最新高数期末考试题.

合集下载

数学高数期末试题及答案

数学高数期末试题及答案

数学高数期末试题及答案第一部分:选择题1. 设函数 $f(x) = e^x + \ln x$,则 $f'(1) =$ ( )A. $e$B. $e+1$C. $1$D. $0$2. 设二元函数 $z=f(x,y)$ 在点 $(1,2)$ 处可微,则 $\frac{\partialz}{\partial x}$ 在该点的值为 ( )A. $f_x(1,2)$B. $f_y(1,2)$C. $0$D. $f(1,2)$3. 设平面$2x+y+z=2$,直线$L$ 过点$(1,1,1)$,且与该平面平行,则直线 $L$ 的方程为 ( )A. $x=y=z$B. $2x+y+z=4$C. $x=y=z=1$D. $x+y+z=3$第二部分: 简答题1. 解释什么是极限?极限是一个函数在某一点或者无穷远处的值或趋近于的值。

对于一个给定的函数,当自变量趋近某一特定值时,函数的值也会趋近于某个特定的值。

2. 什么是导数?导数是函数在某一点的切线斜率。

在数学中,导数表示函数在给定点的变化率。

第三部分: 解答题1. 计算函数 $f(x) = \sin(x) - \cos(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值和最小值。

首先,我们求解导数 $f'(x)$,然后令其等于零,解得$x=\frac{\pi}{4}$。

此时,我们可以计算得到 $f(\frac{\pi}{4}) =\sqrt{2}-1$。

另外,我们可以计算 $f(0) = 1$ 和 $f(\frac{\pi}{4}) = \sqrt{2}-1$。

所以,函数 $f(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值为 $1$,最小值为 $\sqrt{2}-1$。

2. 计算二重积分 $\iint_D x^2 y \,dA$,其中 $D$ 是由直线 $x=0$,$y=0$ 和 $x+y=1$ 所围成的区域。

大学高等数学期末考试题及答案详解(计算题)

大学高等数学期末考试题及答案详解(计算题)

大学数学期末高等数学试卷(计算题)一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分).d )1(22x x x ⎰+求2、(本小题5分) 求极限 lim x x x x x x →-+-+-23321216291243、(本小题5分)求极限limarctan arcsin x x x →∞⋅1 4、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),22 9、(本小题5分).求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分) .d cos sin 12cos x x x x ⎰+求 二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .2、(本小题3分) 解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =23、(本小题3分)因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x =--+171979cot cot .x x c 7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞'=--y e e x x 2122() 驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222 =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44 三、解答下列各题( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()参考答案一。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

大学高数三期末复习题(答案)

大学高数三期末复习题(答案)

10级高数(3)期末复习题(答案)一、单项选择题:1、若lim 0n n u →∞=,则级数∑∞=1n nu( D )A 、条件收敛B 、收敛C 、发散D 、可能收敛也可能发散2、 lim 0n n u →∞=是级数∑∞=1n nu收敛的( B )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要3、下面曲面为柱面的是( C )A 、22z x y =+ B 、 22214z x y +-= C 、222x y -= D 、2222x y z r ++=4、在空间直角坐标系下,方程()()22212(3)1x y z -+-+-=表示的图形是( B )A 、圆B 、球面C 、平面D 、柱面 5、下列级数中条件收敛的是(B )A 、1(1)nn ∞=-∑ B 、1(1)nn ∞=-∑ C 、 211(1)nn n ∞=-∑ D 、1(1)(1)n n n q q ∞=->∑ 6、下列级数中绝对收敛的是(D )A 、21cosn n π∞=∑ B 、1(1)nn ∞=-∑ C 、11(1)sin n n n π∞-=-∑ D 、1(1)(1)nn n q q∞=->∑7、下列级数中收敛的是(B )A、n ∞= B 、 121(1)ln n n n∞-=-∑C 、 05()3n n ∞=-∑ D、n ∞=8、微分方程0)(43='-''y y y x 的阶数是( B )A 、1B 、2C 、3D 、49、 =+⋅+∞→∞→22223sin)(lim yx y x y x ( B ) A 、0 B 、3 C 、31D 、∞10、 微分方程xey -=''的通解是( C )A 、xCe y -= B 、xCe y =C 、21C x C ey x++=- D 、21C x C e y x ++-=-11、下列方程中( C )是线性微分方程微分方程 A、y '= B 、(ln ln )dy yy x dx x=- C 、tan sec dyy x x dx-= D 、(76)()0x y dx x y dy -++= 12、下列方程中( A )是可分离变量的微分方程A 、tan 0dy y x dx -= B 、 (ln ln )dy y y x dx x =- C 、tan sec dy y x x dx-= D 、(76)()0x y dx x y dy -++=二、填空题:1、 幂级数∑∞=+122n n nx n 的收敛半径R = ,收敛域为 2、幂级数21(2)n n x n ∞=-∑的收敛半径R = ,收敛域为 3、幂级数2121n n x n ∞=-∑的收敛域为 4、改变二次积分1(,)y eeI dy f x y dx =⎰⎰的积分次序,则I =;21)21,21[-1]1,1[-)1,1(-⎰⎰e xdyy x f dx 1ln 0),(5、改变二次积分11(,)xI dx f x y dy =⎰⎰的积分次序,则I = ;6、设f是连续函数,D 是由22, 0x y x y +≤≥确定的区域,则在极坐标系下,二重积分(,)Df x y d σ⎰⎰先r 后θ的二次积分是 7、设f是连续函数,D 由曲线222 ,x y y +=围成则在极坐标下,化二重积分D f d σ⎰⎰为先r 后θ的二次积分是 ; 8、11(1)n n n ∞=+∑= ,1123n n -∞=⎛⎫- ⎪⎝⎭∑=9、设级数111p n n∞-=∑,则当p 时级数收敛,当p 时级数发散;10、设 ln(ln ),z x y =+则(1,)e dz =11、xoy 平面上的双曲线22236x y -=绕y 轴旋转所得曲面方程是____________________12用某种材料做一个开口的长方体容器,其外形长5m ,宽3m ,高为8m,厚20cm ,则所需材料的近似值为 __________________三、计算题:1、方程222238x y z ++=确定函数(,)z z x y =,求,z z x y∂∂∂∂, ⎰⎰100),(ydxy x f dy ⎰⎰2cos 0)sin ,cos (πθθθθrdrr r f d 112>2≤63)(2222=-+y z x ]2.08,4.05,4.03:[6.28||6.28)2.0(53)4.0(83)4.0(852.0,4.0,4.0,8,5,3,:(3---=∆=∆∴-=-**+-**+-**=∆+∆+∆=≈∆-=∆-=∆-=∆====内高为内长为内宽为注外高外长外宽设解m u V z xy y xz x yz du u z y z y x xyz u ⎰⎰πθθ0sin 20)(rdr r f d dy e dx 2121+36.28mzyz y F F y z z x z x F F x z zF yF x F z y x z y x F :z y z x z y x 3264,362642832),,(222-=-=-=∂∂-=-=-=∂∂===∴-++=则设解2、设z =z x ∂∂和zy∂∂, 2322'2122232222221222222)(])([)(2)(21y x xy y x x yzy x y yx xy x x y x xz y x xz :y +-=+=∂∂∴+=+⋅+-+=∂∂∴+=--已知解3、设2yz x ye =,求2z x y ∂∂∂和22zy ∂∂)2()1()1()1(222,22222222222y e x e x y e x yz y e x ye x e x yz y xe xye xe yx z xye x z ye x z :yy y yy y y y y y y+=++=∂∂+=+=∂∂+=+=∂∂∂=∂∂∴=已知解 4、设222(,,)f x y z xy yz zx =++,求(0,0,1),(1,0,1),(2,0,1)xx xy xxz f f f -2)1,0,2(2),,(0)1,0,1(2),,(2)1,0,0(2),,(2),,(),,(2222=∴==-∴==∴=+=++=xxz xxz xy xy xx xx x f z y x f f y z y x f f z z y x f xz y z y x f zx yz xy z y x f :已知解5、 设 22(,)z f x y xy =+,f 为可微函数,求,z z x y∂∂∂∂212122222222),(,),(),(xf yf x f y f yv v f y u u f y z yf xf y f x f x vv f x u u f x z xyy x v y x y x u ,xy y x f z :v u v u +=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∴+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∴=+=+=设已知解 6、 设22,3,42,vz u x y v x y u==+=+求y z x z ∂∂∂∂,22222222222222222222222222)3()43(2)3()24(2)3(222'')3()33(4)3()24(6)3(464''24,3y x y xy x y x y x y y x u yv u u v u u v y z y x xy x y y x y x x y x u xv u u v u u v x z yx v y x u ,uvz :y y x x +--=++-+=-=-=∂∂∴+--=++-+=-=-=∂∂∴+=+==设已知解 7、求2Dx ydxdy ⎰⎰,D 为抛物线22y x =和直线12x =所围成的区域 0)243(]3[0]2[:0]22[,),(0),(,),(),(:7111211311122222102221022222102222222212222222=-=======∴=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--------dy yy dy yx ydx x dy dx yx ydy x dx ydxdy x ydy x dx ydxdy x ydy x ,x ,y y x ydy x dx dxdy y x f dxdyy x f D y x f ,x D ,y y x y x f y y x xDxxDx x x x Dx xD或解二则由定积分性质可知轴对称的区间时为关于的奇函为关于由于本题必有上连续时在则当轴对称关于若积分区域的奇函数关于解一8、 求2(),Dx y dxdy +⎰⎰ 其中D 是由曲线1y x=和直线 ,2y x y ==围成的区域。

高数一期末考试题及答案

高数一期末考试题及答案

高数一期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是函数f(x)=x^2+3x+2的导数?A. 2x+3B. x^2+3C. 2x+6D. x+2答案:A2. 求极限lim(x→0) (sin(x)/x)的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是函数f(x)=e^x的不定积分?A. e^x + CB. e^xC. ln(e^x) + CD. x*e^x + C答案:A4. 以下哪个选项是函数f(x)=x^3-6x^2+11x-6的极值点?A. x=1B. x=2C. x=3D. x=4答案:B二、填空题(每题5分,共20分)5. 求定积分∫(0 to 1) x^2 dx的值是______。

答案:1/36. 函数y=x^3-3x+2的拐点是x=______。

答案:07. 函数f(x)=ln(x)在x=1处的切线斜率是______。

答案:18. 函数f(x)=x^2+2x+1的最小值是______。

答案:0三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:单调增区间为(3, +∞)和(-∞, 1);单调减区间为(1, 3)。

10. 求函数f(x)=x^2-4x+3的极值。

答案:当x=2时,函数取得极小值f(2)=-1。

11. 求函数f(x)=x^3-3x+2在x=1处的切线方程。

答案:切线方程为y=5x-2。

12. 求定积分∫(0 to 2) (x^2-2x+1) dx的值。

答案:413. 求函数f(x)=e^x-x-1的零点。

答案:函数f(x)=e^x-x-1的零点为x=0。

14. 求函数f(x)=ln(x)+x^2在x=1处的切线方程。

答案:切线方程为y=2x-1。

四、证明题(每题10分,共20分)15. 证明:函数f(x)=x^3+3x^2-2x+1在(-∞, -2)上是单调递减的。

答案:首先求导f'(x)=3x^2+6x-2,令f'(x)<0,解得x<-2,因此函数在(-∞, -2)上单调递减。

高数一期末试题及答案

高数一期末试题及答案

高数一期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' - y = 0 \) 的通解是:A. \( y = e^x \)B. \( y = \sin(x) + \cos(x) \)C. \( y = e^{2x} \)D. \( y = x^2 \)答案:B4. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是:B. 1C. 3D. 27答案:C二、填空题(每题5分,共20分)1. 设 \( f(x) = x^2 - 4x + 4 \),则 \( f'(x) =\_\_\_\_\_\_\_\_ \)。

答案:\( 2x - 4 \)2. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_\_\_\_ \)。

答案:\( x\ln(x) - x + C \)3. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 的交点坐标是\( \_\_\_\_\_\_\_\_ \)。

答案:\( (0,0) \) 和 \( (2,4) \)4. 函数 \( y = e^{3x} \) 的二阶导数是 \( \_\_\_\_\_\_\_\_ \)。

答案:\( 9e^{3x} \)三、计算题(每题15分,共30分)1. 计算定积分 \( \int_{0}^{1} (3x^2 - 2x + 1) dx \)。

\[\int_{0}^{1} (3x^2 - 2x + 1) dx = \left[ x^3 - x^2 + x\right]_{0}^{1} = (1 - 1 + 1) - (0 - 0 + 0) = 1\]2. 求函数 \( y = x^3 - 6x^2 + 9x + 1 \) 的极值。

高数期末下册考试题及答案

高数期末下册考试题及答案

高数期末下册考试题及答案序章数学是一门科学,也是一门工具学科,对于不少学子而言,高等数学一直是一门令人头疼的学科,尤其是对于高数期末考试而言,更是充满了挑战。

本文将提供高数期末下册考试题及答案,以帮助读者更好地准备并且顺利通过这一考试。

第一章:导数与微分题目一:计算以下函数的导数并求出导函数1. $f(x)=3x^2+2x+1$2. $g(x)=\sin(x)-\cos(x)$3. $h(x)=e^x\cdot\ln(x)$题目二:应用题一天中,某商品的销售量随时间变化的规律如下:$Q(t) = 100e^{-0.02t}$,其中时间$t$以小时为单位。

求在第3小时以内的销售量的平均增长速度。

第二章:积分学题目三:求下列不定积分1. $\int (2x^2+3x-1)dx$2. $\int \frac{1}{x}dx$3. $\int \frac{2x+3}{x^2+3x+2}dx$题目四:计算定积分已知函数$f(x)=x^2-3x+2$,计算$\int_0^3 f(x)dx$的值。

第三章:微分方程题目五:求解下列微分方程1. $\frac{dy}{dx}=2x+1$2. $\frac{d^2y}{dx^2}+4\frac{dy}{dx}+4y=0$3. $\frac{d^2y}{dx^2}+9y=\sin(x)$题目六:应用题一个满足空气阻力的物体由高空自由落下,求解物体落地时的速度和位移。

第四章:无穷级数题目七:判断级数是否收敛1. $\sum_{n=1}^\infty \frac{1}{2^n}$2. $\sum_{n=1}^\infty \frac{n}{n^2+1}$3. $\sum_{n=1}^\infty \frac{2^n}{n!}$题目八:计算级数的和计算级数$\sum_{n=1}^\infty \frac{1}{2^n}$的和。

结语通过以上的考题,相信读者们对于高数期末下册考试的复习有了更明确的目标和方向。

山东期末高数试题及答案

山东期末高数试题及答案

山东期末高数试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2-4x+3在区间[0,4]上的最大值是()A. 1B. 3C. 5D. 9答案:C2. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. -1D. 2答案:B3. 已知函数f(x)=x^3+2x^2-x+1,求f'(x)=()A. 3x^2+4x-1B. 3x^2+4x+1C. 3x^2-4x+1D. 3x^2-4x-1答案:A4. 曲线y=x^3-6x+8在点(2,0)处的切线斜率是()A. -2B. 4C. -8D. 12答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+c,若f(x)在x=2处取得极小值,则c的值为______。

答案:46. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,求a_3=______。

答案:97. 设函数f(x)=x^3-3x+1,求f''(x)=______。

答案:6x-38. 曲线y=x^2-4x+5与直线y=2x-1的交点坐标为______。

答案:(2,3),(3,8)三、解答题(每题15分,共60分)9. 求函数f(x)=ln(x+1)-x在区间(0,+∞)上的最小值。

答案:由f'(x)=1/(x+1)-1=-x/(x+1),令f'(x)=0得x=0,当x∈(0,+∞)时,f'(x)<0,故f(x)在(0,+∞)上单调递减,所以f(x)的最小值为f(0)=0。

10. 求函数f(x)=x^3-3x^2+2在区间[-1,2]上的最大值和最小值。

答案:由f'(x)=3x^2-6x=3x(x-2),可知在[-1,0)上f'(x)>0,在(0,2]上f'(x)<0,故f(x)在[-1,0)上单调递增,在(0,2]上单调递减。

因此,f(x)的最大值为f(0)=2,最小值为f(2)=-2。

期末高数试题及答案

期末高数试题及答案

期末高数试题及答案一、选择题(每题2分,共10分)1. 下列函数中,哪一个是周期函数?A. y = x^2B. y = sin(x)C. y = e^xD. y = ln(x)答案:B2. 函数f(x) = x^3 - 2x^2 + 3x - 4的导数是:A. 3x^2 - 4x + 3B. 3x^2 - 4x + 4C. 3x^2 + 4x - 3D. 3x^2 + 4x + 3答案:A3. 曲线y = x^2在x = 2处的切线斜率是:A. 0B. 4C. -4D. 2答案:B4. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 1答案:B5. 无穷级数∑(1/n^2)的和是:A. π^2/6B. eC. ln(2)D. 1答案:A二、填空题(每题3分,共15分)6. 若函数f(x) = 2x - 3,则f'(1) = 。

答案:-17. 函数y = ln(x)的原函数是:。

答案:xln(x) - x + C8. 曲线y = x^3 - 6x^2 + 11x - 6与x轴的交点个数是:。

答案:39. 若级数∑(-1)^n/n从n=1到无穷收敛,则其和S满足:S = 。

答案:ln(2)10. 函数y = e^x的泰勒展开式在x=0处的前三项是:y = 1 + x + 。

答案:x^2/2三、简答题(每题5分,共20分)11. 证明函数f(x) = x^3 + 2x - 5在实数范围内单调递增。

答案:首先求导f'(x) = 3x^2 + 2,由于3x^2 + 2 > 0对所有实数x成立,因此函数f(x)在实数范围内单调递增。

12. 计算定积分∫(1到2) (2x + 1) dx。

答案:首先求不定积分,得到F(x) = x^2 + x + C。

然后计算F(2) - F(1) = (2^2 + 2) - (1^2 + 1) = 4 + 2 - 1 - 1 = 4。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题(本大题有4小题, 每小题4分, 共16分)1.。

(A)(B)(C)(D)不可导.2.。

(A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小;(C)是比高阶的无穷小; (D)是比高阶的无穷小。

3.若,其中在区间上二阶可导且,则().(A)函数必在处取得极大值;(B)函数必在处取得极小值;(C)函数在处没有极值,但点为曲线的拐点;(D)函数在处没有极值,点也不是曲线的拐点。

(A)(B)(C)(D)。

二、填空题(本大题有4小题,每小题4分,共16分)4.。

5..6..7..三、解答题(本大题有5小题,每小题8分,共40分)8.设函数由方程确定,求以及.9.设函数连续,,且,为常数. 求并讨论在处的连续性.10.求微分方程满足的解。

四、解答题(本大题10分)11.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程。

五、解答题(本大题10分)12.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D.(1)求D的面积A;(2)求D绕直线x = e 旋转一周所得旋转体的体积V。

六、证明题(本大题有2小题,每小题4分,共8分)13.设函数在上连续且单调递减,证明对任意的,.14.设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示:设)解答一、单项选择题(本大题有4小题, 每小题4分,共16分)1、D2、A3、C4、C二、填空题(本大题有4小题,每小题4分,共16分)5.。

6。

.7. . 8.。

三、解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导,10.解:11.解:12.解:由,知。

,在处连续。

13.解:,四、解答题(本大题10分)14.解:由已知且,将此方程关于求导得特征方程:解出特征根:其通解为代入初始条件,得故所求曲线方程为:五、解答题(本大题10分)15.解:(1)根据题意,先设切点为,切线方程:由于切线过原点,解出,从而切线方程为:则平面图形面积(2)三角形绕直线x = e一周所得圆锥体体积记为V1,则曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2 D绕直线x = e旋转一周所得旋转体的体积六、证明题(本大题有2小题,每小题4分,共12分)16.证明:故有:证毕.证:构造辅助函数:.其满足在上连续,在上可导。

高数期末试卷及答案

高数期末试卷及答案

一、填空题(每小题3分,共15分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ . 答案:)1ln(x -解:x e u f u -==1)(2,)1ln(2x u -=,)1ln(x u -=.2、已知a 为常数,1)12(lim 2=+-+∞→ax xx x ,则=a . 答案:1解:a xba x ax x x x x x x x -=+-+=+-+==∞→∞→∞→1)11(lim )11(1lim 1lim 022.3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim.答案:4解:4)]1()1([)]1()31([lim0=-+--+→x f x f f x f x4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 答案:2解:)(x f '有3个零点321,,ξξξ:4321321<<<<<<ξξξ,)(x f ''有2个零点21,ηη:4132211<<<<<<ξηξηξ,))((12)(21ηη--=''x x x f ,显然)(x f ''符号是:+,-,+,故有2个拐点.5、=⎰xx 22cos sin .答案:C x x +-cot tan解:C x x xdxx dx dx x x x x x x dx +-=+=+=⎰⎰⎰⎰cot tan sin cos cos sin sin cos cos sin 22222222.二、选择题(每小题3分,共15分)答案: 1、 2、 3、 4、 5、 。

1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.答案:A2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0 ,0 ,cos 1)(2x x x xx f 的(A) 跳跃间断点; (B) 连续点;(C) 振荡间断点; (D) 可去间断点. 答案:D3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在; (D) )(x f 在0x 处的左导数与右导数必有一个不存在.答案:B4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''=''; (D) )()(Q C Q R '='.答案:D5、若函数)(x f '存在原函数,下列错误的等式是:(A))()(x f dx x f dxd⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.答案:B三、计算题(每小题6分,共60分) 1、设x x f xx-=--422)2(,求)2(+x f . 答案:42)2(42--=++x x f xx解:令2-=x t ,则2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f tt t tt t , (3分)于是42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f xxx xx . (6分)2、计算)1cos(lim n n n -+∞→.解:nn n n n n ++=-+∞→∞→11coslim )1cos(lim (3分)11010cos 1111cos lim =++=++=∞→nn n . (6分) 3、求极限)21(lim 222nn nn n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , (3分)而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→nn n n n , 所以1)21(lim 222=++++++∞→nn n n n n n n . (6分) 4、求极限xx x x cos sec )1ln(lim 20-+→.答案:1解:xx x x x x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ (4分) 1sin lim cos )1(1lim020=+=→→xxx x x x . (6分)5、求函数xx y 1sin=的导数.答案:)11cos 1(21sin xx x xy x -=']1sin 1ln )1(1[cos 2ln 1sin x x x x x ex x+-=)1sin 1ln 1cos 1(21sin xx x x x x x +-=. (6分)6、求曲线12ln =-+x y y x 在点)1,1(处的法线方程. 答案:02=-+y x解: 方程两边对x 求导得:02ln =-'+'+y yy xy , 将)1,1(),(=y x 代入得法线斜率1)1(1-='-=y k , (3分) 从而法线方程为:)1(11-⋅-=-x y , 即: 02=-+y x . (6分)7、求曲线12134+-=x x y 的凹凸区间和拐点. 答案:曲线在区间]0,(-∞和),1[+∞是凹的,在区间]1,0[是凸的.拐点为)1,0(,)34,1(.解:(1)),()(+∞-∞∈C x f ,(2)2332)(x x x f -=', )1(666)(2-=-=''x x x x x f , (3)0)(=''x f ,得01=x ,12=x . 1)0(=f ,34)1(=f . (3分)(5) 曲线的拐点为)1,0(、)3,1(.(6) 曲线在区间]0,(-∞和),1[+∞是凹的,在区间]1,0[是凸的. (6分) 8、计算⎰+xx dx)1(3. 答案:C x x +-66arctan 66 俞诗秋解:⎰⎰⎰+===+=+==)1(6 ])(1[)()1(2352636366t t dtt x x dx x x dx x t t x (3分) ⎰⎰⎰+=-=+-+=2221 6 611)1( 6t dtdt dt t t . C x x C t t +-=+-=66arctan 66arctan 66. (6分)9、计算⎰xdx e x 2sin .答案:C x x e x +-)2cos 2sin 21(104 解:⎰⎰⎰+-=-=xdx e x e x d e xdx e x x x x 2cos 212cos 212cos 212sin (3分)⎰⎰-+-=+-=xdx e x e x e x d e x e x x x x x 2sin 412sin 412cos 212sin 412cos 21,∴C x x e xdx e x x +-=⎰)2cos 2sin 21(1042cos . (6分)10、设某商品的需求函数为P Q 5100-=,其中Q P ,分别表示需求量和价格,试求当总收益达到最大时,此时的需求弹性,并解释其经济意义.答案:1)10(=η,当总收益达到最大时,价格上涨%1,需求则相应减少%1.俞诗秋 解:总收益函数为25100)5100()(P P P P PQ P R -=-==,令010100)(=-='P P R ,得3=P ,而05)10(<-=''R ,可见, 当10=P 时, 总收益达到最大. (3分) 此时需求弹性151005)10(1010=-=-===P P P PdP dQ Q P η, (5分)说明,当总收益达到最大时,价格上涨%1,需求则相应减少%1. (6分)四、证明题(每小题5分,共10分)1、证明方程1=x xe 在区间)1,0(内有且只有一个实根. 证明:显然]1,0[1)(C xe x f x ∈-=,由于01)0(<-=f ,01)1(>-=e f ,由零点定理知,)1,0(∈ξ..t s 0)(=ξf ,即1=ξξe ; (3分) 又因0)1()(>+='x e x x f ,)1,0(∈x ,知]1,0[)(↑x f ,所以方程1=x xe 在区间)1,0(内有且只有一个实根ξ. (5分)2、设)(x f 在闭区间]2,1[连续,在开区间)2,1(可导,且)1(8)2(f f =,证明在)2,1(内必存在一点ξ,使得)()(3ξξξf f '=.证明: 令3)()(x x f x F =,623)(3)()(xx f x x f x x F -'=', 显然]2,1[)(C x F ∈,)2,1()(D x F ∈,且)2(8)2()1()1(F f f F ===, 由罗尔定理知:)2,1(∈∃ξ,..t s 0)(='ξF ,所以)()(3ξξξf f '=.。

高数考试题库及答案解析

高数考试题库及答案解析

高数考试题库及答案解析一、选择题1. 函数f(x)=x^2-3x+2在区间[1,4]上的最大值是:A. 0B. 3C. 6D. 7答案:D解析:首先求导f'(x)=2x-3,令f'(x)=0,解得x=3/2。

在区间[1,4]上,f'(x)在x<3/2时为负,x>3/2时为正,说明f(x)在x=3/2处取得极小值。

计算f(3/2)=-1/4,再计算区间端点f(1)=0和f(4)=6,可知最大值为f(4)=6。

2. 若f(x)=sin(x)+cos(x),则f'(x)的表达式为:A. cos(x)-sin(x)B. cos(x)+sin(x)C. sin(x)-cos(x)D. sin(x)+cos(x)答案:A解析:根据导数的运算法则,f'(x)=[sin(x)]'+[cos(x)]'=cos(x)-sin(x)。

二、填空题1. 曲线y=x^3-6x^2+9x在点(2,0)处的切线斜率为______。

答案:-12解析:首先求导y'=3x^2-12x+9,将x=2代入y'得到切线斜率为-12。

2. 定积分∫(0,1) x^2 dx的值为______。

答案:1/3解析:根据定积分的计算公式,∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。

三、解答题1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:函数f(x)的单调增区间为(1,3),单调减区间为(-∞,1)和(3,+∞)。

解析:首先求导f'(x)=3x^2-12x+11,令f'(x)=0解得x=1,3。

根据导数符号变化,可得单调区间。

2. 求曲线y=x^2-4x+3与直线y=2x平行的切线方程。

答案:切线方程为:x-y-1=0。

解析:曲线y=x^2-4x+3的导数为y'=2x-4,令y'=2得到x=3,此时切点坐标为(3,2)。

高数上学期期末复习题库

高数上学期期末复习题库

高数上学期期末复习题库一、选择题(每题2分,共20分)1. 函数f(x)=x^2-3x+2在区间[1,3]上的最大值是:A. 0B. 2C. 4D. 62. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. ∞D. 不存在3. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^2 - xC. f(x) = x^3D. f(x) = sin(x)4. 若函数f(x)在点x=a处连续,则下列哪个选项一定正确?A. f(a) = aB. lim(x→a) f(x) = f(a)C. f(a) = 0D. lim(x→a) (f(x) - f(a))/x = 05. 定积分∫[0,1] x^2 dx的值是:A. 1/6B. 1/3C. 1/2D. 2/36. 以下哪个级数是收敛的?A. ∑(1/n^2)B. ∑(1/n)C. ∑((-1)^n/n)D. ∑(n)7. 微分方程dy/dx + 2y = 6x的通解是:A. y = 3x^2 + CB. y = 2x^2 + CC. y = x^2 + CD. y = 6x + C8. 函数f(x)=ln(x)的导数是:A. 1/xB. ln(x)C. xD. 19. 若f(x)=x^3-6x^2+11x-6,则f'(x)是:A. 3x^2-12x+11B. x^2-4x+1C. 3x^2-12x+10D. x^2-4x+610. 以下哪个选项是泰勒级数展开式?A. sin(x) = x - x^3/3! + x^5/5! - ...B. e^x = 1 + x + x^2/2! + x^3/3! + ...C. ln(1+x) = x - x^2/2 + x^3/3 - ...D. 所有选项都是二、填空题(每题2分,共20分)11. 函数f(x)=x^3在x=1处的导数是_________。

12. 若函数f(x)=x^2+1,则f'(2)=_________。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。

2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。

3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。

4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。

5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。

6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。

7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。

8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。

9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。

10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。

11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。

12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。

13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。

14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。

15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。

16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。

17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。

18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。

19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。

20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。

高等数学 期末试题及答案

高等数学 期末试题及答案

高等数学期末试题及答案第一部分:选择题1. 在极限计算中,下列哪一项是正确的?A. 当分子分母的次数相同时,可直接求极限B. 当分子分母的次数相差1时,可直接求极限C. 当分子分母的次数相差2时,可直接求极限D. 当分子的次数大于分母时,极限不存在2. 函数y = ln(x)的导数是:A. y = 1/xB. y = 1C. y = ln(x)D. y = x3. 曲线y = 2x^3 + 3x^2 - 12x的拐点是:A. (2, 10)B. (0, -12)C. (1, -7)D. (4, 56)4. 两个正数相加,它们的和为常数。

则这两个正数的乘积最大时,它们应该是:A. 相等B. 一个为0,一个为常数C. 一个为常数,一个趋近于无穷大D. 一个趋近于0,一个趋近于无穷大5. 在极坐标系中,点P的坐标为(r, θ),则点P的平面直角坐标是:A. (r, θ)B. (r*cosθ, r*sinθ)C. (r*sinθ, r*cosθ)D. (r*cosθ, r*cosθ)第二部分:计算题1. 求函数f(x) = x^3 - x^2 - 4x + 4在区间[-2, 2]上的最大值和最小值。

2. 已知f(x) = e^x,求f'(x)。

3. 将函数y = 2sin(x) - cos(2x)在区间[0, π]上的离散点连接成折线,计算所得折线围成的面积。

第三部分:解答题1. 证明方程x^3 + 3x - 1 = 0在区间[0, 1]内有且只有一个实根。

2. 已知椭圆的长半轴为a,短半轴为b,证明椭圆的离心率为e = √(a^2 - b^2) / a。

3. 求曲线y = ln(x)在点(1, 0)处的切线方程。

第四部分:解答题(附答案)1. 证明:对于任意实数x,有|x| ≤ √(x^2)。

证明:设x为任意实数,考虑两种情况:当x ≥ 0时,有|x| = x,而√(x^2) = x,因此|x| ≤ √(x^2)成立;当x < 0时,有|x| = -x,√(x^2) = √((-x)^2) = -x,因此|x| ≤ √(x^2)亦成立。

高数期末考试复习题库

高数期末考试复习题库

高数期末考试复习题库一、选择题1. 函数f(x)=x^2+3x-2的导数是:A. 2x+3B. 2x-3C. 2x+6D. 2x+12. 曲线y=x^3-6x^2+9x在x=1处的切线斜率是:A. 0B. -6C. 6D. 123. 若f(x)=sin(x),则f'(π/4)的值是:A. 1B. √2/2C. 0D. -14. 函数f(x)=e^x的不定积分是:A. e^x + CB. e^x - CC. e^x * x + CD. x * e^x + C5. 曲线y=x^2与直线y=4x-5的交点坐标是:A. (1,3)B. (2,3)C. (1,1)D. (2,5)二、填空题6. 若f(x)=x^3-2x^2+x,求f'(x)=______。

7. 函数y=ln(x)的导数是______。

8. 曲线y=sin(x)在x=π/6处的切线斜率是______。

9. 函数y=x^2的原函数是______。

10. 若曲线y=x^3-2x^2+x与x轴相交,则交点的横坐标是______。

三、计算题11. 求函数f(x)=2x^3-5x^2+3x+1在区间[0,2]上的最大值和最小值。

12. 求曲线y=x^2-4x+4在x=2处的切线方程。

13. 计算定积分∫[0,1] (3x^2-2x+1)dx。

14. 求函数f(x)=x^2e^x的n阶导数。

15. 利用分部积分法计算定积分∫[1,e] (1/x)lnxdx。

四、解答题16. 证明:若函数f(x)在区间[a,b]上连续且f(a)f(b)<0,则至少存在一点c∈(a,b),使得f(c)=0。

17. 解微分方程:dy/dx + 2y = x^2,y(0) = 1。

18. 利用泰勒公式展开函数f(x)=e^x在x=0处的前三项。

19. 讨论函数f(x)=x^3-3x^2+2x-1的单调性。

20. 求曲线y=x^3-6x^2+9x与直线y=kx平行的切线方程。

高数期末试题 及答案

高数期末试题 及答案

高数期末试题及答案1. 选择题(每题2分,共40分)
1.1 选择题题干
答案:选项A
解析:解析内容
1.2 选择题题干
答案:选项B
解析:解析内容
......
2. 填空题(每题4分,共40分)
2.1 填空题题干
答案:填空答案
解析:解析内容
2.2 填空题题干
答案:填空答案
解析:解析内容
......
3. 计算题(每题10分,共80分)3.1 计算题题干
解答:
计算过程
3.2 计算题题干
解答:
计算过程
......
4. 证明题(每题20分,共80分)4.1 证明题题干
解答:
证明过程
4.2 证明题题干
解答:
证明过程
......
5. 应用题(每题15分,共60分)5.1 应用题题干
解答:
解题思路和步骤
5.2 应用题题干
解答:
解题思路和步骤
......
综上所述,这是一份高数期末试题及答案,包括选择题、填空题、计算题、证明题和应用题。

每道题目都提供了准确的答案和解析,以帮助同学们检验和巩固他们的数学知识。

请同学们认真阅读每道题目并按照正确的解题思路和步骤进行答题。

祝大家期末考试顺利!
(文章结束,共计xxx字)。

大一(第一学期)高数期末考试题及答案【范本模板】

大一(第一学期)高数期末考试题及答案【范本模板】

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。

(A)(0)2f '= (B)(0)1f '=(C)(0)0f '= (D )()f x 不可导。

2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B)()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C)1x - (D)2x +。

二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m 。

6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。

7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x 。

三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

往届高等数学期终考题汇编2009-01-12一.解答下列各题(6*10分): 1.求极限)1ln(lim 1xx e x ++→.2.设⎪⎭⎫ ⎝⎛++++=22222ln a x x a a x x y ,求y d .3.设⎪⎩⎪⎨⎧-=-=3232tt y tt x ,求22d d x y .4.判定级数()()0!12≥-∑∞=λλλn nn n n e 的敛散性.5.求反常积分()⎰-10d 1arcsinx x x x .6.求⎰x x x d arctan .7.⎰-π03d sin sin x x x .8.将⎪⎩⎪⎨⎧≤≤<=πππx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间.9.求微分方程0d )4(d 2=-+y x x x y 的解.10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域.三.(9分)在曲线()10sin 2≤≤=x x y 上取点()()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值.四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞=-02n nx e x 在[),0+∞上一致收敛.(2)求幂级数()∑∞=-----122121212)1(n n n n x n 的收敛域及和函数.六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()⎰''-+⎪⎭⎫⎝⎛+-=ba f ab b a f a b dx x f ξ324122008.1.15一.解答下列各题(6*10分):1.计算极限 ()xx x e x x 3sin 22lim ++-→.2.设,5arctan log 22π+-=x x ey x求y d .3.设,20;cos sin ,cos ln ⎪⎭⎫ ⎝⎛<<⎩⎨⎧-==πt t t t y t x 求322d d π=t x y .4.判定级数∑∞=123n nnn 的敛散性. 5.计算反常积分dx xx⎰+∞12ln . 6.计算不定积分⎰x x xx d cos sin 23.7.计算定积分()⎰+1021d x e x.8.求函数()⎩⎨⎧<<≤≤=21,210,1x x x f 在[]2,0上展成以4为周期的正弦级数.9.求微分方程()()0d d 132=++++y y y x x y 的通解.10.求由曲线72+=x y 及532+=x y 所围成的图形绕ox 轴旋转一周而成的旋转体的体积. 二.(9分)证明:当0≥x 时,有()()[]()221ln 2arctan 4111ln 21x x x x x +-≥+-++.三.(9分) 设抛物线()02<+=a bx ax y 通过点()3,1M ,为了使此抛物线与直线x y 2=所围成的平面图形的面积最小,试确定a 和b 的值.四.(8分)设一车间空间容积为10000立方米,空气中含有0.12%的二氧化碳(以容积计算),现将含二氧化碳0.04%的新鲜空气以1000立方米每分钟的流量输入该车间,同时按1000立方米的流量抽出混合气体,问输入新鲜空气10分钟后,车间内二氧化碳的浓度降到多少? 五.(8分)求幂级数nn nx n n ∑∞=+0!21的收敛域及其和函数. 六.(6分)设函数()x f 在0=x 的邻域内有连续的一阶导数,且()a xx f x =→0lim()0>a ,证明:()⎪⎭⎫⎝⎛-∑∞=-n f n n 1111条件收敛.2007年1月一. 计算下列各题(6*10分):1.计算极限()xx x e x x arctan 11ln lim 0---+→.2. 设21arcsin x y -=, 求y d .3. 设⎪⎩⎪⎨⎧=+-=⎰-.01sin .d 02y t e u e x y t u 求0d d =x x y .4. 判定级数∑∞=+134n nn的敛散性. 5. 计算反常积分()⎰∞+11d xx x.6设()21ln x x ++为()x f 的原函数, 求()⎰'x x f x d .7. 将()⎪⎪⎩⎪⎪⎨⎧≤<≤≤=.2 ,0;20 ,1πππx x x f 展开成以π2为周期的傅立叶正弦级数, 并求此级数分别在π23=x 和π25=x 两点的收敛值.8. 将函数()x x f ln =展开为2-x 的幂级数,并指出其收敛域.9求微分方程()()27121+=-'+x y y x 的通解.10. 求抛物线25y x =与21y x +=所围图形的面积.二. (9分) 若函数()⎪⎩⎪⎨⎧=≠=⎰.0,;0 ,d 1cos 2x a x x te xf x t 在0=x 点可导. 求a 和()0f '.三. (9分) 在曲线()0≥=-x e y x 上求一点()0,0xe x -,使得过该点的切线与两个坐标轴所围平面图形的面积最大, 并求出此最大面积.四(8分)半径为R 的半球形水池充满水,将水从池中抽出, 当抽出的水所作的功为将水全部抽出所作的功的一半时, 试问此时水面下降的深度H 为多少? 五.(8分)求幂级数()∑∞=+11n nx n n 的和函数并求出级数()∑∞=+1211n n n n 的和.六. (6分) 已知函数()x f 在[)+∞,0上可导, 且()10=f 并满足等式()()()0d 110=+-+'⎰x t t f x x f x f , 求()x f '并证明()().0 1≥≤≤-x x f e x2006年1月一. 计算下列各题(6*10分):1. 30sin tan limx xx x -→2.设⎪⎭⎫ ⎝⎛=2tan 21arctan x y , 求y d .3.设()⎪⎩⎪⎨⎧<+≥=-0,10,2x x x e x f x, 求()x x f d 121⎰--.4. 判定级数212121n n n n n ⎪⎭⎫⎝⎛+∑∞=的敛散性. 5. 设()x y y =由方程()y x y +=tan 所确定,求y '.6.计算不定积分()⎰++x ee xx d 1122.7. 将()x x f +=2, []ππ,-∈x 展成以π2为周期的傅立叶级数.8. 将函数()2312++=x x x f 展成()4+x 的幂级数, 并指出收敛区间. 9. 求微分方程xe x y y x 43=-'的通解.10. 设曲线2axy =()0,0≥>x a 与21x y -=交于点A, 过坐标原点O 和点A 的直线与曲线2ax y =围成一个平面图形. 问: 当a 为何值时,该图形绕x 轴旋转一周所产生的旋转体体积最大?二. (8分) 证明不等式: 当0>x 时, ααα-≤-1x x , ()10<<α. 三. (9分). 设()⎰-=221d x t te xf , 求()⎰1d x x xf .四. (9分). 一物体在某一介质中按3ct x =作直线运动,已知介质的阻力与物体速度的平方成正比, 计算物体由0=x 移动到a x =时克服阻力所作的功.五. (9分) 求级数()∑∞=+0311n nn 的和. 六. (5分). 设()0>''x f , []b a x ,∈, 证明:()()()()⎰+≤-≤⎪⎭⎫⎝⎛+b a b f a f x x f a b b a f 2d 12.2005年1月15日一. 解答下列各题(6×10分)1. 计算极限()x x x x x e x x sin 1sin lim 0-+-→ 2. 设()1ln 211222++++=x x x x y ,求y d .3. 设()⎩⎨⎧>+≤=02 , ,x x b ax x x x x f 在0x 处可导,求常数a 和b .4. 判定级数()∑∞=--1131n nn n 的敛散性. 若收敛,是条件收敛还是绝对收敛?5. 设()x y y =由方程ye y x y ++-=)ln(1所确定,求y '. 6. 设()xf 连续,且满足()x t t f x =⎰-13d .求()?26=f .7. 求()1123223+--=x x x x f 的极值. 8. 计算不定积分⎰-x xx 2ln 4d .9. 计算定积分x x d arctan1⎰.10. 求由曲线12+=x y , 直线,0=y 0=x , 1=x 所围成的平面图形绕y 轴旋转一周所产生的旋转体的体积.二. (8分). 试证明不等式⎪⎭⎫⎝⎛∈2,0πx 时, 3tan 3x x x +>.三. (9分) 将函数()3212-+=x x x f 展成3-x 的幂级数,并指出收敛区间. 四. (9分) 已知()x f 在12=x 的邻域内可导, 且()0lim 12=→x f x ,()22005lim 12='→x f x . 求极限()()312121212d d limx t u u f t xt x -⎥⎦⎤⎢⎣⎡⎰⎰→→.五.(8分) 求幂级数nn x n n ∑∞=+0!1的收敛域及和函数. 六. (6分) 设()x f 在[]1,0上连续, 在()1,0内可导, 且()10≤'<x f , ()00=f .证明 ()()x x f dx x f d 103210⎰⎰≥⎥⎦⎤⎢⎣⎡2004年1月一、解下列各题1、10lim ,(0,0)2x xxx a b a b →⎛⎫+>>⎪⎝⎭其中 2、设22(sin )x xy x e x -=+,求y '3、求不定积分arctan x xdx ⎰4、求不定积分21(1)dx x x +⎰5、求定积分4⎰6、求由曲线1|ln |,,y x x x e e===及x 轴围成的图形的面积。

相关文档
最新文档