圆周运动(1)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动

教学目标:

1.掌握描述圆周运动的物理量及相关计算公式; 2.学会应用牛顿第二定律解决圆周运动问题

3.掌握分析、解决圆周运动动力学问题的基本方法和基本技能 教学重点:匀速圆周运动

教学难点:应用牛顿第二定律解决圆周运动的动力学问题 教学方法:讲练结合,计算机辅助教学 教学过程:

一、描述圆周运动物理量: 1、线速度 (1)大小:v =

t

s

(s 是t 时间内通过的弧长) (2)方向:沿圆周的切线方向,时刻变化 (3)物理意义:描述质点沿圆周运动的快慢 2、角速度:

(1)大小:ω=

t

φ

(φ是t 时间内半径转过的圆心角)

(2)方向:沿圆周的切线方向,时刻变化 (3)物理意义:描述质点绕圆心转动的快慢 3、周期T 、频率f :

作圆周运动的物体运动一周所用的时间,叫周期;单位时间内沿圆周绕圆心转过的圈数,叫频率。即周期的倒数。

4、v 、ω、T 、

f 的关系

v =

T

r

π2=ω r =2πrf 点评:ω、T 、f ,若一个量确定,其余两个量也就确定了,而v 还和r 有关。

5、向心加速度a :

(1)大小:a =ππω44222

2===r T

r r v 2 f 2r (2)方向:总指向圆心,时刻变化

(3)物理意义:描述线速度方向改变的快慢。 【例1】如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。

解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,所以v a ∶ v b ∶v c ∶v d =2∶1∶2∶4;ωa ∶ωb =2∶1,而ωb =ωc =ωd ,所以ωa ∶ωb ∶ωc ∶ωd =2∶1∶1∶1;再利用a =v ω,可得a a ∶a b ∶a c ∶a d =4∶1∶2∶4

点评:凡是直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点的线速度大小相等;凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。

【例2】如图所示,一种向自行车车灯供电的小发电机的上端有一半径r 0=1.0cm 的摩擦小轮,小轮与自行车车轮的边缘接触。当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力。自行车车轮的半径R 1=35cm ,小齿轮的半径R 2=4.0cm ,大齿轮的半径R 3=10.0cm 。求大齿轮的转速n 1和摩擦小轮的转速n 2之比。(假定摩擦小轮与自行车轮之间无相对滑动)

解析:大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边缘各点的线速度大小相等,由v =2πnr 可知转速n 和半径r 成反比;小齿轮和车轮同轴转动,两轮上各点的转速

相同。由这三次传动可以找出大齿轮和摩擦小轮间的转速之比n 1∶n 2=2∶175

二、牛顿运动定律在圆周运动中的应用(圆周运动动力学问题) 1.向心力

(1)大小:R f m R T

m R m R v m ma F 22222

244ππω=====向

(2)方向:总指向圆心,时刻变化

点评:“向心力”是一种效果力。任何一个力,或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以作为向心力。“向心力”不一定是物体所受合外力。做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变。

2.处理方法:

一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。

做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:F n =ma n 在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要

的向心力(可选用R T m R m R mv 2

22

2⎪⎭

⎫ ⎝⎛πω或或等各种形式)

。 如果沿半径方向的合外力大于做圆周运动所需的向心力,物体将做向心运动,半径将减小;如果沿半径方向的合外力小于做圆周运动所需的向心力,物体将做离心运动,半径将增大。如卫星沿椭圆轨道运行时,在远地点和近地点的情况。

3.处理圆周运动动力学问题的一般步骤: (1)确定研究对象,进行受力分析;

(2)建立坐标系,通常选取质点所在位置为坐标原点,其中一条轴与半径重合; (3)用牛顿第二定律和平衡条件建立方程求解。

4.几个特例 (1)圆锥摆

圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。

【例3】 小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v 、周期T 的关系。(小球的半径远小于R 。)

解析:小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力F 是重力G 和支持力N 的合力,所以重力和支持力的合力方向必然水平。如图所示有:

22sin sin tan θωθ

θmR R mv mg ==,

由此可得:g

h

g R T gR v π

θπ

θθ2cos 2,sin tan ===

, (式中h 为小球轨道平面到球心的高度)。

可见,θ越大(即轨迹所在平面越高),v 越大,T 越小。

点评:本题的分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。

(2)竖直面内圆周运动最高点处的受力特点及分类

这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在

改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。

①弹力只可能向下,如绳拉球。这种情况下有mg R

mv mg F ≥=+2

G

F

相关文档
最新文档