特殊平行四边形:正方形
北师大版初中数学九年级上册知识讲解 巩固练习 第4讲《特殊平行四边形》全章复习和巩固(基础)
《特殊平行四边形》全章复习与巩固(基础)知识讲解【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形;高底平行四边形⨯=S(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积: 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;2对角线对角线高==底菱形⨯⨯S(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】宽=长矩形S类型一、平行四边形1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【答案与解析】∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2019•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCA MA MCAMD CMN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由①知四边形ADCN是平行四边形,∴MD=MN =MA =MC ,∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6,又∵ 在Rt △ADC 中,.∴ AF =AC -CF =4,AE =AD -DE =8-x .在Rt △AEF 中,222AE AF EF =+,即,解得:x =3 ∴ EF =3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.举一反三:【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若10AC ==222(8)4x x -=+AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案.【答案与解析】探究:AE =EF证明:∵△BHE 为等腰直角三角形,∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形,222DC FC DF +=85DEF 1=DE AB 2S ⨯△12∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式】(2018•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于.【答案】65°。
新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》
请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形
正方形是特殊的平行四边形吗
正方形是特殊的平行四边形吗
有一组邻边相等,并且有一个角是直角的平行四边形称为正方形,又称为正四边形,它具有矩形和菱形的全部特性。
正方形是特殊的平行四边形之一。
正方形具有以下特征:
1、对角线相等的菱形是正方形。
2、有一个角为直角的菱形是正方形。
3、对角线互相垂直的矩形是正方形。
4、一组邻边相等的矩形是正方形。
5、一组邻边相等且有一个角是直角的平行四边形是正方形。
6、对角线互相垂直且相等的平行四边形是正方形。
7、对角线相等且互相垂直平分的四边形是正方形。
8、一组邻边相等,有三个角是直角的四边形是正方形。
9、既是菱形又是矩形的四边形是正方形。
特殊四边形性质及判定方法总结
特殊四边形性质和判定方法
1、平行四边形:
性质:1、对边相等;
2、对角相等;
3、对角线相互平分。
判定:1、两组对边分别平行;
2、两组对边分别相等;
3、一组对边平行且相等;
4、两组对角分别相等;
5、对角线相互平分。
2、菱形:
性质:1、菱形具有平行四边形的一切性质;
2、菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
3、菱形的四条边都相等;
4、菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其中心,即两对角线的交点)。
判定:1、邻边相等+平行四边形;
2、对角线相互垂直+平行四边形;
3、四边相等的四边形。
3、矩形:
性质:1、矩形具有平行四边形的一切性质;
2、矩形的对角线相等且互相平分;
3、矩形的四个角相等,且为90度;
4、矩形是轴对称图形,它有两条对称轴,它也是中心对称图形,对称中心是对角线的交点。
判定:1、一个直角+平行四边形;
2、对角线相等+平行四边形;
3、有三个角为直角的四边形;
4、正方形:
性质:1、正方形具有平行四边形、菱形、矩形的一切性质;
2、对角线垂直平分;
3、既是中心对称图形,又是轴对称图形(有四条对称轴)。
判定:1、一个直角+菱形;
2、邻边相等+矩形;
3、对角线相互垂直+矩形;
(注:1、重点关注平行四边形;
2、正方形判定方法多种多样,但是之间互相可以转化,所以这里只例举部分判定方法)。
特殊的平行四边形-正方形
《正方形》教案设计陕西省丹凤县茶房中学 陈建博教材依据:人教版《义务教育课程标准实验教科书》数学八年级〔下册〕第十九章《四边形》第二节〈特殊的平行四边形〉第三课时。
设计思想:正方形是我们在生活中常见的一种几何图形,是生活中美得体现。
它是在学生掌握了三角形、平行四边形、对称图形等知识后的综合运用。
本节课在教学中重点通过学生的互动交流,探讨、回顾平行四边形的性质与判定,探究归纳正方形的性质与判定。
同时结合生活中实际,强化学生对知识的运用能力。
整个过程充分体现学生的自主操作、互动探究,通过学生的观察、思考、猜想等过程,体验知识的形成。
对于例题的设计,在课前以情景的形式出现,激发学生的学习兴趣,实例中又回归生活实际,让学生充分体会知识在生活中的运用。
教学目标:知识与技能:掌握正方形的性质及判定并能进行实际运用。
方法与过程:通过对生活中正方形实例的研究及与矩形、菱形的类比,探究正方形的性质及判定情感、态度与价值观:经历对生活中正方形实例的研究及与矩形、菱形的类比,体验知识的形成、探究过程,强化学生对知识的运用能力。
教材分析:重点:探究正方形的性质及判定难点:对性质及判定的综合运用教法设计:互动探究、实践演练学法设计:互动探究——实践演练教学准备:课件、三角板等教学流程:一、创设情景、引入课题1、情景创设:在城市建设中,我们经常遇到这样的一些问题。
如图:是某城市广场的一个正方形草坪,AC 、BD 是沿对角线的两条交叉小路,请问两条小路所分成的四个三角形是全等的等腰直角三角形吗?〔教师:利用多媒体播放城市一角正方形草坪〕2、导入课题: 怎样解决这些问题呢?这将是我们本节课研究的主要内容。
【设计意图:教师联系实际,利用多媒体出示城市一角正方形草坪,创设学生感兴趣的情景,引发学生思考 ,激发学生兴趣,引入课题。
】AB C D二、探究正方形性质㈠、正方形概念1、找一找:正方形是我们生活中常见的一种几何图形,你能举出一些正方形的实例吗?2、谈一谈:结合实例及小学对正方形的认识你能谈一谈什么是正方形吗?3、动画展示,分析概念有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
浙教版八年级下册第五章特殊平行四边形 第2讲(正 方 形)培优讲义(含解析)
特殊平行四边形第2讲(正方形)命题点一:根据相应的判定方法解题例1下列判断错误的是( D )A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形例2如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,添加一个条件,仍不能证明四边形BECF为正方形的是( D )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF命题点二:利用性质解决相关问题例3如图,在正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰直角三角形有( C )A.4个 B.6个 C.8个 D.10个例4如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,则∠BCF 的度数为 105°.命题点三:利用图形的对称性解题例5如图,P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连结EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD 2E C.其中正确结论的序号是( A )A.①②④⑤ B.①②③④⑤ C.①②④ D.①④例6(宁波一中预录题)如图,正方形ABCD,正方形CGEF的边长分别是2,3,且点B,C,G在同一直线上,M是线段AE的中点,连结MF,则额MF的长为( A)A.22B.1 C. 2 D. 3命题点四:用旋转的方法解决问题例7如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是( B )A. 2 B. 3 C.2 D. 5例8(江西省南昌市竞赛题)如图,P为正方形ABCD内一点,若PA∶PB∶PC=1∶2∶3,则∠APB 的度数为( B )A.120°B.135° C.150°D.以上都不对命题点五:利用面积法解有关的问题例9有3个正方形如图所示放置,涂色部分的面积依次记为S1,S2,则S1∶S2等于( D ) A.1∶ 2 B.1∶2 C.2∶3 D.4∶9例10将五个边长都为3 cm的正方形按如图所示的样子摆放,点A,B,C,D分别是四个正方形的中心,则图中四块涂色面积的和为( C )A.3 cm2 B.6 cm2 C.9 cm2 D.18 cm2命题点六:利用正方形半角模型解题例11(2018·湖北)如图,在正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( C )A.1 B.1.5 C.2 D.2.5例12如图,在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG,GF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=3.其中正确结论的个数是( B )△FGCA.4 B.3 C.2 D.1命题点七:利用弦图模型解题例13如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF =5,BE=DF=12,则EF的长是( C )A.7 B.8 C.7 2 D.7 3例14按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(涂色部分)的周长为20 2 .命题点八:正方形内部“线段”垂直必相等;相等不一定垂直例15如图,将边长为12 cm的正方形ABCD折叠,使得A落在边CD上的E点,折痕为FG,连结AE,若FG的长为13 cm,则线段CE的长为 7_cm.例16如图所示,正方形ABCD的边长为3,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD,BC相交于点P,Q .若PQ=AE,则AP长为( C )A.0.5 B.1 C.1或2 D.0.5或2.5课后练习1.如图,在正方形ABCD中,E为AB的中点,FE⊥AB,AF=2AE,FC交BD于点O,则∠DOC 的度数为( A )A.60°B.67.5°C.75°D.54°2.如图所示,四边形ABCD是正方形,直线l1,l2,l3分别通过A,B,C三点,且l1∥l2∥l3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD的面积等于( B )A.70 B.74 C.144 D.1483.如图,在正方形ABCD中,E是DC的中点,点F在BC上,∠EAF=∠DAE,则下列结论中正确的是( D )A.∠EAF=∠FAB B.FC=13BC C.AF=AE+FC D.AF=BC+FC4.如图是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( D )A.1或9 B.3或5 C.4或6 D.3或65.在平面直角坐标系中放置了5个如图所示的正方形(用涂色部分表示),点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是( D )A.3+318B.3+118C.3+36D.3+166.如图,正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,H为BF的中点,连结GH,则GH的长为1234.7.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQS正方形AEFG=89.8.如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连结OC,若AC=5,OC=62,则另一直角边BC的长为 7 .9.如图,在正方形ABCD中,点P,P1为正方形内的两点,且PB=PD,P1B=AB,∠CBP=∠P1BP,则∠BP1P= 45°.10.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是 15°或165°.11.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+3,若AC=CD,则边AD的长为6.12.如图,在正方形ABCD中,点P在AD上,且不与A,D重合,BP的垂直平分线分别交CD,AB于点E,F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF =AP .(2)若正方形ABCD 的边长为12,AP =4,求线段EQ 的长. 解:(1)∵EF ⊥BP ,EH ⊥AB ,∴∠FEH +∠EMQ =90°=∠PBA +∠BMH . 又∵∠QME =∠BMH , ∴∠FEH =∠PB A . ∵四边形ABCD 是正方形, ∴∠A =∠D =90°,AB =A D . ∵EH ⊥AB ,∴∠EHA =90°=∠A =∠D . ∴四边形ADEH 是矩形. ∴AD =EH . 又∵AB =AD , ∴AB =EH .在△ABP 与△HEF 中,∵⎩⎨⎧∠A =∠FHE ,AB =HE ,∠ABP =∠HEF ,∴△ABP ≌△HEF (ASA ). ∴AP =FH .(2)如图,连结PF ,PE .∵EF 垂直平分BP , ∴PF =BF .设AF =x ,则PF =BF =12-x .∴在△APF 中,42+x 2=(12-x )2,解得x =163.∴AF =163. ∴BF =AB -AF =203,BH =BF -FH =83, DE =AB -BH =283. ∴PE =DP 2+DE 2=4853. ∵BP =AP 2+AB 2=410, ∴PQ =12BP =210.∴EQ =PE 2-PQ 2=10103. 13.(2018·北京) 如图,在正方形ABCD 中,E 是AB 上的一动点(不与A ,B 重合),连结DE ,点A 关于直线DE 的对称点为F ,连结EF 并延长交BC 于点G ,连结DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连结BH .(1)求证:GF =G C .(2)用等式表示线段BH 与AE 的数量关系,并证明. 证明:(1)如图,连结DF . ∵点A ,F 关于DE 对称, ∴AD =FD ,AE =FE . 在△ADE 和△FDE 中,∵⎩⎨⎧AD =FD ,AE =FE ,DE =DE ,∴△ADE ≌△FDE (SSS ). ∴∠DAE =∠DFE .∵四边形ABCD 是正方形, ∴∠A =∠C =90°,AD =C D . ∴∠DFE =∠A =90°.∴∠DFG =180°-∠DFE =90°. ∴∠DFG =∠C .∵AD =DF ,AD =CD ,∴DF =C D . 在Rt △DCG 和Rt △DFG 中,∵⎩⎨⎧DC =DF ,DG =DG ,∴Rt △DCG ≌Rt △DFG (HL ). ∴GF =G C . (2)BH =2AE .如图,在AD 上取点M 使得AM =AE ,连结ME .∵四边形ABCD 是正方形, ∴AD =AB ,∠A =∠ADC =90°. ∵△ADE ≌△FDE , ∴∠ADE =∠FDE . 同理,∠CDG =∠FDG .∴∠EDG =∠EDF +∠GDF =12∠ADF +12∠CDF =12∠ADC =45°. ∵DE ⊥EH ,∴∠DEH =90°.∴∠EHD =180°-∠DEH -∠EDH =45°.∴∠EHD =∠EDH .∴DE =EH .∵∠A =90°,∴∠ADE +∠AED =90°.∵∠DEH =90°,∴∠AED +∠BEH =90°.∴∠ADE =∠BEH .∵AD =AB ,AM =AE ,∴DM =E B .在△DME 和△EBH 中,∵⎩⎨⎧ DM =EB ,∠MDE =∠BEH ,DE =EH ,∴△DME ≌△EBH (SAS ).∴ME =BH .在Rt △AME 中,∠A =90°,AE =AM ,∴ME =AE 2+AM 2=2AE .∴BH =2AE . 14.四边形ABCD 是边长为4的正方形,点E 在边AD 所在的直线上,连结CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连结BF .(1)如图①,当点E 与点A 重合时,请直接写出BF 的长.(2)如图②,点E 在线段AD 上,AE =1.①求点F 到AD 的距离;②求BF 的长.(3)若BF=310,请直接写出此时AE的长.解:(1)BF=4 5.(2)如图,①过点F作FH⊥AD交AD的延长线于点H,∵四边形CEFG是正方形,∴EC=EF,∠FEC=90°.∴∠DEC+∠FEH=90°.又∵四边形ABCD是正方形,∴∠ADC=90°.∴∠DEC+∠ECD=90°.∴∠ECD=∠FEH.又∵∠EDC=∠FHE=90°,∴△ECD≌△FEH. ∴FH=E D.∵AD=4,AE=1,∴ED=AD-AE=4-1=3. ∴FH=3,即点F到AD的距离为3.②延长FH交BC的延长线于点K,∴∠DHK=∠HDC=∠DCK=90°.∴四边形CDHK为矩形.∴HK=CD=4.∴FK=FH+HK=3+4=7.∵△ECD≌△FEH,∴EH=CD=AD=4.∴AE=DH=CK=1.∴BK=BC+CK=4+1=5.在Rt△BFK中,BF=FK2+BK2=72+52=74.(3)AE=2+41或AE=1.15.(自主招生模拟题)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF =1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次回到点E时,小球P所经过的路程为6 5 .16.(自主招生模拟题)图①中,正方形ABDE,CDFI,EFGH的面积分别为17,10,13;图②中,四边形DPQR为矩形,对照图②,计算图①中六边形ABCIGH的面积应为 62 .17.(自主招生模拟题)如图所示,四边形ABCD是正方形,且∠1=∠2=∠3.(1)若∠1=30°,DG=3,求正方形ABCD的边长.(2)求证:AG-GF=GE.解:(1)∵∠1=30°,DG=3,∴正方形ABCD的边长为3DG=3.(2)如图,在AG上截取GH=GF,过点H作HP⊥AD,垂足为P. ∵∠1+∠3+∠4=90°,∠1=∠3,∴∠4=90°-2∠1.在等腰三角形GFH中,∠GHF=12(180°-∠4)=45°+∠1.又∵∠GHF=∠1+∠AFH,∴∠AFH=45°.∴△PFH为等腰直角三角形,PH=PF. 由GH=GF且PH=PF,得GP⊥FH.∴∠FPG=45°.∴DP=DG,AP=CG.∴△APH≌△GCE,AH=GE.∴AG=AH+HG=GE+GF.∴AG-GF=GE.。
第1章特殊平行四边形《正方形》题型解读1 正方形的定义与性质应用题型-北师大版九年级数学上册
《正方形》题型解读1 正方形的定义与性质应用题型【知识梳理】1.边:四边形相等;2.角:四角相等且是直角;3.对角线:相等且互相垂直平分,且对平对角。
4.正方形是特殊的平行四边形、特殊的菱形、特殊的矩形,它具有平行四边形、菱形、矩形的一切性质;5.对称性:①正方形是中心对称图形,两条对角线的交点是对称中心,②正方形是轴对称图形,有四条对称轴,分别是两条对角线所在的直线和过每边组对边中点的两条直线;6.正方形的面积=边长×边长=对角线乘积的一半,且对角线是边长的√2倍;【典型例题】例1.如图,菱形ABCD的面积为120,正方形AECF的面积为50,则菱形的边长为_______.解析:连结AC、BD交于点O,由对称性知,菱形的对角线BD过点E、F,由菱形性质知,BD⊥AC,所以,=120①,又正方形的面积为50,所以,AE=5,所以,AO2+EO2=50,AO=EO=5所以,AC=10,代入①式,得BD=24,所以,BO=12,由AO2+BO2=AB2,得AB=13例2.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB ﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.例3.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴由勾股定理可得BF=,∴GH=BF=例4.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是_____【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;例5.已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=BC=AD=a,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积==例6.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则由勾股定理可得OM=2,∴MN=OM=2.例7.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出S EGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.【解答】(1)证明:∵EP⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,∴△ABE≌△EGF(AAS);(2)解:∵△ABE≌△EGF,AB=2,∴AB=EG=2,S△ABE=S△EGF,∵S△ABE=2S△ECF,∴S EGF=2S△ECF,∴EC=CG=1,∵四边形ABCD是正方形,∵BC=AB=2,∴BE=2﹣1=1.例8.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.【分析】先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H 是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.【解答】证明:取AB的中点H,连接EH;∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,∴△AHE≌△ECF(ASA),∴AE=EF.例9.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;【分析】(1)证明△ABP≌△BCQ,则∠BAP=∠CBQ,从而证明∠CBQ+∠APB=90°,进而得证;(2)设MQ=MB=x,则MN=x﹣2.在直角△MBN中,利用勾股定理即可列方程求解;【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC.∴△ABP≌△BCQ,∴∠BAP=∠CBQ.∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:∵正方形ABCD中,AB=3,BP=2CP,∴BP=2,由(1)可得NQ=CQ=BP=2,NB=3.又∵∠NQB=∠CQB=∠ABQ,∴MQ=MB.设MQ=MB=x,则MN=x﹣2.在直角△MBN中,MB2=BN2+MN2,即x2=32+(x﹣2)2,解得:x=,即MQ=;。
八年级数学《特殊的平行四边形正方形》教案
教学过程教师活动学生活动复习引入教师讲解:本节课,我们将探究正方形判定定理。
我们在这里的探究方法与前几节相同。
我们已经知道,正方形是一个中心对称图形,也是一个轴对称图形,正方形的定义是:既是菱形,又是矩形的四边形是正方形。
正方形有如下的性质:①四条边都相等;②四个角都是直角。
二、探究新知(一)正方形判定方法1的探究教师讲解:我们可以证明,有一个角是直角的菱形是正方形,即有一个角是直角的菱形也是矩形。
教师提问这一结论如何证明,要求学生作简要回答。
学生回答后教师总结:如果一个四边形是菱形,那么它就是平行四边形,这个四边形又有一个角是直角,则它又是矩形,所以是正方形。
(二)正方形判定方法2的探究教师讲解:我们还可以证明,有一组邻边相等的矩形是正方形。
即有一组邻边相等的矩形也是菱形。
教师提问这一结论如何证明,要求学生作简要回答。
学生回答后教师总结:如果一个四边形是矩形,那么它就是平行四边形,这个四边形又有一组邻边相等,则它又是菱形,所以是正方形。
(三)实例讲解1、教师提出问题:如图20.4-1,在△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F。
求证:四边形CFDE是正方形。
教师分析解题过程:要证明四边形CFDE是正方形,可以先证四边形CFDE 是矩形,然后再证有一组邻边相等;也可以先证四边形CF DE是菱形,然后再证有一个角是直角。
教师要求学生证明,学生证明后教师检查证明过程,给予即时纠正。
证明:∵DE⊥BC,DF⊥AC,∴∠DFC=∠DEC=90°(直角定义);又∵∠ACB=90°,∴四边形CFDE是矩形(有三个角是直角的四边形是矩形)。
∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF(角平分线上的点到角的两边距离相等)。
∴四边形CFDE是正方形(有一组邻边相等的矩形是正方形)。
拓展知识:①如果把题的条件改成DE∥AC,D F∥BC,这个结论还成立吗?②如果∠ACB不是90º,那么四边形CFDE会是什么图形?你还会对上边的题目做怎样的变换呢?学生动脑思考,交流方法。
中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
北师大版九年级数学上册《正方形的性质与判定》特殊平行四边形PPT课件(第2课时)
矩形
正方形
课堂练习
1.在菱形ABCD中,若要添加一个条件后,使它是正方形,则添加的条件可以是(
) B
A.AB=AD B.AB⊥BC
C.AC⊥BD
D.AC平分∠BAD
2. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点
E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( C
∴∠AEH=∠DHG,HE=EF=FG=GH.
∴四边形EFGH是菱形.
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°.
∴∠EHG=90°.
∴四边形EFGH是正方形.
课堂总结
5种判
定方法
一个角是直角且一组邻边相等
板书设计
1.3.2 正方形的判定
(1) 有一组邻边相等的矩形是正方形;
(2) 对角线互相垂直的矩形是正方形;
形
正方形
正方形
菱形条件(二选一)
一组邻边相等
一内角是直角
正方形
典例精析
例1 如图,在矩形ABCD中,BE平分∠ABC ,CE平分∠DCB ,
BF∥CE , CF∥BE.
求证:四边形BECF是正方形.
A
E
B
D
C
F
典例精析
证明: ∵ BF∥CE,CF∥BE,
∴四边形BECF是平行四边形.
∵四边形ABCD是矩形,
把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看
是不是正方形.
正方形
你能证明这两个猜想吗
?
猜想 满足怎样条件的菱形是正方形?
一个角是直角
菱形
初中数学-九年级(初三)数学-平行四边形章节-特殊的平行四边形(矩形、菱形、正方形)的思维导图
轴对称图形.
中心对称图形.
3.
3.1.
有一组邻边相等,且有一个角是直角的平行四边形叫做正方形.
3.2.
边的性质:对边平行,四条边都相等.
角的性质:四个角都是直角.
对角线性质:
两条对角线互相垂直平分.
每条对角线平分一组对角.
3.3.
①有一组邻边相等的矩形是正方形.
②有一个角是直角的菱形是正方形.
平行四边形章节
特殊的平行四边形知识点目录
1.
1.1.
有一个角是直角的平行四边形叫做矩形.
1.2.
边的性质:对边平行且相等.
角的性质:四个角都是直角.
对角线性质:对角线互相平分且相等.
1.3.Biblioteka ①有一个角是直角的平行四边形是矩形.
②对角线相等的平行四边形是矩形.
③有三个角是直角的四边形是矩形.
1.4.
3.4.
轴对称图形.
中心对称图形.
轴对称图形.
中心对称图形.
2.
2.1.
有一组邻边相等的平行四边形叫做菱形.
2.2.
边的性质:对边平行且四边相等.
角的性质:邻角互补,对角相等.
对角线性质:
两条对角线互相垂直平分.
每条对角线平分一组对角.
2.3.
①一组邻边相等的平行四边形是菱形.
②对角线互相垂直的平行四边形是菱形.
③四条边都相等的四边形是菱形.
《正方形的性质与判定》特殊平行四边形PPT(第1课时)教学课件
再由一个直角,得出是矩形;最后由一组邻边相等可
F
得正方形;
证明: ∵ BF∥CE,CF∥BE,
∴四边形BECF是平行四边形. ∵四边形ABCD是矩形, ∴ ∠ABC = 90°, ∠DCB = 90°, ∵BE平分∠ABC, CE平分∠ DCB, ∴∠EBC = 45°, ∠ECB = 45°, ∴ ∠ EBC =∠ ECB .
第一章 特殊平行四边形
正方形的性质与判定
第1课时
导入新课
讲授新课
当堂练习
课堂小结
学习目标 1.了解正方形的定义及其与平行四边形的关系. 2.探索并证明正方形的性质定理.(重点) 3.应用正方形的性质定理解决相关问题.(难点)
导入新课
活动:观察这些图片,你什么发现?正方形四条边有什么关系? 四个角呢?
A M
B
P
D
N C
∴∠ADB=∠CDB=45°.
∴∠MPD=∠NPD=45°.
∴DM=PM,DN=PN.
∴四边形NPMD是矩形(有一组邻边相等的矩形是正方形).
课堂小结
矩形
平行四边形
一组邻边相等且一个内角为直角 (或对角线互相垂直平分且相等)
菱形
正方形
请同学们动手完成以上证明?
A
D
O
B
C
提示:可以先通过证明来得到正方形是矩形、菱形,然后利用矩形和菱形 的定理来完成该题.
想一想: 正方形是矩形吗?是菱形吗?
矩形 正方形 菱形 平行四边形
归纳 正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所 以平行四边形、矩形、菱形有的性质,正方形都有.
一 正方形判定的定理
动一动:过点A作射线AM的垂线AN,分别在AM , AN上取点B , D ,使
19.2 特殊平行四边形 (第5课时)19.2.3正方形
C
证明: 四边形ABCD是正方形 是正方形, 证明 ∵ 四边形 是正方形 第四步:进行证明 第四步 进行证明 分析:利用正方形的性质,对角线互相垂直平分且相 分析 利用正方形的性质 对角线互相垂直平分且相 ∴ AC=BD,AC⊥BD,AO=BO=CO=DO. ⊥ 每条对角线平分一组对角.平分可以产生线段等量 等,每条对角线平分一组对角 平分可以产生线段等量 每条对角线平分一组对角 平分可以产生 关系,垂直可以产生直角 垂直可以产生直角,于是可以得到四个全等的等 关系 垂直可以产生直角 于是可以得到四个全等的等 ∴ △ABO、 △BCO、 △CDO、 △DAO都 、 、 、 都 腰直角三角形. 腰直角三角形 是等腰直角三角形,并且 是等腰直角三角形 并且 △ABO≌ △BCO ≌ △CDO ≌ △DAO ≌
例
求证: 求证 正方形的两条对角线把这个正方形分成四个全等 的等腰直角三角形. 的等腰直角三角形
A D
已知:如图 四边形 已知 如图,四边形 如图 四边形ABCD是正方 是正方 相交于点O. 该怎么做?你会做吗 形,对 角线 、BD相交于点 对 角线AC、 相交于点 这是一道文字证明题,该怎么做 你会做吗? 这是一道文字证明题 该怎么做 你会做吗 O 求证:△ABO、 △BCO、 △ 求证第一步 根据题意画出图形△CDO、 、 、 、 第一步:根据题意画出图形 B 是全等的等腰直角三角形. △DAO是全等的等腰直角三角形 是全等的等腰直角三角形
实际问题: 实际问题
把一个长方形纸片如图那样折一下, 把一个长方形纸片如图那样折一下,就 可以裁出正方形纸片,为什么? 可以裁出正方形纸片,为什么? 如果是一个长方形木板, 如果是一个长方形木板,又如何从中裁出 一个最大的正方形木板呢? 一个最大的正方形木板呢? D A
【精选推荐】特殊平行四边形(正方形的性质与判定)
性质应用
例1:如图1-18,在正方形ABCD中,E为CD 上一点,F为BC边延长线上一点,且 CE=CF.BE与DF之间有怎样的关系?请说 明理由.
解:BE=DF,且BE⊥DF. 理由如下:
(1)∵四边形ABCD是正方形. ∴BC=DC,∠BCE=90°(正方形的四 条边都相等,四个角都是直角). ∴∠DCF=180°-∠BCE=180°90°=90°. ∴∠BCE=∠DCF. 又∵CE=CF. ∴△BCE≌△DCF. ∴BE=DF.
原四边形可以是:
平行四边形
矩形
菱形
正方形
等腰梯形
直角梯形
梯形
第三环节 猜想结论,分组验证
特殊四边形的中点四边形:
平行四边形的中点四边形是平行四边形
矩形的中点四边形是菱形
菱形的中点四边形是矩形
正方形的中点四边形是正方形
第三环节 猜想结论,分组验证
特殊四边形的中点四边形:ຫໍສະໝຸດ 等腰梯形的中点四边形是菱形
直角梯形的中点四边形是平行四边形
第三环节 猜想结论,分组验证
对角线相等的四边形的中点四边形
是菱形
对角线垂直的四边形的中点四边形
是矩形
对角线既相等又垂直的四边形的中 对角线既不相等又不垂直的四边形的中
点四边形是正方形
点四边形是平行四边形
第三环节 猜想结论,分组验证
归纳: 一般四边形的中点四边形:
决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对 角线的长度和位置关系
3:建立起适合自己的知识结构并内化为自己 数学品质的一部分.
布置作业
课本 P22 A-1层作业:习题1.7 A-2层作业:知识技能T1,T2 B层作业:数学理解T3
特殊平行四边形知识点归纳
仅供个人学习参考特殊的平行四边形知识点归纳附:平行四边形的定义:两组对边分别平行的四边形是平行四边形. 2.平行四边形的性质 (1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.(3)对角线:平行四边形的对角线互相平分.(4)对称性:平行四边形是中心对称图形,对角线的交点为对称中心. 3.平行四边形的判定方法(1)定义识别:两组对边分别平行的四边形是平行四边形. (2)用平行四边形的判定定理识别:判定定理①:两组对边分别相等的四边形是平行四边形. 判定定理②:对角线互相平分的四边形是平行四边形. 判定定理③:一组对边平行且相等的四边形是平行四边形. 4.三角形中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线.每个三角形都有三条中位线. (2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 5.直角三角形特殊性质(1)斜边上的中线等于斜边的一半。
(2)300所对的直角边等于斜边的一半。
(3)勾股定理矩形菱形正方形定义有一角是直角的平行四边形叫做矩形 有一组邻边相等的平行四边形叫做菱形 有一组邻边相等......并且有一个角是.....直角..的平行四边形.....叫做正方形 性 质边对边平行且相等 对边平行,四边相等对边平行,四边相等 角 四个角都是直角 对角相等四个角都是直角对角线互相平分且相等 互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·有一个角是直角的平行四边形;·有三个角是直角的四边形;·两条对角线相等的平行四边形;.·对角线相等且互相平分的四边形是矩形·有一组邻边相等的平行四边形;·四边相等的四边形;·两条对角线互相垂直的平行四边形;。
·对角线互相垂直平分的是四边形·有一组邻边相等的矩形; ·对角线互相垂直的矩形; ·有一个角是直角的菱形; ·对角线相等的菱形。
平行四边形和正方形的关系
平行四边形和正方形的关系平行四边形和正方形是初中数学中一个重要的知识点,其中平行四边形的特点就是四边形的对边平行,而正方形是一种特殊的正多边形,它具有4个相等的边和4个相等的角度。
那么,这两个形状之间有什么关系呢?在本文中,我们将讨论平行四边形和正方形之间的相关性质。
一、平行四边形的定义平行四边形是指拥有两组对边是平行且长度相等的四边形。
我们可以通过找到四边形的对边来确定一个平行四边形。
其中,对边的长度是相等的,因此平行四边形的相邻两边是相等的,对角线互相平分。
二、正方形的定义正方形则是一种特定的正四边形,拥有4个相等的内角和4条相等的边。
它的特殊之处在于,每个内角为90度,四条边长也是完全相等的。
因此,它的对角线也是相等且互相平分的。
三、平行四边形和正方形的关联性质1. 矩形是平行四边形的特例矩形是指拥有对边相等且内角均为90度的平行四边形。
因此,我们可以将矩形视为平行四边形的一种特例。
矩形的对角线是相等的,与平行四边形相似,它们的对角线也是互相平分的。
2. 正方形是矩形的特例正方形是指拥有4个相等的边和4个相等的内角的矩形。
因此,我们可以将正方形视为矩形的一种特例。
与矩形一样,正方形的对角线也是相等并互相平分的。
3. 正方形的特殊性质可适用于平行四边形正方形具有一些特殊性质,例如它的对边平行且垂直相交,对角线互相平分等等。
这些特性也同样适用于平行四边形。
因此,对于一个平行四边形,可以将其看作是一个矩形或者正方形的推广形状。
4. 面积和周长的计算公式与矩形和正方形一样,平行四边形的面积和周长也可以通过简单公式来计算。
例如,对于一个平行四边形,它的面积可以通过底线长度和高度乘积来计算,周长则可以通过将四个边长相加来计算。
同样地,正方形的面积和周长可以通过边长乘积和四倍边长来计算。
总结:平行四边形和正方形是基础的几何图形形状,它们具有一些共同点以及特殊的性质。
因此,学好它们之间的关系对于初中数学的学习十分重要。
8 1.3 特殊的平行四边形(4)——正方形
教(学)后反思
2、能力提升:
已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形.
(自己独立完成,然后上台展示。)
(四)课堂小结:
1、通过本节课学习,你学到了什么知识?
2、对于本节所学内容你还有哪些疑惑?
(五)达标检测:
1、填空:
(1)正方形有___条对称轴,四条边______,四个角_______,两条对角线________。
诸城市九年级上册数学导学稿编号:08
课题
1.3特殊的平行四边形(4)——正方形
课型
新授课
学习目标:
1、掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算。
2、理解正方形与平行四边形、矩形、菱形的联系和区别。
3、通过探索正方形的性质与判定方法,培养探究能力和逻辑思维能力。
重点:掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算。
我们做个实验:把一个长方形纸片如图那样折一下,即可折出一个正方形纸片。请你说明其中的道理。
通过折叠裁剪,得出正方形,并观察其图形特征,明白制作原理:________________________的矩形是正方形。
(小组成员之间先讨论交流,然后展示。)
2、平行四边形、矩形、菱形、正方形之间有什么关系?
1、具备什么条件的菱形是正方形?
2、怎样判定一个平行四边形是正方形?怎样判定一个四边形是正方形?
3、正方形共有几种判定方法?
(小组成员之间先讨论交流,然后展示。)
多媒体出示答案。
活动五:精讲点拨
例3如图,在正方形ABCD中,AC,BD相交于点O。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 1A OBA 1正方形题型一:正方形与图形的变换。
1.如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆线段1OA 的长是 ,1AOB ∠的度数是 ;2.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm3.如图,已知正方形ABCD 的边长为3,E 为CD 边上一点, 1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABE ',连接EE ',则EE '的长等于 .4.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图4所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________. E DCBAFF第(14)题EAD E ' BCCDABE图4题型二:正方形与面积问题。
(1)1.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是()A. 12B.14C.15D.1102.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.3、大正方形网格是由25个边长为1的小正方形组成,把图中阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是4、已知正方形ABCD的边长为2,ΔBPC是等边三角形,则ΔCDP的面积是,ΔBDP的面积是。
5、在正方形ABCD中,对角线AC、BD交于点O,正方形的边长为2,折叠正方形纸片ABCD,使AD落在BD上,点A恰与BD上的点F重合,展开后,折痕DE分别交AB、AC于点E、G,连接GF。
则ΔEFD的面积为。
6、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为7、现有若干张边长不相等但都大于4cm的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm处,沿450角画线,将正方形分成5部分,则中间阴影部分的面积为。
8、若E,F,G,H分别为正方形ABCD的边上AB、BC、CD、DA上的点,AE=BF=CG=DH=AB/3,则图中阴影部分的面积和正方形ABCD的面积之比。
9、如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为10、正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,的面积=__________.正方形BEFG的边长为4,则DEK11、芜湖国际动漫节期间,小明进行了富有创意的形象设计。
如图1,他在边长为1的正方形ABCD内作等边三角形BCE,并与正方形的对角线交于F、G点,制成如图2的图标。
则图标中阴影图形AFEGD的面积=_____.12、如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 .O 2O 1(2)1、已知正方形ABCD 的边长为4,MN//BC 分别交AB 、CD 于点M 、N ,在MN 上任意取两点P,Q ,那么图中的阴影部分的面积是。
2、.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.3、正方形ABCD 的面积为1,M 为AB 的中点,则图中阴影部分的面积为。
4、已知线段AB 的长为a ,以AB 为边在AB 的下方作正方形ACDB .取AB 边上一点E ,以AE 为边在AB 的上方作正方形AENM .过E 作EF ⊥CD ,垂足为F 点.若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为_________________.BCEADF题型三:正方形的其它计算1.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为( ) A .12B .22 C .32D .12.如图,四边形ABCD 是正方形,延长AB 到E ,使AE=AC ,则∠BCE 的度数是 °。
3.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE =∠BAP ;⑤PD = 2EC .其中正确结论的序号是 .4.如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a b c ,,;A B N E F ,,,,五点在同一直线上,则c = (用含有a b ,的代数式表示).5.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .23 B .26 C .3 D .6a D C B AMcNEFb G HB D M NC A O6.如图,正方形ABCD 边长为1,动,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为______;当点P 所在位置为D 点时,点P 的运动路程为______(用含自然数n 的式子表示).7.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为 .8.如图,已知正方形纸片ABCD 的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA 7恰好与6)0相切于点A ′(△EF A ′与⊙0除切点外无重叠部分),延长F A ′交CD 边于点G ,则A ′G 的长是9.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ,且n 为整数),则A ′N = (用含有n 的式子表示)A'NM BCA DEF DCABE MFDCABEM10.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==, 5PB =.下列结论: ①△APD ≌△AEB ;②点B 到直线AE 的距离为2; ③EB ED ⊥;④16APD APB S S ∆∆+=+;⑤46ABCD S =+正方形.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤11、如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的是12、如图(5),在正方形ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 交BF 于点H ,CG ∥AE 交BF 于点G 。
下列结论:①tan ∠HBE=cot ∠HEB ② CG BF BC CF ⋅=⋅③BH=FG ④22BC BGCF GF=.其中正确的序号是( ) A .①②③ B .②③④ C . ①③④ D .①②④13、如图5是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A .①② B. ①②③ C. ①②④ D. ①②③④A PEDCB14、如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .A. 669B. 670C.671D. 67215、如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111D C B A ;把正方形1111D C B A 边长按原法延长一倍得到正方形2222D C B A (如图(2));以此下去,则正方形n n n n D C B A 的面积为 .16、如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线 A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2M 1,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;……依此类推,这样作的第n 个正方形对角线交点M n 的坐标为.第7题图yx题型四: (1)1.已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF . (1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.2.在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.3.如图,l 1、l 2、l 3、l 4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h ,正方形ABCD 的四个顶点分别在这四条直线上,且正方形ABCD 的面积是25。