第5章指派问题

合集下载

第5章 整数-指派问题

第5章 整数-指派问题

(if i ≠ k ); cij , bij = ckj + a, (if i = k ).
则以b 则以 ij为系数的新指派问题的目标函数为 n n z = ∑i =1 ∑ j =1 bij xij
= ∑i ≠ k ∑ j =1 cij xij + ∑ j =1 (ckj + a ) xkj
n n
= ∑i =1 ∑ j =1 cij xij + a ∑ j =1 xkj = z + a
n n n
利用性质1, 利用性质 ,可使原系数矩阵变换为含 有很多0元素的新系数矩阵 元素的新系数矩阵, 有很多 元素的新系数矩阵,而最优解保 持不变,在系数矩阵(b 中 持不变,在系数矩阵 ij)中,我们关心位 于不同行不同列的0元素 元素, 于不同行不同列的 元素,以下简称为独 立的0元素. 立的 元素. 元素 利用性质2,若能在系数矩阵(b 中找 利用性质 , 若能在系数矩阵 ij)中找 个独立的0元素 出n个独立的 元素;则令解矩阵 ij)中对 个独立的 元素;则令解矩阵(x 中对 应这n个独立的 元素的元素取值为1, 个独立的0元素的元素取值为 应这 个独立的 元素的元素取值为 ,其 他元素取值为0. 他元素取值为 .将其代入目标函数中得 到zb=0,它一定是最小. ,它一定是最小. 这就是以 ij)为系数矩阵的指派问题的 这就是以(b 为系数矩阵的指派问题的 最优解.也就得到了原问题的最优解. 最优解.也就得到了原问题的最优解.
解 按上述第一步,将这系数矩阵进行变换.
min 12 7 9 7 9 7 5 0 2 0 8 9 6 6 6 6 2 3 0 0 7 17 12 14 9 7 → 0 10 5 7 15 14 6 6 10 6 9 8 0 0 4 10 7 10 9 4 0 6 3 6 2 0 2 4 5

指派问题

指派问题

-2 -4 -9 -7
0 13 11 6 0 10 0 5 7 0 1 4
-4
2 11 4 2
-2
x14 1, x22 1, x31 1, x43 1
其余全为0。
步骤2:用圈0法确定 C1 中的独立0元素。若独立零元素个 素有n个,则已得最优解。若 独立零元素的个数 < n, 则转
min Z 4x11 8x12 10x54 6x55
5 xij 1 i 1,2, 5 j5 1 s.t. xij 1 j 1,2, 5 i 1 xij 0 或1
B1
B2
B3
B4
B5
C
A1 4 A2 7 A3 6 A4 6 A5 6
入步骤3。
在只有一个0元素的行(或列)加圈,表示此人只能做该事
(或此事只能由该人来做),每圈一个“0”,同时把位于同 列(或同行)的其他零元素划去。表示此时已不能再由他
人来做(或此人已不能做其它事)。如此反复,直到矩阵
中所有零元素都被圈去或划去为至。
在遇到所有行和列中,零元素都不止一个时,可任选其中
注:指派问题是一种特殊的LP问题,是一种特殊的运输问题。 下用目前认为最简洁的方法—匈牙利法求解 (The Hungarian
Method of Assignment )。
例12:某商业公司计划开办五家新商店。为了尽早建成
营业,商业公司决定由5家建筑公司分别承建。已知建筑
公司 Ai (i 1,2,,5) 对新商店 B j ( j 1,2,,5) 的建造 报价(万元)为 cij (i, j 1,2,,5) ,见下矩阵。商业公 司应当对5家建筑公司怎样分配建筑任务,才能使总的建 筑费用最少?

第五章整数规划

第五章整数规划

第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。

重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。

要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。

§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。

如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。

例1 求解下列整数规划问题211020m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96m ax ,0,8.421===z x x 。

用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。

由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。

下面介绍几种常用解法。

§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。

基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z ;而A 的任意可行解的目标函数值是*z的一个下界z ,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。

现举例说明: 例2 求解A219040m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82,①② ③ ④ ⑤=0z 356(见下图)。

第5章 整数线性规划-第1-4节

第5章 整数线性规划-第1-4节

现设想,如能找到像CD那样的直线去切割域R(图 5-6),去掉三角形域ACD,那么具有整数坐标的C 点(1,1)就是域R′的一个极点,
如在域R′上求解①~④, 而得到的最优解又恰 巧在C点就得到原问题 的整数解,所以解法 的关键就是怎样构造 一个这样的“割平 面”CD,尽管它可能 不是唯一的,也可能 不是一步能求到的。 下面仍就本例说明:
例 2
求解A
max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数
① ② ③ (5.2) ④ ⑤
解 先不考虑条件⑤,即解相应的线性规划B,①~④ (见图5-2),得最优解x1=4.81,x2=1.82,z0=356
可见它不符合整数条件⑤。 这时z0是问题A的最优目标函数值 z*的上界,记作z0= z 。 而在x1=0,x2=0时, 显然是问题A的一个整数可行解, 这时z=0,是z*的一个下界, z 记作 =0,即0≤z*≤356 z。
第3节 割平面解法
在原问题的前两个不等式中增加非负松弛 变量x3、x4,使两式变成等式约束: -x1+x2+x3 =1 ⑥ 3x1+x2 +x4=4 ⑦ 不考虑条件⑤,用单纯形表解题,见表5-2。
表5-2
CB 0 0 1 1 cj XB x3 x4 cj-zj x1 x2 cj-zj b 1 4 0 3/4 7/4 -5/2 1 x1 -1 3 1 1 0 0 1 x2 1 1 1 0 1 0 0 x3 1 0 0 -1/4 3/4 -1/2 0 x4 0 1 0 1/4 1/5 -1/2
第二步:比较与剪支
各分支的最优目标函数中若有小于 z 者,则剪 掉这支(用打×表示),即以后不再考虑了。若大 于 z ,且不符合整数条件,则重复第一步骤。一直 到最后得到z*为止,得最优整数解xj* ,j=1,…,n。 用分支定界法可解纯整数线性规划问题和混合 整数线性规划问题。它比穷举法优越。因为它仅在 一部分可行解的整数解中寻求最优解,计算量比穷 举法小。若变量数目很大,其计算工作量也是相当 可观的。

第五章 匈牙利法与最佳指派问题

第五章 匈牙利法与最佳指派问题

7 2 2
4
3
8 3 5 3
11 8
4
4 1 4
情况一出现,即得到了最优解,其相应的解矩阵为:
0 1 0 0 0
0 0 1 0 0
xij
1
0
0
0
0
0 0 0 1 0
0 0 0 0 1
由此得知最优指派方案为甲完成任务B,乙完成任务
C,丙完成任务A,丁完成任务D,戊完成任务E,最少时
间为
min z 7 6 7 6 6 32
而总的最少时间为32天.
当然,由于方法中的第二步4中的情况二的出现,造成 指派问题的最优解常常是不唯一的,但不同最优解的 最优值总是相同的.
第三节 非标准指派问题
前一节的匈牙利法只适用于目标函数为极小、价值 系数矩阵为方阵且价值系数矩阵中元素均为非负的情况。 当指派问题不满足上述三个条件时,就应先化成标准的 指派问题,然后再用匈牙利法求解.
解:
ABC DEF
甲 16 10 12 15 0 0 8 2
甲 16 10 12 15 0 0
8
2
乙 11 12 10 18 0 0 3 2 3

11
12
10
18
0
0
3
2
3
丙 8 17 13 16 0 0 7 3 1

8
17 13 16
0
0
7
3
1
8 10 10 15
本例经过反复的行、列检验后得到如下矩阵:
5 2 2
2
3
10 5 7 5
9
8
4
6 3 6 2
情况三出现,亦即未得到完全分配方案,求解过程 按以下步骤继续进行。

运筹学第3版熊伟编著习题答案

运筹学第3版熊伟编著习题答案
表1-23
产品
资源
A
B
C
资源限量
材料<kg>
1.5
1.2
4
2500
设备<台时>
3
1.6
1.2
1400
利润<元/件>
10
14
12
根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.
[解]设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
-16
对应的顶点:
基可行解
可行域的顶点
X<1>=〔0,0,6,10,4〕、
X<2>=〔0,2.5,1,0,1.5,〕、
X<3>=〔2,2,0,0,0〕
X<4>=〔2,2,0,0,0〕
〔0,0〕
〔0,2.5〕
<2,2>
〔2,2〕
最优解:X=〔2,2,0,0,0〕;最优值Z=-16
该题是退化基本可行解,5个基本可行解对应4个极点.
第2章线性规划的对偶理论P74
第3章整数规划P88
第4章目标规划P105
第5章运输与指派问题P142
第6章网络模型P173
第7章网络计划P195
第8章动态规划P218
第9章排队论P248
第10章存储论P277
第11章决策论P304
第12章多属性决策品P343
第13章博弈论P371
全书420页

1.1工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.

运筹学习题集第五章

运筹学习题集第五章

判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。

2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。

3.不平衡运输问题不一定有最优解。

4.m+n-1个变量构成基变量组的充要条件就是它们不包含闭合回路。

5.运输问题中的位势就就是其对偶变量。

6.含有孤立点的变量组不包含有闭回路。

7.不包含任何闭回路的变量组必有孤立点。

8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。

9.运输问题的检验数就就是对偶问题的松弛变量的值。

10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。

11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。

12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。

13.若运输问题中的产量或销量为整数则其最优解也一定为整数。

14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。

15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。

16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第五章运输与指派问题1.下列变量组就是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B有M+N个变量MN个约束C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。

《指派问题》课件

《指派问题》课件

指派问题的扩展研究
多目标指派问题
应用场景:生产调度、资源 分配等

解决方法:线性规划、启发 式算法等
定义:指派问题在多个目标 下的扩展
挑战:如何在多个目标之间 找到最优解
动态指派问题
动态指派问题的定 义
动态指派问题的应 用场景
动态指派问题的求 解方法
动态指派问题的优 化策略
大规模指派问题
问题定义:大规模 指派问题是指在给 定一组任务和一组 资源,如何将任务 分配给资源,使得 总成本最小化或总 收益最大化。
混合算法
混合算法的概念: 将多种算法进行 组合,以获得更 好的优化效果
混合算法的优点: 能够充分利用各 种算法的优点, 提高优化效果
混合算法的应用: 在指派问题中, 混合算法可以结 合多种算法,如 遗传算法、模拟 退火算法等,以 提高优化效果
混合算法的挑战: 如何合理选择和 组合各种算法, 以获得最佳的优 化效果
应用场景:大规 模指派问题广泛 应用于物流、供 应链、生产调度 等领域。
研究方法:大规 模指派问题的研 究方法包括启发 式算法、遗传算 法、神经网络等。
挑战与展望:大规 模指派问题的挑战 在于如何设计高效 的算法,以及如何 解决大规模问题中 的优化问题。未来 的研究方向包括分 布式计算、并行计 算等。
禁忌搜索法:在搜索过程中引入禁忌表,避免重复搜索已搜索过的解
元启发式方法
基本概念:元启发式 方法,也称为元启发 式算法,是一种基于 启发式策略的优化方 法。
特点:元启发式方 法具有自适应性、 鲁棒性和易于实现 等特点。
应用:元启发式方法 在指派问题、路径规 划、调度等问题中都 有广泛的应用。
实例:遗传算法、模 拟退火算法、蚁群算 法等都是元启发式方 法的典型代表。

运筹学:指派问题

运筹学:指派问题
求佳产品公司问 题指派问题变形 的电子表格模型
Designing School Attendance Zones 设计学生入学区域
米德尔城学区问 题指派问题变形 的电子表格模型
小结
Session Summary 本讲小结
运输问题考虑(确实的或是比喻的)从出发地运送货物到目 的地。每一个出发地都有一个固定的供应量,每一个目的地 都有一个固定的需求量
指派问就要处理应当将哪一项任务指派给哪一个被指派者, 才能使完成这些任务的总达到最小
把可能会面临的问题描述为一个运输问题或者指派问题或者 它们的变形并进行分析
案例
Case Study
案例研究
案例3:富而克消费用品公司
作业: 第五章奇数习题
西北新闻纸公司(See the Course Package)
▪每一个被指派者只完成一项任务 ▪每一项任务只能由一个被指派者来完成
▪每个被指派者和每项任务的组合有一个相关成本 ▪目标是要确定怎样进行指派才能使得总成本最小
Variants of Assignment Problem 指派问题的变形
指派问题的变形: ▪有一些被指派者并不能进行某一些的任务 ▪任务比被指派者多 ▪被指派者比要完成的任务多 ▪每个被指派者可以同时被指派给多于一个的任务 ▪每一项任务都可以由多个被指派者共同完成
下一讲:网络最优化问题
阅读:Text1,Chapter6 和课件及课程网页相关内容

The End of Session 4
The Assignment Problem 指派问题
现实生活之中,我们也经常遇到指派人员做某项工 作的情况。指派问题的许多应用都用来帮助管理人 员解决如何为一项将要开展进行的工作指派人员的 问题。其他的一些应用如为一项任务指派机器、设 备或者是工厂

运筹学习题集(第五章)电子版本

运筹学习题集(第五章)电子版本

运筹学习题集(第五章)判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。

2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。

3.不平衡运输问题不一定有最优解。

4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。

5.运输问题中的位势就是其对偶变量。

6.含有孤立点的变量组不包含有闭回路。

7.不包含任何闭回路的变量组必有孤立点。

8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。

9.运输问题的检验数就是对偶问题的松弛变量的值。

10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。

11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。

12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。

13.若运输问题中的产量或销量为整数则其最优解也一定为整数。

14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。

15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。

16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第五章运输与指派问题1.下列变量组是一个闭回路的有 A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12}D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征 A有MN个变量M+N个约束 B 有M+N个变量MN个约束 C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有 A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。

运筹学教材习题答案详解

运筹学教材习题答案详解
X(2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:

指派问题优秀课件

指派问题优秀课件

A由甲或丙完毕,乙和丁效率设为M C由丙或丁完毕, 甲和乙效率设为M E由甲,乙或丁完毕,丙效率设为M 虚设一种人,丙和丁旳最小值作为虚 设人旳效率系数,所以应虚设一行为
(34 27 28 23 45)
min 0 0 4 2
列变换
0 13 7 0 60 69
0 5 3 2
0 1 0 0
环节二、试指派(找独立旳0元素)
(记独立0元素个数为m,矩阵阶数为n.当m=n 时,问题到此结束.m<n旳情况下一题讨论)
0 0 0 1
0 6
0 0
13 0 5 1
7 6 3 0
0
9
所以:最优解为0 1
19 18 6 0 13 最终一列减去5 19 18 6 0 8
17 0 1 13 5
17 0 1 13 0
1
19
7
0
22
1 19 7 0 17
0 0 0 0 M
0 0 0 0 M
因为M是一种较大旳数,减去5后来 仍为一种较大旳数,所以仍以M表达
找独立旳0元素并试指派
0 4 6 17 7
ABC D E

25
29
31
42
37

39
38
26
20
33
丙 34 27 28 40 32
丁 24 42 30 23 45
要求:
1、E必须完毕,其他一人一项
2、一人完毕两项,其他一人一 项
3、A由甲或丙完毕,C由丙或 丁完毕。E由甲,乙或丁完毕, 丙或丁完毕两项,其 他一 人一项
• 分析:
0
0
0
此时m=n=4,
0 找到了最优解

运输与指派问题课程设计

运输与指派问题课程设计

运输与指派问题课程设计一、课程目标知识目标:1. 让学生理解运输与指派问题的基本概念,掌握线性规划在实际问题中的应用。

2. 使学生掌握运用线性规划方法解决运输与指派问题的步骤和技巧。

3. 帮助学生了解运输与指派问题在实际生活中的广泛应用。

技能目标:1. 培养学生运用数学模型解决实际问题的能力,提高逻辑思维和数学运算能力。

2. 培养学生运用计算机软件(如Excel、Lingo等)辅助解决运输与指派问题的能力。

情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,激发学生主动探索问题的积极性。

2. 培养学生的团队协作精神,学会与他人合作解决问题,增强沟通能力。

3. 培养学生具备面对实际问题时,能够运用所学知识进行分析、解决问题的能力,增强学生的社会责任感。

课程性质:本课程属于数学学科,旨在通过解决实际问题,培养学生的数学建模能力和计算机辅助解决问题的能力。

学生特点:学生处于高年级阶段,已具备一定的数学基础和逻辑思维能力,对实际问题有一定的探索欲望。

教学要求:教师需结合学生特点,以实际问题为载体,引导学生运用所学知识解决运输与指派问题,注重培养学生的动手操作能力和团队协作精神。

在教学过程中,将目标分解为具体的学习成果,以便进行教学设计和评估。

二、教学内容1. 运输与指派问题基本概念:介绍运输问题、指派问题的定义及其在实际生活中的应用。

- 教材章节:第五章第三节“线性规划应用——运输与指派问题”2. 线性规划在运输与指派问题中的应用:讲解线性规划模型在解决运输与指派问题中的应用。

- 教材章节:第五章第四节“线性规划在运输与指派问题中的应用”3. 运输与指派问题解决方法:- 北西角法:介绍北西角法的步骤及操作方法。

- 最小成本法:讲解最小成本法的原理及实施过程。

- 教材章节:第五章第五节“运输与指派问题的解决方法”4. 计算机软件辅助解决运输与指派问题:介绍Excel、Lingo等软件在解决运输与指派问题中的应用。

指派问题详解

指派问题详解

第一章绪论1、指派问题的背景及意义指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n 件事,各人做不同的一件事,如何安排人员使得总费用最少?若考虑每个职工对工作的效率(如熟练程度等),怎样安排会使总效率达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值.虽然指派问题可以用0-1规划问题来解,设X(I,J)是0-1变量, 用X(I,J)=1表示第I个人做第J件事, X(I,J)=0表示第I个人不做第J件事. 设非负矩阵C(I,J)表示第I个人做第J件事的费用,则问题可以写成LINGO程序SETS:PERSON/1..N/;WORK/1..N/;WEIGHT(PERSON, WORK): C, X ;ENDSETSDATA:W=…ENDDATAMIN=@ SUM(WEIGHT: C*X);@FOR(PERSON(I): @SUM(WORK(J):X(I,J))=1);@FOR(WORK(J): @SUM(PERSONM(I):X(I,J))=1);@FOR(WEIGHT: @BIN(X));其中2*N个约束条件是线性相关的, 可以去掉任意一个而得到线性无关条件.但是由于有N^2个0-1变量, 当N很大时,用完全枚举法解题几乎是不可能的. 而已有的0-1规划都是用隐枚举法做的,计算量较大. 对于指派问题这种特殊的0-1规划,有一个有效的方法——匈牙利算法,是1955年W. W. Kuhn利用匈牙利数学家D.König的二部图G的最大匹配的大小等于G的最小顶点覆盖的大小的定理提出的一种算法,这种算法是多项式算法,计算量为O(N3).匈牙利算法的基本原理是基于以下两个定理.定理1设C=(C ij)n×n是指派问题的效益矩阵,若将C中的任一行(或任一列)减去该行(或该列)中的最小元素,得到新的效率矩阵C’,则C’对应的新的指派问题与原指派问题有相同的最优解.证明:设X’是最优解, 即@SUM(WEIGHT: C*X’)<= @SUM(WEIGHT: C*X), 则当C中任一行或任一列减去该行或该列的最小数m时,得到的阵C’还是非负矩阵, 且@SUM(WEIGHT: C’*X’)<=@SUM(WEIGHT: C*X)-m=@SUM(WEIGHT: C’*X)定理2效率矩阵C中独立的0元素的最多个数等于覆盖所有0元素的最少直线数. 当独立零元素的个数等于矩阵的阶数时就得到最优解.3、理论基础定义:图G的一个匹配M是图G中不相交的边的集合. 属于匹配M中的边的所有端点称为被该匹配M饱和, 其他的顶点称为M-未饱和的. 如果一个匹配M 饱和了图G的所有顶点,则称该匹配M是一个完全匹配. 可见顶点数是奇数的图没有完全匹配. 一个匹配M称为是极大匹配, 如果它不能再扩张成更大的一个匹配. 一个匹配称为是最大匹配, 如果不存在比它更大的匹配.定义:对于一个匹配M, 图G的一个M-交替路是图G中的边交替地在M中及不在M中的边组成. 从M-未饱和点出发到M-为饱和点结束的M-交替路称为一条M-增广路. 把M-增广路中不是M中的边改成新的匹配M’中的边, 把M-增广路中M中的边不作为M’中的边, 在M-增广路以外的M中的边仍作为M’中的边, 则M’的大小比M大1. 故名M-增广路. 因此最大匹配M不存在M-增广路.定义:若图G和图H有相同的顶点集V, 我们称G和H的对称差,记为G∆H,是一个以V为顶点集的图, 但其边集是G和H的边集的对称差: E(G∆H)=E(G) ∆E(H)=E(G)⋂E(H)-(E(G)⋃E(H))=(E(G)-E(H)) ⋂ (E(H)-E(G))定理: (Berge, 1957) 图G的一个匹配M是最大匹配,当且仅当G中没有M-增广路.证明: 我们只要证明, G中没有M-增广路时, M是最大匹配. 用反证法, 若有一个比M大的匹配M’. 令G的一个子图F, E(F)=M∆M’, 因M和M’都是匹配, F的顶点的最大度数至多是2, 从而F由不相交的路和环组成, 它们的边交替地来自M和M’, 于是F中的环的长度是偶数. 由于M’比M大, F中存在一个连通分支,其中M’中的边数大于M中的边数. 这个分支只能是起始和终止的边都在M’中. 而这就是一条G中的M-增广路. 与假设矛盾. 证毕.定理(Hall, 1935)设G是一个二部图, X和Y是其二分集, 则存在匹配M 饱和X当且仅当对于X中的任意子集S, Y 中与S中的点相邻的点组成的集合N(S)中元素的个数大于等于集合S中元素的个数.证明:必要性是显然的. 对于充分性, 假设 |N(S)|≥|S|, ∀S⊂X, 考虑G的一个最大匹配M, 我们用反证法,若M没有饱和X, 我们来找一个集合S不满足假设即可. 设u∈X是一个M-未饱和顶点, 令S⊂X和T⊂Y分别是从u出发的M-交替路上相应的点.我们来证明M中的一些边是T到S-u上的一个匹配. 因为不存在M-增广路,T中的每个点是M-饱和的. 这意味着T中的点通过M中的边到达S中的一个顶点. 另外, S-u中的每个顶点是从T中的一个顶点通过M中的一条边到达的. 因此M 中的这些边建立了T与S-u的一个双射, 即|T|=|S-u|. 这就证明了M中的这些边是T到S-u上的一个匹配,从而意味着T⊂N(S), 实际上, 我们可证明T=N(S). 这是因为连接S和Y-T中的点y的边是不属于M的, 因为不然的话, 就有一条到达y的M-增广路, 与y∉T矛盾. 故|N(S)|=|T|=|S-u|=|S|-1<|S|, 与假设矛盾.当X与Y的集合的大小相同时的Hall定理称为婚姻问题,是由Frobenius(1917)证明的.推论: k-正则的二部图(X的每一点和Y的每一点相关联的二部图)(k>0)存在完全匹配.证明: 设二分集是X,Y. 分别计算端点在X和端点在Y的边的个数, 得k|X|=k|Y|, 即|X|=|Y|.因此只要证明Hall的条件成立即可. 使X饱和的匹配就是完全匹配. 考虑∀S⊂X, 设连接S与N(S)有m条边, 由G的正则性, m=k|S|. 因这m条边是与N(S)相关联的, m≤k|N(S)|, 即k|S|≤ k|N(S)|, 即|N(S)|≥|S|. 这就是Hall的条件.用求M-增广路的方法来得到最大匹配是很费时的. 我们来给出一个对偶最优化问题.定义:图G的一个顶点覆盖是集合S⊂V(G), 使得G的每条边至少有一个端点在S中. 我们称S中的一个顶点覆盖一些边, 若这个顶点是这些边的公共端点.因为匹配的任意两条边不能被同一个顶点覆盖, 所以顶点覆盖的大小不小于匹配的大小: |S|≥|M|. 所以当|S|=|M| 时就同时得到了最大的匹配和最小的顶点覆盖.定理(König [1931],Egerváry[1931])二部图G的最大匹配的大小等于G的最小顶点覆盖的大小.证明: 设M是G的任一个匹配, 对应的二分集是X,Y. 设U是一个最小的顶点覆盖, 则|U|≥|M|, 我们只要由顶点覆盖U来构造一个大小等于|U|的匹配即完成证明. 令R=U⋃X, T=U⋃Y, 令H, H’分别是由顶点集R⋂(Y-T)及T⋂(X-R)诱导的G的子图. 我们应用Hall的定理来证明H有一个R到Y-T中的完全匹配,H’有一个从T到X-R中的完全匹配. 再因这两个子图是不相交的, 这两个匹配合起来就是G中的一个大小为|U|的匹配.因为R⋂T是G的一个覆盖, Y-T与X-R之间没有边相联接. 假设S⊂R, 考虑在H中S的邻接顶点集N(S), N(S) ⊂Y-T. 如果|N(S)|<|S|, 因为N(S)覆盖了不被T覆盖的与S相关联所有边, 我们可以把N(S) 代替S作为U中的顶点覆盖而得到一个更小的顶点覆盖. U的最小性意味着H中Hall条件成立. 对H'作类似的讨论得到余下的匹配. 证毕.最大匹配的增广路算法输入: 一个二分集为X,Y的二部图G,一个G中的匹配M, X中的M-未饱和顶点的集合U.思路: 从U出发探求M-交替路,令S⊂X,T⊂Y为这些路到达过的顶点集. 标记S中不能再扩张的顶点. 对于每个x∈(S⋂T)-U, 记录在M-增广路上位于x前的点.初始化: S=U,T=∅.叠代: 若S中没有未标记过的顶点, 结束并报告T⋂(X-S)是最小顶点覆盖而M是最大匹配.不然, 选取S中未标记的点x, 考虑每个y∈N(x)且xy∉M, 若y是M-未饱和的, 则得到一个更大的匹配,它是把xy加入原来的匹配M得到的,将x从S中去除. 不然, y是由M中的一条边wy相连接的, w∈X, 把y加入T(也有可能y本来就在T中), 把w加入S. w未标记, 记录w前的点是y. 对所有关联到x的边进行这样的探索后, 标记x. 再次叠代.定理: 增广路算法可以得到一个相同大小的匹配和顶点覆盖.证明: 考虑这个算法终止的情况, 即标记了S中所有的点. 我们要证明R=T⋂(X-S)是大小为|M|的一个顶点覆盖.从U出发的M-交替路只能通过M中的边进入X中的顶点, 所以S-U中的每个顶点通过M与T中的顶点匹配, 并且没有M中的边连接S和Y-T. 一旦一条M-交替路到达x∈S, 可以继续沿着任何未饱和的边进入T, 由于算法是对于x的所有邻域顶点进行探索才终止的,所以从S 到Y-T 没有未饱和边. 从而S 到Y-T 没有边, 证明了R 是一个顶点覆盖.因为算法是找不到M-增广路时终止, T 的每一个顶点是饱和的. 这意味着每个顶点y ∈T 是通过M 匹配与S 中的一个顶点. 由于U ⊂S, X-S 的每个顶点是饱和的, 故M 中与X-S 相关联的边不和T 中的点相连接. 即它们与是饱和T 的边不同的, 这样我们可见M 至少有|T|+|X-S|条边. 因不存在一个比顶点覆盖更大的匹配, 所以有|M|=|T|+|X-S|=|R|.设二部图G 的二分集X 和Y 都是n 个元素的点集, 在其边j i y x 上带有非负的权ij w , 对于G 的一个匹配M, M 上各边的权和记作w(M).定义: 一个n ×n 矩阵A 的一个横截(transversal)是A 中的n 个位置, 使得在每行每列中有且只有一个位置(有的文献中把横截化为独立零元素的位置来表示).定义: 指派问题就是给定一个图G=n n K ,(完全二部图, 即每个X 中的顶点和Y 中的每个顶点有边相连接的二部图)的边的权矩阵A, 求A 的一个横截, 使得这个横截上位置的权和最大. 这是最大带权匹配问题的矩阵形式.定义: 对于图G=n n K ,,设其二分集是X ,Y ,给定G 的边j i y x 的n ×n 权矩阵W={ij w }.考虑G 的子图v u G ,, 设其二分集是U ⊂X ,V ⊂Y, 边集是E(v u G ,), 对于子图v u G ,的带权覆盖u,v 是一组非负实数{i u },{j v },使得ij j i w v u ≥+,)(,v u j i G E y x ∈∀, v u G ,的带权覆盖的费用是∑∑+j i v u 记为C(u,v), 最小带权覆盖问题就是求一个具有最小费用C(u,v)的带权覆盖u,v.引理: 若M ⊂E(v u G ,)是一个带权二部子图v u G ,的最大匹配, 且u, v 是v u G ,的带权覆盖, 则C(u,v)≥w(M). 而且, C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀. 这时M 是v u G ,最大带权匹配, u,v 是v u G ,的最小带权覆盖, 定义这时的v u G ,为G 的相等子图(equality subgraph ).证明: 因为匹配M 中的边是不相交的, 由带权覆盖的定义就得C(u,v)≥w(M). 而且C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀成立. 因一般地有C(u,v)≥w(M).所以当C(u,v)=w(M)时. 意味着没有一个匹配的权比C(u,v)大, 也没有一个覆盖的费用比w(M)小.Kuhn 得到一个指派问题的算法,命名为匈牙利算法, 为的是将荣耀归于匈牙利数学家König 和Egerv áry.指派问题的匈牙利算法(Kuhn[1955], Munkres[1957]):输入G=n n K ,的边的权矩阵A, 及G 的二分集X,Y.初始化: 任取一个可行的带权覆盖,例如)(max ij ji w u =,0=j v ,建立G 的相等子图v u G ,, 其二分集是X, Y ’⊂Y, 求v u G ,的一个最大匹配M. 这个匹配的权和w(M)=C(u,v), M 的带权覆盖是具有最小费用的.叠代: 如M 是G 的一个完全匹配, 停止叠代, 输出最大带权匹配M. 不然, 令U 是X 中的M-未饱和顶点. 令S ⊂X, T ⊂Y 是从U 中顶点出发的M-交替路到达的顶点的集合.令},:min{T Y y S x w v u j i ij j i -∈∈-+=ε.对于所有的S x i ∈, 将i u 减少ε, 对于所有的T y j ∈,将j v 增加ε,形成新的带权覆盖u ’,v ’及对应的新的相等子图v u G '',.如果这个新的相等子图含有M-增广路, 求它的最大匹配M ’, 不然不改变M 再进行叠代.定理: 匈牙利算法能找到一个最大权匹配和一个最小费用覆盖.证明: 算法由一个覆盖开始,算法的每个叠代产生一个覆盖,仅在相等子图有一个完全的匹配为止。

5.5 指派问题

5.5 指派问题

cij 为第 i 个人为完成第 j 项任务时的工时消
3. 指派问题数学模型—标准形式 如果一个指派模型满足以下三个条件:
1)目标要求为min
2)效率矩阵(cij)为m阶方阵
3)效率矩阵中所有元素cij≥0,且为常数
则称上面的数学模型为指派问题的标准形.
4. 指派模型的标准形的特点: 含有m×m个决策变量,均为0-1变量 m+m=2m个约束方程 给定一个指派问题时,必须给出效率矩阵(系数矩阵) C=(cij)mxm,且cij0,因此必有最优解 。
0 1 0 0
0 0 0 1
指派问题的解矩阵应具有如下特点: (1)解矩阵(xij)中各行各列的元素之和都是1; (2)可行解(最优解)中恰含有4个非零元,即4个1; (3)可行解(最优解)矩阵中的1恰取于不同行不同列。
人 工作 译成英文 译成日文 译成德文 译成俄文 任务
甲 2 15 13 4 1
定理1 如果从指派问题效率矩阵[cij]的每一行元素中分别 减去(或加上)一个常数ui(被称为该行的位势), 从每一列分别减去(或加上)一个常数vj(称为该列的位势) 得到一个新的效率矩阵[bij], 若其中bij=cij-ui-vj, 则[bij]的最优解的结构等价于[cij]的最优解的结构.
证明:将从[bij]中得到的解 代入分配问题模型的目标函数式,有
从只有一个0元素的行(或列)开始,
给这个0元素加圈,记, 这表示对这行所 代表的人,只有一种任务可指派。 然后划去所在的列(或行)的其他0元素,记作Ø。 这表示这列所代表的任务已指派完,不必再考虑别人
0
6
13
7 6 3 0
0 9 2 0

5 1
0
给只有一个0元素的列(或行)中的0元素加圈, 记, 然后划去所在的行(或列)的其他0元素,记作Ø。 这表示这行所代表的人已指派完, 不必再考虑他做别的任务了。 反复进行上述两步,直到所有的0元素都被圈出和 划掉为止。

第5章指派问题

第5章指派问题

2) 进行试指派,以寻求最优解。
在(bij)中找尽可能多的独立0元素,若能找出n个独立0元 素,就以这n个独立0元素对应解矩阵(xij)中的元素为1,其余 为0,这就得到最优解。
指派问题
找独立0元素,常用的步骤为: 从只有一个0元素的行开始,给该行中的0元素加圈,记作◎ 。 然后划去◎ 所在列的其它0元素,记作Ø ;这表示该列所代表的 任务已指派完,不必再考虑别人了。依次进行到最后一行。 从只有一个0元素的列开始(画Ø的不计在内),给该列中的0 元素加圈,记作◎;然后划去◎ 所在行的0元素,记作Ø ,表示 此人已有任务,不再为其指派其他任务了。依次进行到最后一列。 若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,比 较这行各0元素所在列中0元素的数目,选择0元素少这个0元素加 圈(表示选择性多的要“礼让”选择性少的)。然后划掉同行同列 的其它0元素。可反复进行,直到所有0元素都已圈出和划掉为止。
独立零元素的个数m等于最少 直线数l,即l=m=3<n=4;
4)没有被直线通过的元素中选择最小值为1,变换系数矩 阵,将没有被直线通过的所有元素减去这个最小元素;直 线交点处的元素加上这个最小值。得到新的矩阵,重复2) 步进行试指派
匈牙利法
3 4 3 0 0 1 0 5 2 0 4 4 0 2 6 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
3 ◎ 2 2
4 3 1 Ø ◎ 4 6 ◎

5 4 Ø
得到4个独立零元素, 所以最优解矩阵为: 即完成4个任务的总时间最少 为:2+4+1+8=15
匈牙利法
例5.14 已知四人分别完成四项工作所需时间如下表,求最优 分配方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(02)-互1相排整斥数的多规个划约束中,只有一个起作用
互相排斥m个约束,只有一个起作用:
ai1x1+ai2x2 +…+ainxn bi (i=1,…,m)
ai1x1+…+ainxn bi+yi M (i=1,…,m)
y1 +…+ ym =m-1
yi为0或1
M>0
(3)若a个约束条件中只能有b个起作用。
分别减去(或加上)一个常数ui,从每一列中分 别减去(或加上)一个常数vj,得到一个新的效 率矩阵[bij],则以[bij]为效率矩阵的分配问题与 以[aij]为效率矩阵的分配问题具有相同的最优 解。
原则:
1、用试探法,求出一个可行解,以它的目标值作为当前最 好值Z0
2、增加过滤条件Z Z0
3、将xi 按ci由小大排列(min 大小)
例05-.12:1m整ax 数z = 规3x1划-2x2+5x3
x1 +2x2 - x3 2

x1 +4x2 +x3 4

x1 + x2 3

4x2+x3 6

当问题有多项要素,每项要素皆有两种选择时,可用一组0 -1变量来描述。设问题有有限项要素E1, E2,┉,En,其 中每项Ej有两种选择Aj和不选择Aj(j=1,2,┉,n),则令
xj
1, 0,
若E j选择Aj 若E j选择Aj
( j 1, 2,L , n)
在0应-用1中,整有数时会规遇到划变量可以取多个整数值的问题。如
指指派派问问题题的数学模型为:
nn
minZ
c x ij ij
i1 j1
n
xij 1
(i 1.2. .n)
j1
n
xij 1
( j 1.2. .n)
i1
x
i
j
取0或1(i
,
j
1.2.
.n)
二指、匈派牙利问法题
克尼格定理 : 如果从分配问题效率矩阵[aij]的每一行元素中
0-1 整数规划
maxZ=4X1 +5X2 +6X3 –100Y1 –150Y2 –200Y3
2X1+4X2 +8X3 500 2X1+3X2 +4X3 300 X1+2X2 +3X3 100 s.t. X1 M1Y1
X2 M2Y2
X3 M3 Y3 X1 , X2 , X3 0 整数Y1 ,Y2 ,Y3为0-1变量。
运筹学
( Operations Research )

第五章



帷 整数规划





Integer Programming


一0、-0-11变整量数及其规应用划
0-1变量常被用来表示系统是否处于某个特定状态, 或者决策时是否取某个特定方案。例如:
1, 当决策取方案P时 x 0, 当决策不取方案P时
(0 ,0 ,0)
0<
3
(0 ,0 ,1)
5 > √√ √ √
5
(0 ,1 ,0)
3<
(0 ,1 ,1)
8 >√√ √ √
8
(1 ,0 ,0)
-2 <
(1 ,0 ,1)
3<
(1 ,1 ,0)
1<
(1 ,1 ,1)
6<
最优解 x = (1 ,0 ,1 )T Z=8
指一、派指问派题问题的数学模型的标准形式:
x1 , x2 , x3为0或1
解: 观察得解(x1 , x2 , x3 )T=(1 ,0 ,0)T Z0 =3
过滤条件:3x1 - 2x2+5x3 3 将(x1 , x2 ,x3 )T (x2 ,x1 ,x3 )T
0-1 整数规划 解(x2 x1 x3 ) 目标值 Z0 ① ② ③ ④ 当前最好 值
设n 个人被分配去做n 件工作,规定每个人只做一件工作, 每件工作只有一个人去做。已知第i个人去做第j 件工作的效率 ( 时间或费用)为Cij(i=1.2…n;j=1.2…n)并假设Cij ≥0。问应 如何分配才能使总效率( 时间或费用)最高?
设决策变量
1 指派第i个人做第j件事
xij 0
(i, j 1,2,...,n) 不指派第i个人做第j件事
机床1 : x11+a11 x21+ My1 及 )
机床2 : x22+a22 x32 + My2 及 y2)
机床3 : x13+a13 x33 + My3 及
x21+a21 x11 + M(1-y1 x32+a32 x22 + M(1x33+a33 x13 + 品2的加工时间总约束
x24+ a24 -x21 d
(4)目标函数的建立 min z=w
w x14+a14 w x24+a24 w x33+a33
min z=max(x14+a14 , x24+a24 , x33+a33)
00--11整数整规数划是规一划种特殊形式的整数规划,这时的决策
变量xi 只取两个值0或1,一般的解法为隐枚举法。 隐枚举法(max)
则令0-1变量之和为a-b。
注意:可用统一M,但M的取值必须足够的大。
0例-5.110整数固定规费划用问题
单耗量 资源
产品
I
A
2
B
2
C
1
单件可变费用
4
固定费用
100
单件售价
8
II
III
4
8
3
4
2
3
5
6
150 200
10 12
资源量
500 300 100
解:设Xj是第j种产品的产量。Yj是0-1变量,表示是(Yj=1) 否(Yj=0)生产第j种产品。
0例-5.111整数工规件排划序问题
用4台机床加工3件产品。各产品的机床加工顺序,以及产 品I在机床j上加工工时aij见表。
产品1 产品2 产品3
a11
机床1 a21
机床1
a22 机床2 a23 机床2
a13 机床3
a33 机床3
a14 机床4 a24 机床4
由于某种原因,产品2的加工总时间不得超过d,现要 求确定各件产品在机床上的加工方案,使在最短的时间内 加工完全部产品。
果用0-1变量来表示,也可以用一组0-1变量来取代。
如x取0-9之间的任意整数时。
x=20x0+ 21x1 + 22x2 + 23x3 9
0例-5.19
整数规划
含有相互排斥的约束条件的问题
(1)两个约束中,只有一个起作用。
例:a11x1+a12x2<B1
a21x1+a22x2<B2
解:引入0-1变量Y1, Y2和足够大的正数M,则 a11x1+a12x2<B1+M1Y1 a21x1+a22x2<B2+M2Y2 Y1+Y2=1
解0:-设1产品整i在数机床规j上划开始加工的时间为xij
(1)同一件产品在不同机床上的加工顺序约束
产品1 : x11+a11 x13 及
x13+a13 x14
产品2 : x21+a21 x22 及
x22+a22 x24
产品3 : x32+a32 x33
(2)每一台机床对不同产品上的加工顺序约束
相关文档
最新文档