难点4 三个“二次”及关系
人教版数学九年级上册 教案:22.3《实际问题与二次函数》
人教版数学九年级上册教案:22.3《实际问题与二次函数》一、教学目标1.理解实际问题与二次函数之间的关系。
2.掌握解决实际问题的二次函数模型建立方法。
3.能够应用二次函数解决实际问题。
二、教学重难点1.掌握如何将实际问题抽象为二次函数模型。
2.解决实际问题时的思维过程和方法。
三、教学准备1.课本《人教版数学》九年级上册。
2.教学投影仪。
3.讲义、笔、纸等。
四、教学过程1. 导入新知识通过提问学生,引导他们回顾上节课学习的内容,并复习二次函数的定义、图像和性质。
2. 引入实际问题给出一个实际问题,例如:小明用压岁钱买了一台照相机,照相机的价格是x 元,如果每售出一台照相机,他能从中获利5x - x^2 元。
请问小明应该以多少价格售出照相机,才能使利润最大化?3. 建立二次函数模型解释给出问题,并引导学生思考如何建立二次函数模型。
提示学生需要确定自变量和因变量,并分析问题中的关系。
通过与学生互动,引导出二次函数模型:利润函数 P(x) = 5x - x^2。
4. 解决问题通过对利润函数进行求导,并求得导函数为0的临界点 x = 2.5。
由此可得,当照相机的价格为2.5元时,小明的利润最大化。
5. 拓展实际问题给出更多类似的实际问题,例如:某体育用品店销售护膝,价格为x元一副,销量为100 - 5x副。
请问店家应该以多少价格销售护膝,才能使利润最大化?引导学生分析问题并建立二次函数模型。
通过解法流程的讲解,帮助学生掌握解决实际问题的方法。
6. 总结回顾对本节课学习的内容进行总结回顾。
重点强调实际问题与二次函数之间的联系,以及解决实际问题的方法。
五、课堂练习根据给出的实际问题,学生单独完成建立二次函数模型,并求解出最优解。
1.某农场种植西瓜,每亩土地种植西瓜数量为x只,销量为100x - 2x^2只。
请问农场应该种植多少只西瓜,才能使销售额最大化?2.某旅游公司举办一次旅行,每人收费为x元,游客的数量为200 - 10x人。
高考数学难点之三个“二次”及关系
高考数学难点之三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x=|a -1|+2的根的取值X 围. ●案例探究[例1]已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值X 围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-ab 2,x 1x 2=ac .|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a acc a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得a c ∈(-2,-21) ∵]1)[(4)(2++=a c ac a cf 的对称轴方程是21-=a c . a c ∈(-2,-21)时,为减函数 ∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).[例2]已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的X 围. (2)若方程两根均在区间(0,1)内,求m 的X 围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) ●锦囊妙计1.二次函数的基本性质 (1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-ab2)=m ; 若-ab2≥q ,则f (p )=M ,f (q )=m . 2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0; (2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0; (2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+a b 2|,当a <0时,f (α)<f (β)⇔|α+ab2|> |β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 ●歼灭难点训练 一、选择题1.(★★★★)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值X 围是( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)2.(★★★★)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A.正数B.负数C.非负数D.正数、负数和零都有可能 二、填空题3.(★★★★★)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值X 围是_________.4.(★★★★★)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值X 围是_________.三、解答题5.(★★★★★)已知实数t 满足关系式33log log aya t a a= (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值.6.(★★★★)如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值X 围.7.(★★★★★)二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证:(1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2 (1)当-23≤a <1时,原方程化为:x =-a 2+a +6,∵-a 2+a +6=-(a -21)2+425. ∴a =-23时,x mi n =49,a =21时,x max =425. ∴49≤x ≤425. (2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12.综上所述,49≤x ≤12. 歼灭难点训练一、1.解析:当a -2=0即a =2时,不等式为-4<0,恒成立.∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的X 围是-2<a ≤2. 答案:C2.解析:∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0.答案:A二、3.解析:只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1.∴p ∈(-3,23). 答案:(-3,23) 4.解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 答案:-2<x <0三、5.解:(1)由log a 33log aya t t =得log a t -3=log t y -3log t a 由t =a x 知x =log a t ,代入上式得x -3=xx y a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0).(2)令u =x 2-3x +3=(x -23)2+43(x ≠0),则y =a u ①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值. ②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值 ∴当x =23时,u mi n =43,y mi n =43a由43a=8得a =16.∴所求a =16,x =23. 6.解:∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意.(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm 解得0<m ≤1综上所述,m 的取值X 围是{m |m ≤1且m ≠0}. 7.证明:(1)])1()1([)1(2r m m q m m p p m m pf ++++=+])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0. (2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m)内有解; 若r ≤0,则f (1)=p +q +r =p +(m +1)=(-m r m p -+2)+r =mrm p -+2>0, 又f (1+m m )<0,所以f (x )=0在(1+m m,1)内有解. ②当p <0时同理可证.8.解:(1)设该厂的月获利为y ,依题意得 y =(160-2x )x -(500+30x )=-2x 2+130x -500 由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元.(2)由(1)知y =-2x 2+130x -500=-2(x -265)2+1612.5 ∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.。
中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题
Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.
中考难点二次函数知识点及例题最强解析
中考难点二次函数例题解析二次函数可谓是初中数学考试中的常客,月考,期中考试,期末考试,模拟考试都会有它的身影,中考每年都会有一道关于二次函数的压轴题。
中考二次函数主要以综合题的形式考察,通过对近几年中考二次函数考察情况的分析,二次函数综合题得分率不高,难度系数在0.45-0.55之间,属于中考压轴题之一。
所以掌握二次函数的考点至关重要。
下面我们通过习题,引出知识点总结归纳,二次函数将不再茫然!基础知识一、基本概念:1.二次函数的概念:一般地,形如2a≠)的函数,叫做二次函数。
y ax bx c=++(a b c,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2=+的性质:(上加下减)y ax c3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y有最【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型第二部分 考察重点1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
初中数学精品试题: 二次函数章末重难点题型
二次函数章末重难点题型【考点1 二次函数的概念】【方法点拨】掌握二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c (a、b、c是常数,a≠0)也叫做二次函数的一般形式.【例1】(2020•涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式1-1】(2020春•西湖区校级月考)下列各式中,一定是二次函数的有()−3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax2+bx+c;⑥y①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=1x2=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个【变式1-2】(2020•凉山州一模)若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.【变式1-3】(2020秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【考点2 一次函数与二次函数图象】【方法点拨】判断一次函数与二次函数图象的问题关键在于掌握数形结合的思想,通过图象可以逐一去判断一次函数及二次函数的系数关系.【例2】(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.【变式2-1】(2020•泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()A.B.C.D.【变式2-2】(2020•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx 与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【变式2-3】(2020•淮南模拟)下面所示各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象.正确的是()A.B.C.D.【考点3 二次函数图象上点的坐标特征】【方法点拨】二次函数图象上点的坐标特征,解题时,需熟悉抛物线的有关性质:抛物线的开口向上,则抛物线上的点离对称轴越远,对应的函数值就越大.【例3】(2020•开封一模)已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1【变式3-1】(2020•三明二模)已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(√3,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y3>y2>y1【变式3-2】(2020•黄石)若二次函数y=a2x2﹣bx﹣c的图象,过不同的六点A(﹣1,n)、B(5,n﹣1)、C(6,n+1)、D(√2,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y3【变式3-3】(2020•鼓楼区校级模拟)已知抛物线y=m2x2﹣mx+c(m>0)过两点A(x0,y0)和B(x1,y1),若x0<1<x1,且x0+x1=3.则y0与y1的大小关系为()A.y0<y1B.y0=y1C.y0>y1D.不能确定【考点4 二次函数图象与几何变换】【方法点拨】解决二次函数图象与几何变换类型题,需要掌握平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.【例4】(2020春•天心区校级期末)抛物线y=﹣(x﹣1)2﹣3是由抛物线y=﹣x2经过怎样的平移得到的()A.先向右平移1个单位,再向上平移3个单位B.先向左平移1个单位,再向下平移3个单位C.先向右平移1个单位,再向下平移3个单位D.先向左平移1个单位,再向上平移3个单位【变式4-1】(2020春•岳麓区校级期末)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣5【变式4-2】(2020•平房区一模)已知二次函数y=(x+2)2﹣1向左平移h个单位,再向下平移k个单位,得到二次函数y=(x+3)2﹣4,则h和k的值分别为()A.1,3B.3,﹣4C.1,﹣3D.3,﹣3【变式4-3】(2020春•海淀区校级期末)将抛物线y=(x﹣3)(x﹣5)先绕原点O旋转180°,再向右平移2个单位长度,所得抛物线的解析式为()A.y=﹣x2﹣4x﹣3B.y=﹣x2﹣12x﹣35C.y=x2+12x+35D.y=x2+4x+3【考点5 二次函数图象与系数关系】【方法点拨】二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置.【例5】(2020•龙岩模拟)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:其中正确结论的个数有()①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.A.1个B.2个C.3个D.4个【变式5-1】(2020春•岳麓区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b =0;②若m为任意实数,则a+b≥am2+bm;③a﹣b+c>0;④3a+c<0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为()A.2B.3C.4D.5【变式5-2】(2020•会昌县模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根,其中正确结论的个数为个.【变式5-3】(2020•鼎城区四模)函数y=x2+bx+c与y=x的图象如图所示,有以上结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的是(填序号).【考点6 二次函数与一元二次方程的关系】【例6】(2020•富阳区一模)已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+32=0的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根【变式6-1】(2020•贵阳)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4【变式6-2】(2020•安丘市一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0【变式6-3】(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x ﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<x1x3<1B.x1x3>1C.0<x2x4<1D.x2x4>1【考点7 二次函数与解不等式】【方法点拨】二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.【例7】(2020春•渝中区期末)数形结合是一种重要的数学思想方法,我们可以借助函数的图象求某些较为复杂不等式的解集.比如,求不等式x﹣1>2x的解集,可以先构造两个函数y1=x﹣1和y2=2x,再在同一平面直角坐标系中画出这两个函数的图象(如图1所示),通过观察所画函数的图象可知:它们交于A(﹣1,﹣2)、B(2,1)两点,当﹣1<x<0或x>2时,y1>y2,由此得到不等式x﹣1>2x的解集为﹣1<x<0或x>2.根据上述说明,解答下列问题:(1)要求不等式x2+3x>x+3的解集,可先构造出函数y1=x2+3x和函数y2=;(2)图2中已作出了函数y1=x2+3x的图象,请在其中作出函数y2的图象;(3)观察所作函数的图象,求出不等式x2+3x>x+3的解集.【变式7-1】(2020秋•宝安区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)和一次函数y=kx+m(k,m为常数,且k≠0)的图象如图所示,交于点M(−32,2)、N(2,﹣2),则关于x的不等式ax2+bx+c﹣kx﹣m<0的解集是.【变式7-2】(2020•宜兴市校级一模)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b 的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是.【变式7-3】(2020秋•张家港市期末)已知二次函数y=ax2+bx+c与一次函数y=x的图象如图所示,则不等式ax2+(b﹣1)x+c<0的解集为.【考点8 构建二次函数解决最值问题】【例8】(2020•江西模拟)如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【变式8-1】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【变式8-2】(2020•攀枝花)如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.【变式8-3】(2020秋•岳麓区校级期末)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?【考点9 二次函数新定义问题】【例9】(2020秋•新乡期末)我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,b 2﹣4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2﹣2x ﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当﹣1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =﹣1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4,A .4B .3C .2D .1【变式9-1】(2020•市中区二模)对某一个函数给出如下定义:如果存在常数M ,对于任意的函数值y ,都满足y ≤M ,那么称这个函数是有上界函数;在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数y =﹣(x +1)2+2,y ≤2,因此是有上界函数,其上确界是2,如果函数y =﹣2x +1(m ≤x ≤n ,m <n )的上确界是n ,且这个函数的最小值不超过2m ,则m 的取值范围是( )A .m ≤13B .m <13C .13<m ≤12D .m ≤12 【变式9-2】(2020•江岸区校级模拟)定义[a 、b 、c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m ]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(13,83);②当m >0时,函数图象截x 轴所得的线段长度大于32;③当m <0时,函数在x >14时,y 随x 的增大而减小;④当m ≠0时,函数图象经过同一个点,正确的结论是 .【变式9-3】(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【考点10 二次函数的应用(抛物线形建筑问题)】【例10】(2020秋•玄武区校级月考)图中所示的抛物线形拱桥,当拱顶离水面4m 时,水面宽8m .水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种建系方法.方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为x 轴,建立平面直角坐标系xOy ;方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y 轴,建立平面直角坐标系xOy ,【变式10-1】如图,是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.(1)求出抛物线的解析式;(2)经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位?【变式10-2】(2020•武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【变式10-3】(2020•安徽模拟)如图是某隧道截面示意图,它是由抛物线和长方形构成,已知OA=12米,OB=4米,抛物线顶点D到地面OA的垂直距离为10米,以OA所在直线为x轴,以OB所在直线为y 轴建立直角坐标系.(1)求抛物线的解析式;(2)由于隧道较长,需要在抛物线型拱壁上需要安装两排灯,使它们到地面的高度相同,如果灯离地面的高度不超过8米,那么两排灯的水平距离最小是多少米?(3)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4m,最高处与地面距离为6m,隧道内设双向行车道,双向行车道间隔距离为0.5m ,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5m ,才能安全通行,问这辆特殊货车能否安全通过隧道?【考点11 二次函数的应用(抛物线形运动问题)】【例11】(2020•山西模拟)周末,小明陪爸爸去打高尔夫求,小明看到爸爸打出的球的飞行路线的形状如图,如果不考虑空气阻力,小球的飞行路线是一条抛物线.小明测得小球的飞行高度h (单位:m )与飞行时间t (单位:s )的几组值后,发现h 与t 满足的函数关系式是h =20t ﹣5t 2.(1)小球飞行时间是多少时达到最大高度,求最大高度是多少?(2)小球飞行时间t 在什么范围时,飞行高度不低于15m ?【变式11-1】(2020秋•崆峒区期末)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运行的轨迹为抛物线,篮圈距地面3m .(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m ,那么他能否获得成功?【变式11-2】(2020•洛阳模拟) 如图,在某场足球比赛中,球员甲从球门底部中心点O 的正前方10m 处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m 时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?【变式11-3】(2020秋•溧阳市期末)如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A 处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)a=−2516,c=12;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【考点12 二次函数的应用(面积问题)】【例12】(2020秋•长兴县期末)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圈,现有长为18米的篱笆,一边靠墙,若墙长a=6米,设花圃的一边AB为x米,面积为S米2.(1)求S与x的函数关系式及x值的取值范围;(2)若边BC不小于3米这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.【变式12-1】(2020•荔城区校级模拟)某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?【变式12-2】(2020秋•东海县期末)为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym2.(1)则AE=m,BC=m;(用含字母x的代数式表示)(2)求矩形区域ABCD的面积y的最大值.【变式12-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【考点13 二次函数的应用(利润问题)】【例13】(2020•葫芦岛)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y (本)与销售单价x (元)之间满足一次函数关系,三对对应值如下表:销售单价x (元)12 14 16 每周的销售量y (本) 500 400 300(1)求y 与x 之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x 元(12≤x ≤15,且x 为整数),设每周销售该款笔记本所获利润为w 元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?【变式13-1】(2020•义乌市模拟)新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销量y 1(盒)与售价x (元)之间的关系为y 1=400﹣8x ;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒.(1)求甲、乙两种口罩每盒的进价分别为多少元?(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时两种口罩的销售利润总和为多少?(3)已知甲的销售量不低于乙口罩的销售量的1415,若使两种口罩的利润总和最高,此时的定价应为多少?【变式13-2】(2020•盘锦)某服装厂生产A 品种服装,每件成本为71元,零售商到此服装厂一次性批发A 品牌服装x 件时,批发单价为y 元,y 与x 之间满足如图所示的函数关系,其中批发件数x 为10的正整数倍.(1)当100≤x ≤300时,y 与x 的函数关系式为 .(2)某零售商到此服装厂一次性批发A 品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A 品牌服装x (100≤x ≤400)件,服装厂的利润为w 元,问:x 为何值时,w 最大?最大值是多少?【变式13-3】(2020•朝阳)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)直接写出y与x的关系式;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.【考点14 二次函数的综合(存在性问题)】【例14】(2020秋•中山市校级期中)如图,已知抛物线y=ax2+bx+c的图象与x轴交于A(2,0),B(﹣8,0)两点,与y轴交于点C(0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.【变式14-1】(2020秋•罗平县期中)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)直接写出B点的坐标;(2)求该二次函数的解析式;(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.【变式14-2】(2020秋•思明区校级期中)如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点,过点P的直线垂直于x轴,交抛物线于点Q.(1)求直线AD及抛物线的解析式;(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.【变式14-3】(2020秋•江北区期中)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,点E为直线BC上的任意一点,过点E作x 轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.。
《二次函数》教案8篇(二次函数应用教案设计)
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
专题11 二次根式重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)
专题11 二次根式重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含《二次根式》这一章的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含五类题型:二次根式的双重非负性、二次根式的乘除、最简二次根式、二次根式的混合运算、二次根式的压轴题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一 二次根式的双重非负性第一层非负性:被开方数0≥1.(南雅)在函数y 中,自变量x 的取值范围是( ) A. 1x ≥-B. 1x >-且12x ≠C. 1x ≥-且12x ≠D. 1x >- 【解答】解:由题意得,x +1≥0且2x ﹣1≠0,解得x ≥﹣1且x ≠.故选:C .2.x 的取值范围是 . 【解答】解:x +1≥0,x ≠0,解得,x ≥﹣1且x ≠0,则式子有意义,则x 的取值范围是x ≥﹣1且x ≠0.3.(青竹湖)函数xx y 2-=中,自变量x 的取值范围是 . 【解答】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.4.(青竹湖)已知3y =,则yx的值为( ) 【解答】解:由题意可得:x =4,则y =3,则的值为:.故选:C .5.(雅礼)已知实数x 、y 满足0115=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是 .【解答】解:根据题意得,x ﹣5=0,y ﹣11=0,解得x =5,y =11, ①5是腰长时,三角形的三边分别为5、5、11,不能组成三角形.②5是底边时,三角形的三边分别为5、11、11,能组成三角形,5+11+11=27;所以,三角形的周长为:27;故答案为27.第二层非负性:二次根式的计算结果为非负数,0,0a a a a a ≥⎧⇒==⎨-<⎩6. (长郡)如果()a a 21122-=-,则( ) A. 21<aB. 21≤aC. 21>aD. 21≥a 【解答】解:∵,∴1﹣2a ≥0,解得a ≤.故选:B .7.(广益)若13x <<,则4x -的值为( ) A.25x -B.3-C.52x -D.3【解答】解:由题意可知:x ﹣4<0,x ﹣1>0,∴原式=﹣(x ﹣4)+(x ﹣1)=3,故选:D .8. (长梅)已知实数a ,b 的结果是( )A.1a -B.1a --C.1a -D.1a +【解答】解:由数轴可得:﹣1<a <0,0<b <1,则﹣﹣=﹣a ﹣b ﹣(1﹣b )=﹣a ﹣1.故选:B .9.(长郡)已知a 、b 、c 是ABC ∆a b c +-的值为( )A.2aB.2bC.2cD.()2a c -【解答】解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a ﹣b ﹣c <0,a +b ﹣c >0 ∴+|a +b ﹣c |=b +c ﹣a +a +b ﹣c =2b .故选:B .10.(青竹湖)实践与探索(1 ,= ;(2)观察第(1)的结果填空:当0a ≥= ,当0a <= ;(3,其中23x <<.【解答】解:(1)=3;=5;故答案为:3,5;(2)当a ≥0时=a ;当a <0时,=﹣a ;故答案为:a ,﹣a ;(3)∵2<x <3,∴x ﹣2>0、x ﹣3<0,原式=(x ﹣2 )﹣(x ﹣3)=1.题型二 二次根式的乘除11.(长梅)计算:= .【解答】解:原式=12.==12. (青竹湖) = .【解答】解:原式12.=13.(青竹湖)下列各数中,与2 )A .2B .2C .2-D 【解答】解:∵(2+)×(2﹣)=22﹣=1,∴2+与2﹣互为有理化因式.故选:B .14.0)x ≠的结果是( )A. B.- C.- D.【解答】解:由﹣x 3≥0知x ≤0,则原式=|x |=﹣x ,故选:D .15.(郡维)把根号外的因式移入根号内得( )C.D.【解答】解:∵成立,∴﹣>0,即m <0,∴原式=﹣=﹣.故选:D .题型三 最简二次根式16.(雅礼)下列根式中,不是最简二次根式的是( ) A. 7B. 3C.21D. 2【解答】解:C 、∵==;∴它不是最简二次根式故选:C .17.(青竹湖)下列根式中是最简二次根式的是( ))0a >【解答】解:(A )原式=,故A 不是最简二次根式;(C )原式=a,故C 不是最简二次根式; (D )原式=2,故D 不是最简二次根式;故选:B .18.(郡维)最简二次根式有( ) A.2个B.3个C.4个D.5个【解答】解:最简二次根式有;;,故选:B .19.)ABCD【解答】解:的被开方数是3,而、=2、的被开方数分别是5、2、2,所以它们不是同类二次根式,不能合并,即选项A 、B 、D 都不符合题意.=2的被开方数是3,与是同类二次根式,能合并,即选项C 符合题意.故选:C .20.a =________. 【解答】解:∵=2,∴a +1=2,∴a =1;故答案为:1.题型四 二次根式的混合运算21.(广益)已知1m =,1n =223m n mn ++= . 【解答】解:原式=22()2(1) 2.m n mn ++=+=22.(雅礼)(1)1213212-⎪⎭⎫ ⎝⎛--+(2)348312123÷⎪⎪⎭⎫ ⎝⎛+-. 【解答】解:(1)原式=;323232=--+(2)原式=(3×2﹣2×+4)÷=(6﹣+4)÷=(6﹣+4)÷=.23.0((3)π+- 【解答】解:原式=110.+=24.(广益)计算: ()220160112π-⎛⎫+-- ⎪⎝⎭【解答】解:原式=14225+-+=-25.(雅境)计算:(1)(2)计算:)21+.【解答】解:(1)原式=3=((2)原式=52317-+-=-26.(雅实)已知a =b =求值:(1)b aa b+; (2)22a b ab +.【解答】解:(1)原式=222(a b)212;a b abab ab++-==(2)原式=(a b)2ab +=⨯=27.(广益)先化简,再求值:322222222a b a b a aba ab b a b +-÷++-,其中2a =2b =。
数学《二次函数》优秀教案(精选8篇)
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步发展估算能力。
(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点利用二次函数的图象求一元二次方程的近似根。
教学方法学生合作交流学习法。
教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。
但是在图象上我们很难准确地求出方程的解,所以要进行估算。
本节课我们将学习利用二次函数的图象估计一元二次方程的根。
数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
2024年中考数学综合与实践:圆、二次函数有关重难点题型
综合与实践、圆、二次函数有关重难点题型题型一综合与实践1.综合与实践问题情境:综合与实践课上,老师让同学们以“等腰直角三角形”为主题开展数学活动,并提出如下问题:如题2-1图,将等腰Rt△ABC的直角边AC与等腰Rt△ADC的斜边AC 重合,∠BAC=∠ADC=90°,试判断线段BC 与CD之间的数量关系,并加以证明.(1)数学思考:请你解答老师提出的问题;(2)猜想证明:如题2-2图,点 E 是线段AD上的一个动点(不与A,D重合),连接CE,过点 E作EF⊥CE,分别交AB,AC于F,G两点,连接FC,试判断△CEF的形状,并说明理由.2.综合与实践【阅读理解】如题1-1图,在△ABC中,AM是BC边上的高线,由勾股定理得AM²=AB²−BM²,AM²= AC²−CM²,故AB²−BM²=AC²−CM².【知识迁移】如题1-2 图,在矩形ABCD中,当点P在矩形ABCD内任意位置时,连接AP,BP,CP,DP.求证: AP²+ CP²=BP²+DP².【探索发现】如题1-3 图,若点 P在矩形ABCD 的外部时,上述结论是否仍然成立?请加以判断,并说明理由.【尝试应用】如题1-4图,在△ABC中, AB=3,AC=4,Q为平面内一点,且AQ=1,∠BQC=90°,求 BC 的最大值.3.如题1-1图,正方形ABCD的边AB上有一点E,连接DE.(1)若AD=3AE,则sin∠ADE= ;(2)如题1-2图,将边 CB绕点 C顺时针旋转,旋转角为α,使得点 B 的对应点 F 落在DE上(点F不与点D 重合),连接BF,求∠BFE的度数;(3)如题1-3图,在(2)的条件下,若E为AB的中点,DF=n,正方形ABCD的面积为S,求S关于n的函数关系式.4.小颖在学习了摩擦力的相关知识后,准备在水平面上探究滑动摩擦力与压力之间的关系,探究步骤如下:第一步:如题3-1图,在一水平放置的木板上放置一个质量为1kg的木块(压力大小=重力大小),用弹簧测力计沿水平方向拉动木块,使木块做匀速直线运动(滑动摩擦力的大小可以由弹簧测力计读出);第二步:在木块上增加质量不同的砝码,使木块做匀速直线运动;当在木块上增加质量不同的砝码后,设弹簧测力计所拉物体的质量为m(kg),弹簧测力计的示数为F(N),通过多次测量,得到如下数据:(1)把表中的图的坐标系中,描点,连线,画出弹簧测力计拉力F关于物体质量m的图象;(2)观察所画的图象,猜测F和m之间的函数关系,求出函数表达式;(3)小颖将水平拉动木块实验变成在斜面拉动木块实验,如题3-3图,用弹簧测力计拉着木块分别沿倾斜程度不同的斜面向上做匀速直线运动.经测算,在弹性范围内,沿斜面的拉力 F(N)是高度h(m)的一次函数.当斜面水平放置在地面上时,弹簧测力计的读数为2N,高度h每增加0.1m,弹簧测力计的读数增加0.8N,若弹簧测力计的最大量程是8N,求装置高度h的取值范围.5.综合与实践某数学实验小组在学习了电阻的知识后,计划通过实验探究铂电阻在0∼100°C范围内的温度特性,具体过程如下:【知识背景】电阻温度计是根据导体电阻随温度而变化的规律来测量温度的温度计,铂电阻温度计是最精确的温度计.【实验过程】如题2-1图,将电阻温度计接入电路,开始使导体温度升温,控制温度在( 0°C−100°C范围内,每升温20°C记录一次指示仪表输出的电阻值(单位:Ω),实验完毕后,关闭所有电源.【收集数据】记录的数据如下表:(1)如题2-2图,建立平面直角坐标系,横轴表示温度( (°C),纵轴表示电阻值(Ω),描出以上表中的数据为坐标的各点,并进行连线;(2)观察上述各点的分布规律,判断它们是否在同一条直线上,若在同一条直线上,请你建立适当的函数模型,并求出解析式,若不在同一条直线上,请说明理由;(3)当温度为50°C时,求铂电阻的电阻值.题型二圆的综合题1. 如题1图, △ABC内接于⊙O,AB是⊙O 的直径,分别过点 C 作⊙O 的切线,过点 O作AB的垂线,两线相交于点 D.(1)求证: ∠D=2∠A;(2)请用无刻度的直尺和圆规过点O 作AC 的垂线交AC 于点 E(保留作图痕迹,不写作法);(3)在(2)的条件下,若AB=8,CD=3,求OE的长.2. 如题2图, △ABC内接于⊙O,延长BA至点D,连接DC,使DB=DC,过点A作AE⊥AB交DC于点E,连接B E,BE 与AC相交于点F,且满足∠ADE=2∠EAC.(1)求证:CA=CB;(2)若AD:AB=1:4,求tan∠ABC的值;的值.(3)在(2)的条件下,求AFFC3.如题1-1图, △ABC内接于⊙O,BC是⊙O的直径,CD是∠ACB的平分线,交⊙O 于点D,连接OD,交AB于点E.(1)求证:OD∥AC;,求直线AF与⊙O的位关系.(2)如题1-2图,延长OD至点 F,连接AF,使得AF=BC,且tanB=12在△ABC中,AB=AC,点O是AB边上一动点,以点O为圆心,OB长为半径作圆,交BC于点 D.过点 D作DE⊥AC,垂足为E.(1)如题2-1图,若点O为AB的中点,求证:BD=CD;(2)如题2-2图,当点O为AB 上任意一点时,求证:DE 与⊙O 相切;(3)如题2-3图,若⊙O与AC相切于点F,且⊙O的半径为3,CE=1,求AF的长.如题4图,四边形ABCE内接于⊙O, AB=AC,CE⊥BC,,过点A作BC的平行线交CE的延长线于点 D.(1)求证:AD是⊙O的切线;(2)若DE=2,AE平分∠CAD,求⊙O的半径;(3)新考法探究线段数量关系若( CE=m,DE=n,⊙O的直径为d,探究m,n与d的数量关系,并说明理由.题型三二次函数综合题1. 已知抛物线y₁=ax²−4ax+c经过点(3,−2),与x轴交于点A(x₁,0),B两点.(1)若抛物线过点(−1,2),求抛物线的解析式;(2)若−1<x₁<0,点P(5,n)(n⟩0))在该抛物线上,求a的取值范围;(3)若抛物线y₁向上平移两个单位长度后得到抛物线y₂,抛物y₁与直线y₁=kx+b(k≠0)交于点(x₁,0)(x₁<2),且函数y=y₁+y₁的图象与x轴仅有一个交点.求证:k=2a.2.如题2图,在平面直角坐标系中,抛物线y=−x²+bx+c交x轴于A,B(1,0)两点,交y轴于点C(0,3),连接AC,BC.(1)求抛物线的解析式;(2)N是线段AC上一点,过点N作NN′⊥x轴于点N′,若△ABC的面积被 NN'分为1∶2的两部分,求点N 的坐标;(3)将抛物线向左平移m(m⟩0))个单位长度,与原抛物线的交点为点 D,连接 AD,BD,AC 与 BD 相交于点 E,若△ADE与△BCE的面积差为1,求m的值.3.已知抛物线y=25x2+bx+c的顶点坐标为(−2,185),与x轴交于点A,B(点A在点 B左侧),与y轴交于点C.(1)求b,c的值;(2)点M(-4,2),N是抛物线上两点,若点N到对称轴的距离等于点M到对称轴距离的2倍,求点 N的坐标;(3)若点 P是第二象限内抛物线上一点,连接PB交AC于点D,求PDBD的最大值.x−3与x轴,y轴交于A,B两点,抛物线y=x²+bx+c经过A,B两点,M是射线4.如题2图,直线y=34BA上一动点,过点 M作MN∥y轴交抛物线于点 N.(1)求抛物线的解析式;(2)当M在线段BA上时,连接AN,BN,若S∆ABN=S∆ABO,求此时点M的坐标;(3)新考法与点的运动结合点M从点 B 出发,沿射线BA方向以每秒5个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,MB=MN?请直接写出所有符合条件的t值.5.如题3图,在平面直角坐标系中,已知抛物线y=ax²+bx−2(a≠0)与x轴交于点A(−1,0),B(0),与y 轴交于点 C,点P为直线BC下方抛物线上一动点.(1)求抛物线的解析式;(2)过点P作PE⊥x轴于点 E,连接OP,是否存在点 P 使得. ∠OPE=∠ABC?若存在,求出点的横坐标;若不存在,请说明理由;(3) 将抛物线沿着x轴翻折,点P 的对应点为P′,连接P'B,求△P′CB面积的最大值及此时点 P的坐标.。
二次函数知识点总结最新8篇
二次函数知识点总结最新8篇高中二次函数知识点总结篇一1、按部就班,环环相扣数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。
2、概念记清,基础夯实千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。
要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
3、适当做题,巧做为主学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。
数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。
考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
4、记录错题,避免再犯俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的“陷阱”里。
因此,建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。
毕竟,中考或者在平时考试当中是“分分必争”,一分也失不得。
这样复习时,这个错题本也就成了宝贵的复习资料。
5、集中兵力,攻下弱点每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。
因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。
初中二次函数知识点总结篇二教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
成考数学知识点大全
成考数学知识点大全成考数学知识点11 集合思想及应用集合是高中数学的根本知识,为历年必考内容之一,主要考查对集合根本概念的认识和理解。
例:集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求实数m的取值范围。
2 充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。
例:关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件3 运用向量法解题本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。
例:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。
4 三个“二次〞及关系三个“二次〞即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。
高考试题中近一半的试题与这三个“二次〞问题有关。
例:对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。
5 求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视。
例:f(2-cosx)=cos2x+cosx,求f(x-1)。
例:(1)函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。
(2)二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式。
6 函数值域及求法函数的值域及其求法是近几年高考考查的重点内容之一。
例:设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。
《一元二次不等式的解法》教学设计
基本信息名称《一元二次不等式的解法》教学设计执教者课时1 所属教材目录选修4-5教材分析本节课内容起到了承上启下的作用,地位体现在它的基础性,作用体现在它的工具性。
一元二次不等式的解法不仅是初中一元一次方程、一次函数和二次函数内的容延续和深化,更对已学习过的集合知识的巩固和运用具有重要的作用。
许多问题的解决都会借助一元二次不等式的解法。
学情分析高一聋生对初中部分涉及到的一次函数与二次函数的知识掌握较好,并学习了集合的定义,对本节内容能结合教师的引导、自主探究,能充分地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念。
教学目标知识与能力目标熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。
过程与方法目标培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,通过观察、类比、归纳进一步提高“从具体到抽象”、“从一般到特殊”的能力。
情感态度与价值观目标在教师的启发引导下,让学生通过观察、联想、分析、归纳、总结,根据自身认知规律,按照循序渐进,因材施教的教学原则,使学生亲自体验获得知识的过程,体会由被动到主动的快乐,激发他们求知的兴趣。
教学重难点重点一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。
难点一元二次方程、一元二次不等式与二次函数的关系。
教学策略与设计说明将采用联系对比法、启发法、讨论法、类比法等教学方法并辅以多媒体课件演示。
结合各种教学手法,让学生学会独立发现问题,解决问题,利用联想“旧知”对比“新知”完成本节课的教学目标,解决教学重难点。
教学过程教学环节(注明每个环节预设的时间)教师活动学生活动设计意图1.创设情景,自主探究。
(8分钟)请学生们解一元二次方程:x2-x-6=0求解完后教师将上述方程中“=”改成“>”,就得到一元二次不等式x2-x-6>0解方程学生计算,观察图象。
二次函数专题知识点 常考(典型)题型 重难点题型(含详细答案)
二次函数和基本性质专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.二次函数的概念 (2)2.二次函数y=ax2的图像和性质 (2)3.二次函数y=a(x-h)2+k(a≠0)的性质 (4)4,用配方法求y=ax2+bx+c(a≠0) (6)5.二次函数图像性质总结 (7)6.二次函数解析式的求法 (7)7.二次函数图像的平移 (9)三、重难点题型 (11)1.由抛物线的位置确定系数的符号 (11)2.用待定系数法求二次函数的解析式 (13)3.运用抛物线的对称性解题 (17)4.用二次函数解决最值问题 (18)5.二次函数的图像 (20)6.二次函数与应用问题 (21)二、基础知识点1.二次函数的概念形如y=ax2+bx+c(a≠0)的函数叫作二次函数。
注:①a、b、c为常数,且a≠0,即二次项必须有,一次项和常数项可以没有②二次函数为函数的一种,满足函数的所有性质。
即在定义域内,自变量x有且仅有唯一应变量y与之对应例1.下列各项中,y是x的二次函数的有:①y=√2x2−x+5;②y=(m−1)x2+x+1(m为常数);③y=2x2+4x−m(m为常数);④y=(2x+1)(3x−2)−6x2答案:①是二次函数,二次项系数不为0;②不应定,当m=1时,二次项为0,则不是二次函数;③是二次函数,二次项系数不为0;④化简得:-x-2,因此不是二次函数例2.已知y=(k+3)x k2+k−4是二次函数,求k的值。
答案:因为y=(k+3)x k2+k−4是二次函数所以{k+3≠0 k2+k−4=2解得:k=22.二次函数y=ax2的图像和性质y=ax2(a≠0,b=0,c=0,即一次项和常数项皆为0)的性质:①图形为抛物线形状②a>0,开口向上;a<0,开口向下③过原点(顶点),为最大值或最小值(由a的正负决定)④关于y轴对称,即关于x=0对称⑤|a|越大,开口越小,即上升或下降越快注:关于y轴对称的前提条件是:函数定义域关于y轴对称例1.求等边三角形面积S与边长a的函数关系式。
2023学年浙江九年级数学上学期章节重难点知识讲义第02讲 二次函数图象与系数的关系(解析版)
第2讲 二次函数)0(2≠++=a c bx ax y 图象与系数的关系考点:由二次函数图象中符号判断类问题总结【知识点睛】❖ 一般式中a 、b 、c 的作用❖ 其他常见形式1.只含有a 、b 两个字母时,想对称轴;如:2a+b 与0的大小→找对称轴ab 2-与1的左右关系;2a-b 与0的大小→找对称轴ab 2-与-1的左右关系;a+b 与0的大小→找对称轴a b 2-与21的左右关系;a-b 与0的大小→找对称轴a b 2-与21-的左右关系; 2.含有a 、b 、c 三个字母,且a 和b 系数是平方关系时,给x 取值,结合图像上下判断;如∶二次函数y=ax 2+bx+c (a ≠0),①a+b+c 与0的大小: ∵当x=1时,y=a+b+c ,∴看x=1时,对应抛物线上的点在x 轴上方还是下方, 上方则a+b+c >0,下方则a+b+c <0;②a-b+c 与0的大小:找x=-1时对应抛物线上的点在x 轴上方还是下方,具体方法同上③4a+2b+c 与0的大小:找x=2时对应抛物线上的点在x 轴上方还是下方,具体方法同上④4a-2b+c 与0的大小:找x=-2时对应抛物线上的点在x 轴上方还是下方,具体方法同上3.含有b 2和4ac 时,想顶点纵坐标,或用图象与图象的交点个数想△.4.只含有a 、c 或者只含有b 、c 时,通常对称轴已知,常需要将一部分的a 或b 转化成b 或a ,最后转化成a+b+c 或a-b+c 结论判断.5.其他类型,可考虑给x 取特殊值,联立方程进行判断;也可结合函数最值,图像增减性进行判断.【类题训练】——作业建议:第4、5、6、10、12、13、14、19、24、26题1.已知二次函数y=﹣x2+bx+c的图象如图,其中b,c的值可能是()A.b=﹣3,c=3B.b=3,c=﹣3C.b=3,c=3D.b=﹣3,c=﹣3【分析】由抛物线开口方向得到a<0,根据抛物线的对称轴在y轴的右侧得b>0,由抛物线与y轴的交点位置得到c>0,据此选择即可.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选:C.2.已知,在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【分析】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a<0,b>0,c>0,由此即可得出:二次函数y=ax﹣+bx+c的图象开口向上,对称轴x=﹣>0,与y轴的交点在y轴正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a<0,b>0,c>0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴正半轴.故选:B.3.一次函数y=ax+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a>0,b >0,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;故选:D.4.在同一平面直角坐标系中,反比例函数y=﹣(k≠0)与二次函数y=x2﹣kx﹣k的大致图象是()A.B.C.D.【分析】根据k的取值范围分当k>0时和当k<0时两种情况进行讨论,根据反比例函数图象与性质以及二次函数图象与性质,结合图形进行判断即可.【解答】解:当k>0时,反比例函数y=﹣(k≠0)的图象经过二、四象限,二次函数y=x2﹣kx﹣k图象的对称轴x=在y轴右侧,并与y轴交于负半轴,则C选项不符合题意,D选项符合题意;当k<0时,反比例函数y=﹣(k≠0)的图象经过一、三象限,二次函数y=x2﹣kx﹣k图象的对称轴x=在y轴左侧,并与y轴交于正半轴,则A、B选项都不符合题意;故选:D.5.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是a1>a2>a3>a4.(请用“>”连接排序)【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【解答】解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a46.小明同学在用描点法画二次函数y=a(x﹣h)2+k(a≠0)图象时,列出了下面表格:x…﹣10123…y…m3236…则m的值是6.【分析】根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用对称轴找到一个点的对称点的纵坐标即可.【解答】解:由上表可知函数图象经过点(0,3)和点(2,3),∴对称轴为x=1,∴当x=﹣1时的函数值等于当x=3时的函数值,∵当x=3时,y=6,∴当x=﹣1时,m=6.故答案为:6.7.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.【分析】根据已知解析式画出函数图象,进而得出常数m的取值范围.【解答】解:如图所示:当x=2时,y=2,故直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是:0<m<2.故答案为:0<m<2.8.如图,已知抛物线y=ax2+bx+c的对称轴在y轴右侧,抛物线与x轴交于点A(﹣2,0)和点B,与y轴的负半轴交于点C,且OB=2OC,则下列结论:①>0;②2b﹣4ac=1;③a=;④c=2b﹣1.其中正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①,由OB=2OC可得抛物线经过(﹣2c,0),将(﹣2c,0)代入解析式可判断②,由抛物线经过(﹣2,0),(﹣2c,0)可得x1=2,x2=2c为方程ax2+bx+c=0的两根,根据一元二次方程根与系数的关系可判断③,由a的值及4a﹣2b+c=0可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵﹣>0,∴b<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴<0,①错误.∵OB=2OC,∴抛物线经过(﹣2c,0),∴4ac2﹣2bc+c=0,∴4ac﹣2b+1=0,∴2b﹣4ac=1,②正确.∵抛物线经过(﹣2,0),(﹣2c,0),∴x1=2,x2=2c为方程ax2+bx+c=0的两根,∴x1•x2==4c,∴a=.③正确.∵抛物线经过(﹣2,0),∴4a﹣2b+c=0,∴1﹣2b+c=0,∴c=2b﹣1,④正确.故选:C.9.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象经过(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1且x<0时,y的值随x值的增大而增大.其中,正确结论的个数是()A.1B.2C.3D.4【分析】由抛物线对称轴为直线x=2可判断①,由图象可得x=﹣3时,y<0,从而判断②,由抛物线经过(﹣1,0)可得c与a的关系,即可判断③,由图象可得﹣1<x<2时,y随x增大而增大,可判断④.【解答】解:∵抛物线对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,①正确.由图象可得x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,②错误.∵抛物线经过(﹣1,0),∴a﹣b+c=5a+c=0,∴c=﹣5a,∵抛物线开口向下,∴a<0,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a>0,③正确.由图象可得﹣1<x<2时,y随x增大而增大,∴当x>﹣1且x<0时,y的值随x值的增大而增大,④正确.故选:C.10.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,其部分图象交x轴负半轴交于点A,交y轴正半轴于点B,如图所示,则下列结论:①b2﹣4ac>0;②2a﹣b=0;③m(am+b)≤a﹣b(m为任意实数);④点是该抛物线上的点,且y1<y2<y3.其中正确的有()A.①②③B.①②④C.①③④D.①②③④【分析】由抛物线与x轴的交点个数可判断①,由抛物线对称轴为直线x=﹣1可判断②,由抛物线开口向下及对称轴为直线x=﹣1可得a﹣b+c≥am2+bm+c,从而判断③,根据各点与对称轴的距离大小可判断④.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,①正确.∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a,∴2a﹣b=0,②正确.∵抛物线开口向下,对称轴为直线x=﹣1,∴x=﹣1时y取最大值,∴a﹣b+c≥am2+bm+c,∴m(am+b)≤a﹣b,③正确.∵﹣1﹣(﹣)<﹣(﹣1)<﹣1﹣(﹣),∴y2>y3>y1,④错误.故选:A.11.已知二次函数y=ax2+bx+c(a>0)的图象与x轴负半轴交于A,B两点,与y轴的正半轴交于点C,它的对称轴为直线x=﹣1,有下列结论:①abc<0;②c﹣a>0;③当x =﹣k2﹣2(k为任意实数)时,y≥c;④若x1,x2(x1<x2)是方程ax2+bx+c=0的两根,则方程a(x﹣x1)(x﹣x2)﹣1=0的两根m,n(m<n)满足m<x1且n>x2;其中,正确结论的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线对称轴及抛物线与y轴交于正半轴可得b,c的符号,从而判断①,由x=﹣1时y<0及b与a的关系可判断②,由抛物线的对称性可得抛物线经过(﹣2,c),由x<﹣1时,y随x增大而减小可判断③,将方程的解的问题转化为图象交点问题,根据抛物线开口向上可判断④.【解答】解:∵抛物线与y轴交与正半轴,∴c>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,∴abc>0,①错误.∵抛物线开口向上,对称轴为直线x=﹣1,∴a﹣b+c<0,∴a+c<b,即a+c<2a,∴c<a,∴c﹣a<0,②错误.∵抛物线经过(0,c),对称轴为直线x=﹣1,∴抛物线经过(﹣2,c),∵x<﹣1时,y随x增大而减小,﹣k2﹣2≤﹣2,∴x=﹣k2﹣2时,y≥c.③正确.∵x1,x2(x1<x2)是方程ax2+bx+c=0的两根,∴抛物线y=ax2+bx+c与x轴交点横坐标为x1,x2,∵抛物线开口向上,∴抛物线与直线y=1的交点在x轴上方,∴m<x1<x2<n,④正确.故选:B.12.如图,二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,下列结论:①abc<0;②(9a+c)2<(3b)2;③若顶点坐标为(﹣2,﹣7a),则5a﹣2b﹣c=0;④若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+2|>|x2+2|时,y1<y2;其中正确的结论有()A.5个B.4个C.3个D.2个【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①,由抛物线经过(﹣5,0)及抛物线对称轴为直线x=﹣2可得抛物线与x轴另一交点坐标,从而可得x=﹣3及x=3时y的符号,从而判断②,将b=4a及顶点坐标代入解析式可得c与a 的关系,从而判断③,根据|x1+2|>|x2+2|可得点到对称轴的距离大小关系,结合图象可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣2,∴b=4a>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc<0,①正确.由图象可得x=﹣3时,y=9a﹣3b+c<0,∵抛物线经过(﹣5,0),对称轴为直线x=﹣2,∴抛物线经过(1,0),∴x=3时,y=9a+3b+c>0,∴(9a+c)2﹣(3b)2=(9a+3b+c)(9a﹣3b+c)<0,即(9a+c)2<(3b)2,②正确.∵b=4a,∴y=ax2+4ax+c,将(﹣2,﹣7a)代入y=ax2+4ax+c得﹣7a=4a﹣8a+c,解得c=﹣3a,∴5a﹣2b﹣c=5a﹣8a+3a=0,③正确.∵|x1+2|>|x2+2|,∴点(x1,y1)到对称轴距离大于点(x2,y2)到对称轴的距离,∴y1>y2.④错误.故选:C.13.如图是抛物线y=ax2+bx+c的部分图象,图象过点(3,0)对称轴为直线x=1,有下列四个结论:①abc>0;②a﹣b+c=0;③y的最大值为3;④方程ax2+bx+c+1=0有实数根;⑤4a+c<0.其中,正确结论的个数是()A.1B.2C.3D.4【分析】根据二次函数的图象和性质依次判断即可.【解答】解:∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,∵抛物线的对称轴为x=﹣=1,且过点(3,0),∴b=﹣2a>0,抛物线过点(﹣1.0).∴abc<0,a﹣b+c=0.∴①错误,②正确.∵抛物线开口向下,对称轴是直线x=1,∴当x=1时,y有最大值=a+b+c=﹣2a+(﹣3a)=﹣5a,其值与a有关,∴③错误.∵方程ax2+bx+c+1=0的根即是y=ax2+bx+c的图象与y=﹣1的交点,由图象知,y=ax2+bx+c的图象与y=﹣1的图象有两个交点.∴④正确.∵抛物线过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,∴3a+c=0,∴4a+c=a<0,∴⑤正确.故选:C.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,其顶点为(,1),有下列结论:①ac<0;②函数最大值为1;③b2﹣4ac<0;④2a+b=0.其中,正确结论的个数是()A.1B.2C.3D.4【分析】由抛物线开口方向,与y轴交点位置可判断①,由抛物线开口方向及顶点坐标可判断②,由抛物线与x轴交点个数可判断③,由抛物线对称轴为直线x=可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∴ac<0,①正确.∵抛物线开口向下,顶点为(,1),∴函数最大值为y=1,②正确.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,③错误.∵﹣=,∴b=﹣a,∴a+b=0,④错误.故选:B.15.已知二次函数y=ax2+2ax+a﹣1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为﹣1【分析】由抛物线的解析式化成顶点式,即可求得顶点为(﹣1,﹣1),得到顶点在第三象限,由二次函数y=ax2+2ax+a﹣1的图象只经过三个象限可知抛物线开口向上,a﹣1≥0,即可得到a≥1,根据二次的性质即可得到x≥﹣1时,y的最小值为﹣1.【解答】解:∵y=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1),∴顶点在第三象限,∵二次函数y=ax2+2ax+a﹣1的图象只经过三个象限,∴抛物线开口向上,a﹣1≥0,∴a≥1,∵抛物线开口向上,对称轴为直线x=﹣1,∴x≥﹣1时,y的最小值为﹣1,故A、B、D错误,C正确;故选:C.16.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,OA=2OC,点B的坐标为(﹣1,0),顶点为D,对称轴与x轴交于点E,则下列结论:①abc>0,②a+c<0,③a=,④当c<﹣1时,在线段DE上一定存在点P,使得△ABP为等腰直角三角形,其中正确的结论的有()A.1个B.2个C.3个D.4个【分析】由OA=2OC,点B坐标为(1,0)可得x=﹣1和x=﹣2c为方程ax2+bx+c=0的两个根,根据一元二次方程根与系数的关系可得2c=,从而判断①,由抛物线开口方向,对称轴的位置及抛物线与y轴交点位置可判断②,由c<﹣1可得OC>OB,即∠ABC>45°,从而可得判断③.【解答】解:∵y=ax2+bx+c,∴抛物线与y轴交点坐标为(0,c),c<0,∴点A坐标为(﹣2c,0),∵点B坐标为(﹣1,0),∴x=﹣1和x=﹣2c为方程ax2+bx+c=0的两个根,∴﹣1×(﹣2c)=2c=,∴a=,③正确,∵抛物线对称轴在y轴右侧,a>0,∴b<0,∴abc>0,①正确.∵抛物线经过(﹣1,0),∴a﹣b+c=0,即a+c=b<0,②正确.当c=﹣1时,OB=OC,∠ABC=45°,∵c<﹣1,∴OC>OB,∴∠ABC>45°,∴线段DE上一定存在点P,使得△ABP为等腰直角三角形,③正确.故选:C.17.二次函数y=ax2﹣6ax﹣5(a≠0),当5≤x≤6时,对应的y的整数值有4个,则a的取值范围是()A.B.C.或D.或【分析】根据二次函数的性质求出y的范围,再求a的范围.【解答】解:原函数化为:y=a(x﹣3)2﹣9a﹣5,当a>0时,抛物线开口向上,对称轴是直线x=3,∴当5≤x≤6时,y随x的增大而增大,∴﹣5a﹣5≤y≤﹣5,∵y的整数值只有4个,∴﹣9<﹣5a﹣5≤﹣8,∴≤a<,当a<0时,抛物线开口向下,对称轴是直线x=3,∴当5≤x≤6时,y随x的增大而减小,∴﹣5≤y≤﹣5a﹣5,∵y的整数值只有4个,∴﹣2≤﹣5a﹣5<﹣1,∴﹣<a≤﹣.综上:﹣<a≤﹣或≤a<,故选:D.18.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)的顶点为(1,n),抛物线与x轴交于点A(3,0),则下列结论:①abc>0;②若方程ax2+bx+c﹣1=0的解是x1,x2,且满足x1<x2,则x1<﹣1,x2>3;③关于x的方程ax2+bx+c﹣n+1=0有两个不等的实数根;④2c﹣a<2n.其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】利用待定系数法求得抛物线的系数之间的关系式,利用数形结合的方法得到a,b,c的符号,再利用二次函数的性质对每个结论进行逐一判断即可.【解答】解:由题意得:﹣=1,∴b=﹣2a.∵抛物线的开口方向向上,∴a>0.∴b<0.∵抛物线与y轴的交点在y轴的负半轴,∴c<0.∴abc>0.∴①的结论正确;∵方程ax2+bx+c﹣1=0的解是x1,x2,∴抛物线与直线y=1的交点的横坐标为x1,x2,∵对称轴为直线x=1,抛物线与x轴交于点A(3,0),∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线开口向上,∴x1<﹣1,x2>3,∴②的结论正确;∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的顶点坐标是(1,n),∴二次函数有最小值n.∴抛物线y=ax2+bx+c与直线y=n﹣1没有公共点.∴方程ax2+bx+c=n﹣1无解.即方程ax2+bx+c﹣n+1=0没有实数根.∴③的结论错误;∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的顶点坐标是(1,n),∴n=a+b+c.∵b=﹣2a,∴n=﹣a+c,∴2n=﹣2a+2c,∴2n﹣(﹣a+2c)=﹣a<0,∴2c﹣a>2n,∴④的结论错误.综上,正确的结论为:①②,故选:B.19.如图.二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象给出下列结论:①a+b+c=0;②a﹣2b+c<0;③若关于x的一元二次方程ax2+bx+c=5(a≠0)的一根是3,则另一根是﹣5;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3.其中正确的结论的序号为①②③.【分析】由抛物线经过(1,0)可判断①,由抛物线对称轴可得b=2a,由抛物线与y轴交点位置可得c<0,从而判断②,由抛物线的对称性及二次函数与方程的关系可判断③,根据各点与抛物线对称轴的距离大小可判断④.【解答】解:∵抛物线经过(1,0),∴a+b+c=0,①正确.∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a,∵抛物线与y轴交点在x轴下方,∴c<0,∵抛物线开口向上,∴a>0,∴a﹣2b+c=﹣3a+c<0,②正确.∵抛物线对称轴为直线x=﹣1,∴抛物线上的点(3,5)关于对称轴的对称点坐标为(﹣5,5),∴方程ax2+bx+c=5的另一个根是﹣5,③正确.∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向上,∴y2<y1<y3.④错误.故答案为:①②③.20.抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是﹣4<m<0.【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=﹣1代入解析式求解.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴﹣<0,∴b>0,∵抛物线经过(0,﹣2),∴c=﹣2,∵抛物线经过(1,0),∴a+b+c=0,∴a+b=2,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,当x=﹣1时,y=a+a﹣2﹣2=2a﹣4,∵b=2﹣a>0,∴0<a<2,∴﹣4<2a﹣4<0,故答案为:﹣4<m<0.21.已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,则下列结论正确的有②④.(填序号)①abc<0;②b﹣4a=0;③(a+c)2<b2;④若当x=0时,y=2.5,则有.【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①②,由图象可得x=﹣1时,y=a﹣b+c>0,x=1时,y=a+b+c>0,从而判断③,由x=0时,y=2.5,可得c=,再由x=2时y>0,x=3时,y<0,列不等式求解可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=﹣2,∴b=4a<0,b﹣4a=0,②正确.∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,①错误.由图象可得x=﹣1时,y=a﹣b+c>0,x=1时,y=a+b+c>0,∴(a﹣b+c)(a+b+c)=(a+c)2﹣b2>0,∴(a+c)2>b2,③错误.∵当x=0时,y=2.5,∴c=,∵x=2时y>0,x=3时,y<0,∴,即,解得.∴④正确.故答案为:②④.22.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如表:x…﹣1012…y=ax2+bx+c…m﹣1﹣1n t…且当x=﹣时,与其对应的函数值y>0,有下列结论:①abc>0;②当x>1时,y随x 的增大而减小;③关于x的方程ax2+bx+c=t的两个根是和1﹣;④m+n>.其中,正确的结论是①③④.【分析】由抛物线经过(0,﹣1),(1,﹣1)可得抛物线对称轴为﹣=,c=﹣1,再根据x=﹣时,y>0可判断a与b的符号,进而判断①②,由抛物线的对称性可得抛③物线经过点(1﹣,t),从而判断③,由x=﹣时,y>0可判断a的取值范围,进而判断④.【解答】解:∵抛物线经过(0,﹣1),(1,﹣1),∴抛物线对称轴为直线x=,c=﹣1∵x=0时,y<0,x=﹣时y>0,∴x<时,y随x增大而减小,即图象开口向上,∴a>0,∵﹣=,∴b=﹣a<0,∴abc>0,①正确.∵x>时,y随x增大而增大,∴x>1时,y随x增大而增大,∴②错误.∵抛物线经过(,t),抛物线的对称轴为直线x=,∴抛物线经过点(1﹣,t),∴关于x的方程ax2+bx+c=t的两个根是和1﹣,③正确.∵b=﹣a,c=﹣1,∴y=ax2﹣ax﹣1,当x=﹣时,y=a+a﹣1>0,∴a>.当x=﹣1时,m=2a﹣1,当x=2时,n=2a﹣1,∴m+n=4a﹣2>,④正确.故答案为:①③④.23.如图,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,OA=OC,抛物线的对称轴为x=1,下列结论:①abc<0;②ac+b+1=0;③2+c是关于x的一元二次方程ax2+bx+c=0的一个根;④a(m2﹣1)+b(m﹣1)≥0,其中正确结论的序号有②④.【分析】由开口方向得a>0,由对称轴得b=﹣2a<0,由与y 轴的交点得c<0,然后得abc的正负,由OA=OC,得函数图象经过点(c,0),从而得ac+b+1的值,进而判断2+c是否是关于x的一元二次方程ax2+bx+c=0的一个根,最后由开口方向和对称轴得到函数的最小值判断④.【解答】解:∵开口向上,∴a>0,∵对称轴为直线x=1,∴b=﹣2a<0,∵抛物线与y轴的交点在y轴负半轴上,∴c<0,点(0,c)在抛物线上,∴abc>0,故①错误,不符合题意;∵OA=OC,∴函数图象经过点(c,0),∴ac2+bc+c=0,∴ac+b+1=0,故②正确,符合题意;∵对称轴为直线x=1,∴函数图象与x轴的交点B的坐标为(2﹣c,0),∴2+c不是关于x的一元二次方程ax2+bx+c=0的根,故③错误,不符合题意;∵开口向上,对称轴为直线x=1,∴当x=1时,y的最小值为a+b+c,∴am2+bm+c≥a+b+c,∴a(m2﹣1)+b(m﹣1)≥0,故④正确,符合题意;∴正确的序号有②④,故答案为:②④.24.已知二次函数y=x2﹣2mx+m2﹣1(m为常数)的图象与x轴交于A,B两点,顶点为C.(1)若把二次函数图象向下平移3个单位恰好过原点,求m的值.(2)①若P(m﹣3,y1),Q(m+2,y2)在已知的二次函数图象上,比较y1,y2的大小;②求△ABC的面积.【分析】(1)求出平移后抛物线解析式,由抛物线经过原点求解.(2)①由抛物线解析式可得抛物线开口方向及对称轴,根据P,Q到对称轴的距离大小求解.②由抛物线解析式可得抛物线与x轴交点坐标及顶点坐标,进而求解.【解答】解:(1)二次函数图象向下平移3个单位后解析式为y=x2﹣2mx+m2﹣4,由题意得m2﹣4=0,解得m=±2.(2)①∵y=x2﹣2mx+m2﹣1,∴抛物线开口向上,对称轴为直线x=﹣=m,∵m﹣(m﹣3)>m+2﹣m,∴y1>y2.②令x2﹣2mx+m2﹣1=0,则(x﹣m)2=1,解得x1=m﹣1,x2=m+1,∴AB=2,点C坐标为欸(m,﹣1),∴S△ABC=AB•|y C|=×2×1=1.25.已知抛物线y=﹣x2+(b+1)x+c经过点P(﹣1,﹣2b).(1)若b=﹣3,求这条抛物线的顶点坐标;(2)若b<﹣3,过点P作直线P A⊥y轴,交y轴于点A,交抛物线于另一点B,且BP =3AP,求这条抛物线所对应的二次函数关系式.【分析】(1)将b=﹣3代入抛物线解析式及点P坐标,通过待定系数法求出函数解析式,将解析式化为顶点式求解.(2)由抛物线对称轴为直线x=及b<﹣3,可得抛物线对称轴与点P的位置关系,从而可得点P,点A,点B的横坐标,即可求出抛物线对称轴,进而求解.【解答】解:(1)∵b=﹣3,∴y=﹣x2﹣2x+c,点P坐标为(﹣1,6),将(﹣1,6)代入y=﹣x2﹣2x+c得6=﹣1+2+c,解得c=5,∴y=﹣x2﹣2x+5=﹣(x+1)2+6,∴抛物线顶点坐标为(﹣1,6).(2)∵y=﹣x2+(b+1)x+c,∴抛物线对称轴为直线x=,∵b<﹣3,∴<﹣1,∴抛物线对称轴在点P左侧,∴AP=1,∵BP=3AP=3,∴AB=AP+BP=4,∴点B横坐标为x=﹣4,∴抛物线对称轴为直线x===﹣,∴b=﹣6,y=﹣x2﹣5x+c,点P坐标为(﹣1,12),将(﹣1,12)代入y=﹣x2﹣5x+c得12=﹣1+5+c,解得c=8,∴y=﹣x2﹣5x+8.26.已知二次函数y=ax2+bx﹣3(a≠0).(1)若函数图象的对称轴为直线x=1,且顶点在x轴上,求a的值;(2)若a=1,b=2,点(m,n)为该二次函数图象在第三象限内的点,请分别求出m,n的取值范围;(3)若点P(a,a﹣3)始终是函数图象上的点,求证:a2+b2≥.【分析】(1)利用待定系数法解得即可;(2)求得抛物线与xzhou负半轴的交点坐标与抛物线的顶点坐标,根据第三象限点的坐标的特征解答即可;(3)利用待定系数法将点P坐标代入整理得到b与a的关系式,计算a2+b2的值,再利用配方法解答即可.【解答】(1)解:∵函数图象的对称轴为直线x=1,∴=1,∴b=﹣2a.∵二次函数y=ax2+bx﹣3的顶点在x轴上,∴b2﹣4a×(﹣3)=0,∴4a2+12a=0,∵a≠0,∴a=﹣3;(2)解:若a=1,b=2,则y=x2+2x﹣3,∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线y=x2+2x﹣3的顶点坐标为(﹣1,﹣4),∵a=1>0,∴抛物线y=x2+2x﹣3的的开口方向向上,令y=0,则x2+2x﹣3=0,解得:x=﹣3或1.∴抛物线y=x2+2x﹣3与x轴交于点(﹣3,0)和(1,0).∵点(m,n)为该二次函数图象在第三象限内的点,∴﹣3<m<0,﹣4≤n<0;(3)证明:∵点P(a,a﹣3)始终是函数图象上的点,∴a•a2+b•a﹣3=a﹣3.∴a3+ab=a.∵a≠0,∴a2+b=1.∴b=1﹣a2.∴a2+b2=a2+(1﹣a2)2=a4﹣a2+1=,∵≥0,∴a2+b2有最小值,∴a2+b2≥.27.在直角坐标系中,设函数y1=ax2+bx﹣a(a,b是常数,a≠0).(1)已知函数y1的图象经过点(1,2)和(﹣2,﹣1),求函数y1的表达式.(2)若函数y1图象的顶点在函数y2=2ax的图象上,求证:b=2a.(3)已知点A(﹣2,0),B(1,k2﹣a)在函数y1的图象上,且k≠0.当y1>0时,求自变量x的取值范围.【分析】(1)将已知点代入函数表达式即可.(2)先不是函数顶点坐标,代入y2表达式即可.(3)根据二次函数性质求解.【解答】解:(1)函数y1的图象经过点(1,2)和(﹣2,﹣1),∴.∴a=1,b=2.∴y1=x2+2x﹣1.(2)y1=ax2+bx﹣a=a﹣.∴顶点坐标为(﹣,﹣).∵抛物线的顶点在y2=2ax的图象上,∴﹣=﹣2a×,∴b2+4a2=4ab.∴(b﹣2a)2=0.∴b=2a.(3)∵点A(﹣2,0),B(1,k2﹣a)在函数y1的图象上,∴.∴a=k2,b=k2,∴y1=k2x2+k2x﹣k2=(2x﹣1)(x+2).∴当y1=0时,x=或x=﹣2.∵k≠0,∴>0,抛物线开口向上.∴y1>0时,x<﹣2或x>.28.抛物线y=ax2+bx+c经过A(0,4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)抛物线同时经过两个不同的点M(k,m)和N(﹣2﹣k,m),求b的值;(3)若抛物线在A和B两点间y随x的增大而减少,求a的取值范围.【分析】(1)利用待定系数法解答即可;(2)利用两点是纵坐标相同,可求得抛物线的对称轴,再利用(1)的结论即可求解;(3)利用分类讨论的方法分a>0和a<0两种情况,结合图象列出不等式,解不等式即可求解.【解答】解:(1)抛物线y=ax2+bx+c经过A(0,4),∴c=4;∵抛物线y=ax2+bx+c经过B(2,0),∴4a+2b+c=0.∴4a+2b=﹣4.∴a,b满足的关系式为:2a+b=﹣2;(2)∵抛物线同时经过两个不同的点M(k,m)和N(﹣2﹣k,m),∴抛物线的对称轴为直线x==﹣1.∴﹣=﹣1.∴b=2a.∴b+b=﹣2.∴b=﹣1.(3)∵2a+b=﹣2,c=4,∴抛物线解析式为y=ax2+(﹣2﹣2a)x+4=0.∴抛物线的对称轴为:x=﹣=.当a>0时,∵抛物线在A和B两点间y随x的增大而减少,∴抛物线的对称轴经过点B或在点B的右侧.∴≥2.∴0<a≤1.当a<0时,∵抛物线在A和B两点间y随x的增大而减少,∴抛物线的对称轴经过点A或在点A的左侧.∴≤0.∴﹣1≤a<0.综上,若抛物线在A和B两点间y随x的增大而减少,a的取值范围为0<a≤1或﹣1≤a <0.。
二次函数教案
二次函数教案二次函数教案1在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。
那老师应该怎么教呢?今天,给大家带来初三数学二次函数教案教学方法。
一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
二、重视每一个学生学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。
而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点四、要多了解学生。
你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
2二次函数教学方法一一、立足教材,夯实双基:进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要.并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.3二次函数教学方法二1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。
二次根式教案优秀6篇
二次根式教案优秀6篇次根式教案篇一【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。
【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242.(二).P673计算(2)(4)补充练习:1.(x0,y0)2.拓展与提高:化简:1).(a0,b0)2).(y2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题次根式教案篇二教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。
通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。
另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
中考数学 考点系统复习 第三章 函数 第四节 二次函数的图象与性质
1.(2018·省卷第 20 题 8 分)已知二次函数 y=-136x2+bx+c 的图象经
9
过 A(0,3),B-4,-2两点.
(1)求 b,c 的值;
(2)二次函数 y=-136x2+bx+c 的图象与 x 轴是否有公共点?若有,求公
共点的坐标;若没有,请说明理由.
解:(1)把 A(0,3),B-4,-92分别代入 y=-136x2+bx+c,得 c-=1363×,16-4b+c=-92,解得bc==983,.
(2)有公共点.由(1)可得,该抛物线的解析式为 y=-136x2+98x+3.令 y=0,得-136x2+98x+3=0, ∴Δ=982-4×-136×3=26245>0, ∴二次函数 y=-136x2+bx+c 的图象与 x 轴有公共点. ∵-136x2+98x+3=0 的解为 x1=-2,x2=8. ∴公共点的坐标是(-2,0),(8,0).
度后,得到的抛物线解析式是
( D)
A.y=(x-4)2-6
B.y=(x-1)2-3
C.y=(x-2)2-2
D.y=(x-4)2-2
3.已知抛物线 y=-x2+bx+4 经过(-2,n)和(4,n)两点,则 n 的值为
( B)
A.-2
B.-4
C.2
D.4
4.根据下列已知条件,求二次函数的解析式. (1)已知二次函数的顶点在原点,且过另一点(3,-9),则二次函数的解 析式为 y=y=--xx22; (2)已知二次函数的顶点在 y 轴上,且纵坐标为 2,过另一点(1,9),则 二次函数的解析式为 y=y=7 7xx22++2;
作
A′H⊥x
轴于
H,如图,利用等腰直角三角形的性质得到
A′H=BH=
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.下列函数中,最小值为2的是----------------------------------------()A.B.C.D.【答案】B【解析】略2.(本题满分10分)已知正数满足,求的最小值有如下解法:解:∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法【答案】不正确【解析】∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法解:以上解法错误------1分理由:∵,当且仅当x=y时取到等号,3.已知则的最小值为()A.2B.C.4D.5【答案】C【解析】【考点】均值不等式求最值4.设常数,若对一切正实数成立,则的取值范围为 .【答案】【解析】【考点】1.不等式与函数的转化;2.均值不等式求最值5.已知点满足约束条件,为坐标原点,则的最小值为_______________.【答案】【解析】将约束条件中任意俩条件进行联立,若想满足三个不等式,则解出y=,将y值带入不等式,解出,所以的最小值为。
【考点】函数不等式6.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式7.如果,那么下列不等式成立的是()A.B.C.D.【答案】A【解析】因为,则,所以,A正确;因为,则,B错;因为,则,所以,C错;因为,则,D错;【考点】不等式的基本性质;8.关于x的不等式的解集是,则关于x的不等式的解集是()A.B.C.D.【答案】D【解析】关于x的不等式的解集是,所以,所以不等式可化为,从而确定解集;【考点】1.一元二次不等式的解法;2.一元一次不等式的解集与系数的关系;9.若,且,则的最小值等于_______.【答案】【解析】约束条件对应的平面区域如上图所示,当直线过点时取得最小值3.【考点】线性规划10.(本小题16分)已知函数(1)时,解关于的不等式;(2)当时,若对任意的,不等式恒成立,求实数的取值范围;(3)若,求的取值范围.【答案】(1)(2)(3)【解析】(1)将不等式系数整理可得到二次不等式,结合二次函数图像即可求解;(2)将不等式恒成立问题采用分离参数的方法转化为求函数最值问题,本题中首先将不等式变形为进而利用均值不等式求解的最小值;(3)将不等式化简得到关于的不等式,进而求得范围,将所求式子的绝对值去掉,结合值及线性规划求式子的范围试题解析:(1)化为因此解集为;(2)原不等式化为:,因为所以原不等式化为恒成立,,当且仅当时等号成立,所以(3)题目条件化为,作图可知,去绝一个绝对值z=,对讨论再去掉一个绝对值.当时,由线性规划得;当时,,综上可得【考点】1.不等式解法;2.函数最值;3.线性规划问题11.不等式组所表示的平面区域的面积是 ____________.【答案】25【解析】由已知条件可计算出,不等式表示的平面区域为,易得【考点】线性规划不等式组表示的平面区域及三角形的面积计算12.二次不等式的解集是全体实数的条件是()A.B.C.D.【答案】B【解析】当时,原不等式换位对任意的都成立,要使二次不等式的解集是全体实数,只需,综上,故选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点4 三个“二次”及关系 三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x=|a -1|+2的根的取值范围. ●案例探究[例1]已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目.知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2] ∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-a b 2,x 1x 2=ac . |A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a acc a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得ac ∈(-2,-21)∵]1)[(4)(2++=a c a c a c f 的对称轴方程是21-=a c .ac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).[例2]已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或 (这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) ●锦囊妙计1.二次函数的基本性质(1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-ab2)=m ,f (q )=M;若x 0≤-a b 2<q ,则f (p )=M ,f (-ab 2)=m ; 若-ab2≥q ,则f (p )=M ,f (q )=m . 2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;(2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+a b 2|,当a <0时,f (α)<f (β)⇔|α+ab 2|> |β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q ab p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 ●歼灭难点训练一、选择题1.(★★★★)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)2.(★★★★)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A.正数 B.负数 C.非负数 D.正数、负数和零都有可能 二、填空题3.(★★★★★)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________.4.(★★★★★)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________.三、解答题5.(★★★★★)已知实数t 满足关系式33log log aya t a a = (a >0且a ≠1)(1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值. 6.(★★★★)如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.7.(★★★★★)二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证:(1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2 (1)当-23≤a <1时,原方程化为:x =-a 2+a +6,∵-a 2+a +6=-(a -21)2+425. ∴a =-23时,x mi n =49,a =21时,x max =425.∴49≤x ≤425. (2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12. 综上所述,49≤x ≤12. 歼灭难点训练一、1.解析:当a -2=0即a =2时,不等式为-4<0,恒成立.∴a =2,当a -2≠0时,则a满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的范围是-2<a ≤2.答案:C2.解析:∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0. 答案:A二、3.解析:只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1.∴p ∈(-3,23). 答案:(-3,23)4.解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 答案:-2<x <0三、5.解:(1)由log a 33log aya t t =得log a t -3=log t y -3log t a 由t =a x 知x =log a t ,代入上式得x -3=xx y a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0).(2)令u =x 2-3x +3=(x -23)2+43(x ≠0),则y =a u ①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值. ②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值∴当x =23时,u mi n =43,y mi n =43a由43a =8得a =16.∴所求a =16,x =23. 6.解:∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意.(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm 解得0<m ≤1综上所述,m 的取值范围是{m |m ≤1且m ≠0}.7.证明:(1)])1()1([)1(2r m m q m m p p m m pf ++++=+ ])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m p m pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0.(2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m)内有解; 若r ≤0,则f (1)=p +q +r =p +(m +1)=(-m r m p -+2)+r =mrm p -+2>0,又f (1+m m )<0,所以f (x )=0在(1+m m ,1)内有解.②当p <0时同理可证.8.解:(1)设该厂的月获利为y ,依题意得 y =(160-2x )x -(500+30x )=-2x 2+130x -500 由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元. (2)由(1)知y =-2x 2+130x -500=-2(x -265)2+1612.5 ∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.。