修与维护不当。

后果:大短路电流和电弧,使故障设备损坏;短路电流产生的热和电动力,使设备寿命缩短;电压下降,使用户工作稳定性受到影响,产品质量受到影响;破坏系统并列运行稳定性,产生振荡,甚至使整个系统瓦解。

3.什么是主保护和后备保护?远后备保护和近后备保护有什么区别和特点?主保护: 保护元件内部发生的各种短路故障时,能满足系统稳定及设备安全要求,以最快速度、有选择地切除被保护设备或线路故障的保护。

后备保护:当主保护或断路器拒绝动作时,用以将故障切除的保护。

远后备保护:是指主保护或断路器拒动时,由近电源侧相邻上一级元件的保护实现的后备优点:保护范围大缺点:造成事故扩大;在高压电网中往往不能满足灵敏度的要求近后备保护:是指当主保护拒绝动作时,由本元件的另一套保护来实现的后备,当断路器拒绝动作时,由断路器失灵保护实现后备优点:不造成事故扩大;在高压电网中能满足灵敏度的要求缺点:直流系统故障与主保护同时失去作用时,无法起到“后备”的作用;断路器失灵时无法切除故障,不能起到保护作用4.继电保护的基本任务和基本要求是?继电保护装置的基本任务:(1)故障时,自动、迅速、有选择性切除故障元件,使非故障部分正常运行;(2)不正常运行状态时,发出信号(跳闸或减负荷)。

继电保护装置的基本要求:①选择性②速动性③灵敏性④可靠性5.继电保护基本原理是什么?利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值(整定值)时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。

继电保护复习

继电保护复习

继电保护复习第一章绪论一、对电力系统继电保护组成继电保护装置由测量元件、逻辑元件和执行元件三部分组成;1 测量元件作用:测量从被保护对象输入的有关物理量如电流、电压、阻抗、功率方向等,并与已给定的整定值进行比较,根据比较结果给出“是”、“非”、“大于”、“不大于”等具有“0”或“1”性质的一组逻辑信号,从而判断保护是否应该启动;2 逻辑元件作用:根据测量部分输出量的大小、性质、输出的逻辑状态、出现的顺序或它们的组合,使保护装置按一定的布尔逻辑及时序逻辑工作,最后确定是否应跳闸或发信号,并将有关命令传给执行元件;逻辑回路有:或、与、非、延时启动、延时返回、记忆等;3 执行元件作用;根据逻辑元件传送的信号,最后完成保护装置所担负的任务;如:故障时→跳闸;不正常运行时→发信号;正常运行时→不动作;二、分类1 按被保护的对象分类:输电线路保护、发电机保护、变压器保护、电动机保护、母线保护等;2 按保护原理分类:电流保护、电压保护、距离保护、差动保护、方向保护、零序保护等;3 按保护所反应故障类型分类:相间短路保护、接地故障保护、匝间短路保护、断线保护、失步保护、失磁保护及过励磁保护等;4 按构成继电保护装置的继电器原理分类:机电型保护如电磁型保护和感应型保护、整流型保护、晶体管型保护、集成电路型保护及微机型保护等;5 按保护所起的作用分类:主保护、后备保护、辅助保护等;主保护:满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备和线路故障的保护;后备保护:主保护或断路器拒动时用来切除故障的保护;又分为远后备保护和近后备保护两种;①远后备保护:当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现的后备保护;②近后备保护:当主保护拒动时,由本设备或线路的另一套保护来实现后备的保护;当断路器拒动时,由断路器失灵保护来实现近后备保护;辅助保护:为补充主保护和后备保护的性能或当主保护和后备保护退出运行而增设的简单保护;三、对继电保护的基本要求对动作于跳闸的继电保护,在技术上一般应满足四个基本要求:选择性、速动性、灵敏性、可靠性;即保护的四性; (1) 选择性在发生故障时,应由距故障点最近的保护动作,仅将故障元件切除;而使非故障元件仍能正常运行,以尽量缩小停电范围;距故障点最近的保护拒动时后备保护动作,后备保护分远后备在主保护安装处以外的远处和近后备在主保护安装处;当k3点短路时,保护6动→跳6DL,母线D 停电,有选择性;保护6不动或6DL 不跳,保护5动→跳5DL,母线B 、D 停电,也有选择性,保护6是保护5的远后备;若保护6和6DL 正确动作于跳闸,保护5动→跳5DL,则保护5为误动,或称保护5越级跳闸保护5失去选择性当k2点短路时,保护5动→跳5DL,母线C 、D 停电,也有选择性;当k1点短路时,保护1、2动→跳1DL 、2DL,切线路AB,母线B 、C 由另一条并列的非故障线路连接,不停电,有选择性;小结:选择性就是故障点在区内就动作,在区外不动作;当主保护未动作时,由近后备或远后备切除故障,使停电面积最小;因远后备保护比较完善对保护装置拒动、DL 拒动、二次回路和直流电源等故障所引起的拒绝动作均起后备作用且实现简单、经济,应优先采用;但远后备保护切除故障的时间较长;在高压电网中,应加强主保护;2 速动性:在发生故障时,应力求保护装置能迅速切除故障;快速切除故障可以提高电力系统并列运行的稳定性、减少用户在电压降低的情况下工作的时间、缩小故障元件的损坏程度、防止大电流流过非故障设备引起损坏等;保护的动作速度应尽可能快速;快速切除故障的好处: 1提高系统稳定性;2减少用户在低电压下的动作时间;3减少故障元件的损坏程度 ,避免故障进一步扩大;故障切除时间包括保护装置和断路器动作时间之和:bh dl t t t =+t -故障总切除时间,t bh -保护动作时间,t DL -断路器动作时间; 快速保护 ,最快 ,一般保护 ,最快 ; (3) 灵敏性通常,灵敏性用灵敏系数来衡量,并表示为K lm;对反应于数值上升而动作的过量保护如电流保护对反应于数值下降而动作的欠量保护如低电压保护其中故障参数的最小、最大计算值是根据实际可能的最不利运行方式、故障类型和短路点位置来计算的;原继电保护和安全自动装置技术规程DL400-91中,也对各类保护的灵敏系数K lm的要求都作了具体规定;4可靠性要求保护装置在应该动作时可靠动作;在不应该动作时不应误动,即既不应该拒动也不应该误动;影响可靠性有内在的和外在的因素:内在的:装置本身的质量,包括元件好坏、结构设计的合理性、制造工艺水平、内外接线简明,触点多少等;外在的:运行维护水平、安装调试是否正确;上述四个基本要求是设计、分析研究继电保护的基础,也是贯穿全课程的一个基本线索;在它们之间既有矛盾的一面,又有在一定条件下统一的一面;四、发展:原理随电力系统的发展和科学技术的进步而发展;1从保护原理看过电流保护1901年、最早熔断器1908年、电流差动保护、方向性电流保护1910年, 距离保护50年代、高频保护70年代诞生、50年代有设想、微波保护、行波保护、光纤保护2从构成保护装置的元件看机电型 20世纪50年代电子型60年代末提出、电磁型、感应型1901年、电动型晶体管70年代后半期集成电路微机型80年代第二章 继电器一、电磁型继电器22122Ke I M K K φδ==式中,212,,,,,e K M I K K φδ 分别是电磁转矩、气隙磁通、线圈电流、气隙长度和两比例系数;非线性方程1312()th th M M K δδ=+-式中,1123,,,,th th M M K δδ分别是弹簧反力矩、弹簧反力矩的初力矩,气隙的初始和终止的长度,比例系数;线性方程继电器动作条件:e thf M M M ≥+式中,,,e th f M M M 为电磁转矩、弹簧反力矩、摩擦力矩;2.221K actact I M K δ=式中,.12,,,act K act M I K δ分别为启动力矩、动作电流、气隙初始长度和比例系数; 继电器返回原位的条件:e thf M M M ≤+式中,,,e th f M M M 为电磁转矩、弹簧反力矩、摩擦力矩2.221K rere I M K δ=式中,.12,,,re K re M I K δ分别为返回力矩、返回电流、气隙初始长度和比例系数;..K rere K actI K I =二 、感应型继电器sin e M K φφθ=式中,12,,,,e M K φφθ••分别是感应旋转力矩,有相位差的两气隙磁通,两磁通的相 位角和一个系数;三、晶体管型继电保护四、集成电路型继电保护五、微机保护将反映故障量变化的数字式元件和保护中需要的逻辑元件、时间元件、执行元件等合作在一起用一个微机实现,称做微机保护,是继电器发展的最高第三章 电流的相间电流、电压保护和方向性相间电流、电压保护 第一节 单侧电源网络的相间电流、电压保护一、瞬时电流速断保护1短路电流的记号:3..max k B I 最大运行方式母线B 线路AB 末端三相短路电流,也记做..max k B I2..min k B I 最小运行方式线路B 线路AB 末端两相短路电流,也记做..min k B I3..max k C I 最大运行方式线路BC 末端三相短路电流,也记做..max k C I2..min k C I 最小运行方式线路BC 末端两相短路电流,也记做..min k C I注意: 3..max 2..max 3..max 3..min 2..min 3..min ()k B k B k B k B k B k B I I I I I >=>=<>= 2瞬时电流速断定值.1act i '节点1的瞬时电流速断保护的动作电流对应运行方式Ι、方式П有两点,方式П的点距离l 小,.2acti '节点2的瞬时电流速断保护的动作电流对应运行方式Ι、方式П有两点,方式П的点距离l 小,2..max .min rel actrel k B S ABK E I K I Z Z ϕ'''==+1..max .min ()relactrel k C S AB BC K E I K I Z Z Z ϕ'''==++2..max actrel k B I K I ''=>1..max act rel k C I K I ''=,一般.2.1act act I I ''> 可靠系数 1.2 1.3relK '=-- 灵敏性保护范围α,以保护2为例:2..max .min .min rel k actrel k B k S ABS ABK E K E I K I I Z Z Z Z ϕϕα'''====++上式k I 左等号左边的式子是一定子不随运行方式变化,右等号右边的式子是随运行方式变化的,由上式解出:.min k rel S k S rel relAB K K Z K Z K K Z α'-=-'' α受运行方式的影响表现在S Z 的取值,还与故障方式有关表现为K K 取值; 最大保护范围为最大方式三相短路,下式表明AB Z 充分小时可能为负值:.min .min max 1,:(1)1k S S rel S rel relAB K Z Z K Z K K Z α=='-=-'' 最小保护范围为最小方式两相短路,下式表明AB Z 充分小时可能为负值:二、限时电流速断保护1动作电流并与瞬时电流速断保护比较:.1.1,actact i i '''节点1的瞬时电流速断保护、限时电流速断保护的动作电流 .2.2,actact i i '''节点2的瞬时电流速断保护、限时电流速断保护的动作电流 限时限过电流保护动作电流:.2.1actact i i '''≥ ,.2.1act rel act i K i '''''=,可靠性系数 1.1 1.2rel K ''= 限时限过电流保护动作电流的时限:21.1.2.2,QF t t in r t t t t t t t t t '''∆=+∆∆=++++ 上式时间依次是,故障线路跳闸时间、中间继电器时间、时间继电器时间、测量元件返回惯性时间、裕度灵敏度校验:..min.2k B sen actI K i ='', 1.3 1.5sen K ≥三、 定限时过电流保护可作为线路全长的远后备保护 动作电流并与定时电流速断保护比较:.max .max .max 111rel Ms act re rel Ms rel Ms l l re re re reK K I I K I K K I I K K K K ====式中,,,re rel Ms K K K 分别是继电器返回系数、可靠性系数、负荷电动机自启动最大电流与额定或正常运行最大电流比例几倍;.max .max ,,,act re Ms l I I I I 分别为定限时过电流保护定值全段,保护装置返回电流,负荷电动机自启动最大电流,额定或正常运行最大电流;单侧放射形的网络,时间配合21324354,,,,t t t t t t t t t t t t =+∆=+∆=+∆=+∆ 时间配合第一式针对的短路是图中的k1,第二式针对的短路是图中的k2,依次类推;k1短路时,对于过电流保护1而言,可以是主保护,灵敏系数sen.1 1.3 1.5K ≥;这时保护2作为相邻线路的后备保护,灵敏系数sen.1 1.2K ≥ ,以此类推:sen.1sen.2sen.3sen.4K K K K >>>;四、 阶段式流保护动作电流和时限比较:第二节电网相间短路的方向式电流、电压保护一、双侧电源电流保护示意图双侧电源网络图3-1与单侧电源放射形网络图3-1、3-2、3-3、3-5、3-6、3-9、3-10、3-14等对比:1单侧电源网络每段线路只在始端设断路器和保护双侧电源网络每段线路都分别在始端、末端设断路器和保护2单侧电源网络每段线路短路都只有一个电源向短路点提供短路电流,电流方向是从电源流出;双侧电源网络每段线路短路都会有两个电源向短路点提供短路电流,电流方向是从两个电源流出;3双侧电源网络每段线路始端、末端所设断路器和保护,如按单侧电源网络每段线路在始端所设断路器和保护同样设置,就会“误动”二、功率方向继电器工作原理图中:1继电器0°接线方式,k A k A U U I I ==.max .max 1.90arg90A sen sen k AU I ϕϕ••+≥≥-.max1.90arg90sen j A k AU e I ϕ•-•≥≥-2继电器90°接线方式A 相电流,BC 线电压接线:,k BC k A U U I I ••••==,因所用电压k BC U U ••=滞后与电流A I •同名相电压A U •90°,习惯称90°接线在.max 90sen ϕ±范围为动作方向见图3-26,a,写作:.max .max 1.90arg90BC sen sen k AU I ϕϕ••+≥≥-.max1.90arg90sen j BC k AU e I ϕ•-•≥≥-写成功率:.max cos()0A A sen U I ϕϕ->或cos()0BC A U I ϕα+>继电器90°接线方式,还可以结成B 相电流,CA 线电压接线,k CA k B U U I I ==,C 相电流,AB 线电压接线,k AB k C U U I I ==;注意:2(/).max 180+=150BC A k U I sem ϕϕ=也是在不动作区的中央;三、功率方向继电器的动作特性死区:...min ...min ,k act k act k act k act U U I I ≤≤四、功率方向继电器的接线图中,B 相得KPD 功率方向继电器少了一根电流流出的线;继电器90°接线方式,A 相电流,BC 线电压,k BC k A U U I I ==结成B 相电流,CA 线电压,k CA k B U U I I ==,C 相电流,AB 线电压,k AB k C U U I I ==;TA 的两个黑点表示一次电流和二次电流正方向的端,KPD 的两个黑点表示电流和电压二次正方向端五、双电源网络中电流保护整定的特点1瞬时电流速断保护1 2.max 1.max .1.2 2.max ,k k act act relk I I I I K I '>== {}max 1..max 2..max 2..max 2.max .1.2 2.max max ,k B k A k B k act act relk I I I I I I I K I ==='==图3-35中,k1是电源Ⅱ的最远短路点,k2是电源Ⅰ的最远短路点,k1、k2都在区外,短路时保护1、2都应不动作,所以动作电流要大于其中较大者;小电源侧保护2的保护范围缩小,两侧电源容量差别越大,影响越明显;2在保护2装设方向元件,只当电流从从母线流向被保护线路才动作;.2 1.max act relk I K I '= 但这是保护1不需要安装方向保护,因为已经从动作电流定值避开k1短路的反向电流.1 2..max 2..max act relk B k A I K I I '=> 2限时电流速断保护正常:.2.1atcatc I I '''≥ .2.1atcrel atc I K I '''''= 可靠性系数=1.1 1.2relK '',比=1.2 1.3rel K '略小;有助增或外吸电源的情况.2.1relatcatcbrK I I K '''= 助增1br K >,外吸1br K <=1br K 即正常情况六、方向性保护的死区少用方向性保护的措施(1) 对于电流速断保护,从定值上躲开反方向短路 (2) 对于过电流保护如果保护6动作时间大于保护1动作时限加一个时间台阶,即61t t t ≥+∆,则保护6可以不设方向元件,但保护1要设方向元件;七 双侧电源网络中方向性电压速断保护图3-35中, k1、k2都在区外,短路时保护1、2都应不动作;对于保护1 ,k1短路,电压低,电压速断保护会误动;加电流闭锁,又因电源Ⅱ提供了短路电流,仍然不起闭锁作用,所以要装设方向性元件来防止电压速断保护误动;第三章第一节作业题参考答案P38P70P41过电流保护P70P33P37P45第一问:第二个“定时限”要改为“反时限”第二问P33P36第三问P41第三章第二节参考答案111027 1 分析图3-22中方向继电器应用情况;双侧电源网络图3-22与单侧电源放射形网络图3-1、3-2、3-3、3-5、3-6、3-9、3-10、3-14等对比:1单侧电源网络每段线路短路都只有一个电源向短路点提供短路电流,电流方向是从电源流出;双侧电源网络每段线路短路都会有两个电源向短路点提供短路电流,短路电流方向是从两个电源流出;图a 、b 是实际电流方向;2单侧电源网络每段线路只在始端设断路器和保护,双侧电源网络每段线路都分别在始端、末端设断路器和保护;3双侧电源网络,如按单侧电源网络每段线路在始端所设断路器和保护同样设置,就会“误动”:例如,k1短路,保护2、6正确动作外,保护1、5还会误动,把变电站B 、C 全停;K2短路,保护1、7正确动作外,保护6、8还会误动,把变电站C 、D 全停;4规定短路电流正方向是从母线流向线路,4、3、2、1为一组,反映电源Ⅰ一侧的电流实际电流与正方向同, 8、7、6、5一组,反映电源Ⅱ的一侧电流实际电流与正方向同,按单侧电源网络每段线路在始端所设断路器和保护同样设置,就不会“误动”;例如,k1短路,保护2、6正确动作,保护3、7虽方向允许,但时限较保护保护2、6长,在保护2、6正确动作后,短路消失也不会动作;1、58、4因功率方向相反不会启动;又如,K2短路,保护1、7正确动作,保护2、3虽方向允许,但时限较保护保护1、7长,在保护1、7正确动作后,短路消失也不会动作;保护4、5因功率方向相反不会启动;2 试推导,k CA k B U U I I ••••==的方向继电器原理公式一A 相电流,BC 线电压接线原理公式 1、图规定短路电流正方向是从母线流向线路;K1、k2短路点在保护1安装处的短路电压和电流记做,k k U I ••2、,k BC k A U U I I ••••==的继电器90°接线方式原理1,k BC k A U U I I ••••==A 相电流,BC 线电压接线:,k BC k A U U I I ••••==,因所用电压k BC U U ••=滞后于 电流A I •同名相电压A U •90°,习惯称90°接线 2k1短路区内在保护1处:1(/)11.argarg arg 60A A A k UI k Z k AU Z Z I ϕϕ••=====≈设线路阻抗角arg 60Z Z ϕ=≈1(/)1. 1.1argarg90arg 90arg 9090609030BCA BC A k UI k Ak Ak Z U U I I Z Z ϕϕα••••===-=-=-=-≈-=-==α称为继电器内角30α=-;3k2短路区外,在保护1处,A 相短路电流相位滞后BC 相电压约150°角,或称超前210度角图b :2(/)2. 1.1(/)arg180arg18018018030150BCA BC A BC BC k UI k Ak Ak U I U U I I ϕϕα••••===+=+=+=-=4设最灵敏角.max 30sen ϕα==-在.max 90sen ϕ±范围为动作方向见图3-26,a,写作:.max .max 1.90arg90BC sen sen k AU I ϕϕ••+≥≥-.max1.90arg90sen j BC k AU e I ϕ•-•≥≥-写成功率:.max cos()0A A sen U I ϕϕ->或cos()0BC A U I ϕα+> 注意:2(/).max 180+=150BC A k U I sem ϕϕ=也是在不动作区的中央; 二B 相电流,CA 线电压接线原理公式继电器90°接线方式,还可以结成B 相电流,CA 线电压接线,k CA k B U U I I ==,C 相电流,AB 线电压接线,k AB k C U U I I ==;1、图2、,k CA k B U U I I ••••==的继电器90°接线方式原理继电器90°接线方式B 相电流,CA 线电压接线:,k CA k B U U I I ••••==,因所用电压k CA U U ••=滞后与电流B I •同名相电压B U •90°,习惯称90°接线2k1短路区内在保护1处:如前,规定短路电流正方向是从母线流向线路;在保护1处,k1短路区内B 相短路电流滞后CA 相电压约-30°角超前30°图a :1(/)1. 1.1argarg90arg 90arg 9090609030CA B CA C k UI k Bk Bk Z U U I I Z Z ϕϕα••••===-=-=-=-≈-=-==α称为继电器内角30α=-在保护1处,k2短路区外A 相短路电流相位滞后BC 相电压约150°角,或称超前210度角图b :2(/)2. 1.1(/)arg180arg18018018030150BCACA B CA CA k UI k Bk Bk U I U U I I ϕϕα••••=+=+=+=-=.max 30sen ϕα==-在.max 90sen ϕ±范围为动作方向见图3-26,a,写作:.max .max 1.90arg90CA sen sen k BU I ϕϕ••+≥≥-.max1.90arg90sen j CA k BU e I ϕ•-•≥≥-写成功率:.max cos()0B B sen U I ϕϕ->或cos()0CA B U I ϕα+> 注意:2(/).max 180+=150CA B k U I sem ϕϕ=也是在不动作区的中央;。

电力系统继电保护原理名词解释

电力系统继电保护原理名词解释

最低位的 1 所代表的模拟量的大小。 15.量程:指 A/D 转换器所能转换模拟信号的电压范围。 16.精度:转换后所得的结果相对于实际值的准确度。 17.绝对精度:对应于输出数码的模拟电压与实际的模拟输入电压之 差。 18.相对精度:绝对精度与满量程 FSR 电压值之比的百分数。 19.转换时间:指按照规定的精度将模拟信号转换为数字信号并输出 所需要的时间。 20.转换速率:指能够重复进行数据转换的速度Байду номын сангаас即每秒钟转换的次 数。 21.逆变电源:将直流逆变为交流,再把交流整流为保护装置所需的 直流电压。 22.监控程序:包括人机对话接口命令处理程序及为插件调试、定值 整定、报告显示所配置的程序。 23.运行程序:指保护装置在运行状态下所需执行的程序。
第二章:继电保护的硬件构成-------继电器
1. 继电器:一种能反映一个弱信号的变化而突然动作,闭合或断开 其接点以控制一个较大功率的电路或设备的器件。 2. 继电特性:无论起动和返回,继电器的动作都是明确干脆的,它 不可能停留在某一个中间位置。 3. 继电器的返回系数:返回电流与动作电流的比值。 4. 动作电流:能够使继电器可靠动作的最小电流值。 5. 返回电流:能够使继电器可靠返回的最大电流值。 6. 单片机:把组成微型计算机的各功能部件制作在一块集成芯片中, 构成一个完整的微型计算机。 7. 闪存存储器:带有可擦除非易失性记忆元件。 8. DSP:数字信号微处理器,用于完成各种实时数字信息处理。 9. 采样保持器:一种具有信号输入,信号输出以及由外部指令控制 的电子门电路。 10.采样时间:充电和放电时间。 11.频率混淆:一个高于 fs/2 的频率成分在采样后被错误的认为是一 个低频信号的失真现象。 12.滤波器:一种能使有用频率信号通过,同时抑制无用频率信号的 电路。 13.A/D 转换器: 模数转换器, 一种实现模拟量变换成数字量的硬件芯 片。 14.分辨率:指 A/D 转换器所能分辨模拟输入信号的最小变化量,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论
教学内容:
电力系统的几种状态,继电保护的作用、组成及基本任务;电力系统继电保护的基本原理及基本要求;继电保护的发展简史。

教学要求:
掌握电力系统的几种状态,了解电力系统继电保护的作用、组成及基本任务。

掌握电力系统继电保护的基本原理及基本要求,了解继电保护的发展简史。

重点:
电力系统继电保护的基本原理及基本要求。

难点:
电力系统继电保护的基本原理及基本要求。

教学学时:
3学时
第一节电力系统的三种状态
一、电力系统的组成及其生产特点
1、组成:发电机、变压器、输配电线路、母线、电动机等电力元件
2、生产特点:发、供、用同时完成,不能储存
3、要求:电力系统运行安全、可靠、连续
二、电力系统的故障和不正常工作状态
1、故障
最常见故障:短路
——相与相之间、相对地之间、电机或变压器同一相绕组不同线匝之
间的短接
a、短路形式
d(1)(最常见)、d(1,1)、d(2)、d(3)(最危险)
b、短路特点:I
↑,U↓
d
c、短路故障的后果——事故
事故即指系统的全部或部分的正常运行遭到破坏,以至于造成停电、少送电,电能质量严重下降,甚至损坏设备。

2、不正常运行状态
指电气设备的正常运行状态遭到破坏,系统的运行参数偏离规定的允许值,但尚未发展成故障。

a、其性质、后果及危害性有别于故障
b、长时间的不正常运行有可能造成故障
如长期过负荷→温度升高→绝缘老化→故障
3、易出故障的元件
架空线、开关电器、旋转电机等
三、继电保护的任务
继电保护装置是一种由继电器和其它辅助元件构成的安全自动装置。

它能反映电气元件的故障和不正常运行状态,并动作于断路器跳闸或发出信号。

故障——将故障元件切除(借助断路器)
不正常状态——自动发出信号(以便及时处理)
可预防事故的发生和缩小事故影响范围,保证电能质量和供电可靠性。

第二节保护装置构成的基本原理和组成
一、保护装置的原理
利用发生故障时,电力系统的一些基本参数(电流、电压、相角)与正常运行时的差别来实现保护。

二、构成
1、测量单元:测量被保护元件运行参数的变化,并与保护的整定值进行比较
2、逻辑单元:对测量单元送来的信号进行综合判断,决定保护装置是否需要动
作。

3、执行单元:根据逻辑单元的决定,发出信号或跳闸命令

整定值
三、各种保护装置简介
1、过电流保护:I
d

2、低电压保护:U↓
3、功率方向电流保护:功率方向
电流大小
4、距离保护:X=U/I
正常→X大(U=U
e ,I=I
f

故障→X小(U↓,I
d
↑)
5、差动保护:电流相位
电流大小
6、高频保护:利用高频信号监测各电气量情况
第三节对继电保护的要求
一、选择性
1、目的:缩小停电范围
2、措施:保护装置应断开离故障点最近的断路器
主保护:能以最短的速度切除被保护元件范围内的故障的保护。

后备保护:主保护或断路器拒绝动作时起作用的继电保护。

分:近后备
远后备
例:用图表示各级线路主保护、近后备保护、远后备保护的保护范围。

二、速动性
1、目的:限制故障的不良后果,避免形成事故
2、故障切除时间:由保护装置动作时间、断路器固有的跳闸时间组成
三、灵敏性
1、目的:保护反应故障或不正常运行状态的能力
2、灵敏系数:指电力系统处于最小运行方式下,在整个保护范围内任一点发生
表示。

故障时,都能可靠动作的能力。

常用K
lm
对于反应故障时参量增加而动作的保护装置:
K
=保护区末端金属性短路时最小故障参数计算值/保护装置动作参数整定lm

对于反应故障时参量减小而动作的保护装置:
=保护装置动作参数整定值/保护区末端金属性短路时最大故障参数计算 K
lm

>1(一般为1.2~2.0)
要求K
lm
四、可靠性
从两个方面考核:保护范围内→不应拒动
保护范围外→不应误动
对于上述四个要求必须同时具备,且解决好之间的矛盾:
如:选择性、速动性↑→可靠性↓
灵敏性↑→可靠性↓、选择性↓
选择性↑→速动性↓
复习提问:
1、继保任务、基本要求
2、主保护、近后备保护、远后备保护的区别
3、灵敏系数的概念及运用
复习提问:
1、继保的原理、构成及作用
2、各种常用保护的工作原理
第四节对继电保护发展简史
继电保护技术的发展是伴随电力系统、电子技术、计算机技术、通讯技术发展而发展。

从继电保护装置结构方面来看,它的发展过程大致可分为五个阶段:机电型保护阶段、整流型保护阶段、晶体管型保护阶段、集成电路型保护阶段、微机型保护阶段。

从它的构成原理方面来看,一直是随着电力系统发展而不断提出相应的新原理保护,新原理保护又在电力系统运行中不断完善,不断趋向成熟。

随着电子技术、通信技术和计算机技术的不断发展,继电保护必将向着综合自动化领域
迈进,目前微机保护已经在全国普遍应用。

就保护的原理方面目前仍然没有太大的突破,但是在实现手段上有了根本的变化。

微机保护与以往的各种类型的继电保护相比,是采用数字计算技术实现的各种保护功能。

由于微机保护具有灵活性大、可靠性高、易于获得附加功能和维护调试方便等优点,因此必将越来越多的应用,有着很好的发展前途。

但是,采用微机保护要求良好的抗电磁干扰措施和较好的工作环境;同时,微机保护所有保护功能都是依赖软件实现的,硬件电路几乎是一样的,这样一套硬件电路可以完成多个保护功能,也就给硬件电路提出了更高的要求;另外,由于微机保护采用的硬件芯片发展迅速,更新换代时间短,从而导致微机保护服役时间比较短。

继电保护技术发展流程:
保护原理方面:
过电流保护(最早熔断器)−→−
电流差动保护−→−方向性电流保护−→− (1901年) (1908年) (1910年)
距离保护 −→−
高频保护 −→− 微波保护 −→− 行波保护、光纤保护 (1920年) (1927年) (50年代) (70年代)
结构型式方面:
机电型(电磁型、感应型)−→−
整流型−→−晶体管型−→−集成电路型−→− 微机型。

相关文档
最新文档