人教版高中数学选修1-1 第二章《圆锥曲线与方程》师用
人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 圆锥曲线的光学性质及其应用》优质课教案_3
高中数学人教A版2003课标版选修1-1第二章圆锥曲线与方程→2.3抛物线→阅读与思考圆锥曲线的光学性质及其应用《圆锥曲线的光学性质及其应用》的教学设计第一课时抛物线的光学性质及其应用一、教学目标1.理解抛物线的光学性质,并会应用数学推理得出抛物线的光学性质,并会应用它解决数学问题。
2.会用数学建模的思想将实际生活问题数学化,也会用数学建模的思想将数学问题生活化。
二、教学重点理解抛物线的光学性质并会推导。
三、教学难点数学建模思想的应用。
四、教学过程(一)课题引入问题一:手电筒一只很小的灯泡发出的光,会分散地射向各方,但把它装在圆柱形手电筒里,经过适当调节,就能射出一束比较强的平行光线。
这是为什么呢?设计意图:从生活中的一个例子出发,提出问题,引发学生的求知欲,从而提出课题。
(二)课题提出抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴。
抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的.问题二:生活问题数学化要探究抛物线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证,那么我们如何用数学语言阐述并证明抛物线的光学性质?设计意图:提出抛物线的光学性质,并通过列举它在生活中的大量应用,让学生感知数学无处不在,并有将生活问题数学化的欲望。
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
椭圆的定义
定义 焦点
平面内与两个定点F1,F2的_距__离__之__和__等__于__定__值___( 大于|F1F2|)的点的轨迹叫做椭圆 两个_定__点___叫做椭圆的焦点
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
4.已知椭圆的焦点在 x 轴上,且焦距为 4,P 为椭圆上一点, 且|F1F2|是|PF1|和|PF2|的等差中项.
(1)求椭圆的方程; (2)若△PF1F2 的面积为 2 3,求 P 点坐标.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)由题意知,2c=4,c=2. 且|PF1|+|PF2|=2|F1F2|=8, 即 2a=8, ∴a=4. ∴b2=a2-c2=16-4=12. 又椭圆的焦点在 x 轴上, ∴椭圆的方程为1x62 +1y22 =1.
数学 选修1-1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)a,b,c三个量的关系:椭圆的标准方程中,a表示椭 圆上的点M到两焦点间距离的和的一半,可借助图形帮助记 忆.a,b,c(都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a>b,a>c,且a2=b2+c2.
数学 选修1-1
第二章 圆锥曲线与方程
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.2.2
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
第2课时 双曲线方程及性质的应用
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
自主学习 新知突破
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
(舍去).
∴P(8,5 3),∴|AP|=10,∠PAx=60° . 因此, 海洋动物在舰 A 的北偏东 30° , 且离舰 A 10 千米的位 .
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
直线与双曲线的位置关系及判定
直线:Ax+By+C=0, x2 y2 双曲线: 2- 2=1(a>0,b>0), a b 两方程联立消去 y,得 mx2+nx+q=0.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1. 过双曲线 x2-y2=4 的焦点且垂直于实轴的直线与双曲线 交于 A,B 两点,则 AB 的长为( A.2 C.8 B.4 D.4 2 )
解析: 双曲线 x2-y2=4 的焦点为(± 2 2, 0), 把 x=2 2代 入并解得 y=± 2,∴|AB|=2-(-2)=4.
____________________ m≠0且Δ=0 ____________________ m≠0且Δ<0
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
弦长公式
2019-2020学年高中数学(人教B版 选修1-1)教师用书:第2章 圆锥曲线与方程 2-3-1
2.3 抛物线2.3.1抛物线及其标准方程1.掌握抛物线的定义及其标准方程.(重点)2.了解抛物线的实际应用.(难点))3.能区分抛物线标准方程的四种形式.(易混点[基础·初探]教材整理抛物线的定义与标准方程阅读教材P57~P58例1以上部分,完成下列问题.1.抛物线的定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程四种不同标准形式的抛物线方程判断(正确的打“√”,错误的打“×”)(1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距离.( )(2)抛物线的焦点位置由一次项及一次项系数的正负决定.( )(3)平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线.( )(4)抛物线可看作双曲线的一支.( )【答案】(1)√(2)√(3)×(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_____________________________________________________解惑:______________________________________________________疑问2:_____________________________________________________解惑:______________________________________________________疑问3:_____________________________________________________解惑:_______________________________________________________[小组合作型](1)过点(-3,2);(2)焦点在直线x-2y-4=0上;(3)焦点到准线的距离为52. 【导学号:25650075】【精彩点拨】本题主要考查抛物线标准方程的求法,解题的关键是明确标准方程的类型和参数p的值.【自主解答】(1)∵点(-3,2)在第二象限,∴设抛物线方程为y 2=-2px 或x 2=2py (p >0). 将点(-3,2)代入方程,得2p =43或2p =92.∴当焦点在x 轴上时,所求抛物线方程是y 2=-43x ,其焦点为⎝ ⎛⎭⎪⎪⎫-13,0,准线方程为x =13;当焦点在y 轴上时,所求抛物线方程为x 2=92y ,其焦点为⎝ ⎛⎭⎪⎪⎫0,98,准线方程为y =-98.(2)令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2). 设抛物线方程为x 2=-2py (p >0), 则由p2=2,得2p =8,∴所求抛物线方程为x 2=-8y .令y =0,由方程x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0). 设抛物线方程为y 2=2px (p >0), 则由p 2=4,得2p =16,∴所求抛物线方程为y 2=16x .综上,所求抛物线方程为x 2=-8y 或y 2=16x . 其准线方程为y =2或x =-4, 焦点坐标为(0,-2)或(4,0).(3)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .求抛物线方程,通常用待定系数法,若能确定抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可.若抛物线的焦点位置不确定,则要分情况讨论.焦点在x 轴上的抛物线方程可设为y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可设为x 2=ay (a ≠0).[再练一题]1.根据下列条件写出抛物线的标准方程: (1)准线方程为y =-1;(2)焦点在x 轴的正半轴上,焦点到准线的距离是3.【解】 (1)由准线方程为y =-1知抛物线焦点在y 轴正半轴上,且p2=1,则p =2.故抛物线的标准方程为x 2=4y .(2)设焦点在x 轴的正半轴上的抛物线的标准方程为y 2=2px (p >0), 则焦点坐标为⎝ ⎛⎭⎪⎪⎫p 2,0,准线为x =-p 2,则焦点到准线的距离是⎪⎪⎪⎪⎪⎪⎪⎪-p 2-p 2=p =3,因此所求的抛物线的标准方程是y 2=6x .B 高5m ,且与OA 所在的直线相距4m ,水流落在以O 为圆心,半径为9m 的圆上,则管柱OA 的长是多少? 【导学号:25650076】【精彩点拨】 根据题意先建立坐标系,设出抛物线方程,把实际问题转化为数学问题. 【自主解答】 如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上,所以25=-2p ·(-5),因此2p =5, 所以抛物线的方程为x 2=-5y , 点A (-4,y 0)在抛物线上, 所以16=-5y 0,即y 0=-165,所以OA 的长为5-165=1.8 (m).所以管柱OA 的长为1.8 m.在建立抛物线的标准方程时,常以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.[再练一题]2.某河上有一座抛物线形的拱桥,当水面距拱顶5 m 时,水面宽8 m ,一木船宽4 m ,高2 m ,载货的木船露在水面上的部分为0.75m ,当水面上涨到与拱顶相距多少时,木船开始不能通航? 【导学号:25650077】【解】 以桥的拱顶为坐标原点,拱高所在的直线为y 轴建立直角坐标系.(如图)设抛物线的方程是x 2=-2py (p >0), 由题意知A (4,-5)在抛物线上, 故16=-2p ×(-5)⇒p =85,则抛物线的方程是x 2=-165y (-4≤x ≤4),设水面上涨,木船面两侧与抛物线形拱桥接触于B 、B ′时,木船开始不能通航. 设B (2,y ′),∴22=-165y ′⇒y ′=-54.∴54+0.75=2.故当水面上涨到与抛物线形的拱顶相距2 m 时,木船开始不能通航.[探究共研型]探究1 【提示】 抛物线标准方程中的p 的几何意义是焦点到准线的距离. 探究2 抛物线定义的功能是什么?【提示】 根据抛物线的定义,抛物线上的任意一点到焦点的距离等于它到准线的距离,因此,抛物线定义的功能是可以把点点距转化为点线距,从而使有关的运算问题变得简单、快捷.(1)若动点M 到点F (4,0)的距离比它到直线x +5=0的距离小1,则动点M 的轨迹方程是________.(2)如图2-3-1,已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2).求|P A |+|PF |的最小值,并求此时P 点坐标.图2-3-1【精彩点拨】 (1)中先由抛物线的定义确定点M 的轨迹,再写方程.(2)由定义知,抛物线上点P 到焦点F 的距离等于点P 到准线的距离d ,求|P A |+|PF |的问题可转化为|P A |+d 的问题.【自主解答】 (1)如图,设点M 的坐标为(x ,y ).由已知条件可知,点M与点F的距离等于它到直线x+4=0的距离.根据抛物线的定义,点M的轨迹是以F(4,0)为焦点的抛物线,且p2=4,即p=8.因为焦点在x轴的正半轴上,所以点M的轨迹方程为y2=16x.【答案】y2=16x(2)如图,作PQ⊥l于Q,由定义知,抛物线上点P到焦点F的距离等于点P到准线l的距离d,由图可知,求|P A|+|PF|的最小值的问题可转化为求|P A|+d的最小值的问题.将x=3代入抛物线方程y2=2x,得y=±6.∵6>2,∴A在抛物线内部.设抛物线上点P到准线l:x=-12的距离为d,由定义知|P A|+|PF|=|P A|+d.由图可知,当P A⊥l时,|P A|+d最小,最小值为7 2 .即|P A|+|PF|的最小值为72,此时P点纵坐标为2,代入y2=2x,得x=2.∴点P坐标为(2,2).1.对于动点到定点的距离比此动点到定直线的距离大多少或小多少的问题,实际上也是抛物线问题.2.抛物线的定义在解题中的作用,就是灵活地进行抛物线上的点到焦点的距离与到准线距离的转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.[再练一题]3.(1)已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和的最小值为( )A.172B .2 C.5D.92 (2)(2015·上海高考)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________.【解析】 (1)如图,由抛物线定义知|P A |+|PQ |=|P A |+|PF |,则所求距离之和的最小值转化为求|P A |+|PF |的最小值,则当A 、P 、F 三点共线时,|P A |+|PF |取得最小值. 又A (0,2),F ⎝ ⎛⎭⎪⎪⎫12,0,∴(|P A |+|PF |)min =|AF |=错误!=错误!.故选A. (2)依题意,点Q 为坐标原点,所以p2=1,则p =2.【答案】 (1)A (2)2[构建·体系]1.抛物线y =2x 2的焦点坐标是( )A .(1,0) B.⎝ ⎛⎭⎪⎪⎫0,14C.⎝ ⎛⎭⎪⎪⎫14,0 D.⎝⎛⎭⎪⎪⎫0,18【解析】 抛物线的标准方程为x 2=12y ,所以p =14,故焦点坐标是⎝ ⎛⎭⎪⎪⎫0,18.【答案】 D2.抛物线y 2=8x 的焦点到准线的距离是( ) A .1 B .2 C .4D .8【解析】 抛物线焦点到准线的距离是p =4. 【答案】 C3.若双曲线x2m -y23=1的右焦点与抛物线y 2=12x 的焦点重合,则m =________. 【导学号:25650078】【解析】 双曲线x2m -y23=1的右焦点为(m +3,0),抛物线y 2=12x 的焦点F (3,0),∴m +3=3,∴m =6.【答案】 64.以抛物线y 2=8x 上的任意一点为圆心作圆与直线x +2=0相切,则这些圆必过一定点,这个定点的坐标是________.【解析】 抛物线y 2=8x 的准线方程是x +2=0,根据抛物线的定义,圆心到直线x +2=0的距离等于圆心到焦点的距离,所以这些圆必过抛物线的焦点,所以应填(2,0).【答案】 (2,0)5.已知抛物线的焦点在x 轴上,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的标准方程和m 的值.【解】 法一 设抛物线方程为y 2=-2px (p >0), 则焦点F ⎝ ⎛⎭⎪⎪⎫-p 2,0,由题设可得⎩⎪⎨⎪⎧m2=6p ,m2+⎝⎛⎭⎪⎪⎫3-p 22=5,解得⎩⎪⎨⎪⎧p =4,m =26,或⎩⎪⎨⎪⎧p =4,m =-26,故所求的抛物线方程为y 2=-8x , m 的值为±26.法二 设抛物线方程为y 2=-2px (p >0),则焦点F ⎝ ⎛⎭⎪⎪⎫-p 2,0,准线方程为x =p 2,根据抛物线的定义,点M 到焦点的距离等于5,也就是M 到准线的距离为5,则3+p2=5,∴p =4,因此,抛物线方程为y 2=-8x ,又点M (-3,m )在抛物线上,于是m 2=24, ∴m =±26.。
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.2.1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
合作探究 课堂互动
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
由方程确定椭圆的性质
已知椭圆的方程为4x2+9y2=36.
(1)求椭圆的顶点坐标、焦点坐标、长轴长、短轴长以及离
答案: D
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
x2 y2 2.已知椭圆 + =1,长轴在 y 轴上.若焦距为 4, 10-m m-2 则 m 等于( A.8 C.5 ) B.7 D.4
解析: 由题意得 m-2>10-m 且 10-m>0, 于是 6<m<10,再由(m-2)-(10-m)=22,得 m=8.
x2 2 y2 2 答案: 4 +y =1 或 4 +x =1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
x2 y2 6 4.已知椭圆 2+ 2=1(a>b>0)的离心率 e= ,过点 A(0, a b 3 3 -b)和 B(a,0)的直线与原点的距离为 2 ,求椭圆的标准方程.
准确理解椭圆的离心率 椭圆的离心率的大小决定了椭圆的形状, 反映了椭圆的扁平 程度. b 由 = a a2-c2 2 2 = 1-e (0<e<1)可知,当 e 越趋近于 1 时, a
b b 越趋近于 0,椭圆越扁;当 e 越趋近于 0 时, 越趋近于 1,椭 a a 圆越接近于圆.当且仅当 a=b 时,c=0,两焦点重合,图形变 为圆,方程为 x2+y2=a2.
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)方法一:若焦点在 x 轴上, 设双曲线的标准方程为ax22-by22=1(a>0,b>0). 因为 M(1,1),N(-2,5)在双曲线上,
a12-b12=1, 所以-a222-5b22=1, 若焦点在 y 轴上,
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.根据下列条件,求双曲线的标准方程: (1)双曲线的中心在原点,焦点在 y 轴上,且经过点(0,2)与 ( 5,2 2); (2)c= 6,经过点(-5,2),焦点在 x 轴上.
数学 选修1-1
第二章 圆锥曲线与方程
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
双曲线的定义
定义
平面内与两个定点F1,F2的距离的_差__的__绝__对__值_ _是__常__数___的点的轨迹叫做双曲线
焦点 焦距 集合语言
_两__个__定__点__F_1,__F__2 _叫做双曲线的焦点
合作探究 课堂互动
高效测评 知能提升
1.了解双曲线的定义、几何图形和标准方程的推导过 程.
2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的应用问 题.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
我海军“马鞍山”舰和“千岛湖”舰组成第四批护航编队 远赴亚丁湾,在索马里流域执行护航任务.
自主学习 新知突破
人教版高中选修(B版)1-1第二章圆锥曲线与方程课程设计
人教版高中选修(B版)1-1第二章圆锥曲线与方程课程设计一、选题背景和意义高中数学学科作为一门非常基础且重要的学科,不仅仅对于学生的高考有着非常重要的意义,也是对于学生进行逻辑思维、推理能力及创新思维的培养的重要途径。
其中,圆锥曲线的研究既是解决实际问题的有效手段,也是推动数学理论发展的一个方向。
因此,对于高中学生来说,深入理解圆锥曲线及相关方程的性质与规律,不仅可以帮助他们提高数学能力,还可以帮助他们解决实际问题。
二、教学目的和要求2.1 教学目的1.了解什么是圆锥曲线及其性质2.掌握圆锥曲线及其方程的相关知识3.培养学生逻辑思维、推理能力及创新思维2.2 教学要求1.学生能够了解圆锥曲线及其性质,并能够应用相关知识解决实际问题;2.学生能够掌握圆锥曲线及其方程的相关知识,能够准确地根据给定条件构建方程;3.学生能够通过实际问题,培养逻辑思维、推理能力以及创新思维。
三、教学设计3.1 教学内容1.圆锥曲线的概念;2.圆、椭圆、双曲线和抛物线的定义及性质;3.直角圆锥的形状及其变化;4.圆锥曲线方程的推导及构造方法;5.圆锥曲线的应用实例。
3.2 教学方法本课程主要采用讲授、演示和实践相结合的教学方法,使学生在学习过程中理论联系实际,并注重培养学生的探究性、主动性和创造性。
3.3 教学流程第一步:导入通过展示圆锥曲线的图片及相关知识,引入课程主题;第二步:知识点讲解1.圆锥曲线的概念及分类;2.圆、椭圆、双曲线和抛物线的定义及性质;3.直角圆锥的形状及其变化;4.圆锥曲线方程的推导及构造方法;第三步:思考与探究通过一些实际问题引导学生思考,并结合已学知识进行分析和解决。
第四步:作业布置布置与圆锥曲线相关的习题,加深学生对于所学的理解。
3.4 教学资料1.PPT2.圆锥曲线练习题四、教学评估本课程采用闭卷考试的形式进行评估,主要考核以下内容:1.对圆锥曲线的概念及性质的理解;2.圆锥曲线方程的推导及构造方法;3.对于实际应用问题的解决能力。
人教版高中数学选修1-1 第二章《圆锥曲线与方程》师用
选修1-1 第二章《圆锥曲线与方程》§2.1.1 椭圆及其标准方程【知识要点】● 椭圆的定义:到两个定点 F 1、F 2的距离之和等于定长(12F F >)的点的轨迹.● 标准方程:(1)()222210x y a b a b+=>>,22c a b =-,焦点是 F 1(-c ,0),F 2(c ,0);(2)()222210y x a b a b+=>>,22c a b =-,焦点是 F 1(0,-c ),F 2(0,c ).【例题精讲】【例 1】两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点 P 到两焦点的距离之和等于 10,写出椭圆的标准方程.【例 2】已知椭圆的两个焦点坐标分别是(0,-2)和(0,2)且过35,22⎛⎫- ⎪⎝⎭,求椭圆的标准方程.点评:题(1)根据定义求.若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程.【例 3】判断下列方程是否表示椭圆,若是,求出 a ,b ,c 的值.【例4】已知ΔABC 的一边BC 的长为6,周长为16,求顶点A 的轨迹方程.【基础达标】1.椭圆221259x y +=上一点 P 到一个焦点的距离为 5,则 P 到另一个焦点的距离为( ) A .5 B .6 C .4 D .102.椭圆2211312x y +=上任一点 P 到两个焦点的距离的和为( ) A .26 B .24 C .2 D .133.已知 F 1,F 2是椭圆221259x y +=的两个焦点,过 F 1的直线交椭圆于 M ,N 两点,则△MNF 2周长为( )A .10B .16C .20D .324.椭圆的两个焦点分别是F 1(-8,0)和F 2(8,0),且椭圆上一点到两个焦点距离之和为 20,则此椭圆的 标准方程为( )A .2212012x y += B .22140036x y += C .22110036x y += D .22136100x y +=5.椭圆2214x y m +=的焦距是 2,则 m 的值为( ) A .5或 3 B .8 C .5 D .166.椭圆221169x y +=的焦距是 ,焦点坐标为 . 7.焦点为(0,4)和(0,-4),且过点()533,-的椭圆方程是 .1~5 ADCCA【能力提高】8.如果方程 x 2+ky 2=2表示焦点在 y 轴上的椭圆,求实数 k 的取值范围.9.写出适合下列条件的椭圆的标准方程:(1)a=4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.10.求到定点(2,0)与到定直线x =8的距离之比为2的动点的轨迹方程.§2.1.2 椭圆的简单几何性质(一)【知识要点】● 熟练掌握椭圆的范围,对称性,顶点,离心率等简单几何性质. ● 掌握标准方程中a ,b ,c 的几何意义,以及a ,b ,c ,e 的相互关系. ● 理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法.【例题精讲】【例 1】已知椭圆的中心在坐标原点 O ,焦点在 x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且离心率为22,求椭圆的方程.【例 2】已知 x 轴上的一定点 A (1,0),Q 为椭圆2214x y +=上的动点,求 A Q 中点 M 的轨迹方程.【例 3】椭圆22110036x y +=上有一点 P ,它到椭圆的左焦点 F 1的距离为 8,求△PF 1F 2的面积.【例 4】设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值.【基础达标】1.已知P 是椭圆22110036x y +=上的一点,若P 到椭圆右焦点的距离是345,则P 点到椭圆左焦点的距离是( ) A .165 B .665 C .758D .778 2.若焦点在 x 轴上的椭圆2212x y m +=的离心率为12,则 m =( ) A .3 B .32 C .83 D .233.已知椭圆的中心在原点,焦点在 x 轴上,且长轴长为 12,离心率为13,则椭圆的方程是( )A .221144128x y += B .2213620x y += C .2213236x y += D .2213632x y += 4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件()1290PF PF a a a+=+>,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.若椭圆短轴长等于焦距的3倍,则这个椭圆的离心率为( )A .14 B .2 C .2 D .126.已知椭圆C 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆C 的离心率等于 . 7.离心率12e =,一个焦点是 F (0,-3)的椭圆标准方程为 . 1~5 BBDDD【能力提高】8.求过点A(-1,-2)且与椭圆22169x y+=的两个焦点相同的椭圆标准方程.9.已知椭圆的对称轴为坐标轴,离心率23e=,短轴长为85,求椭圆的方程.10.设有一颗卫星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此卫星离地球相距m万千米和43m万千米时,经过地球和卫星的直线与椭圆的长轴夹角分别为2π和3π,求该卫星与地球的最近距离.§2.1.2 椭圆的简单几何性质(二)【知识要点】●掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质.●能利用椭圆的有关知识解决实际问题,及综合问题.【例题精讲】【例 1】已知椭圆C 的焦点F 1()22,0-和F 2()22,0,长轴长6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.【例 2】椭圆的中心为点E (-1,0),它的一个焦点为F (-3,0),且椭圆的离心率255e =,求这个椭圆的方程.【例 3】已知椭圆2212x y +=的左焦点为F ,O 为坐标原点,求过点O 、F ,并且与直线l :x =-2相切的圆的方程.【例 4】如图,把椭圆2212516x y +=的长轴 AB 分成 8等份,过每个分点作 x 轴的垂线交椭圆的上半部分于 P 1,P 2,P 3,P 4,P 5,P 6,P 7七个点,F 是椭圆的一个焦点,则123++PF P F P F +45++P F P F67+P F P F = .【基础达标】1.椭圆22110036x y +=上的点 P 到它的左焦点的距离是 12,那么点 P 到它的右焦点的距离是( ) A .15 B .12 C .10 D .82.已知椭圆()2221525x y a a +=>的两个焦点为F 1、 F 2,且|F 1F 2|=8,弦 A B 过点 F 1,则△ A BF 2的周长为( )A .10B .20C .241D .4413.椭圆221259x y +=的焦点 F 1、F 2,P 为椭圆上的一点,已知 P F 1⊥PF 2,则△ F 1PF 2的 面积为( ) A .9 B .12 C .10 D .84.椭圆221164x y +=上的点到直线 x +2y 2-=0 的最大距离是( ) A .3 B 11 C .22 D 10 F5.如果椭圆221369x y+=的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x-2 y=0 B.x+2 y-4=0 C.2x+3y-12=0 D.x+2 y-8=06.与椭圆22143x y+=具有相同的离心率且过点(2,3-)的椭圆的标准方程是.7.离心率53e=,一个焦点的坐标为5,03⎛⎫- ⎪⎝⎭的椭圆的标准方程是.1~5 DDBAD 【能力提高】8.已知椭圆22194x y+=上的点P到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P点坐标.9.过椭圆22194x y+=内一点D(1,0)引动弦A B,求弦A B的中点M的轨迹方程.10.椭圆221164x y+=上有两点P、Q,O是原点,若O P、OQ斜率之积为14-.求证22OP OQ+为定值.§2.2.1 双曲线及其标准方程【知识要点】● 掌握双曲线的定义,熟记双曲线的标准方程; ● 掌握双曲线标准方程的推导,会求动点轨迹方程; ● 会按y 2特定条件求双曲线的标准方程; ● 理解双曲线与椭圆的联系与区别.【例题精讲】【例 1】判断下列方程是否表示双曲线,若是,求出三量 a ,b ,c 的值.【例 2】已知双曲线的焦点在y 轴上,中心在原点,且点()13,42P -、29,54P⎛⎫ ⎪⎝⎭在此双曲线上,求双曲线的标准方程.【例 3】点 A 位于双曲线()222210,0x y a b a b-=>>上, F 1,F 2是它的两个焦点,求△AF 1F 2的重心G 的轨迹方程.【例 4】已知三点 P (5,2)、 F 1(-6,0)、 F 2(6,0).(1)求以F 1、F 2为焦点且过点 P 的椭圆的标准方程;(2)设点 P 、F 1、F 2关于直线 y =x 的对称点分别为 P '、F 1'、F 2',求以F 1'、F 2'为焦点且过点P '的双曲线的标准方程.【基础达标】1.双曲线22221124x y m m -=+-的焦距是( )A .4B .22C .8D .与 m 有关2.椭圆222+134x y n =和双曲线222116x y n -=有相同的焦点,则实数 n 的值是( ) A .±5 B .±3 C .5 D .93.若0k a <<,双曲线22221x y a k b k -=-+与双曲线22221x y a b-=有( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D .相同的焦点4.过双曲线221169x y -=左焦点 F 1的弦 A B 长为 6,则 △ABF 2(F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .125.设F 1,F 2是双曲线2214x y -=的焦点,点 P 在双曲线上,且 ∠F 1PF 2=90°,则点 P 到x 轴的距离为( )A .1B .55C .2D .5 6.到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于 6的点 M 的轨迹是 .7.方程22+111x y k k=+-表示双曲线,则 k 的取值范围是 . 1~5 CBDAB【能力提高】8.求与双曲线221164x y -=有公共焦点,且过点(32,2)的双曲线方程.9.如图,某农场在 P 处有一堆肥,今要把这堆肥料沿道路 P A 或 P B 送到庄稼地 A BCD 中去,已知 P A =100 m ,PB =150m ,∠APB =60°.能否在田地 A BCD 中确定一条界线,使位于界线一侧的点,沿道路 P A 送肥较近;而另一侧的点,沿道路 P B 送肥较近? 如果能,请说出这条界线是一条什么曲线,并求出其方程.10.已知点()3,0A -和()3,0B,动点C 到A 、B 两点的距离之差的绝对值为 2,点 C 的轨迹与直线 y =x -2 交于 D 、E 两点,求线段 D E 的长.§2.2.2 双曲线的简单几何性质(一)【知识要点】● 掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质. ● 掌握等轴双曲线,共轭双曲线等概念.【例题精讲】【例 1】求双曲线2214y x -=的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程.【例 2】求一条渐近线方程是 3x +4y =0,一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.【例 3】求与双曲线221169x y -=共渐近线且过 A (33,-3)的双曲线的方程.【例 4】已知△ABC 的底边 B C 长为 12,且底边固定,顶点 A 是动点,使sin B -sin C =12sin A ,求点 A 的轨迹.【基础达标】1.下列方程中,以x ±2y =0为渐近线的双曲线方程是( )A .221164x y -= B .221416x y -= C .2212x y -= D .2212y x -= 2.已知双曲线的离心率为 2,焦点是(-4,0),(4,0),则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=3.过点(3,0)的直线 l 与双曲线 4x 2-9y 2=36只有一个公共点,则直线 l 共有( ) A .1条 B .2条 C .3条 D .4条4.方程mx 2+ny 2+mn =0(m <n <0)所表示的曲线的焦点坐标是( )A .()0m n ±-,B .()0n m ±-,C .()0m n ±-,D .()0n m ±-,5.与双曲线221916x y -=有共同的渐近线,且经过点A (-3,23)的双曲线的一个焦点到一条渐近线的距离是( )A .8B .4C .2D .1 6.双曲线9y 2-4x 2=36的渐近线方程是 .7.经过点M (3,-1),且对称轴在坐标轴上的等轴双曲线的标准方程是 .1~5 AACBC【能力提高】8.求一条渐近线方程是 3x +4y =0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.9.求以椭圆22+16416x y =的顶点为焦点,且一条渐近线的倾斜角为56π的双曲线方程.10.已知双曲线的方程是 16x 2-9y 2=144.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设 F 1和 F 2是双曲线的左、右焦点,点 P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2的大小.§2.2.2 双曲线的简单几何性质(二)【例题精讲】【例 1】如果双曲线的两个焦点分别为F 1(-3,0)、F 2 (3,0),一条渐近线方程为2y x =,那么它的离心率是( )A .63B .4C .2D .3【例 2】过双曲线221916x y -=的左焦点F 1,作倾斜角为=4πα的直线与双曲线交于两点A 、B ,求AB 的长.【例 3】已知动点 P 与双曲线 x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且 c os ∠F 1PF 2的最小值为13-.求动点P 的轨迹方程.【例 4】已知不论 b 取何实数,直线 y =kx +b 与双曲线 x 2-2y 2=1总有公共点,试求实数 k 的取值范围.【基础达标】1.到两定点F 1(-3,0)、F 2 (3,0) 的距离之差的绝对值等于 6的点 M 的轨迹( ) A .椭圆 B .线段 C .双曲线 D .两条射线 4.双曲线的两个顶点将焦距三等分,则它的离心率为( ) A .32 B .3 C .43D 35.已知 m ,n 为两个不相等的非零实数,则方程mx -y +n =0与 n x 2+my 2=mn 所表示的曲线可能是( )A B C Dyox y ox yoxyox6.双曲线22197x y -=的右焦点到右顶点的距离为 . 7.与椭圆22+11625x y =有相同的焦点,且离心率为355的双曲线方程为 .1~5 DDCBC【能力提高】8.设双曲线()222210x y a b a b-=<<的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l的距离为34c ,求此双曲线的离心率.9.求过点M (3,-1)且被点M 平分的双曲线2214x y -=的弦所在直线方程.10.设双曲线 C 1的方程为()222210,0x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线 C 1上的任意一点,引 Q B ⊥PB ,QA ⊥PA ,AQ 与 B Q 交于点 Q ,求 Q 点的轨迹方程.§2.3.1 抛物线及其标准方程【知识要点】●掌握抛物线的定义.●标准方程的不同形式及其推导过程.●熟练画出抛物线的草图,求出抛物线的标准方程、焦点、准线方程.【例题精讲】【例1】已知抛物线的标准方程是:(1)y2=12x,(2)y=12x2,求它的焦点坐标和准线方程.【例2】求满足下列条件的抛物线的标准方程:(1)焦点坐标是F(-5,0);(2)经过点A(2,-3)【例3】直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形A PQB的面积为()A .48B .56C .64D .72【例 4】斜率为 1的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点 A 、B ,求线段 A B 的长.【基础达标】1.抛物线y 2=ax (a ≠0)的准线方程是 ( ) A .4a x =-B .4ax = C .4a x =- D .4a x =2.抛物线的顶点在原点,对称轴为 x 轴,焦点在直线 3x -4y -12=0上,此抛物线的方程是( ) A .y 2=16x B .y 2=12x C .y 2=-16x D .y 2=-12x 3.焦点在直线 3x -4y -12=0上的抛物线标准方程是( ) A .y 2=16x 或 x 2=16y B .y 2=16x 或 x 2=12y C .x 2=-12y 或 y 2=16x D .x 2=16y 或 y 2=-12x4.已知 M (m ,4)是抛物线 x 2=ay 上的点,F 是抛物线的焦点,若|MF |=5,则此抛物线的焦点坐标是( )A .(0,-1)B .(0,1)C .(0,-2)D .(0,2)5.过抛物线y2=4x的焦点F作倾斜角为34的直线交抛物线于A、B两点,则A B的长是()A.42B.4C.8D.26.顶点在原点,焦点在y轴上,且过点P(4,2)的抛物线方程是.7.平面上的动点P到点A(0,-2)的距离比到直线l:y=4的距离小2,则动点P的轨迹方程是.1~5 AACBC【能力提高】8.点M到点(0,8)的距离比它到直线y=-7的距离大1,求M点的轨迹方程.9.抛物线y2=16x上的一点P到x轴的距离为12,焦点为F,求|PF|的值.10.抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?§2.3.2 抛物线的简单几何性质(一)【知识要点】xyO●抛物线的范围、对称性、顶点、离心率等几何性质;●能根据抛物线的几何性质对抛物线方程进行讨论;注意数与形的结合.【例题精讲】【例1】已知抛物线关于x轴为对称轴,它的顶点在坐标原点,并且经过点()2,22M-,求它的标准方程.【例2】过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以A B为直径的圆和这抛物线的准线相切.【例3】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px()0p>上,求这个正三角形的边长.【例4】抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以A F、BF为邻边作平行四边形F ARB,试求动点R的轨迹方程.【基础达标】1.过抛物线 y 2=4x 的焦点作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么|AB | =( )A .10B .8C .6D .42.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是( ) A .x 2=8y B .x 2=4y C .x 2=2y D .x 2=12y 3.已知 M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点 P (3,1),则MP MF +的最小值为( )A .3B .4C .5D .64.已知抛物线 y 2=-12x 上一点 P (x 0,y 0)到焦点的距离为 8,则 x 0的值为( ) A .-5 B .5 C .-4 D .45.抛物线 y 2=8x 上一点 P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A .()2,4 B .()2,4± C .()1,22 D .()1,22± 6.抛物线 2y 2+5x =0 的准线方程是 .7.过抛物线焦点 F 的直线与抛物线交于 A 、B 两点,若 A 、B 在准线上的射影是 A 2,B 2,则∠A 2FB 2等于 .1~5 BABAD【能力提高】8.抛物线顶点在原点,它的准线经过双曲线22221x ya b-=的一个焦点,并且这条准线与双曲线的实轴垂直,又抛物线与双曲线交于点362⎛⎫⎪⎝⎭,,求二者的方程.9.顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求抛物线的方程.10.设抛物线y2=2px()0p>的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且B C∥轴.证明:直线AC经过原点O.§2.3.2 抛物线的简单几何性质(二)【例题精讲】【例1】过抛物线y2=2x的顶点作互相垂直的二弦O A、OB.(1)求A B中点的轨迹方程.(2)证明:AB与x轴的交点为定点.【例2】已知点A(2,8),B(x,y1),C(x2,y2)在抛物线y2=2px上,△ABC的重心与此抛物线1的焦点F重合.(1)写出该抛物线的方程和焦点F的坐标;(2)求线段BC中点M的坐标;(3)求B C所在直线的方程.【例3】抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是()A.43B.75C.85D.3【基础达标】1.已知抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线3x-4y-12=0时,则此抛物线的方程是()A.y2=16x B.x2=-12y C.y2=8x或x2=-6y D.y2=16x或x2=-12y 2.抛物线的顶点在原点,对称轴是x轴,点(5,25-到焦点距离是6,则抛物线的方程为()A.y2=-4x B、y2=-2x C、y2=2x D、y2=-4x或x2=-36y 3.在抛物线y=x2上有三点A、B、C,其横坐标分别为-1,2,3,在y轴上有一点D的纵坐标为6,那么以A、B、C、D 为顶点的四边形是()A.正方形B.平行四边形C.菱形D.任意四边形4.抛物线y2=4x的焦点F,准线为l,交x轴于R,过抛物线上一点P(4,4)作P Q⊥l于Q,则梯形PFRQ的面积是()A.12B.14C.16D.185.抛物线y2=-4x关于直线x+y=2对称的曲线的顶点坐标为()A.(2,2)B.(0,0)C.(-2,-2)D.(2,0)6.若动点M(x,y)到点F(4,0)的距离比它到直线x+5=0的距离小1,则M点的轨迹方程是.7.抛物线y2=4x的弦AB垂直于x轴,若AB的长为43,则焦点到AB的距离为.1~5 DABBA【能力提高】8.经过抛物线y2=-8x的焦点且和抛物线的对称轴成60°角的直线与抛物线交A、B两点,求|AB|.9.求过A(-1,1),且与抛物线y=x2+2有一个公共点的直线方程.10.已知抛物线C:y=x2+4x+72,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为12,求点M的坐标(x0,y0).第二章 圆锥曲线复习(一)【知识要点】● 椭圆定义,椭圆的标准方程,椭圆的性质.● 双曲线的定义,双曲线的标准方程及特点,双曲线的几何性质. ● 抛物线定义,抛物线的几何性质.【例题精讲】【例 1】椭圆的中心在原点,焦点在x 轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近顶点的距离是105-,求椭圆方程.【例 2】已知双曲线2214x y -=和定点12,2P ⎛⎫ ⎪⎝⎭. (Ⅰ)过 P 点可以做几条直线与双曲线 C 只有一个公共点;(Ⅱ)双曲线C 的弦中,以 P 点为中点的弦 P 1P 2是否存在? 并说明理由.【例 3】已知点 A (0,2)及椭圆22+14x y =,在椭圆上求一点 P 使PA 的值最大.【例 4】己知点P 在抛物线 x 2=y 上运动,Q 点的坐标是(-1,2),O 是原点,OPQR (O 、P 、Q 、R顺序按逆时针)是平行四边形,求 R 点的轨迹方程.【基础达标】1.平面上到定点 A (1,1)和到定直线 l :x +2 y =5距离相等的点的轨迹为( )A .直线B .抛物线C .双曲线D .椭圆 2.若椭圆 2kx 2+ky 2=1 的一个焦点坐标是(0,4),则 k 的值为( )A .18 B .132C .2D .316 3.椭圆22+1259x y =上的点 M 到焦点 F 1的距离是 2,N 是 M F 1的中点,则ON 为( ) A .4 B .2 C .8 D .324.如果双曲线的实半轴长为 2,焦距为 6,那么该双曲线的离心率为( )A .32 B .62 C .32D .2 5.椭圆22+1259x y =的两焦点 F 1,F 2,过 F 2引直线 L 交椭圆于 A 、B 两点,则 △ABF 1的周长为( ) A .5 B .15 C .10 D .206.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为.7.若椭圆的两个焦点为F1(-4,0)、F2(4,0),椭圆的弦A B过点F1,且△ABF2的周长为20,那么该椭圆的方程为.1~5 BBACD【能力提高】8.若双曲线的两条渐进线的夹角为60°,求该双曲线的离心率.9.正方形的一条边A B在直线y=x+4上,顶点C、D在抛物线y2=x上,求正方形的边长.10.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,求实数a的取值范围.第二章圆锥曲线复习(二)【例题精讲】【例1】已知直线l交椭圆22+12016x y于M、N两点,B(0,4)是椭圆的一个顶点,若△BMN的重心恰是椭圆的右焦点,求直线l的方程.【例 2】已知倾斜角为4π的直线 l 被双曲线 x 2-4y 2=60截得的弦长82AB =,求直线l 的方程及以AB 为直径的圆的方程.【例 3】已知直线l :x =-1,点F (1,0),以F 为焦点,l 为准线的椭圆中,短轴一端点为B ,P 为FB 的中点.(Ⅰ)求 P 点的轨迹方程,并说明它是什么曲线;(Ⅱ)M (m ,0)为定点,求|PM |的最小值.【例 4】已知两定点A (-2,0),B (1,0),如果动点P 满足2PA PB =,求点P 的轨迹所包围的图形的面积.【基础达标】1.已知 M (-2,0),N (2,0),4PM PN -=,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.若圆 x 2+y 2=4上每个点的横坐标不变.纵坐标缩短为原来的13,则所得曲线的方程是( ) A .22+1412x y = B .22+1436x y = C .229+144x y = D .22+1364x y = 3.已知 F 1,F 2是椭圆22+1169x y =的两焦点,过点F 2的直线交椭圆于点A ,B ,若5AB =,则12AF BF -=( )A .3B .8C .13D .164.曲线()()22346225x y x y ---+-=的离心率为( ) A .110 B .12C .2D .无法确定5.抛物线 y 2=14x 关于直线 x -y =0对称的抛物线的焦点坐标是( ) A .(1,0) B .1016⎛⎫⎪⎝⎭, C .(0,1) D .1016⎛⎫ ⎪⎝⎭, 6.与椭圆4x 2 + 9y 2=36有相同的焦点,且过点(-3,2)的椭圆方程为 .7.以双曲线22145x y -=的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 . 1~5 C CABD【能力提高】8.设F 1,F 2为双曲线2214x y -=的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,求△F 1PF 2的面积.9.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,求直线l的斜率的取值范围.10.设椭圆22+162x y=和双曲线2213xy-=的公共焦点为F1,F2,P是两曲线的一个公共点,求cos∠F1PF2的值.。
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.2.1
答案: A
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.椭圆的短轴长等于 2,长轴端点与短轴端点间的距离等 于 5,则此椭圆的标准方程是______________.
解析: 设椭圆的长半轴长为 a,短半轴长为 b,焦距为 2c, 则 b=1,a2+b2=( 5)2,即 a2=4.
高效测评 知能提升
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
合作探究 课堂互动
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
由方程确定椭圆的性质
已知椭圆的方程为4x2+9y2=36. (1)求椭圆的顶点坐标、焦点坐标、长轴长、短轴长以及离 心率; (2)结合椭圆的对称性,运用描点法画出这个椭圆.
解析: (1)由题意:因为 2c=8,所以 c=4;又因为ac=0.8, 所以 a=5,b2=9,焦点在 x 轴上时椭圆标准方程:2x52 +y92=1; 焦点在 y 轴上时椭圆标准方程:2y52 +x92=1.
(2)由题意可知 2b=2 3,∴b= 3,
焦点为(0,-1),∴焦点在 y 轴上且 c=1,
准确理解椭圆的离心率 椭圆的离心率的大小决定了椭圆的形状,反映了椭圆的扁平 程度. 由ba= a2-a2 c2= 1-e2(0<e<1)可知,当 e 越趋近于 1 时, ba越趋近于 0,椭圆越扁;当 e 越趋近于 0 时,ba越趋近于 1,椭 圆越接近于圆.当且仅当 a=b 时,c=0,两焦点重合,图形变 为圆,方程为 x2+y2=a2.
高中数学第二章圆锥曲线与方程教案新人教版选修1-1
2.对称性的发现与证明
师:椭圆的图形给人们以视觉上的美感 (课件展示椭圆) ,如果我们沿焦点所在的直
线上下对折, 沿两焦点连线的垂直平分线左右对折, 大家猜想椭圆可能有什么性质?
(学生动手折纸,课前教师要求学生把上节学习椭圆定义时画的椭圆拿来。
)
学生们基本上能发现椭圆的轴对称性。
师: 除了轴对称性外,还可能有什么对称性呢?
对称性是椭圆本身固有的性质,无论椭圆在坐标系的什么位置,它都有两条互相垂 直的对称轴, 有一个中心, 与坐标系的选取无关。 (此问题也为后面研究平移变换埋 下伏笔)。 3. 顶点的发现与确定 师: 我们研究曲线,常常需要根据曲线上特殊点的位置来确定曲线的位置。 你认为椭圆上哪几个点比较特殊?
由学生观察容易发现,椭圆上存在着四个特殊点,这四个点就是椭圆与坐标轴 的交点,同时也是椭圆与它的对称轴的交点。 教师启发学生与一元二次函数 的图像(抛物线)的顶点作类比,并给出椭圆的 顶点定义。 师: 能根据方程确定这四个顶点的坐标吗? 由学生自主探究 , 求出四个顶点坐标。即令 x=0, 得 y= ±b,因此 B1(0,-b), B2(0,b) ,令 y=0,得 x=±a,因此 A1 (-a,0), A 2(a,0) 。 结合图形指出长轴、短轴、长轴长、短轴长、长半轴长、短半轴长,半焦距, 点明方程中 a、b 和 c 的几何意义和数量关系。 由学生探究得出椭圆的一个焦点 F2 到长轴两端点 A1 , A 2 的距离分别为 a+c 和 a-c 。教师指出,这在解决天体运行中的有关实际问题时经常用到。
稍作提示容易发现中心对称性。
师: 这仅仅是由观察、猜想得到的结果,怎样用方程证明它的对称性?
师生讨论后,需要建立坐标系,确定椭圆的标准方程。不妨建立
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.2
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
方法二:设弦 AB 所在的直线方程为 y=k(x-4)+1(k≠0),
由yy= 2=k8xx-4+1, 消去 x 并整理,得
ky2-8y-32k+8=0
①
设 A(x1,y1),B(x2,y2),由根与系数的关系,得 y1+y2=8k, 又∵Q 是 AB 中点,∴y1+2 y2=1.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
特别提醒:对于Δ的使用,应注意前提,即二次项系数不 能为0,特别地,若二次项的系数含参数时应进行分类讨论, 若系数等于0时方程有解,这时得到的直线与抛物线的对称轴 平行.
数学 选修1-1
第二章 圆锥曲线与方程
高效评 知能提升
1.明确直线与抛物线的位置关系,掌握直线与抛物线的 位置关系的判定方法.
2.会用方程、数形结合的思想解决直线与抛物线的位置 关系、弦长及弦中点等问题.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
直线与抛物线只有一个公共点时,当且仅当直线与抛物线 相切,对吗?
|P1P2|= |P1P2|=
1+k2|x1-x2| 1+k12|y1-y2|
2.焦点弦长
若 AB 为抛物线 y2=2px(p>0)的一条过焦点 F 的弦,A(x1, y1),B(x2,y2),则弦长|AB|=|AF|+|BF|=_x_1_+__x2_+__p___.
数学 选修1-1
第二章 圆锥曲线与方程
高中数学(人教版选修1-1)配套课件:第2章 圆锥曲线与方程2.1.2(二)
① ②
则①-②得(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
∴8(x1-x2)+16(y1-y2)=0,∴k=xy11--xy22=-12, ∴以点 A(4,2)为中点的椭圆的弦所在的直线方程为
y-2=-12(x-4),
整理得,x+2y-8=0.
解析答案
12345
5.已知 F1、F2 是椭圆的两个焦点,满足M→F1·M→F2=0 的点 M 总在椭圆内部, 2
C.m>3
D.m>0且m≠3
y=x+2, 解析 由xm2+y32=1 ⇒(3+m)x2+4mx+m=0,
∵Δ>0,∴m>1或m<0.
又∵m>0且m≠3,
∴m>1且m≠3.
解析答案
12345
2.已知椭圆的方程为2x2+3y2=m(m>0),则此椭圆的离心率为( B )
1
3
2
1
A.3
B. 3
故两切线方程为 y=32x+4 和 y=32x-4,显然 y=32x-4 距 l 最近,
d=
|16-8| 32+-22=
813=81313,切点为 P32,-74.
反思与感悟
解析答案
跟踪训练1 已知椭圆x2+8y2=8,在椭圆上求一点P,使P到直线l:x-
y+4=0的距离最短,并求出最短距离.
C. 2
D.2
解析 将方程化为标准形式xm2+ym2=1, 23
因为 m>0,所以 a2=m2 ,b2=m3 , 所以 c2=a2-b2=m2 -m3 =m6 ,
m 所以 e=ac= m6 = 13= 33.
2
解析答案
12345
3.椭圆2x52 +1y62 =1 的左、右焦点分别为 F1、F2,弦 AB 过 F1,若△ABF2 的内切
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1
对椭圆定义的理解 椭圆的定义揭示了椭圆的本质,定义是判断动点轨迹是不 是椭圆的重要依据.设集合P={M||MF1|+|MF2|=2a},|F1F2|= 2c,其中a,c均为大于0的常数.
当2a>2c时,集合P为椭圆;
当2a=2c时,集合P为线段F1F2; 当2a<2c时,集合P为空集,即动点M的轨迹不存在.
自主学习 新知突破
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆
的过程.
2.了解椭圆的标准方程的推导及简化过程. 3.掌握椭圆的定义、标准方程及几何图形.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
解析: 由椭圆方程知 a2=25,b2=16. ∴a=5,则|PF1|+|PF2|=10.
答案: D
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
2.已知椭圆的焦点分别为(-2,0),(2,0),椭圆上一点到两 个焦点的距离和等于 6,则椭圆的方程为( x2 y2 A. + =1 9 4 x2 y2 C. + =1 5 9 x2 y2 B. + =1 9 5 x2 y2 D. + =1 4 5 )
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
4. 已知椭圆的焦点在 x 轴上, 且焦距为 4, P 为椭圆上一点, 且|F1F2|是|PF1|和|PF2|的等差中项. (1)求椭圆的方程; (2)若△PF1F2 的面积为 2 3,求 P 点坐标.
数学 选修1-1
最新人教版选修1-1高中数学第2章 圆锥曲线与方程2.2.1 公开课课件
(a>0,b>0) ___________
焦点
焦距 a、b、c的 关系
F1______, F1_______, (-c,0) (c,0) (0,-c) (0,c) F2_____ F2_____ 2 c |F F |=__
1 2 2+b2 a c2=_____
x2 y2 跟踪训练2 已知双曲线 =1的左、右焦点分别是 - 9 16 F1 、 F2 , 若 双 曲 线 上 一 点 P 使 得 ∠F1PF2 = 60° , 求
2 2 x y △ . a=3,b=4,c=5. 1PF 2的面积 解 F由 - = 1 得, 9 16
由双曲线的定义和余弦定理得|PF1|-|PF2|=±6,
解析答
题型三 例3
与双曲线有关的轨迹问题 ,且三个内
如图,在△ABC中,已知 4 2 |AB|=
角A,B,C满足 2sin A+sin C=2sin B,建立适当的坐标系,求顶点C 的轨迹方程.
反思与
解析答
跟踪训练 3
如图所示,已知定圆 F1 :(x+5)2+y2=1 ,
定圆 F2: (x- 5)2 +y2 = 42 ,动圆 M与定圆 F1 , F2 都外切,
答案 a,b的值及焦点所在的位置.
答案
返回
题型探究 重点突破
题型一 求双曲线的标准方程
例1 根据下列条件,求双曲线的标准方程.
15 16 (1)经过点 P(3, 4 ),Q(- 3 ,5);
解析答
(2)c= 6,经过点(-5,2),焦点在 x 轴上. x2 y2 解 方法一 依题意可设双曲线方程为a2-b2=1(a>0,b>0). a2+b2=6, 2 a =5, x2 2 ∴所求双曲线的标准方程为 5 -y =1. 则有25 4 解得 2 b =1, 2 - 2=1, a b
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.2.1
合作探究 课堂互动
高效测评 知能提升
2.双曲线渐近线的方程及其意义 (1)双曲线ax22-by22=1(a>0,b>0)的渐近线方程为 y=±bax,双 曲线ay22-bx22=1(a>0,b>0)的渐近线方程为 y=±abx.为了避免混淆,
可将双曲线方程中的“1”换成“0”,然后因式分解就可得到渐近线
已知双曲线方程求其几何性质
求双曲线9y2-16x2=144的实半轴和虚半轴长、焦点 坐标、渐近线方程.
[思路点拨]
双曲线方程
化简 ―变―形→
双曲线的标准方程 ―→ a,b,c的值 ―→ 结果
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: 将方程 9y2-16x2=144 化为标准方程4y22-3x22=1, 由此可知,实半轴长 a=4,虚半轴长 b=3;
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.2.2 双曲线的简单几何性质
第1课时 双曲线的简单几何性质
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
若焦点在
y
轴
上
,
设
所
求
双
曲
线
的
标
准
方
程
为
y2 a2
-
人教版高中数学选修1-1第二章圆锥曲线与方程2.3抛物线阅读与思考圆锥曲线的光学性质及其应用教学课件共18张
P (x0,y0) l
当PF2
A
90 时,即P (
x0
,
y0
)为(c,
b2 a
)
F1
A F2 x
则kPF1
y0 x0
c
,
kPF2
不存在,
kPA
a2 y0 b2 x0
a2 c
则tan F2PA
tan(PF2 A
PAF2
)
tan(
2
PAF2 )
1
1c
tan PAF2 kPA a
tan F1PA
y0c b2
床头灯
发散光的特点是范围 变广、强度变弱。
柔光箱
视觉上的效果 柔和、不刺眼。
转角镜
远处的物体在虚焦点处 成正立、缩小的虚像,
用于扩大视野。
反射式天文望远镜
主要用于天体物理的工 作,遥远的星体成像于
焦点。
抛物线光学性质的应用
圣火采集
将火种置于焦点处
探照灯
远光灯
把光源放置于焦点处, 经过反射形成平行光线。
P (x0,y0)
l
F2 x
由焦半径公式得 F1P a ex0 , F2P a ex0 .
当P为(0, b)时,根据椭圆的对称性显然成立.
当法线PA的斜率存在时,记为:y
y0
a2 y0 b2 x0
(x
x0 ),
令y 0,则x e2 x0 , 则PA与x轴的交点A(e2 x0 , 0).
PF1 F1 A
kPA 1 kPA
kPF1 kPF1
a2 y0 x0 a2 y0c b2 x0 y0 b2 x02 b2 x0c a2 y02
c2 x0 y0 a2 y0c b2 x0c a2b2
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.1
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
[问题1] 抛物线有几个焦点? [提示1] 抛物线有1个焦点. [问题2] 抛物线有点像双曲线的一支,抛物线有渐近线 吗? [提示2] 抛物线没有渐近线.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: 由于焦点是(0,5)在 y 轴正半轴上,可设抛物线标准
方程为 x2=2py(p>0),由条件知p2=5,解得 p=10,则抛物线方 程为 x2=20y,故选 B.
答案: B
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的 距离为7,则抛物线C的方程为________.
__-__p2,__0_
__0_,__2p__
__0,__-__p2_
_x_=_-__p2__
_x_=_p2____
_y=__-__p2__ _y_=_p2____
x_≥__0_,_y_∈__R x_≤__0,__y_∈__R y_≥__0_,_x_∈__R y_≤_0_,__x_∈_R_
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
方法二:设与直线 x-y+3=0 平行的抛物线的切线为 x-y +t=0,与 y2=2x 联立,消去 x,得
y2-2y+2t=0,由 Δ=0,得 t=12, 此时 y=1,x=12,∴点 P 的坐标是12,1,两平行线间的距 离就是点 P 到直线的最小距离,即 dmin=54 2.
教学:(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.若抛物线y2=8x上一点P到其焦点的距离为10,则点P 的坐标为________.
解析: 设P(xp,yp),∵点P到焦点的距离等于它到准线x =-2的距离,∴xp=8,yp=±8.
答案: (8,±8)
数学 选修1-1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
当焦点在x轴上时,方程中的一次项就是x的一次项,且符 号指示了抛物线的开口方向,为正时开口向右,为负时开口向 左;当焦点在y轴上时,方程中的一次项就是y的一次项,且符 号指示了抛物线的开口方向,为正时开口向上,为负时开口向 下.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)设所求的抛物线方程为 y2=-2p1x(p1>0) 或 x2=2p2y(p2>0), ∵过点(-3,2), ∴4=-2p1(-3)或 9=2p2·2. ∴p1=23或 p2=94. 故所求的抛物线方程为 y2=-43x 或 x2=92y.
因此,标准方程为 y2=12x. (2)设抛物线的标准方程为 y2=2px(p>0),其准线方程为 x= -52,由题意有-p2=-52,故 p=5, 因此,标准方程为 y2=10x.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
合作探究 课堂互动
数学 选修1-1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修1-1 第二章《圆锥曲线与方程》§2.1.1 椭圆及其标准方程【知识要点】● 椭圆的定义:到两个定点 F 1、F 2的距离之和等于定长(12FF >)的点的轨迹.● 标准方程:(1)()222210x y a b a b+=>>,22c a b =-,焦点是 F 1(-c ,0),F 2(c ,0);(2)()222210y x a b a b+=>>,22c a b =-,焦点是 F 1(0,-c ),F 2(0,c ).【例题精讲】【例 1】两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点 P 到两焦点的距离之和等于 10,写出椭圆的标准方程.【例 2】已知椭圆的两个焦点坐标分别是(0,-2)和(0,2)且过35,22⎛⎫- ⎪⎝⎭,求椭圆的标准方程.点评:题(1)根据定义求.若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程.【例 3】判断下列方程是否表示椭圆,若是,求出 a ,b ,c 的值.【例4】已知ΔABC 的一边BC 的长为6,周长为16,求顶点A 的轨迹方程.【基础达标】1.椭圆221259x y +=上一点 P 到一个焦点的距离为 5,则 P 到另一个焦点的距离为( ) A .5 B .6 C .4 D .102.椭圆2211312x y +=上任一点 P 到两个焦点的距离的和为( ) A .26 B .24 C .2 D .2133.已知 F 1,F 2是椭圆221259x y +=的两个焦点,过 F 1的直线交椭圆于 M ,N 两点,则△MNF 2周长为( )A .10B .16C .20D .324.椭圆的两个焦点分别是F 1(-8,0)和F 2(8,0),且椭圆上一点到两个焦点距离之和为 20,则此椭圆的 标准方程为( )A .2212012x y += B .22140036x y += C .22110036x y += D .22136100x y +=5.椭圆2214x y m +=的焦距是 2,则 m 的值为( ) A .5或 3 B .8 C .5 D .166.椭圆221169x y +=的焦距是 ,焦点坐标为 . 7.焦点为(0,4)和(0,-4),且过点()533,-的椭圆方程是 .1~5 ADCCA【能力提高】8.如果方程 x 2+ky 2=2表示焦点在 y 轴上的椭圆,求实数 k 的取值范围.9.写出适合下列条件的椭圆的标准方程:(1)a=4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.10.求到定点(2,0)与到定直线x =8的距离之比为22的动点的轨迹方程.§2.1.2 椭圆的简单几何性质(一)【知识要点】● 熟练掌握椭圆的范围,对称性,顶点,离心率等简单几何性质. ● 掌握标准方程中a ,b ,c 的几何意义,以及a ,b ,c ,e 的相互关系. ● 理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法.【例题精讲】【例 1】已知椭圆的中心在坐标原点 O ,焦点在 x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且离心率为22,求椭圆的方程.【例 2】已知 x 轴上的一定点 A (1,0),Q 为椭圆2214x y +=上的动点,求 A Q 中点 M 的轨迹方程.【例 3】椭圆22110036x y +=上有一点 P ,它到椭圆的左焦点 F 1的距离为 8,求△PF 1F 2的面积.【例 4】设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值.【基础达标】1.已知P 是椭圆22110036x y +=上的一点,若P 到椭圆右焦点的距离是345,则P 点到椭圆左焦点的距离是( ) A .165 B .665 C .758D .778 2.若焦点在 x 轴上的椭圆2212x y m+=的离心率为12,则 m =( )A .3B .32 C .83 D .233.已知椭圆的中心在原点,焦点在 x 轴上,且长轴长为 12,离心率为13,则椭圆的方程是( )A .221144128x y += B .2213620x y += C .2213236x y += D .2213632x y += 4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件()1290PF PF a a a+=+>,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.若椭圆短轴长等于焦距的3倍,则这个椭圆的离心率为( )A .14 B .22 C .24D .12 6.已知椭圆C 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆C 的离心率等于 . 7.离心率12e =,一个焦点是 F (0,-3)的椭圆标准方程为 .1~5 BBDDD【能力提高】8.求过点A(-1,-2)且与椭圆22169x y+=的两个焦点相同的椭圆标准方程.9.已知椭圆的对称轴为坐标轴,离心率23e=,短轴长为85,求椭圆的方程.10.设有一颗卫星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此卫星离地球相距m万千米和43m万千米时,经过地球和卫星的直线与椭圆的长轴夹角分别为2π和3π,求该卫星与地球的最近距离.§2.1.2 椭圆的简单几何性质(二)【知识要点】●掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质.●能利用椭圆的有关知识解决实际问题,及综合问题.【例题精讲】【例 1】已知椭圆C 的焦点F 1()22,0-和F 2()22,0,长轴长6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.【例 2】椭圆的中心为点E (-1,0),它的一个焦点为F (-3,0),且椭圆的离心率255e =,求这个椭圆的方程.【例 3】已知椭圆2212x y +=的左焦点为F ,O 为坐标原点,求过点O 、F ,并且与直线l :x =-2相切的圆的方程.【例 4】如图,把椭圆2212516x y +=的长轴 AB 分成 8等份,过每个分点作 x 轴的垂线交椭圆的上半部分于 P 1,P 2,P 3,P 4,P 5,P 6,P 7七个点,F 是椭圆的一个焦点,则123++PF P F PF +45++P F P F67+P F P F = .【基础达标】1.椭圆22110036x y +=上的点 P 到它的左焦点的距离是 12,那么点 P 到它的右焦点的距离是( ) A .15 B .12 C .10 D .82.已知椭圆()2221525x y a a +=>的两个焦点为F 1、 F 2,且|F 1F 2|=8,弦 A B 过点 F 1,则△ A BF 2的周长为( )A .10B .20C .241D .4413.椭圆221259x y +=的焦点 F 1、F 2,P 为椭圆上的一点,已知 P F 1⊥PF 2,则△ F 1PF 2的 面积为( ) A .9 B .12 C .10 D .84.椭圆221164x y +=上的点到直线 x +2y 2-=0 的最大距离是( ) A .3 B .11 C .22 D .105.如果椭圆221369x y +=的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A . x -2 y =0 B . x +2 y -4=0 C . 2x +3y -12=0 D . x +2 y -8=06.与椭圆22143x y +=具有相同的离心率且过点(2,3-)的椭圆的标准方程是 . 7.离心率53e =,一个焦点的坐标为5,03⎛⎫- ⎪⎝⎭的椭圆的标准方程是 . F1~5 DDBAD 【能力提高】8.已知椭圆22194x y+=上的点P到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P点坐标.9.过椭圆22194x y+=内一点D(1,0)引动弦A B,求弦A B的中点M的轨迹方程.10.椭圆221164x y+=上有两点P、Q,O是原点,若O P、OQ斜率之积为14-.求证22OP OQ+为定值.§2.2.1双曲线及其标准方程【知识要点】●掌握双曲线的定义,熟记双曲线的标准方程;●掌握双曲线标准方程的推导,会求动点轨迹方程;● 会按y 2特定条件求双曲线的标准方程; ● 理解双曲线与椭圆的联系与区别.【例题精讲】【例 1】判断下列方程是否表示双曲线,若是,求出三量 a ,b ,c 的值.【例 2】已知双曲线的焦点在y 轴上,中心在原点,且点()13,42P -、29,54P ⎛⎫⎪⎝⎭在此双曲线上,求双曲线的标准方程.【例 3】点 A 位于双曲线()222210,0x y a b a b-=>>上, F 1,F 2是它的两个焦点,求△AF 1F 2的重心G 的轨迹方程.【例 4】已知三点 P (5,2)、 F 1(-6,0)、 F 2(6,0).(1)求以F 1、F 2为焦点且过点 P 的椭圆的标准方程;(2)设点 P 、F 1、F 2关于直线 y =x 的对称点分别为 P '、F 1'、F 2',求以F 1'、F 2'为焦点且过点P '的双曲线的标准方程.【基础达标】1.双曲线22221124x y m m-=+-的焦距是( ) A .4 B .22 C .8 D .与 m 有关2.椭圆222+134x y n =和双曲线222116x y n -=有相同的焦点,则实数 n 的值是( ) A .±5 B .±3 C .5 D .93.若0k a <<,双曲线22221x y a k b k -=-+与双曲线22221x y a b-=有( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D .相同的焦点4.过双曲线221169x y -=左焦点 F 1的弦 A B 长为 6,则 △ABF 2(F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .125.设F 1,F 2是双曲线2214x y -=的焦点,点 P 在双曲线上,且 ∠F 1PF 2=90°,则点 P 到x 轴的距离为( )A .1B .55C .2D .5 6.到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于 6的点 M 的轨迹是 .7.方程22+111x y k k=+-表示双曲线,则 k 的取值范围是 .1~5 CBDAB【能力提高】8.求与双曲线221164x y -=有公共焦点,且过点(32,2)的双曲线方程.9.如图,某农场在 P 处有一堆肥,今要把这堆肥料沿道路 P A 或 P B 送到庄稼地 A BCD 中去,已知 P A =100 m ,PB =150m ,∠APB =60°.能否在田地 A BCD 中确定一条界线,使位于界线一侧的点,沿道路 P A 送肥较近;而另一侧的点,沿道路 P B 送肥较近? 如果能,请说出这条界线是一条什么曲线,并求出其方程.10.已知点()3,0A -和()3,0B,动点C 到A 、B 两点的距离之差的绝对值为 2,点 C 的轨迹与直线 y =x -2 交于 D 、E 两点,求线段 D E 的长.§2.2.2 双曲线的简单几何性质(一)【知识要点】● 掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质. ● 掌握等轴双曲线,共轭双曲线等概念.【例题精讲】【例 1】求双曲线2214y x -=的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程.【例 2】求一条渐近线方程是 3x +4y =0,一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.【例 3】求与双曲线221169x y -=共渐近线且过 A (33,-3)的双曲线的方程.【例 4】已知△ABC 的底边 B C 长为 12,且底边固定,顶点 A 是动点,使sin B -sin C =12sin A ,求点 A 的轨迹.【基础达标】1.下列方程中,以x ±2y =0为渐近线的双曲线方程是( )A .221164x y -= B .221416x y -= C .2212x y -= D .2212y x -= 2.已知双曲线的离心率为 2,焦点是(-4,0),(4,0),则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= 3.过点(3,0)的直线 l 与双曲线 4x 2-9y 2=36只有一个公共点,则直线 l 共有( ) A .1条 B .2条 C .3条 D .4条4.方程mx 2+ny 2+mn =0(m <n <0)所表示的曲线的焦点坐标是( )A .()0m n ±-,B .()0n m ±-,C .()0m n ±-,D .()0n m ±-,5.与双曲线221916x y -=有共同的渐近线,且经过点A (-3,23)的双曲线的一个焦点到一条渐近线的距离是( )A.8 B.4 C.2 D.16.双曲线9y2-4x2=36的渐近线方程是.7.经过点M(3,-1),且对称轴在坐标轴上的等轴双曲线的标准方程是.1~5 AACBC【能力提高】8.求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.9.求以椭圆22+16416x y=的顶点为焦点,且一条渐近线的倾斜角为56π的双曲线方程.10.已知双曲线的方程是16x2-9y2=144.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.§2.2.2 双曲线的简单几何性质(二)【例题精讲】【例 1】如果双曲线的两个焦点分别为F 1(-3,0)、F 2 (3,0),一条渐近线方程为2y x =,那么它的离心率是( )A .63B .4C .2D .3【例 2】过双曲线221916x y -=的左焦点F 1,作倾斜角为=4πα的直线与双曲线交于两点A 、B ,求AB的长.【例 3】已知动点 P 与双曲线 x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且 c os ∠F 1PF 2的最小值为13-.求动点P 的轨迹方程.【例 4】已知不论 b 取何实数,直线 y =kx +b 与双曲线 x 2-2y 2=1总有公共点,试求实数 k 的取值范围.【基础达标】1.到两定点F 1(-3,0)、F 2 (3,0) 的距离之差的绝对值等于 6的点 M 的轨迹( ) A .椭圆 B .线段 C .双曲线 D .两条射线 4.双曲线的两个顶点将焦距三等分,则它的离心率为( ) A .32 B .3 C .43D .3 5.已知 m ,n 为两个不相等的非零实数,则方程mx -y +n =0与 n x 2+my 2=mn 所表示的曲线可能是( )A B C D6.双曲线22197x y -=的右焦点到右顶点的距离为 . 7.与椭圆22+11625x y =有相同的焦点,且离心率为355的双曲线方程为 . 1~5 DDCBC【能力提高】8.设双曲线()222210x y a b a b-=<<的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线lyox yox yox yox的距离为34c ,求此双曲线的离心率.9.求过点M (3,-1)且被点M 平分的双曲线2214x y -=的弦所在直线方程.10.设双曲线 C 1的方程为()222210,0x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线 C 1上的任意一点,引 Q B ⊥PB ,QA ⊥PA ,AQ 与 B Q 交于点 Q ,求 Q 点的轨迹方程.§2.3.1 抛物线及其标准方程【知识要点】● 掌握抛物线的定义.● 标准方程的不同形式及其推导过程.● 熟练画出抛物线的草图,求出抛物线的标准方程、焦点、准线方程.【例题精讲】【例 1】已知抛物线的标准方程是:(1)y 2=12x ,(2)y =12x 2,求它的焦点坐标和准线方程.【例2】求满足下列条件的抛物线的标准方程:(1)焦点坐标是F(-5,0);(2)经过点A(2,-3)【例3】直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形A PQB的面积为()A.48 B.56 C.64 D.72【例4】斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段A B 的长.【基础达标】1.抛物线y 2=ax (a ≠0)的准线方程是 ( ) A .4a x =-B .4ax = C .4a x =- D .4a x = 2.抛物线的顶点在原点,对称轴为 x 轴,焦点在直线 3x -4y -12=0上,此抛物线的方程是( ) A .y 2=16x B .y 2=12x C .y 2=-16x D .y 2=-12x 3.焦点在直线 3x -4y -12=0上的抛物线标准方程是( ) A .y 2=16x 或 x 2=16y B .y 2=16x 或 x 2=12y C .x 2=-12y 或 y 2=16x D .x 2=16y 或 y 2=-12x4.已知 M (m ,4)是抛物线 x 2=ay 上的点,F 是抛物线的焦点,若|MF |=5,则此抛物线的焦点坐标是( )A .(0,-1)B .(0,1)C .(0,-2)D .(0,2) 5.过抛物线 y 2=4x 的焦点 F 作倾斜角为34π的直线交抛物线于 A 、B 两点,则 A B 的长是( ) A .42 B .4 C .8 D .26.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是 . 7.平面上的动点P 到点 A (0,-2)的距离比到直线 l :y =4的距离小 2,则动点P 的轨迹方程 是 .1~5 AACBC【能力提高】8.点M 到点(0,8)的距离比它到直线 y =-7的距离大 1,求 M 点的轨迹方程.9.抛物线 y 2=16x 上的一点 P 到 x 轴的距离为 12,焦点为 F ,求|PF |的值.10.抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?§2.3.2 抛物线的简单几何性质(一)【知识要点】● 抛物线的范围、对称性、顶点、离心率等几何性质;● 能根据抛物线的几何性质对抛物线方程进行讨论;注意数与形的结合.【例题精讲】【例 1】已知抛物线关于x 轴为对称轴,它的顶点在坐标原点,并且经过点()2,22M -,求它的标准方程.xy O【例2】过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以A B为直径的圆和这抛物线的准线相切.【例3】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px()0p>上,求这个正三角形的边长.【例4】抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以A F、BF为邻边作平行四边形F ARB,试求动点R的轨迹方程.【基础达标】1.过抛物线 y 2=4x 的焦点作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么|AB | =( )A .10B .8C .6D .42.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是( ) A .x 2=8y B .x 2=4y C .x 2=2y D .x 2=12y 3.已知 M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点 P (3,1),则MP MF +的最小值为( )A .3B .4C .5D .64.已知抛物线 y 2=-12x 上一点 P (x 0,y 0)到焦点的距离为 8,则 x 0的值为( ) A .-5 B .5 C .-4 D .45.抛物线 y 2=8x 上一点 P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A .()2,4 B .()2,4± C .()1,22 D .()1,22± 6.抛物线 2y 2+5x =0 的准线方程是 .7.过抛物线焦点 F 的直线与抛物线交于 A 、B 两点,若 A 、B 在准线上的射影是 A 2,B 2,则∠A 2FB 2等于 .1~5 BABAD【能力提高】8.抛物线顶点在原点,它的准线经过双曲线22221x y a b-=的一个焦点,并且这条准线与双曲线的实轴垂直,又抛物线与双曲线交于点362⎛⎫ ⎪⎝⎭,,求二者的方程.9.顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求抛物线的方程.p>的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准10.设抛物线y2=2px()0线上,且B C∥轴.证明:直线AC经过原点O.§2.3.2 抛物线的简单几何性质(二)【例题精讲】【例1】过抛物线y2=2x的顶点作互相垂直的二弦O A、OB.(1)求A B中点的轨迹方程.(2)证明:AB与x轴的交点为定点.【例2】已知点 A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线 y 2=2px 上,△ABC 的重心与此抛 物线的焦点 F 重合.(1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点 M 的坐标; (3)求 B C 所在直线的方程.【例 3】抛物线 y =-x 2上的点到直线 4x +3y -8=0距离的最小值是( )A .43 B .75 C .85D .3【基础达标】1.已知抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线 3x -4y -12=0时,则此抛物线的方 程是( )A .y 2=16xB .x 2=-12yC .y 2=8x 或x 2=-6yD . y 2=16x 或x 2=-12y 2.抛物线的顶点在原点,对称轴是x 轴,点()5,25-到焦点距离是6,则抛物线的方程为( ) A .y 2=-4x B 、y 2=-2x C 、 y 2=2x D 、 y 2=-4x 或x 2=-36y 3.在抛物线 y =x 2上有三点 A 、B 、C ,其横坐标分别为-1,2,3,在y 轴上有一点D 的纵坐标为 6,那么以 A 、B 、C 、D 为顶点的四边形是( )A .正方形B .平行四边形C .菱形D .任意四边形4.抛物线 y 2=4x 的焦点F ,准线为l ,交 x 轴于 R ,过抛物线上一点 P (4,4)作 P Q ⊥ l 于Q ,则梯形 PFRQ 的面积是( )A .12B .14C .16D .18 5.抛物线 y 2=-4x 关于直线 x +y =2对称的曲线的顶点坐标为( )A .(2,2)B .(0,0)C .(-2,-2)D .(2,0) 6.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则M 点的轨迹方程 是 .7.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .1~5 DABBA【能力提高】8.经过抛物线 y 2=-8x 的焦点且和抛物线的对称轴成 60°角的直线与抛物线交 A 、B 两点,求|AB |.9.求过A(-1,1),且与抛物线y=x2+2有一个公共点的直线方程.10.已知抛物线C:y=x2+4x+72,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为12-,求点M的坐标(x0,y0).第二章圆锥曲线复习(一)【知识要点】●椭圆定义,椭圆的标准方程,椭圆的性质.●双曲线的定义,双曲线的标准方程及特点,双曲线的几何性质.●抛物线定义,抛物线的几何性质.【例题精讲】【例1】椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近顶点的距离是105-,求椭圆方程.【例 2】已知双曲线2214x y -=和定点12,2P ⎛⎫ ⎪⎝⎭. (Ⅰ)过 P 点可以做几条直线与双曲线 C 只有一个公共点;(Ⅱ)双曲线C 的弦中,以 P 点为中点的弦 P 1P 2是否存在? 并说明理由.【例 3】已知点 A (0,2)及椭圆22+14x y =,在椭圆上求一点 P 使PA 的值最大.【例 4】己知点P 在抛物线 x 2=y 上运动,Q 点的坐标是(-1,2),O 是原点,OPQR (O 、P 、Q 、R顺序按逆时针)是平行四边形,求 R 点的轨迹方程.【基础达标】1.平面上到定点 A (1,1)和到定直线 l :x +2 y =5距离相等的点的轨迹为( )A.直线B.抛物线C.双曲线D.椭圆2.若椭圆2kx2+ky2=1 的一个焦点坐标是(0,4),则k的值为()A.18B.132C.2D.3163.椭圆22+1259x y=上的点M到焦点F1的距离是2,N是M F1的中点,则ON为()A.4 B.2 C.8 D.3 24.如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为()A.32B.62C.32D.25.椭圆22+1259x y=的两焦点F1,F2,过F2引直线L交椭圆于A、B两点,则△ABF1的周长为()A.5 B.15 C.10 D.206.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为.7.若椭圆的两个焦点为F1(-4,0)、F2(4,0),椭圆的弦A B过点F1,且△ABF2的周长为20,那么该椭圆的方程为.1~5 BBACD【能力提高】8.若双曲线的两条渐进线的夹角为60°,求该双曲线的离心率.9.正方形的一条边A B在直线y=x+4上,顶点C、D在抛物线y2=x上,求正方形的边长.10.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,求实数a的取值范围.第二章 圆锥曲线复习(二)【例题精讲】【例 1】已知直线 l 交椭圆22+12016x y =于 M 、N 两点,B (0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线 l 的方程.【例 2】已知倾斜角为4π的直线 l 被双曲线 x 2-4y 2=60截得的弦长82AB =,求直线l 的方程及以AB 为直径的圆的方程.【例 3】已知直线l :x =-1,点F (1,0),以F 为焦点,l 为准线的椭圆中,短轴一端点为B ,P为FB 的中点.(Ⅰ)求 P 点的轨迹方程,并说明它是什么曲线; (Ⅱ)M (m ,0)为定点,求|PM |的最小值.【例 4】已知两定点A (-2,0),B (1,0),如果动点P 满足2PA PB =,求点P 的轨迹所包围的图形的面积.【基础达标】1.已知 M (-2,0),N (2,0),4P M P N -=,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.若圆 x 2+y 2=4上每个点的横坐标不变.纵坐标缩短为原来的13,则所得曲线的方程是( ) A .22+1412x y = B .22+1436x y = C .229+144x y = D .22+1364x y = 3.已知 F 1,F 2是椭圆22+1169x y =的两焦点,过点F 2的直线交椭圆于点A ,B ,若5AB =,则12AF BF -=( )A .3B .8C .13D .164.曲线()()22346225x y x y ---+-=的离心率为( ) A .110 B .12C .2D .无法确定5.抛物线y2=14x 关于直线x-y=0对称的抛物线的焦点坐标是()A.(1,0)B.116⎛⎫⎪⎝⎭,C.(0,1)D.116⎛⎫⎪⎝⎭,6.与椭圆4x2+ 9y2=36有相同的焦点,且过点(-3,2)的椭圆方程为.7.以双曲线22145x y-=的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是.1~5 C CABD 【能力提高】8.设F1,F2为双曲线2214xy-=的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求△F1PF2的面积.9.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,求直线l的斜率的取值范围.10.设椭圆22+162x y=和双曲线2213xy-=的公共焦点为F1,F2,P是两曲线的一个公共点,求cos∠F1PF2的值.。