八年级数学勾股定理的逆定理测试
2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)
2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定2.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:153.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.,3,4D.1,,34.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm5.下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为()A.2B.3C.4D.56.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是()A.B.C.3D.或8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口1.5小时后,则两船相距()A.10海里B.20海里C.30海里D.40海里二.填空题10.勾股数为一组连续自然数的是.11.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.12.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.13.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.14.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.15.如图,每个小正方形的边长为1,则∠ABC的度数为°.16.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.17.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.18.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为米.三.解答题19.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.20.如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD=6,DE=4,AE=,求证:∠ACE=90°.21.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.22.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.参考答案一.选择题1.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.2.解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.3.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选:C.4.解:这根木棒最长==5(cm),故选:B.5.解:①42+52≠62,故不是勾股数;②0.6、0.8、1不都是正整数,故不是勾股数;③72+42≠252,故不是勾股数;④82+152=172,故是勾股数;⑤92+402=412,故是勾股数;其中勾股数有2组,故选:A.6.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.7.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC===.故选:A.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.9.解:如图所示:∠1=∠2=45°,AB=12×1.5=18(海里),AC=16×1.5=24(海里),∴∠BAC=∠1+∠2=90°,即△ABC是直角三角形,∴BC===30(海里).故选:C.二.填空题10.解:设中间的数是x,那么前面的一个就x﹣1,后面的一个就是x+1,根据题意(x﹣1)2+x2=(x+1)2,解得:x=0(舍去)或x=4;4﹣1=3,4+1=5;故答案为:3、4、5.11.解:∵∠C=90°,∴AC2+BC2=AB2,∵AB=k,AC=k﹣1,BC=3,∴(k﹣1)2+32=k2,解得:k=5,故答案为:5.12.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.13.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.14.解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.15.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.16.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.17.解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.18.解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题19.解:连接AC,如图,,在Rt△ABC中,AB=24 m,BC=7 m,∴AC==25 m,在△ADC中,CD=15 m,AD=20 m.AC=25 m,∵CD2+AD2=152+202=252=AC2,∴△ADC为直角三角形,∠D=90°.(2)由(1)知△ADC为直角三角形,∠D=90°,∴S△ADC==150 m²,∵S△ABC=m²,∴S四边形ABCD=S△ADC+S△ABC=150+84=234 m².20.证明:在Rt△ABC中,∠B=90°,AB=3,BC=2,∴AC===.在Rt△EDC中,∠D=90°,CD=6,DE=4,∴CE===2,∵AC2=13,CE2=52,AE2=65,∴AE2=AC2+CE2,∴△ACE是直角三角形,AE是斜边,∴∠ACE=90°.21.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.22.(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×12×5=6+30=36(m2).故这块土地的面积是36m2;(3)∵S△PBD=S四边形ABCD,∴•PD•AB=×36,∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,﹣2)或(0,10).。
2020年人教版数学八年级下册17.2勾股定理的逆定理同步练习(解析版)
17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
人教版八年级下册《勾股定理的逆定理》基础练习
《勾股定理的逆定理》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列四组数中,不能作为直角三角形三边长的是()A.1,,B.2,3,4C.5,12,13D.6,8,10 2.(5分)一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动()A.0m B.1m C.2m D.3m3.(5分)下列各组数中,能作为直角三角形的三边长的是()A.1,,2B.2,3,4C.3,4,6D.5,12,15 4.(5分)由下列条件不能判定△ABC为直角三角形的是()A.a=,b=,c=B.∠A+∠B=∠CC.∠A:∠B:∠C=1:3:2D.(b+c)(b﹣c)=a25.(5分)下列四组线段a、b、c,能组成直角三角形的是()A.a=4,b=5,c=6B.a=4,b=3,c=5C.a=2,b=3,c=4D.a=1,b=,c=3二、填空题(本大题共5小题,共25.0分)6.(5分)如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.7.(5分)已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形8.(5分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①;②.9.(5分)若ABC的三边分别是a、b、c,且a、b、c满足a2+c2=b2,则∠=90°.10.(5分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.三、解答题( 本大题共5小题,共50.0分)11.(10分)如图所示,四边形ABCD ,∠A =90°,AB =3m ,BC =12m ,CD=13m ,DA =4m .(1)求证:BD ⊥CB ;(2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB 、AD 所在直线为x 轴、y 轴建立直角坐标系,点P 在y 轴上,若S △PBD =S 四边形ABCD ,求P 的坐标.12.(10分)如图,在△ABC 中,AB =20,AC =15,BC =25,AD ⊥BC ,垂足为D .求AD ,BD 的长.13.(10分)如图,在正方形网格中,小正方形的边长为1,A 、B 、C 为格点(格子线的交点)(1)判断△ABC 的形状,并说明理由;(2)求AB 边上的高.14.(10分)如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.15.(10分)如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?《勾股定理的逆定理》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列四组数中,不能作为直角三角形三边长的是()A.1,,B.2,3,4C.5,12,13D.6,8,10【分析】判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+()2=()2,能组成直角三角形,不符合题意;B、(2)2+(32)≠(4)2,不能组成直角三角形,符合题意;C、52+122=132,能组成直角三角形,不符合题意;D、62+82=102,能组成直角三角形,不符合题意.故选:B.【点评】此题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.2.(5分)一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动()A.0m B.1m C.2m D.3m【分析】依照题意画出图形,在Rt△COD中,利用勾股定理可求出OA的长度,结合AC的长度可得出OC的长度,在Rt△COD中,利用勾股定理可求出OD 的长度,再利用BD=OD﹣OB即可求出BD的值.【解答】解:依照题意画出图形,如图所示.在Rt△AOB中,OB=3m,AB=5m,∴OA==4m.在Rt△COD中,OC=OA﹣AC=3m,CD=AB=5m,∴OD==4m,∴BD=OD﹣OB=4﹣3=1m.故选:B.【点评】本题考查了勾股定理,依照题意画出图形,利用数形结合解决问题是解题的关键.3.(5分)下列各组数中,能作为直角三角形的三边长的是()A.1,,2B.2,3,4C.3,4,6D.5,12,15【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵1+22=5,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵32+42≠62,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+122≠152,∴三条线段能组成直角三角形,故D选项错误;故选:A.【点评】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.(5分)由下列条件不能判定△ABC为直角三角形的是()A.a=,b=,c=B.∠A+∠B=∠CC.∠A:∠B:∠C=1:3:2D.(b+c)(b﹣c)=a2【分析】根据勾股定理的逆定理可分析出A、D的正误;根据三角形内角和定理可分析出B、C的正误.【解答】解:A、∵()2+()2≠()2,故不能判定△ABC是直角三角形;B、∵∠A+∠B=∠C,A+∠B+∠C=180°,∴∠C=90°,故能判定△ABC为直角三角形;C、∵∠A:∠B:∠C=1:3:2,∴∠B=180°×=90°,故能判定△ABC为直角三角形;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故能判定△ABC为直角三角形.故选:A.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可.也考查了三角形内角和定理.5.(5分)下列四组线段a、b、c,能组成直角三角形的是()A.a=4,b=5,c=6B.a=4,b=3,c=5C.a=2,b=3,c=4D.a=1,b=,c=3【分析】根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、42+52≠62,不能组成直角三角形,故此选项错误;B、42+32=52,能组成直角三角形,故此选项正确;C、22+32≠42,不能组成直角三角形,故此选项错误;D、12+()2≠32,不能组成直角三角形,故此选项错误;故选:B.【点评】此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=10,∠ABC=45°.【分析】连接AC,根据勾股定理得到AB2,BC2,AC2的长度,证明△ABC是等腰直角三角形,继而可得出∠ABC的度数.【解答】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.【点评】本题考查了勾股定理及其逆定理,判断△ABC是等腰直角三角形是解决本题的关键.7.(5分)已知两线段的长分别是5cm、3cm,则第三条线段长是4或cm 时,这三条线段构成直角三角形【分析】由于“两线段的长分别是5cm、3cm,要使这三条线段构成直角三角形”指代不明,因此,要讨论第三条线段是直角边和斜边的情形.【解答】解:当第三条线段为直角边时,5cm为斜边,根据勾股定理得,第三条线段长为=4cm;当第三条线段为斜边时,根据勾股定理得,第三条线段长为=cm.故答案为4或cm.【点评】此题主要考查了勾股定理的应用,关键是要分类讨论,不要漏解.8.(5分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①3,4,5;②6,8,10.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:根据勾股数定义可得①3,4,5;②6,8,10,故答案为:3,4,5;6,8,10.【点评】此题主要考查了勾股数,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.(5分)若ABC的三边分别是a、b、c,且a、b、c满足a2+c2=b2,则∠B =90°.【分析】根据勾股定理的逆定理即可判断.【解答】解:a2+c2=b2,则∠B是直角.故答案是B.【点评】本题考查了勾股定理的逆定理,正确掌握定理的内容是关键.10.(5分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有4m.【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.【点评】本题主要是考查学生对勾股定理的熟练掌握,解题的关键是从实际问题中整理出直角三角形并正确的利用勾股定理.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD =13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P 在y 轴上,若S △PBD =S 四边形ABCD ,求P 的坐标.【分析】(1)先根据勾股定理求出BD 的长度,然后根据勾股定理的逆定理,即可证明BD ⊥BC ;(2)根据四边形ABCD 的面积=△ABD 的面积+△BCD 的面积,代入数据计算即可求解;(3)先根据S △PBD =S 四边形ABCD ,求出PD ,再根据D 点的坐标即可求解.【解答】(1)证明:连接BD .∵AD =4m ,AB =3m ,∠BAD =90°,∴BD =5m .又∵BC =12m ,CD =13m ,∴BD 2+BC 2=CD 2.∴BD ⊥CB ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积 =×3×4+×12×5=6+30=36(m 2).故这块土地的面积是36m 2;(3)∵S △PBD =S 四边形ABCD , ∴•PD •AB =×36, ∴•PD ×3=9,∴PD =6,∵D (0,4),点P 在y 轴上,∴P 的坐标为(0,﹣2)或(0,10).【点评】本题考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,能求出∠DBC =90°是解此题的关键.12.(10分)如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.【分析】先根据的逆定理得到∠BAC=90°,再根据勾股定理求出BC,再根据三角形面积公式得出AB×AC=BC×AD,代入求出AD,再根据勾股定理求出BD即可.【解答】解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,=×AB×AC=×BC×AD,∵S△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.【点评】本题考查了勾股定理的逆定理,三角形面积和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.13.(10分)如图,在正方形网格中,小正方形的边长为1,A、B、C为格点(格子线的交点)(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.【分析】(1)根据勾股定理和勾股定理的逆定理即可得到结论;(2)根据三角形的面积公式即可得到结论.【解答】解:(1)∵AB==5,BC==2,AC==,∴BC 2+AC 2=(2)2+()2=(5)2=AB 2,∴△ABC 是直角三角形;(2)设AB 边上的高为h ,∵S △ABC =BC ×AC =AB ×h , ∴h ==2.即AB 边上的高为2. 【点评】本题考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理是解题的关键.14.(10分)如图,已知一块四边形的草地ABCD ,其中∠B =90°,AB =20m ,BC =15m ,CD =7m ,DA =24m ,求这块草地的面积.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接AC ,由AD 、CD 、AC 的长度关系可得△ACD 为一直角三角形,AC 为斜边;由此看,四边形ABCD 由Rt △ACD 和Rt △ABC 构成,则容易求解.【解答】解:如图,连接AC ,如图所示.∵∠B =90°,AB =20m ,BC =15m ,∴AC ===25m .∵AC =25m ,CD =7m ,AD =24m ,∴AD 2+DC 2=AC 2,∴△ACD 是直角三角形,且∠ADC =90°,∴S △ABC =×AB ×BC =×20×15=150m 2,S △ACD =×CD ×AD =×7×24=84m 2,∴S 四边形ABCD =S △ABC +S △ACD =234m 2.【点评】此题主要考查了勾股定理的应用以及勾股定理的逆定理,得出△ACD 是直角三角形是解题关键.15.(10分)如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【分析】设BC为xcm,则AC=xcm,OC=(9﹣x)cm,利用勾股定理得到32+(9﹣x)2=x2,然后解方程求出x即可.【解答】解:设BC为xcm,则AC=xcm,OC=(9﹣x)cm,在Rt△OBC中,∵OB2+OC2=BC2,∴32+(9﹣x)2=x2,解得x=5.答:机器人行走的路程BC是5cm.【点评】本题考查了勾股定理的应用:在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
初二数学下册知识点《勾股定理的逆定理》经典例题和解析
初二数学下册知识点《勾股定理的逆定理》经典例题和解析初二数学下册知识点《勾股定理的逆定理》经典例题及解析副标题题号一二三四总分得分一、选择题(本大题共73小题,共219.0分)1.如图所示,被纸板遮住的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能【答案】D【解析】解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个锐角.故选D.三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.本题考查了三角形内角和定理的运用以及图形的识别能力和推理能力,解题的关键是熟记三角形内角和定理.2.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. π-6B. πC. π-3D. +π【答案】B【解析】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积-△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.3.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,则△ABC是()A. 直角三角形B. 等腰三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】C【解析】【分析】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解. 【解答】解:移项得,a2c2-b2c2-a4+b4=0,c2(a2-b2)-(a2+b2)(a2-b2)=0,(a2-b2)(c2-a2-b2)=0,所以,a2-b2=0或c2-a2-b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选C.4.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( ).A. 10B. 12C. 24D. 48【答案】B【解析】【分析】此题主要考查了三角形面积,直角三角形的判定,勾股定理及其逆定理,解答此题的关键是根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形.根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形,然后根据三角形面积公式得出BD•AC=AB•BC,即可求得答案.【解答】解:已知三角形的三边分别是BC=15,AB=20,AC=25,BD是AC上的高,∵BC=15,AB=20,AC=25,∴AC2=AB2+BC2,∴三角形ABC为直角三角形,∵BD是AC上的高,∴BD•AC=AB•BC,∴BD=12.故选B.5.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;初二数学下册知识点《勾股定理的逆定理》经典例题和解析C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.6.下列以a,b,c为边的三角形,不是直角三角形的是()A. a=1,b=1,B. a=1,,c=2C. a=3,b=4,c=5D. a=2,b=2,c=3【答案】D【解析】解:A、∵12+12=()2,∴该三角形是直角三角形,故此选项不符合题意;B、∵12+()2=22,∴该三角形是直角三角形,故此选项不符合题意;C、∵32+42=52,∴该三角形是直角三角形,故此选项不符合题意;D、∵22+22≠32,∴该三角形不是直角三角形,故此选项符合题意.故选:D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.下列给定的三条线段中,不能组成直角三角形的是()A. 9,12,15B. 0.5,1.2,1.3C. 7,8,9D. 7,24,25【答案】C【解析】解:A、92+122=152,故是直角三角形,故不符合题意;B、(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C、72+82≠92,故不是直角三角形,故符合题意;D、72+242=252,故是直角三角形,故不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.如图△ABC,BC=6,AC=8,AB=10,则点B到AC的距离是()A. 6B. 7C. 8D. 10【答案】A【解析】解:∵BC2+AC2=62+82=100,AB2=102=100,∴BC2+AC2=AB2,根据勾股定理逆定理得,△ABC是直角三角形,∠C=90°,所以,点B到AC的距离是6.故选:A.利用勾股定理逆定理判断出△ABC是直角三角形,∠C=90°,再根据点到直线的距离的定义解答.本题考查了勾股定理逆定理,点到直线的距离的定义,熟记定理并判断出三角形是直角三角形是解题的关键.9.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【答案】B【解析】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形,则使△ABC为直角三角形的概率是:.故选:B.由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.此题主要考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】本题主要考查了勾股定理逆定理,关键是正确作出图形,不要漏掉任何一种情况.以AB为直角边有2个,以AB为斜边有2个,共4个.【解答】解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选B.11.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. 不是直角三角形【答案】A【解析】解:∵(a+b)(a-b)=c2,∴a2-b2=c2,即c2+b2=a2,故此三角形是直角三角形,a为直角三角形的斜边,初二数学下册知识点《勾股定理的逆定理》经典例题和解析∴∠A为直角.故选:A.先把等式化为a2-b2=c2的形式,再根据勾股定理的逆定理判断出此三角形的形状,进而可得出结论.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A. B. C. D.【答案】A【解析】解:A、三角形各边长为、、,()2+()2<()2,故该三角形不是直角三角形;B、由图可知该三角形为直角三角形;C、各边长、、,()2+()2=()2,故该三角形为直角三角形;D、各边长、2、5,()2+(2)2=(5)2,故该三角形为直角三角形.故选:A.由图可知B为直角三角形,分别求A、C、D三个选项中各边长,根据勾股定理的逆定理可以判定C、D中三角形为直角三角形,A不是直角三角形,即可解题.本题中考查了勾股定理的逆定理判定直角三角形,勾股定理在直角三角形中的运用,本题中求证B、C、D选项中三角形是直角三角形是解题的关键.13.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5.⑤a2=(b+c)(b-c)中,能确定△ABC是直角三角形的有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】解:①∠A+∠B=∠C时,∠C=90°,是直角三角形;②∠C=90°,是直角三角形;③AC:BC:AB=3:4:5,∴32+42=52,是直角三角形;④∠A:∠B:∠C=3:4:5时,∠C=180°×<90°,是锐角三角形;⑤a2=(b+c)(b-c),a2=b2-c2,是直角三角形.故能确定△ABC是直角三角形的有4个.故选:C.分别求出最大的角的度数,然后根据直角三角形的定义和勾股定理的逆定理解答.本题考查了直角三角形的性质,关键是掌握勾股定理,以及三角形内角和定理.14.以下各组线段为边不能组成直角三角形的是()A. 3,4,5B. 6,8,10C. 5,12,13D. 8,15,20【答案】D【解析】解:A、∵32+42=52,∴能构成直角三角形,故本选项错误;B、∵62+82=102,∴能构成直角三角形,故本选项错误;C、∵52+122=132,∴能构成直角三角形,故本选项错误;D、∵82+152≠202,∴不能构成直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理对四个选项进行逐一判断即可.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.满足下列条件的△ABC中,不是直角三角形的是()A. b2=c2-a2B. a:b:c=3:4:5C. ∠C=∠A-∠BD. ∠A:∠B:∠C=3:4:5【答案】D【解析】解:A、b2=c2-a2,a2+b2=c2,故能组成直角三角形,不符合题意;B、32+42=52,故能组成直角三角形,不符合题意;C、∠C=∠A-∠B,∠A=∠B+∠C,故能组成直角三角形,不符合题意;D、∠A:∠B:∠C=3:4:5,∠C=180°×=75°,故不能组成直角三角形,符合题意.故选:D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.16.三角形的三边长a,b,c满足(a+b)2—c2 =2ab,则此三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形【答案】A【解析】【分析】本题考查勾股定理的逆定理,若是两边的平方和等于另一个边的平方,那么这个三角形是直角三角形.因为a、b、c,为三角形的三边长,可化简:(a+b)2-c2=2ab,得到结论.【解答】解:∵(a+b)2-c2=2ab,∴a2+2ab+b2-c2=2ab ,∴a2+b2=c2.所以为直角三角形.故选A.17.下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=5:12:13;④△ABC中,三边长分别为,其中,直角三角形的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:①△ABC中,∠C=∠A-∠B,即∠C+∠B=∠A,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故①正确;②△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,初二数学下册知识点《勾股定理的逆定理》经典例题和解析∴∠C=90°,∴△ABC是直角三角形,故②正确;③∵△ABC中,a:b:c=5:12:13,∴a2+b2=c2,即△ABC是直角三角形,故③正确;④∵△ABC中,三边长分别为,∴()2+()2≠()2,即△ABC不是直角三角形,故④错误;即正确的个数是3个,故选:C.根据三角形内角和定理即可判断②;根据勾股定理的逆定理即可判断③④.本题考查了勾股定理的逆定理和三角形的内角和定理,能灵活运用定理进行推理和计算是解此题的关键.18.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A. B.C. D.【答案】C【解析】【分析】本题主要考查了三角形的面积以及勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.过C作CD⊥AB于D,依据AB=6,AC=8,可得CD≤8,进而得到当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC 的面积最大.【解答】解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC==10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,故选C.19.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中是直角三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:∵四根小木棒的长分别为5cm,8cm,12cm,13cm,∴可以组成三角形的有:5cm、8cm、12cm;5cm、12cm、13cm;8cm、12cm、13cm.要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm、12cm、13cm的一组.∴有1个直角三角形.故选:A.要组成三角形,由三角形的边长关系,两边之和大于第三边,两边之差小于第三边.根据直角三角形的性质,两个直角边的平方和等于斜边的平方,从四个数中可以得出5cm、12cm、13cm可以满足要求,其中5cm、12cm为直角边,13cm为斜边.本题考查了勾股定理逆定理的运用以及三角形的三边关系,两边的平方和等于第三边的平方.属于比较简单的题目.20.下列各组数据中能作为直角三角形的三边长的是()A. 1,2,2B. 1,1,C. 4,5,6D. 1,,2【答案】D【解析】【分析】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.解答此题根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A.∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B.∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C.∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D.∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.21.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,则满足下列条件但不是直角三角形的是()A. a2-c2=b2B. a=n2-1,b=2n,c=n2+1 (n>1)C. ∠A:∠B:∠C=3:4:5D. ∠A=∠B=∠C【答案】C【解析】解:A、a2-c2=b2,那么a2=b2+c2,故△ABC是直角三角形;故不符合题意;B、∵a2+b2=(n2-1)2+(2n)2=(n2+1)2=c2,故△ABC是直角三角形;故不符合题意;C、∠A:∠B:∠C=3:4:5,故△ABC不是直角三角形;故符合题意;D、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,初二数学下册知识点《勾股定理的逆定理》经典例题和解析∴∠C=90°,故△ABC是直角三角形;故不符合题意;故选:C.运用直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.此题主要考查了直角三角形的判定方法,勾股定理逆定理的实际运用,灵活的应用此定理是解决问题的关键.22.以a,b,c为边的三角形是直角三角形的是()A. a=2,b=3,c=4B. a=1,b=,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【解析】解:A、32+22≠42,故不是直角三角形,故本选项不符合题意;B、12+()2=22,故是直角三角形,故本选项符合题意;C、42+52≠62,故不是直角三角形,故本选项不符合题意;D、22+22≠()2,故不是直角三角形,故本选项不符合题意.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查了勾股定理的逆定理;熟练掌握勾股定理的逆定理,并能进行推理计算是解决问题的关键.23.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,连接AB,BC,CA,则∠ACB的度数为()A. 30°B. 45°C. 60°D. 75°【答案】B【解析】解:根据勾股定理可以得到:AC=AB=,BC=,∵,即AC2+AB2=BC2,∴△ABC是等腰直角三角形.∴∠ACB=45°.故选:B.分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.24.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【解答】解:A.∵a2+b2=c2,根据勾股定理的逆定理∠C=90°,是直角三角形,故本选项错误;B.∵(3k)2+(4k)2=25k2=(5k)2,∴△ABC是直角三角形,故本选项错误;C.∵∠C=∠A-∠B,∴∠C+∠B=∠A,∴∠A=90°,是直角三角形,故本选项错误;D.∵∠A:∠B:∠C=3:4:5,∴最大的角∠C=180°×<90°,是锐角三角形,故本选项正确.故选D.25.下列给定的三条线段中,不能组成直角三角形的是()A. 9,12,15B. ,,C. 7,8,9D. 7,24,25【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A.92+122=152,故是直角三角形,故不符合题意;B.(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C.72+82≠92,故不是直角三角形,故符合题意;D.72+242=252,故是直角三角形,故不符合题意.故选C.26.若△ABC的三边长a,b,c满足(a -b)(b-c)=0 ,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰或等边三角形【答案】D【解析】【分析】此题主要考查等腰三角形的判断.根据(a-b)(b-c)=0,可知三边关系,即可判断结果. 【解答】解:∵a,b,c是△ABC的三边长,又∵(a-b)(b-c)=0,∴a=b或者b=c或者a=b=c,所以三角形是等腰三角形或等边三角形 .故选D.27.五根小木棒,其长度分别为,现将他们摆成两个直角三角形,其中正确的是( )初二数学下册知识点《勾股定理的逆定理》经典例题和解析A. B.C. D.【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A:152+202≠242,72+242=252,故A错误;B:72+242=252,152+202≠242,故B错误;C:72+242=252,152+202=252,故C正确;D:72+202≠252,152+242≠252,故D错误.故选C.28.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A.由b2-a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;B.由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C.由三角形三个角度数和是180°及∠C=∠A-∠B解得∠A=90°,故是直角三角形;D.由∠A:∠B:∠C=3:4:5,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形.故选D.29.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为()A. 6B. 8C. 12D. 14【答案】C【解析】解:在Rt△ABC中,∵AC=6,BC=8,∠C=90°,∴AB==10,由翻折的性质可知:AE=AC=6,CD=DE,∴BE=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12,故选:C.利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.30.下列各组数不能构成直角三角形的是A. 12,5,13B. 40,9,41C. 7,24,25D. 10,20,16【答案】D【解析】【分析】本题主要考查了勾股定理的逆定理的运用,判断三条线段能否构成直角三角形,只需看两条短边的平方和是否等于长边的平方,如果等就是直角三角形,不等就不是直角三角形,解答此题根据勾股定理的逆定理进行判断即可.【解答】解:A.∵52+122=132,∴能构成直角三角形;B.∵402+92=412,∴能构成直角三角形;C.∵72+242=252,∴能构成直角三角形;D.∵102+162≠202,∴不能构成直角三角形.故选D.31.以下列各组线段为边作三角形,能构成直角三角形的是()A. 2,3,4B. 4,4,6C. 6,8,10D. 7,12,13【答案】C【解析】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、42+42=32≠62,不能构成直角三角形,故本选项错误;C、62+82=100=102,能构成直角三角形,故本选项正确;D、122+72=193≠132,不能构成直角三角形,故本选项错误;故选:C.只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.32.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A. B. C. D.【答案】D【解析】解:所有的情况有:4,6,8;4,6,10;4,8,10;6,8,10,共4种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,所以从中任取三条能构成直角三角形的概率是;故选:D.找出四条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所初二数学下册知识点《勾股定理的逆定理》经典例题和解析求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.33.若△ABC三边分别是a,b,c,且满足(b-c)(a2+b2)=bc2-c3,则△ABC是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形【答案】D【解析】略34.下列选项中,不能判断△ABC为直角三角形的是()A. ∠A+∠B=∠CB. A:∠B:∠C=1:2:3C. ∠A=∠B=2∠CD. AB2+BC2=AC2【答案】C【解析】解:A、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;B、因为∠A:∠B:∠C=1:2:3,所以设∠A=x,则∠B=2x,∠C=3x,故x+2x+3x=180°,解得x=30°,3x=30°×3=90°,故为直角三角形;C、因为∠A=∠B=2∠C,∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,故此三角形是锐角三角形,错误;D、因为AB2+BC2=AC2,故为直角三角形;故选:C.A、根据三角形的内角和为180度,即可计算出∠C的值;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠A、∠B、∠C的值;D、根据勾股定理的逆定理进行判定即可.此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.35.在下列条件中:,,,④,⑤中,能确定是直角三角形的条件有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】本题考查了三角形内角和定理的应用,能求出每种情况的最大角的度数是解此题的关键,题目比较好,难度适中.根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,故②正确;③∵∠A=90°-∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故③正确;④∵∠A=∠B=∠C,设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,∴x=30º,3x=90º,∴∠C=90°,∴△ABC是直角三角形,故④正确,⑤∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴5∠C=180°∴∠C=36°∴∠A=∠B=72°∴△ABC不是直角三角形,∴⑤错误.综上所述①②③④4个全部符合题意.故选D.36.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】略37.下列说法中:①如果∠A+∠B﹣∠C=0,那么△ABC是直角三角形;②如果∠A:∠B:∠C=5:12:13,则△ABC是直角三角形;③如果三角形三边之比为,则△ABC为直角三角形;④如果三角形三边长分别是n2﹣4、4n、n2+4(n>2),则△ABC是直角三角形.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查了直角三角形的判定,勾股定理的逆定理和三角形的内角和定理.利用三角形内角和定理和勾股定理逆定理逐项进行判断,从而得到答案.【解答】解:①符合题意,由三角形内角和定理可求出∠C为90度;初二数学下册知识点《勾股定理的逆定理》经典例题和解析②不符合题意,根据三角形的内角和定理可以求出三角形的三个内角分别为30°,72°,78°,不是直角三角形;③符合题意,设三边分别为x,x,x,则有7x2+10x2=17x2,则△ABC为直角三角形;④符合题意,因为,则△ABC是直角三角形.所以正确的有①③④.故选C.38.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为()A. 6cm2B. 30cm2C. 24cm2D. 36cm2【答案】C【解析】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD-S△ABC=AC×CD-AB×BC=×5×12-×4×3=30-6=24(cm2).故四边形ABCD的面积为24cm2.故选:C.连接AC,在Rt△ADC中,已知AB,BC的长,运用勾股定理可求出AC的长,在△ADC 中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt△ACD与Rt△ABC的面积之差.本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出△ACD的形状是解答此题的关键.39.王老师给出了下列三条线段的长度,其中能首尾相接构成直角三角形的是()A. 1,2,3B.C. 6,8,9D. 5,12,13【答案】D【解析】解:A、由22+12=5≠32,故本选项错误;B、由()2+()2=7≠()2,故本选项错误;C、由62+82=100≠92,故本选项错误;D、由52+122=169=132,故本项正确.故选:D.根据三边的长,运用勾股定理的逆定理进行分析解答即可.本题主要考查勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.40.图中三角形的个数是( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题考查了三角形的定义,根据图形找出其中三角形即可得结果.【解答】解:图中三角形有ΔABF、ΔADF、ΔCDF、ΔAEC、ΔACD、ΔABD、ΔAED、ΔBDE,共8个.故选C.41.在下列几组数中,能作为直角三角形三边的是().A. 0.9,1.6,2.5B. ,,C. 32,42,52D. ,,【答案】D【解析】解:A、0.92+1.62≠2.52,不符合勾股定理的逆定理,故选项错误;B、()2+()2≠()2,不符合勾股定理的逆定理,故选项错误;C、(32)2+(42)2≠(52)2,不符合勾股定理的逆定理,故选项错误;D、()2+()2=()2,符合勾股定理的逆定理,故选项正确.故选D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.42.给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是()A. ①②B. ②③C. ③④D. ①④【答案】C【解析】【分析】此题考查了勾股数:满足a2+b2=c2的三个正整数,称为勾股数.注意:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以初二数学下册知识点《勾股定理的逆定理》经典例题和解析它们不是勾股数.②一组勾股数扩大相同的整数倍得到的三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;….欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:①由于0.32+0.42=0.52,所以以0.3,0.4,0.5为边长的三角形是直角三角形,但是0.3,0.4,0.5不是整数,所以0.3,0.4,0.5不是勾股数,故①说法错误;②虽然以0.5,1.2,1.3为边长的三角形是直角三角形,但是0.5,1.2,1.3不是整数,所以0.5,1.2,1.3不是勾股数,故②说法错误;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2,故③说法正确;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,故④说法正确.故选:C.43.已知△ABC,三边长AB=8cm,AC=6cm,BC=10cm,则最长边上的高是()A. 48cmB. 4.8cmC. 0.48cmD. 5cm【答案】B【解析】【分析】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,三角形的面积,是基础知识要熟练掌握.勾股的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 首先根据勾股定理的逆定理得出斜边为AB,再利用“面积法”来求AB边上的高.【解答】解:∵Rt△ABC的三边AC=6cm,BC=8cm,AB=10cm,∴AB2=AC2+BC2,∠C=90°,,∴AB边上的高.故选B.44.线段BC上有3个点P1、P2、P3,线段BC外有一点A,把A和B、P1、P2、P3、C连接起来,可以得到的三角形个数为()A. 8个B. 10个C. 12个D. 20个【答案】B【解析】解:从5个点中,任意选2个点组合,显然有10种情况.故选B.45.将下列各组数据中的三个数作为三角形的三边长,其中能构成直角三角形的是( )。
八年级数学《勾股定理及其逆定理》测试题
八年级数学《勾股定理及其逆定理》测试题(满分100分)一、选择题(每题3分,共30分)1、在下列长度的各组线段中,能组成直角三角形的是( )A 、12,15,17B 、9,16,25C 、)0(13,12,5>a a a aD 、2,3,42、在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A 、5,4,3B 、13,12,5C 、10,8,6D 、26,24,103、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( )A 、3cm 2B 、32cm 2C 、33cm 2D 、4cm 24、三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A 、17:16:8::=c b aB 、222c b a =-C 、))((2b c b c a -+=D 、12:05:13::=c b a5、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A 、等边三角形B 、钝角三角形C 、直角三角形D 、锐角三角形6、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走 的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为 ( )A 、600米B 、800米C 、1000米D 、不能确定7、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A 、121B 、120C 、90D 、不能确定8、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A 、96cm 2B 、 120cm 2C 、 160cm 2D 、 200cm 29、在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a :b :c =1:3:2,则下列说法错误的是( )A 、∠C =90°B 、222b a c =-C 、222a c =D 、若k a =,则)0(2>=k k c10、在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c.则满足下列条件但不是直角三角形的是( )A 、∠A =∠B -∠C B 、∠A :∠B :∠C =1:1:2 C 、6:5:4::=c b aD 、222b c a =-二、填空题(每题5分,共25分)11、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.12、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .第11题 第12题13、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ ABC 的面积是_____14、若一三角形三边长分别为5、12、13,则这个三角形长是13的边上的高是 .15、如图1,一根电线杆高8m.为了安全起见,在电线杆顶部到与电线杆底部水平距离6m 处加一拉线.拉线工人发现所用线长为10.2m (不计捆缚部分),则电线杆与地面 (填“垂直”或“不垂直”)三、解答题(45分)16、(10分)(如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边 AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?EBCA D17、(11分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.18、(12分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?19、(12分)如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等. (1)求E 应建在距A 多远处? (2)DE 和EC 垂直吗?试说明理由小河。
人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)
17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
八年级数学《勾股定理的逆定理》练习题含答案
八年级数学《勾股定理的逆定理》练习题一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.17.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.勾股定理的逆定理1.直角,逆定理.2.互逆命题,逆命题.3.(1)(2)(3).4.①锐角;②直角;③钝角.5.90°.6.直角.7.24.提示:7<a<9,∴a=8.8.13,直角三角形.提示:7<c<17.9.D.10.C.11.C.112.CD=9.13..514.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)。
八年级数学苏科版上册随堂测试第3单元《 3.2 勾股定理的逆定理》 练习试题试卷 含答案
随堂测试3.2勾股定理的逆定理一、选择题1.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c22.适合下列条件的△ABC中,∠A,∠B,∠C是三个内角,a,b,c分别是∠A,∠B,∠C的对边,直角三角形的个数是()①a=7,b=24,C=25;②a=1.5,b=2,c=7.5;③∠A:∠B:∠C=1:2:3;④a=1,b=,c=.A.1个B.2个C.3个D.4个3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A.1个B.2个C.3个D.4个5.在下列以线段a、b、c的长为边,能构成直角三角形的是()A.a=3,b=4,c=6B.a=5,b=6,c=7C.a=6,b=8,c=9D.a=7,b=24,c=256.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形7.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2,C.三边长为a,b,c的值为,2,4D.a2=(c+b)(c﹣b)8.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列判断错误的是()A.如果∠C-∠B=∠A,则△ABC是直角三角形B.如果a2+c2=b2,则△ABC不是直角三角形C.如果(c-a)(c+a)=b2,则△ABC是直角三角形D.如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形9.如图,在4×4的方格中,△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()二、填空题11.在△ABC中,三边长分别为8、15、17,那么△ABC的面积为.12.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是.13.在△ABC中,如果(a+b)(a﹣b)=c2,那么∠=90°.14.如果△ABC的三边长a,b,c满足关系式(a-24)2+∣b-18∣+∣c-30∣=0,则△ABC的形状是。
人教版数学初二八年级下册 勾股定理的逆定理试题试卷含答案
17.2 勾股定理的逆定理17.2.1 互逆命题与互逆定理1.下列命题中,与“同旁内角互补,两直线平行”成为互逆定理的是()A.同旁内角不互补,两直线平行B.同旁内角不互补,两直线不平行C.两直线平行,同旁内角互补D.两直线不平行,同旁内角不互补2.命题“如果a>0,b>0,那么ab>0”的逆命题是__________.3.命题:若两个数相等,则它们的绝对值相等,它的逆命题是__________.4.“对顶角相等”这个命题的逆命题是__________.5.命题“两直线平行,同位角相等”的逆命题是__________命题.(填“真”或“假”)6.请写出一对是真命题的互逆命题:__________.________________________________________________________________________参考答案及解析17.2 勾股定理的逆定理17.2.1 互逆命题与互逆定理1.【答案】C【解析】“同旁内角互补,两直线平行”的逆定理是两直线平行,同旁内角互补,故选C.2.【答案】如果ab>0,那么a>0,b>0【解析】略3.【答案】绝对值相等的两个数相等【解析】略4.【答案】如果两个角相等,那么它们是对顶角【解析】略5.【答案】真【解析】∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.为真命题,故答案为:真.6.【答案】直角三角形的两个锐角互余;有两个锐角互余的三角形是直角三角形(答案不唯一)【解析】略17.2.2 勾股定理的逆定理1.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,3,4 B.9,12,15 C.5,12,14 D.1,2,22.下列长度的三条线段能组成直角三角形的是()AB.2,3,4C.4,6,8 D.6,8,10 3.以下列各组数为边长,能构成直角三角形的是()A.1,2,3 B.1CD.5,6,74.在△ABC中,若BC=24,AB=7,AC=25,则△ABC的形状是__________.5.如图,方格纸中每个小正方形的边长均为1,△ABC的顶点均为格点.判断△ABC的形状,并说明理由.________________________________________________________________________参考答案及解析17.2.2 勾股定理的逆定理1.【答案】B【解析】A,22+32≠42,故A不符合题意;B,92+122=152,故B符合题意;C,52+122≠142,故C不符合题意;D,12+22≠22,故D不符合题意.故选B.2.【答案】D【解析】A,(3)2+(4)2≠(5)2,故A不符合题意;B,22+32≠42,故B不符合题意;C,42+62≠82,故C不符合题意;D,62+82=102,故D符合题意.故选D.3.【答案】C【解析】A,12+22≠32,故A不符合题意;B,12+(3)2≠(5)2,故B不符合题意;C,(2)2+(3)2=(5)2,故C符合题意;D,52+62≠72,故D不符合题意.故选C.4.【答案】直角三角形【解析】∵△ABC中,BC=24,AB=7,AC=25,∴72+242=252,即AC2=AB2+BC2,∴△ABC是直角三角形.故答案为:直角三角形.5.【答案】△ABC是直角三角形,理由如下:由题可得,AC2=22+42=20,BC2=22+12=5,AB2=32+42=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°.17.2.3 勾股数1.下列各组数中,是勾股数的为()A.6,8,10 B.0.3,0.4,0.5 C,1,1 D.2,3,42.下列选项中不是勾股数的是()A.7,24,25 B.4,5,6 C.3,4,5 D.9,12,153.有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1.其中勾股数有()A.1组B.2组C.3组D.4组4.一组勾股数,若其中两个为15,8,则第三个数为__________.5.勾股数为一组连续自然数的是__________.6.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?________________________________________________________________________参考答案及解析17.2.3 勾股数1.【答案】A【解析】A,∵62+82=102,∴是勾股数,符合题意;B,∵0.3,0.4,0.5不是整数,∴不是勾股数,不符合题意;C,∵2不是整数,∴不是勾股数,不符合题意;D,∵22+32≠42,∴不是勾股数,不符合题意.故选A.2.【答案】B∴,24,25是勾股数,A不符【解析】A,22272425+=,且7,24,25是正整数,7合题意;B,222456+≠,4∴,5,6不是勾股数,B符合题意;C,222+=,且3,4,5是正整数,∴3,4,5是勾股数,C不符合题意;345D,22291215+=,且9,12,15是正整数,∴9,12,15是勾股数,D不符合题意.故选B.3.【答案】A【解析】①32+42=52,是勾股数;②(62)2+(82)2≠(102)2,不是勾股数;③0.5,1.2,1.3不是整数,不是勾股数;④1,3,2.不是整数,不是勾股数;其中勾股数只有①,共1组,故选A.4.【答案】17【解析】设第三个数为x,∵15,8,x是一组勾股数,∴①x2+82=152,解得x合题意,舍去),②152+82=x2,解得:x=17,故答案为:17.5.【答案】3,4,5【解析】设中间的数是x,那么前面的数就是x﹣1,后面的数是x+1,根据题意,得(x ﹣1)2+x2=(x+1)2,解得x=0(舍去)或x=4;4﹣1=3,4+1=5.故答案为:3,4,5.6.【答案】正确.理由如下:∵m表示大于1的整数,∴a,b,c都是正整数,且c是最大边,∵(2m)2+(m2﹣1)2=(m2+1)2,∴a2+b2=c2,即a,b,c为勾股数.当m=3时,可得一组勾股数6,8,10.17.2.4 勾股定理及其逆定理的综合运用1.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,能判定△ABC是直角三角形的是()A.a=2,b=3,c=4 B.a=2,b=5,c=5C.a=5,b=8,c=10 D.a=7,b=24,c=252.已知△ABC的三边a=m2﹣1(m>1),b=2m,c=m2+1.(1)求证:△ABC是直角三角形.(2)利用第(1)题的结论,写出两个直角三角形的边长,要求它们的边长均为正整数.3.如图:每个小正方形的边长都是1.(1)求四边形ABCD的周长;(2)求证:∠BCD=90°.4.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?5.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.17.2.4 勾股定理及其逆定理的综合运用 1.【答案】D 【解析】A ,∵22+32=13≠42,∴A 中的条件不能判定△ABC 是直角三角形; B ,∵22+52=29≠52,∴B 中的条件不能判定△ABC 是直角三角形;C ,∵52+82=89≠102,∴C 中的条件不能判定△ABC 是直角三角形;D ,∵72+242=625=252,∴D 中的条件可以判定△ABC 是直角三角形. 故选D .2.【答案】(1)∵△ABC 的三边a =m 2﹣1(m >1),b =2m ,c =m 2+1,当m >1时,m 2﹣1<m 2+1,2m <m 2+1,∴(m 2﹣1)2+(2m )2=m 4+1﹣2m 2+4m 2=(m 2+1)2,即a 2+b 2=c 2, ∴△ABC 是直角三角形;(2)当m =2时,直角三角形的边长为3,4,5;当m =3时,直角三角形的边长为8,6,10(答案不唯一).3.【答案】(1)由题意可知AB 225126=+=,BC 2242=+=25,CD 22215=+=,AD 224117=+=,∴四边形ABCD 的周长为26+2551726++=+3517+;(2)证明:连接BD .∵BC =25,CD 5=,BD 2234=+=5,∴BC 2+CD 2=BD 2,∴△BCD 是直角三角形,∴∠BCD =90°.参考答案及解析4.【答案】∵甲船沿北偏东40°方向航行,乙船沿南偏东50°方向航行,∴∠CAB=90°,∵AB=16×3=48,BC=60,∴AC==36,∴乙船的航速是36÷3=12(海里/时)答:乙船的航速是36÷3=12海里/时.5.【答案】如图,根据题意,得OA=30×1.5=45(千米),OB=40×1.5=60(千米),AB=75千米.∵452+602=752,∴OA2+OB2=AB2,∴∠AOB=90°,即第二艘船的航行方向与第一艘船的航行方向成90°,∴第二艘船的航行方向为东北或西南方向.。
2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)
2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.下列几组数据中,不能作为直角三角形的三条边的是()A.1,2,B.3,4,5C.1,,D.4,12,13 2.在△ABC中,若AB=3,BC=5,AC=,则下列说法正确的是()A.△ABC是锐角三角形B.△ABC是直角三角形且∠C=90°C.△ABC是钝角三角形D.△ABC是直角三角形且∠B=90°3.如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4.下列各组数中,是勾股数的是()A.7,8,9B.6,8,10C.5,12,14D.3,4,65.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=45°6.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为()A.2.5m B.3m C.1.5m D.3.5m7.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是()A.B.C.D.8.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是()A.30°B.45°C.50°D.60°二.填空题9.一个三角形的三边长为8cm、17cm、15cm,则其面积为cm2.10.如图,已知∠BAC=90°,BC=,AB=1,AD=CD=1,则∠BAD=.11.如图,长方体木箱的长、宽、高分别为12cm,4cm,3cm,则能放进木箱中的直木棒最长为cm.12.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑤组勾股数为.13.如图,露在水面上的鱼线BC长为6m,钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,若BB'的长为2m,则钓鱼竿AC的长为m.14.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.15.如图是某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=8米,BC=6米,他们踩坏了米的草坪,只为少走米的路.16.图是屋架设计图的一部分,点E、F分别为斜梁AB、AC的中点,D为横梁BC的中点,EM⊥BC于点M,FN⊥BC于点N,若AB=AC=6m,∠BAC=120°,则EM+AD+FN 等于m,四边形AEDC的周长为m.三.解答题17.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.18.为了绿化环境,我市某中学有一块四边形的=空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?19.“某市道路交通管理条例”规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C处,过了1.5秒后到达B处(BC⊥AC),测得小汽车与车速检测仪间的距离AB为40米,判断这辆小汽车是否超速?若超速,则超速了多少?若没有超速,说明理由.20.如图,有一艘货船和一艘客船同时从港口A出发,客船与货船速度的比为4:3,出发1小时后,客船比货船多走了5海里.货船沿东偏南10°方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距50海里.(1)求两船的速度分别是多少?(2)求客船航行的方向.21.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.22.位于沈阳的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?23.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以16海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.(1)如图1,若反走私艇A和走私艇C的距离是10海里,A、B两艇的距离是6海里;反走私艇B测得距离C艇8海里,若走私艇C的速度不变,则再过多少小时它会进入我国领海?(2)如图2,若反走私艇A和走私艇C的距离是12海里,A、B两艇的距离是8海里,反走私艇B测得距离C艇10海里,发现走私艇C时,反走私艇B便立即沿领海线MN 对走私艇C进行拦截.若要使拦截成功,假设走私艇C的速度不变,那么反走私艇B的速度至少应为多少海里/时?(结果中若有根号,则保留根号).参考答案一.选择题1.解:A、12+()2=22,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、32+42=52,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、12+()2=()2,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、42+122≠132,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:D.2.解:在△ABC中,AB=3,BC=5,AC=,∴AC2=34,AB2+BC2=9+25=34,∴AC2=AB2+BC2,∴△ABC是直角三角形,∠B=90°,故选:D.3.解:设原直角三角形的两直角边分别为a,b,斜边为c,则a2+b2=c2,∵三条边长同时扩大10倍为10a,10b,10c,∴(10a)2+(10b)2=100a2+100b2=100(a2+b2)=100c2,∴(10c)2=100c2,∴(10a)2+(10b)2=(10c)2,∴如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是直角三角形,故选:C.4.解:A、72+82≠92,故不是勾股数,故选项不符合题意;B、62+82=102,能构成直角三角形,都是整数,是勾股数,故选项符合题意;C、52+122≠142,故不是勾股数,故选项不符合题意;D、32+42≠62,故不是勾股数,故选项不符合题意.故选:B.5.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.6.解:设BO=xm,依题意得:AC=0.5m,BD=0.5m,AO=2m.在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=22+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(2﹣0.5)2+(x+0.5)2,∴22+x2=(2﹣0.5)2+(x+0.5)2,解得:x=1.5,∴AB==2.5(m),即梯子的长度AB为2.5m,故选:A.7.解:选项A如图:A、∵AC2=12+32=10,BC2=12+22=5,AB2=12+42=17,∴△ABC不是直角三角形,故本选项符合题意;选项B如图:B、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项不符合题意;选项C如图:C、∵AB2=22+22=8,AC2=22+22=8,BC2=16,∴△ABC是直角三角形,故本选项不符合题意;选项D如图:D、∵AC2=12+32=10,BC2=12+32=10,AB2=22+42=20,∴△ABC是直角三角形,故本选项不符合题意.故选:A.8.解:延长AP到点C,连接BC,如右图所示,由图可得,∠CPB=∠P AB+∠PBA,PC==,BC==,PB==,∴BC2+PC2=PB2,CP=CB,∴△BCP是等腰直角三角形,∴∠CPB=45°,∴∠P AB+∠PBA=45°,故选:B.二.填空题9.解:∵82+152=172,∴此三角形是直角三角形,∴此直角三角形的面积为:×8×15=60(cm2).故答案为:60.10.解:∵∠BAC=90°,BC=,AB=1,∴AC==,∵AD=CD=1,12+12=()2,AD2+CD2=AC2,∴∠D=90°,∴∠DAC=45°,∴∠BAD=90°﹣45°=45°.故答案为:45°.11.解:∵侧面对角线BC2=32+42=52,∴CB=5cm,∵AC=12cm,∴AB==13(cm),∴空木箱能放的最大长度为13cm,故答案为:13.12.解:根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+2),第二个是:(n+1)(n+3),第三个数是:(n+2)2+1,故可得第⑤组勾股数是14,48,50.故答案为:14,48,50.13.解:设AB′=xm,∵AC′=AC,∴AB′2+B′C′2=AB2+BC2,∴x2+82=(x+2)2+62.解得x=6,∴AB=8m,∴AC===10(m),故答案为:10.14.解:若设湖水的深度x尺.则荷花的长是(x+0.5)米.在直角三角形中,根据勾股定理,得:(x+0.5)2=x2+22,解之得:x=3.75,∴湖水的深度为3.75尺.故答案为:3.75.15.解:在Rt△ABC中,∠ABC=90°,AB=8米,BC=6米,∴AC===10(米),∴BC+AB﹣AC=6+8﹣10=4(米),∴他们踩坏了10米的草坪,只为少走4米的路,故答案为:10,4.16.解:∵AB=AC=6m,∠BAC=120°,D为横梁BC的中点,∴∠B=∠C=30°,∠BAD=∠DAC=60°,∵点E、F分别为斜梁AB、AC的中点,EM⊥BC于点M,FN⊥BC于点N,∴AE=AD=AB=3m,FN=EM=BE=AB=1.5m,∴△AED是等边三角形,∴EM+AD+FN=3+1.5+1.5=6(m),∵AD=3m,AC=6m,∴DC==3(m),∴四边形AEDC的周长为:3+3+3+6=(12+3)m.故答案为:6,(12+3).三.解答题17.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC==5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.18.解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,则S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=36(平方米);(2)需费用36×300=10800(元).19.解:小汽车已超速,理由如下:根据题意得:AC=24米,AB=40米,∠ACB=90°,在Rt△ACB中,根据勾股定理得:BC===32(米),∵小汽车1.5秒行驶32米,∴小汽车行驶速度为76.8千米/时,∵76.8>60,∴小汽车已超速,超速76.8﹣60=16.8(千米/时).20.解:(1)设两船的速度分别是4x海里/小时和3x海里/小时,依题意得4x﹣3x=5.解得x=5,∴4x=20,3x=15,∴两船的速度分别是20海里/小时和15海里/小时;(2)由题可得,AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°,又∵货船沿东偏南10°方向航行,∴客船航行的方向为北偏东10°方向.21.解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度为14.5尺.22.解:在Rt△ABC中,∠ABC=90°,BC=8m,AC=17m,∴AB===15(m),∵工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,∴CD=17﹣0.35×20=10(m),∴BD===6(m),∴AD=AB﹣BD=9(m).答:此时游船移动的距离AD的长是9m.23.解:(1)由题意,AC=10海里,AB=6海里,BC=8海里,∴AB2+BC2=AC2,∴∠ABC=90°.由面积法得AC•BE=AB•BC,即10BE=6×8,∴BE=.在Rt△BEC中,CE==,∵艇C的速度为16海里/时,∴所求的时间为÷16=,答:再过小时艇C会进入我国领海.(2)由题意,AC=12海里,AB=8海里,BC=10海里,设CE=x,由勾股定理,得AB2﹣AE2=BC2﹣CE2,即82﹣(12﹣x)2=102﹣x2,解得x=,∴CE==7.5,再由勾股定理,得BE==(海里)设反走私艇B的速度为y海里/时,则=,解得y=.检验可知y=是方程的解,且适合题意.答:反走私艇B的速度至少应为海里/时.。
人教版8下数学练习题及答案17.2 勾股定理的逆定理
17.2 勾股定理的逆定理评卷人得分一、选择题1. 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. △ABC不是直角三角形2. 满足下列条件的三角形中,不是直角三角形的是()A. 三内角之比为1∶2∶3B. 三边长的平方之比为1∶2∶3C. 三边长之比为3∶4∶5D. 三内角之比为3∶4∶53. 下列几组数:①9,12,15,②8,15,17,③7,24,25,④n2-1,2n,n2+1(n是大于1的整数),其中是勾股数的有()A. 1组B. 2组C. 3组D. 4组4. 以下定理,其中有逆定理的是()A. 对顶角相等B. 互为邻补角的角平分线互相垂直C. 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D. 直角三角形的两条直角边的平方和等于斜边的平方5. 下列各组数中,是勾股数的是()A. 14,36,39B. 8,24,25C. 8,15,17D. 10,20,266. 如图,每个小正方形的边长均为1,A,B,C是小正方形的顶点,则∠ABC的度数为 ()A. 90°B. 60°C. 45°D. 30°7. 一个三角形三边长a,b,c满足|a-12|++(c-20)2=0,则这个三角形最长边上的高为()A. 9.8B. 4.8C. 9.6D. 10评卷人得分二、填空题8. 如图所示,点A为小红家的位置,点B为小明家的位置,点C为学校的位置,三地之间的距离如图,已知学校在小明家的正西方向,则小红家在小明家的方向.9. 若一个三角形的三边长分别为m+1,m+2,m+3,那么当m=时,这个三角形是直角三角形.10. 把命题“如果a>b,那么ac>bc(c≠0)”的逆命题改写为“如果……,那么……”的形式:11. 已知a,b,c是△ABC的三边,且满足|a-3|++(c-5)2=0,则此三角形的形状是.评卷人得分三、解答题12. 在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?13. 如图所示,已知△ABC的三边分别是a,b,c,且a+b=4,ab=1,c=,试判断△ABC的形状.14. 如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.15. 如图,欲从一块三角形下脚料ADB中截出一个形如△ACD的工件,其中AD=5dm,AB=14dm,AC=10dm,CD=5dm,求剩余部分△ABC的面积.16. 已知:如图,在四边形ABCD中,AD∥BC,AB=4,BC=6,CD=5,AD=3.求四边形ABCD的面积.评卷人得分四、证明题中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.18. 如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求证:BA⊥AD.参考答案1. 【答案】A【解析】因为(a+b)(a-b)=a2-b2=c2,所以b2+c2=a2.所以△ABC为直角三角形, ∠A为直角,故选A.2. 【答案】D【解析】A项中,由三角形内角和为180°可得,三个内角分别为30°,60°,90°,故此三角形是直角三角形.B项中,令三边长分别为a,b,c,则a2∶b2∶c2=1∶2∶3,∴a2+b2=c2,故满足此条件的三角形是直角三角形.C项中,a∶b∶c=3∶4∶5,设a=3k,则b=4k,c=5k,∴a2+b2=(3k)2+(4k)2=25k2=c2,∴是直角三角形. D项中的最大角为75°,故不是直角三角形.3. 【答案】D【解析】①中因为92+122=152,所以是勾股数;②中因为82+152=172,所以是勾股数;③中因为72+242=252,所以是勾股数;④中因为(n2-1)2+(2n)2=(n2+1)2,所以是勾股数.故选D.4. 【答案】D【解析】A定理的逆命题是“相等的两个角是对顶角”,不正确;B定理的逆命题是“角平分线互相垂直的两个角是邻补角”,∵两条平行线被第三条直线所截得的同旁内角的平分线也互相垂直,∴该逆命题不成立;C定理的逆命题是“如果两个角相等或互补,那么一个角的两边与另一个角的两边分别平行”,∵当两个角相等或互补时,一个角的两边与另一个角的两边可能分别垂直,∴该逆命题不成立;D定理的逆命题为勾股定理的逆定理.综上可知A,B,C三个定理均无逆定理,故选D.5. 【答案】C【解析】确定勾股数只需验证两小数的平方和与大数平方是否相等.∵142+362=1 492,392=1 521≠1 492,∴A项不是勾股数;∵82+242=640,252=625≠640,∴B项不是勾股数;∵82+152=289,172=289,∴C是勾股数;∵102+202=500,262=676≠500,∴D项不是勾股数.故选C.6. 【答案】C【解析】连接AC,观察图形易知AB=, BC=, AC=,所以△ACB为等腰三角形,又因为BC2+ AC2=AB2, △ACB为等腰直角三角形,所以∠ABC=45°.7. 【答案】C【解析】∵|a-12|≥0,≥0,(c-20)2≥0,∴由题意得,a-12=0, b-16=0,c-20=0,则有a=12,b=16,c=20.∵a2+b2=122+162=400=202=c2,∴该三角形为直角三角形,c为斜边.设斜边上的高为h.由面积公式得ab=ch,所以h===9.6.8. 【答案】正北【解析】因为82+152=172,所以△ABC为直角三角形,即AB与BC垂直.9. 【答案】2【解析】因为m+3>m+2>m+1,所以m+3为直角边,根据勾股定理得,(m+1)2+(m+2)2=(m+3)2,解得m=2或m=-2(舍去).所以m=2.10. 【答案】如果ac>bc(c≠0),那么a>b【解析】根据命题写出它的逆命题,即原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.11. 【答案】直角三角形【解析】∵|a-3|≥0,≥0,(c-5)2≥0,结合题意得a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5,a2+b2=9+16=25=c2,∴△ABC 是直角三角形.12. 【答案】如图,甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里).∵162+302=1 156=342,∴BM2+BP2=MP2,∴△MBP为直角三角形,且∠MBP=90°,∴乙船是沿着南偏东30°的方向航行的.13. 【答案】∵a+b=4,ab=1,∴(a+b)2=42=16,即a2+b2+2ab=16,∴a2+b2=16-2ab=16-2×1=14,又∵c2=()2=14,∴a2+b2=c2,又∵a,b,c是△ABC的三边,根据勾股定理得△ABC为直角三角形.14. 【答案】连接AC(如图).∵AD⊥DC,∴在Rt△ACD中,由勾股定理得AC==5 m.又∵AC2+BC2=52+122=132=AB2,∴△ABC 为直角三角形,∴这块地的面积为S △ABC -S △ACD =AC ×BC -AD ×CD =× 5×12-×4× 3=24(m 2).15. 【答案】因为CD 2+AD 2=(5)2+52=100=AC 2,所以△ACD 是直角三角形,且∠D =90°. 在Rt △ABD 中,BD ==3 (dm),所以BC =BD -CD =(3-5) dm,所以△ABC 的面积为BC ·AD =×(3-5)×5=(dm 2).16. 【答案】如图,作DE ∥AB 交BC 于点E ,连接BD ,则可以证明△ABD ≌△EDB (ASA),∴DE =AB =4,BE =AD =3.∵BC =6,∴EC =BC -BE =3,∴EC =EB .∵DE 2+CE 2=42+32=25=CD 2,∴△DEC 为直角三角形,∴∠DEC =90°.又∵EC =EB =3,∴△DBC 为等腰三角形,∴DB =DC =5.在△BDA 中,∵AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.易得S △BDA =×3×4=6,S △DBC =×6×4=12,∴S △四边形ABCD =S △BDA +S △DBC =6+12=18.17. 【答案】在Rt △ACD 和Rt △BCD 中,∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2,∴AC 2+BC 2=AD 2+2CD 2+BD 2=AD 2+2AD ·BD +BD 2=(AD +BD )2=AB 2,∴△ABC 是直角三角形.18. 【答案】延长AD 到点E ,使DE =AD ,连接BE .∵点D 是BC 的中点,∴BD =CD .在△ADC 和△EDB 中,CD =BD ,∠ADC =∠EDB ,AD =ED ,∴△ADC ≌△EDB ,∴EB =AC =13,AE =2AD =2×6=12.又∵AB =5,∴AB 2+AE 2=52+122=169=132=BE 2,∴△ABE 是直角三角形,且∠BAE =90°,∴BA ⊥AD .。
2024八年级数学下册第1章直角三角形的性质和判定(Ⅱ)第4课时勾股定理的逆定理习题课件新版湘教版
步骤1:如图①,将正方形纸板的边三等分,画出九个相同
的小正方形,并剪去四个角上的小正方形;
步骤2:如图②,把剪好的纸板折成无盖正方体纸盒.
猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的
大小关系;
【解】∠ABC=∠A1B1C1.
(2)证明(1)中你发现的结论.
∴AB2+CB2=CA2.∴△ABC是直角三角形,∠B=90°.
当经过4秒时,BM=AB-AM=18-2×4=10(cm),
BN=3×4=12(cm),
∴S△BMN= BM·BN= ×10×12=60(cm2).
故经过4秒时,△BMN的面积为60 cm2.
利用直角三角形的判定求角的度数
12. [新考法 类比迁移法]在△ABC中,CA=CB,∠ACB=
∴∠ABC=45°,∴∠ABC=∠A 1 B 1 C 1 .
利用勾股数的特征求整式值
10.[2023·衡阳二中模拟]已知:整式A=(n2-1)2+(2n)2,整式
B>0.
【尝试】化简整式A.
【解】A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1
=(n2+1)2.
【发现】A=B2,求整式B.
0,m,n是互质的奇数.下列四组勾股数中,不能由该勾股
数计算公式直接得出的是( C )
A.3,4,5
B.5,12,13
C.6,8,10
D.7,24,25
【点拨】
∵当m=3,n=1时,
a= (m2-n2)= ×(32-12)=4,b=mn=3×1=3,c=
初二数学勾股定理的逆定理试题
初二数学勾股定理的逆定理试题1.已知甲、乙两人从同一处出发,甲往东走了4km,乙往南走了3km,这时甲、乙两人相距千米.【答案】5【解析】因为甲向东走,乙向南走,其刚好构成一个直角.两人走的距离分别是两直角边,则根据勾股定理可求得斜边即两人的距离.如图,∵∠AOB=90°,OA=4km,OB=3km,∴,则这时甲、乙两人相距5千米.【考点】本题考查的是勾股定理的应用点评:善于观察题目的信息是解题以及学好数学的关键.2.在△ABC中,点D为BC的中点,BD=3,AD=4,AB=5,则AC=___________【答案】5【解析】根据BD,AD,AB的长度可以判定△ABD为直角三角形,即AD⊥BC,又D为BC的中点,可以判定△ABC为等腰三角形,从而求得结果.在△ABD中,已知AB=5,AD=4,BD=3,满足AB2=AD2+BD2,∴△ABD是直角三角形,即AD⊥BC,又∵D为BC的中点,∴△ABC为等腰三角形,且AB=AC,∴AC=5.【考点】本题考查的是直角三角形的判定,等腰三角形的性质点评:本题中首先要根据勾股定理的逆定理来判定直角三角形,求证△ABC是等腰三角形是解题的关键.3.一个直角三角形,有两边长分别为6和8,下列说法正确的是A.第三边一定为10B.三角形的周长为25C.三角形的面积为48D.第三边可能为10【答案】D【解析】分情况讨论:主要看两个数中较大的数的情况,8是斜边和8不是斜边两种情况求解.①当8是斜边时,根据勾股定理得第三边是;②当8是直角边时,第三边是;故选D.【考点】本题考查的是勾股定理点评:此类题重点注意哪一条边是斜边不确定,所以要分两种情况考虑.4.直角三角形的斜边为20cm,两条直角边之比为3∶4,那么这个直角三角形的周长为A.27cm B.30cm C. 40cm D.48cm【答案】D【解析】可根据一个直角三角形的两条直角边长的比是 3:4,得出两直角边为3x,4x,再利用勾股定理,直接代入即可求得结果.∵一个直角三角形的两条直角边长的比是 3:4,∴设两条直角边长的长是 3x,4x,∴(3x)2+(4x)2=202,解得:x=4或-4(不合题意舍去)∴3x=12,4x=16,∴这个三角形的周长是:12+16+20=48cm.故选D.【考点】本题考查的是勾股定理的应用点评:利用两直角边的比值表示出两直角边的长是解题关键.5.下列命题中是假命题的是A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形.B.△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形.C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形.D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形.【答案】C【解析】若一个三角形中有一个直角,或三边满足勾股定理的逆定理,依次分析各项即可。
2021-2022学年人教版八年级数学下册《17-2勾股定理的逆定理》同步达标测试题(附答案)
2021-2022学年人教版八年级数学下册《17-2勾股定理的逆定理》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列条件:①b2=c2﹣a2;②∠C=∠A﹣∠B;③a:b:c=::;④∠A:∠B:∠C=3:4:5,能判定△ABC是直角三角形的有()A.4个B.3个C.2个D.1个2.如图,在每个小正方形的边长为1的网格中,△ABC的的顶点都在格点上.则∠ABC的度数为()A.120°B.135°C.150°D.165°3.如图长方体木箱的长、宽、高分别为12m,4m,3m,则能放进木箱中的直木棒最长为()A.12m B.13m C.15m D.24m4.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km5.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是()A.26尺B.24尺C.17尺D.15尺6.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米7.一个圆桶底面直径为7cm,高24cm,则桶内所能容下的最长木棒为()A.20cm B.25cm C.26cm D.30cm8.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55二.填空题(共8小题,满分32分)9.若8,a,17是一组勾股数,则a=.10.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了步路.(假设2步为1米)11.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.12.如图,每个小正方形的边长为1,则∠ABC的度数为°.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了cm.14.如图,阴影部分是一个正方形,此正方形的面积为cm2.15.2021年在甘肃省白银市景泰县黄河石林景区举行了黄河石林山地马拉松百公里越野赛.如图,是矗立在水平地面上的马拉松赛道路牌.经测量得到以下数据:AC=4m,BE =8m,∠DAC=45°,∠EBC=30°,∠DCA=90°,则DE的高为m.16.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为米.三.解答题(共7小题,满分56分)17.如图,已知等腰△ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm.(1)判断△BCD的形状,并说明理由;(2)求△ABC的周长.18.如图:四边形ABCD中,AB=BC=,DA=1,CD=,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.19.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.20.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧的墙上时,梯子的顶端在B点,当它靠在另一侧的墙上时,梯子的顶端在D点,已知∠BAC=60°,∠DAE=45°,点B到地的垂直距离BC=米,求两堵墙之间的距离CE.21.如图所示,AB=DE=25,AC=24,∠C=90°.(1)这个梯子底端B离墙有多少米?(2)如果梯子的顶端下滑的距离AD=4m,求梯子的底部B在水平方向滑动的距离BE 的长.22.如图,一条笔直的公路l经过树湘纪念馆A和何宝珍故里B两个红色文化景区,我县准备进一步开发月岩景区C,经测量景区C位于A的北偏东60°方向上,C位于B的北偏东30°的方向上,且AB=20km,(1)求何宝珍故里B与月岩景区C的距离;(2)为了方便游客到月岩景区C游玩,景区管委会准备由景区C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)23.已知,如图,AD∥BE,C为BE上一点,CD与AE相交于点F,连接AC.∠1=∠2,∠3=∠4.(1)求证:AB∥CD;(2)已知AE=12cm,AB=5cm,BE=13cm,求AC的长度.参考答案一.选择题(共8小题,满分32分)1.解:∵b2=c2﹣a2,∴a2+b2=c2,∴△ABC是直角三角形,故①能判断是直角三角形,∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故②能判断是直角三角形,∵a:b:c=::,∴可以假设,a=20k,b=15k,c=12k,∴a2≠b2+c2,∴△ABC不是直角三角形,故③不能判断是直角三角形,∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=()°>90°,故④不能判断是直角三角形故选:C.2.解:延长CB交网格于E,连接AE,由勾股定理得:AE=AB==,BC=BE==,∴AE2+AB2=BE2,∴△EAB是等腰直角三角形(∠EAB=90°),∴∠EBA=∠AEB=45°,∴∠ABC=180°﹣45°=135°,故选:B.3.解:∵侧面对角线BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大长度为13m,故选:B.4.解:过点B作BC⊥AC,垂足为C.观察图形可知AC=AF﹣MF+MC=8﹣3+1=6(km),BC=2+5=7(km),在Rt△ACB中,AB===10(km).答:登陆点到宝藏埋藏点的直线距离是10km,故选:D.5.解:设水池的深度为x尺,由题意得:x2+82=(x+2)2,解得:x=15,所以x+2=17.即:这个芦苇的高度是17尺.故选:C.6.解:在Rt△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,故选:D.7.解:如图,AC为圆桶底面直径,CB是桶高,∴AC=7cm,CB=24cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===25(cm).故桶内所能容下的最长木棒的长度为25cm.故选:B.8.解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.二.填空题(共8小题,满分32分)9.解:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.10.解:∵∠C=90°,AC=6m,BC=8m,∴AB==10(m),则(8+6﹣10)×2=8,∴他们仅仅少走了8步,故答案为:8.11.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.12.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.13.解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.解:由图可知正方形的边长为=8cm,正方形的面积为8×8=64cm2.15.解:∵∠DCA=90°,∠DAC=45°,∴∠ADC=∠CAD=45°,∴AC=CD=4m,在Rt△BCE中,∵∠EBC=30°,BE=8m,∴CE==×8=4(m),∴DE=CE﹣CD=(4﹣4)m,故答案为:(4﹣4).16.解:过点D作DE⊥AB于E,如图所示:则CD=BE,DE=BC=1.2米=米,在Rt△ADE中,AD=1.5米=米,由勾股定理得:AE===0.9(米),∴BE=AB﹣AE=2.5﹣0.9=1.6(米),∴CD=BE=1.6米,故答案为:1.6.三.解答题(共7小题,满分56分)17.解:(1)∵BC=10cm,CD=8cm,BD=6cm,∴BC2=BD2+CD2.∴△BDC为直角三角形;(2)设AB=xcm,∵等腰△ABC,∴AB=AC=x,∵AC2=AD2+CD2,即x2=(x﹣6)2+82,∴x=,∴△ABC的周长=2AB+BC=(cm).18.解:(1)如图,连接AC.∵AB=BC=,∠B=90°,∴AC==2,∠BAC=∠ACB=45°,∵AD=1,CD=,∴AD2+AC2=CD2,∴∠CAD=90°,∴∠BAD=∠BAC+∠CAD=45°+90°=135°.(2)S四边形ABCD=S△ABC+S△ADC=•AB•BC+•AD•AC=××+×1×2=2.19.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.20.解:在直角△ABC中,∠BAC=60°,∴∠ABC=30°,∴AB=2AC,根据勾股定理计算AB2﹣AC2=,得:AC=5,AB=10.即AD=10,根据AD2=AE2+DE2,AE=DE,计算得:AE=DE=,∴CE=CA+AE=5+.答:两墙之间的距离CE=5+.21.解:(1)由题意知AB=DE=25米,AC=24米,AD=4米,在直角△ABC中,∠C=90°,∴BC2+AC2=AB2,∴米,∴这个梯子底端离墙有7米;(2)已知AD=4米,则CD=24﹣4=20(米),在直角△CDE中,∠C=90°,∴BD2+CE2=DE2,∴(米),∴BE=15﹣7=8(米),答:梯子的底部在水平方向滑动了8m.22.解:(1)根据题意得:∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣120°=30°,∴∠CAB=∠ACB,∴BC=AB=20(km).答:何宝珍故里B到月岩景区C的距离为20km;(2)过点C作CD⊥l,垂足为D,则CD的长是这条最短公路的长.∵CD⊥l,∴∠CDB=90°,∵∠CBD=180°﹣∠ABC=180°﹣120°=60°,∴∠BCD=180°﹣∠CBD﹣∠CDB=180°﹣60°﹣90°=30°,在Rt△BCD中,∠CDB=90°,∠BCD=30°,BC=20km,∴,(km).答:这条最短公路的长为km.23.(1)证明:∵AD∥BE,∴∠DAC=∠3,即∠2+∠EAC=∠3,∵∠1=∠2,∠3=∠4,∴∠1+∠EAC=∠4,即∠BAE=∠4,∴AB∥CD;(2)解:在△ABE中,AE=12cm,AB=5cm,BE=13cm,∴AE2+AB2=BE2,∴△ABE为直角三角形,∠BAE=90°,由(1)得:∠4=∠BAE=90°,∴∠3=∠4=90°,∴AC⊥BE,∵S△ABE=AE•AB=BE•AC,∴AC===(cm).。
人教版数学八年级下册《勾股定理的逆定理》练习巩固 (1)
17.2勾股定理的逆定理(练习巩固)一、单选题1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.√3,√4,√5B.1,√2,√3C.6a,7a,8a D.2a,3a,4a2.如图所示,有一个高16cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底2cm 的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口内侧距开口处2cm的点F处有一滴凝固的蜂蜜,则蚂蚁到凝固蜂蜜所走的最短路径的长度是()cm.A.12√2B.20C.24D.283.下列命题中,其中正确命题的个数为()个①在△ABC中,若三边长a:b:c=4:5:3,则ABC是直角三角形;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,c,若a2+c2=b2,则△C=90°:④在△ABC中,△A:△B:△C=1:5:6,则△ABC是直角三角形。
A.1B.2C.3D.4 4.五根小木棒,其长度分别为7,15,20,24,25,现想把它们摆成两个直角三角形,图中正确的是()A.B.C.D.5.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm6.坐标轴上到点P(−1,0)的距离等于4的点有()A.1个B.2个C.3个D.4个7.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A.4√3B.2√3C.4√5D.2√5 8.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB= 13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A.B.C.D.9.如图,在长方体透明容器(无盖)内的点B处有一滴糖浆,容器外A点处的蚂蚁想沿容器壁爬到容器内吃糖浆,已知容器长为5cm,宽为3cm,高为4cm,点A距底部1cm,请问蚂蚁需爬行的最短距离是(容器壁厚度不计)()A.3√17cm B.10cm C.5√5cm D.√113cm 10.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6。
3.2 勾股定理的逆定理一课一练2021-2022学年苏科版 八年级数学上册试题(含答案)
3.2《勾股定理的逆定理》一、选择题1.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( )A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠C =90°C .如果∠A :∠B :∠C =1:3:2,那么△ABC 是直角三角形D .如果a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形2.适合下列条件的△ABC 中, 直角三角形的个数为 ①111345a b c ,,;===②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c =⑦::12:13:15A B C ∠∠∠=⑹5,12,13a b c ===A .2个B .3个C .4个D .5个3.下列各组数中,是勾股数的为( )A .111345,, B .0.6,0.8,1.0 C .1,2,3 D .9,40,414.下列命题:①如果3、4、5为一组勾股数,那么3k 、4k 、5k 仍是勾股数;②含有45°角的直角三角形的三边长之比是1∶是9,12,13,那么此三角形是直角三角形;④一个直角三角形的两边长是3和4,它的斜边是5.其中正确的个数是 ( )A .1个B .2个C .3个D .4个二、填空题1.如图,点P 是等边三角形ABC 内一点,且PA=3,PB=4, PC=5,若将△APB 绕着点B 逆时针旋转后得到△CQB,则∠APB 的度数______.2.如图,点M ,N 把线段AB 分割成三条线段AM ,MN 和NB ,若以AM ,MN 和NB 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.若2AM =,3MN =,则NB 的长的平方为____.3.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.三、解答题1.如图,90ADC ∠=︒,4=AD m ,3CD =m , 13AB =m ,12BC =m .(1)试判断以点A ,B ,C 为顶点的三角形的形状,并说明理由;(2)求该图的面积.2.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠ADC是否是直角,并说明理由;(2)试求四边形草坪ABCD的面积.3.下图是由边长为1的小正方形组成的网格.(1)求四边形ABCD的面积(2)判断AD与CD的关系,并说明理由.4.如图,一个零件的形状如图所示,按规定这个零件中∠A与∠DBC都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.5.如图,AB=AD.AC=AE,∠BAD=∠CAE.(1)求证:△ABC≌△ADE;(2)若AC=9,AD=12,BE=15,请你判断△ABE的形状并说明理由.6.在ABC ∆中,BC a =,AC b =,AB c =.设c 为最长边.当222+=a b c 时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为______三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为______三角形.(2)猜想,当22a b +______2c 时,ABC ∆为锐角三角形;当22a b +______2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围.7.如图,在正方形ABCD 中,E 是AD 的中点,F 是 AB 上一点,且AF =14AB . 求证:CE ⊥EF .8.问题背景:在△ABC中,AB、BC、AC个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF.①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)9.(问题背景)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC =90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD =BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.(探索延伸)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F 分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.10.(问题原型)如图1,在等腰直角三形ABC中,∠ACB=90°,BC=8.将边AB 绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.(初步探究)如图2.在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.(简单应用)如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).11.在△ABC中,∠BAC=90°,AB=AC.点D从点B出发沿射线BC移动,以AD 为边在AB的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.(1)如图1,若点D在BC边上,则∠BCE=°;(2)如图2,若点D在BC的延长线上运动.①∠BCE的度数是否发生变化?请说明理由;②若BC=3,CD=6,则△ADE的面积为.12.在直角三角形中,两直角边的平方和等于斜边的平方.如图1,若在△ABC中,∠C=90°,则AC2+BC2=AB2.我们定义为“商高定理”.(1)如图1,在△ABC中,∠C=90°中,BC=4,AB=5,试求AC=__________;(2)如图2,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)如图3,分别以Rt△ACB的直角边BC和斜边AB为边向外作正方形BCFG和正方形ABED,连结CE、AG、GE.已知BC=4,AB=5,求GE2的值.答案一、选择题1.B.2.C.3.D .4.A二、填空题1.150°2.5或133.13,84,85三、解答题1. 解:(1)连接AC ,由勾股定理可知,5AC ==, 又22222251213AC BC AB +=+==, ABC ∆∴是直角三角形(2)该图的面积ABC ACD S S ∆∆=-,115123422=⨯⨯-⨯⨯, 224(m )=. 答:该图的面积为24 2m .2.(1)∠D 是直角,理由如下:连接AC ,∵∠B=90°,AB=24m ,BC=7m ,∴AC 2=AB 2+BC 2=242+72=625,∴AC=25(m ).又∵CD=15m ,AD=20m ,152+202=252,即AD 2+DC 2=AC 2,∴△ACD 是直角三角形,或∠D 是直角;(2)S 四边形ABCD =S △ABC +S △ADC =12AB ⋅BC +12AD ⋅DC, =234(m 2).3.解:(1)由题意可知四边形ABCD 的面积=大正方形的面积-四个小直角三角形的面积111125551242332322222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=(2)AD ⊥CD ,理由如下:22125AD DC AC =+====,∴AD 2+DC 2=AC 2=25,∴△ADC 是直角三角形,∴AD ⊥CD ,4.解:∵AD=12,AB=9,DC=17,BC=8,BD=15,∴AB 2+AD 2=BD 2,BD 2+BC 2=DC 2.∴△ABD 、△BDC 是直角三角形.∴∠A=90°,∠DBC=90°.故这个零件符合要求.S 四边形=11292⨯⨯+18152⨯⨯=114.5.(1)证明:∵∠BAD =∠CAE ,∴∠BAC =∠DAE ,在△ABC 和△ADE 中,,∴△ABC ≌△ADE (SAS ).(2)解:结论△ABE 是直角三角形.理由:∵AB =AD =12,AE =AC =9,BE =15,∴AB 2+AE 2=122+92=225,BE 2=225,∴AB 2+AE 2=BE 2,∴∠BAE =90°,∴△BAE 是直角三角形.6.(1)锐角,钝角.(2)>,<. (3)c 为最长边,46c ∴<≤.当222a b c +>,220c <,即4c <≤ABC ∆为锐角三角形;当222+=a b c ,220c =,即c =ABC ∆为直角三角形;当222a b c +<,220c >,即6c <<时,ABC ∆为钝角三角形.7.连接CF ,∵ABCD 为正方形 ∴AB BC CD DA ===,90A B BCD D ∠=∠=∠=∠=︒. 设AB BC CD DA a ====∵E 是AD 的中点,且14AF AB = ∴12AE ED a ==,14AF a =∴34BF a . 在Rt CDE △中,由勾股定理可得2222221524CE CD DE a a a ⎛⎫=+=+= ⎪⎝⎭ 同理可得:2222221152416EF AE AF a a a ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭ 222222325416CF BF BC a a a ⎛⎫=+=+= ⎪⎝⎭. ∵222EF CE CF +=∴CEF △为直角三角形 ∴90CEF ∠=︒ ∴CE EF ⊥.8.(1)S △ABC =3×3﹣12×1×2﹣12×2×3﹣12×1×3=72; (2)如图所示:∵DE EF DF ,∴DE 2+EF 2=DF 2,∴△DEF 是直角三角形. △DEF 的面积=111231122132222⨯-⨯⨯-⨯⨯-⨯⨯=.9. [问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.10.问题原型:如图1中,,,如图2中,过点D作BC的垂线,与BC的延长线交于点E,∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△BDE(AAS),∴BC=DE=8.∵S△BCD12=BC•DE,∴S△BCD=32.故答案为:32.初步探究:△BCD的面积为12a2.理由:如图2中,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△BDE(AAS),∴BC=DE=a.∵S△BCD12=BC•DE,∴S△BCD12=a2;简单应用:如图3中,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E , ∴∠AFB =∠E =90°,BF 12=BC 12=a ,∴∠FAB +∠ABF =90°. ∵∠ABD =90°,∴∠ABF +∠DBE =90°,∴∠FAB =∠EBD .∵线段BD 是由线段AB 旋转得到的,∴AB =BD .在△AFB 和△BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB ≌△BED (AAS),∴BF =DE 12=a . ∵S △BCD 12=BC •DE ,∴S △BCD 12=•12a •a 14=a 2,∴△BCD 的面积为14a 2. 11.解:(1)∵△ABC 和△ADE 都是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∴∠BAD =∠CAE .在△ACE 和△ABD 中,AC=AB CAE=BAD AE=AD ⎧⎪∠∠⎨⎪⎩,∴△ACE ≌△ABD (SAS ); ∴∠ACE =∠ABD =45°,∴∠BCE =∠BCA +∠ACE =45°+45°=90°;故答案为:90;(2)①不发生变化.∵AB =AC ,∠BAC =90°∴∠ABC =∠ACB =45°, ∵∠BAC =∠DAE =90°∴∠BAC +∠DAC =∠DAE +∠DAC ∴∠BAD =∠CAE ,在△ACE 和△ABD 中AC=AB CAE=BAD AE=AD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△ABD (SAS )∴∠ACE =∠ABD =45°∴∠BCE =∠BCA +∠ACE =45°+45°=90°∴∠BCE 的度数不变,为90°; ②∵BC =3,CD =6,∴BD =9,∵△ACE ≌△ABD ,∴CE =BD =9,在Rt △ECD 中,222DE =CD +CE =117,在Rt △ADE 中,∵AD=AE ∴222AD +AE =DE =117,22117AD =AE =2, ∴△ADE 的面积=2111117117AE AD=AD ==22224⋅⨯;故答案为:1174.12.解:(1)在△ABC 中,∠C=90°中,BC =4,AB =5 ∴AC=3(2)在Rt △DOA 中,∠DOA =900,∴OD 2+OA 2=AD 2 同理:OD 2+OC 2=CD 2 OB 2+OC 2=BC 2 OA 2+OB 2=AB 2∵AB 2+ CD 2=OA 2+OB 2+ OD 2+OC 2 AD 2+ BC 2=OD 2+OA 2+ OB 2+OC 2 ∴AB 2+ CD 2=AD 2+ BC 2(3)∵∠GBC=∠EBA=900 ∴∠GBC+∠CBA=∠EBA+∠CBA∴∠ABG=∠EBC 如图1,在△ABG 和△EBC 中 AB BE ABG EBC BC BG =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△EBC (SAS ) ∴如图2,∠1=∠2 ,∠3=∠4∴∠5=∠AIJ =900 ∴AG ⊥CB 连接CG 、AE ,由(2)可知 AC 2+GE 2=CG 2+AE 2 在Rt △CBG 中,CG 2=BC 2+BG 2 CG 2=42+42=32在Rt △ABE 中,AE 2=BE 2+AB 2 AE 2=52+52=50在Rt △ABC 中,AB 2=AC 2+BC 2 52=AC 2+42 AC 2=9∴AC 2+GE 2=CG 2+AE 2 9+ GE 2=32+50 GE 2=73。
初二数学勾股定理的逆定理试题
初二数学勾股定理的逆定理试题1.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠DEC=90°(1)△CDE是什么三角形?请说明理由(2)若AD=6,AB=14,请求出BC的长.【答案】解:(1)△CDE是等腰直角三角形;理由:∵AD∥BC,∠A=90°,∴∠B=∠A=90°,又∵∠DEC=90°,∴∠DEA+∠CEB=180°-∠DEC=180°-90°=90°,在Rt△DAE中,∠DEA+∠ADE=90°,∴∠CEB=∠ADE,在△ADE和△BEC中,,∴△DAE≌△EBC,∴DE=CE,∴△CDE是等腰直角三角形;(2)由(1)得△DAE≌△EBC,∴BC=AE,∵AB=AE+BE,∴AB=AD+BC,∴BC=AB-AD=14-6=8.即BC的长是8.【解析】(1)根据AD∥BC,∠A=90°,∠DEC=90°利用直角三角形的两个锐角互余证明∠DEA=∠ECB,结合条件[利AD=BE,利用AAS公理证明△DAE≌△EBC,由此得到DE=CE,即可判定△CDE的形状;(2)由(1)得△DAE≌△EBC,根据全等三角形的对应边相等,得到BC=AE=AB-BE=AB-AD即可得到答案.【考点】等腰直角三角形的判定、全等三角形的判定和性质2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,则满足下列条件,但不是直角三角形的是()A.∠A=∠B-∠CB.∠A︰∠B︰∠C=1︰3︰5C.D.a2+c2=b2【答案】B【解析】选项A中,∠A+∠C=∠B.∴∠B=90°,由勾股定理的逆定理知选项C、D是直角三角形,故选B.3.(2013潍坊)如图,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.海里/时B.30海里/时C.海里/时D.海里/时【答案】D【解析】理解方向角的含义,证明出三角形ABC是直角三角形是解决本题的关键.4.一块木板如图,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,则木板的面积为()A.60B.30C.24D.12【答案】C【解析】连接AC,在Rt△ABC中,AC2=AB2+BC2=42+32=52,AC=5.在△ADC中,AC2+DC2=52+122=132=AD2,则△ADC是直角三角形,所以木板的面积.5.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在该空地上种草皮,经测量,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需200元,问:需要投入多少元?【答案】7200【解析】解:连接DB,∵∠A=90°,由勾股定理,得BD2=AB2+AD2=32+42=52,∴BD=5.又BC=12,CD=13,∴CD2=132=122+52=BC2+BD2.∴△DBC为直角三角形.∴(m2),200×36=7200(元).答:需投入7200元.6.下列定理中,没有逆定理的是( )A.直角三角形的两锐角互余B.若三角形三边长a,b,c满足a2+b2=c2,则该三角形是直角三角形C.全等三角形的对应角相等D.互为相反数的两数之和为0【答案】C【解析】A的逆命题是:两锐角互余的三角形是直角三角形,是真命题.B的逆命题是:若三角形是直角三角形,则三边长a,b,c满足a2+b2=c2,是真命题.D的逆命题是:若两数之和为0,则这两个数互为相反数,是真命题.C中对应角相等的两个三角形不一定全等,所以C的逆命题是假命题,则它没有逆定理.7.五根小木棒,其长度(单位:cm)分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( )A.B.C.D.【答案】C【解析】因为72+242=252,152+202=252,所以用长度(单位:cm)为7,24,25及15,20,25的小木棒能分别摆成两个直角三角形,故选C.8.判断满足下列条件的三角形是不是直角三角形:(1)△ABC中,AB=12,BC=16,AC=20;(2)一个三角形三边长之比为5︰12︰13;(3)一个三角形三边长a,b,c满足a=3,b=7,c=9.【答案】(1)△ABC中,AC2=202=400,AB2+BC2=122+162=144+256=400,所以AC2=AB2+BC2.所以△ABC是直角三角形.(2)设三边长分别为5x,12x,13x(x>0).因为(13x)2=169x2,(5x)2+(12x)2=25x2+144x2=169x2.所以(13x)2=(5x)2+(12x)2,所以该三角形是直角三角形.(3)因为32+72=58,92=81,所以32+72≠92,所以这个三角形不是直角三角形.【解析】(1)(3)可直接利用勾股定理的逆定理判断;(2)中是三边长的比,可以设三边长分别是5x、12x、13x(x>0),再判断.9.下列各组数是勾股数的是( )A.2,3,4B.4,5,6C.3.6,4.8,6D.9,40,41【答案】D【解析】利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.10.判断下列命题的真假,写出它们的逆命题,并判断逆命题的真假.(1)长方形是轴对称图形;(2)任何一条直线都是由无数个点组成的;(3)等腰三角形的两个底角相等;(4)如果两个数互为倒数,那么它们的积为1;(5)如果a+b>0,那么a>0,b>0.【答案】(1)原命题是真命题;逆命题:轴对称图形是长方形;是假命题.(2)原命题是真命题;逆命题:由无数个点组成的图形是一条直线;是假命题.(3)原命题是真命题;逆命题:有两个角相等的三角形是等腰三角形;是真命题.(4)原命题是真命题;逆命题:如果两个数的积为1,那么这两个数互为倒数;是真命题.(5)原命题是假命题;逆命题:如果a>0,b>0,那么a+b>0;是真命题.【解析】先根据我们以往的知识判断原命题的真假,再根据逆命题的定义,将原命题的题设和结论部分互换,变成新的命题.。
人教版八年级数学下册优秀作业课件(RJ) 第十七章 勾股定理 勾股定理的逆定理
17.(呼和浩特中考)如图,在△ABC 中,内角 A,B,C 所对的边分别为 a, b,c.
(1)若 a=6,b=8,c=12,请直接写出∠A 与∠B 的和与∠C 的大小关系; (2)求证:△ABC 的内角和等于 180°; (3)若a-ab+c =12(a+cb+c) ,求证:△ABC 是直6,b=8,c=12,∴∠A+∠B<∠C
(2)如图,过点 A 作 MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两
直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠
B+∠BAC+∠C=180°(等量代换),即△ABC 的内角和等于 180° (3)∵
A.15 B.16 C.17 D.18
11.如图,△ABC的顶点在正方形网格的格点上 ,若小方格的边长为 1,则 △ABC是( B )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都不对
12.木工师傅做一个长方形桌面,量得它的长为80分米,宽为60分米,对角线为 100分米,则这个桌面__合__格_.(填“合格”或“不合格”)
数学 八年级下册 人教版
第十七章 勾股定理 17.2 勾股定理的逆定理
1.下列各组数中的三个数,可作为三边长构成直角三角形的是( B ) A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1, 2 ,3
2.(教材P33练习T1变式)在△ABC中,∠A,∠B,∠C的对边分别是a,b,c, 下列说法中,不能推出△ABC是直角三角形的是(C )
解:(1)是,∠B是直角 (2)不是 (3)是,∠C是直角 (4)是,∠A是直角
5.如图,在△ABC 中,CD⊥AB 于点 D,AC=4,BC=3,AD=156 . (1)求 CD,BD 的长; (2)求证:△ABC 是直角三角形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2 勾股定理的逆定理(1)
知识领航
1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.
2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.
3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.
4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.
e 线聚焦
【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四
边形ABCD 的面积.
分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.
解:连接AC ,在Rt △ABC 中,
AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,
∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.
故S 四边形ABCD =S △ABC +S △ACD =
21AB ·BC +21AC ·CD =21×3×4+2
1
×5×12=6+30=36.
双基淘宝
仔细读题,一定要选择最佳答案哟!
1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )
A .4组
B .3组
C .2组
D .1组
2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2
(a 、b 都是正整数),则这个三角形是() A .直角三角形 B .钝角三角形 C .锐角三角形 D .不能确定 3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )
A .1倍
B . 2倍
C . 3倍
D . 4倍
4. 下列各命题的逆命题不成立的是( )
A .两直线平行,同旁内角互补
B .若两个数的绝对值相等,则这两个数也相等
C .对顶角相等
D .如果a =b ,那么a 2=b 2
5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
7
24
25
207
15
2024
25
7
25
20
24
257
202415
(A)
(B)
(C)
(D)
A B C D
综合运用
◆ 认真解答,一定要细心哟!
6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的
面积.
7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
A
D
A D
8. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =4
1
BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.
拓广创新
◆ 试一试,你一定能成功哟!
9. 勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:
a =m 2
-n 2
,b =2mn ,c =m 2
+n 2
(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下表,通过表格,你会发现勾股数有哪些规律?请查阅有关资料,相信你将有更多收获.
A D C B。