二次函数概念讲稿

合集下载

高中二次函数说课稿8篇

高中二次函数说课稿8篇

高中二次函数说课稿8篇高中二次函数说课稿篇一[本课学问要点]会画出这类函数的图象,通过比拟,了解这类函数的性质。

[MM及创新思维]同学们还记得一次函数与的图象的关系吗?你能由此推想二次函数与的图象之间的关系吗?那么与的图象之间又有何关系?[实践与探究]例1.在同始终角坐标系中,画出函数与的图象。

解列表x…-x-x-xxxxx……xxxxxxxx……xxxxxxxxx…描点、连线,画出这两个函数的图象,如图26.2.3所示。

回忆与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探究观看这两个函数,它们的开口方向、对称轴和顶点坐标有那些是一样的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?例2.在同始终角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线。

解列表x…-x-x-xxxxxx…x-x-xxxx-x-x……-xx-x-x-x-x-x-xx…描点、连线,画出这两个函数的图象,如图26.2.4所示。

可以看出,抛物线是由抛物线向下平移两个单位得到的。

回忆与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的。

探究假如要得到抛物线,应将抛物线作怎样的平移?例3.一条抛物线的开口方向、对称轴与一样,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式。

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2)。

因此所求函数关系式可看作,又抛物线经过点(1,1)。

所以故所求函数关系式为xxx。

回忆与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标[当堂课内练习]1.在同始终角坐标系中,画出以下二次函数的图象:观看三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的xxxx。

二次函数(基础思想)讲义

二次函数(基础思想)讲义

二 次 函 数1、二次函数的常见解析式及其三要素①a 的符号决定抛物线的的开口大小、形状相同;如果a 相同,那么抛物线的开口方向、开口大小完全相同。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .③二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=, ④当0>a 时⇔抛物线开口向上⇔顶点为其最低点⇔a b ac y 最小442-=;当0<a 时⇔抛物线开口向下⇔顶点为其最高点⇔ab ac y 最大442-=。

2、二次函数的性质:⑴增减性:以对称轴h x =为界,具有双向性。

⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线. 即:若A 、B 两点是抛物线上关于对称轴h x =对称的两点,则有:①B A y y =;②h x x B A =+2(即abx x -=+21)。

基础练习题:1、抛物线y = - 2 ( x – 3 )2– 7 对称轴 x = , 顶点坐标为 ; 2、抛物线 y = 2x 2+ 12x – 25的对称轴为 x = , 顶点坐标为 . 3、若将二次函数y =x 2-2x + 3配方为y =(x -h )2+ k 的形式,则y =4、抛物线y = - 4(x +2)2+5的对称轴是 。

5、抛物线 y = - 3x 2+ 5x - 4开口 , y = 4x 2– 6x + 5 开口 .6、已知P 1(11y ,x )、P 2(22y ,x )、P 3(33y ,x )是抛物线3x 2x y 2--=上的三个点,若321x x x 1<<<,则321y y y 、、的大小关系是____________。

7、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥38、如图中有相同对称轴的两条抛物线,下列关系不正确的是( ) A h=m B k=n C k >n D h >0,k >0 9、抛物线4)2(22-+-+=m x m x y 的顶点在原点,则m= 10、如图抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点的坐标是(3,0),则A 点的坐标是 11、请选择一组你喜欢的的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:(1)开口向下,(2)当时,y 随x 的增大而增大;当时,y 随x的增大而减小。

二次函数核心内容精讲

二次函数核心内容精讲

二次函数核心内容精讲二次函数是数学中一种常见的函数形式,它的表达式可以写作f(x)= ax^2 + bx + c,其中a、b、c为实数,而且a不等于零。

本文将围绕二次函数的定义、图像、性质和应用等方面进行精讲。

一、定义二次函数是以x的平方项为最高次幂的多项式函数。

通常写作f(x)= ax^2 + bx + c,其中a、b、c为实数且a不等于零。

二、图像二次函数的图像是一个抛物线。

根据二次函数的a值的正负和大小,抛物线的开口方向和形状会有所不同。

当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。

三、性质1. 零点:二次函数的零点即为函数与x轴相交的点,可以通过解二次方程ax^2 + bx + c = 0来求得。

如果方程有两个不同实根,那么函数的图像将与x轴交于这两个点;如果方程有两个相等的实根,那么函数的图像将与x轴相切于这一点。

2. 最值:二次函数的最值取决于抛物线的开口方向。

当a大于零时,函数的最小值为抛物线的顶点;当a小于零时,函数的最大值为抛物线的顶点。

3. 对称轴:二次函数的对称轴是抛物线的轴线。

对称轴可以通过取x = -b / (2a)来求得,即函数图像关于这条直线对称。

4. 范围:二次函数的范围取决于抛物线的开口方向。

当a大于零时,函数的范围为y大于等于抛物线顶点的纵坐标;当a小于零时,函数的范围为y小于等于抛物线顶点的纵坐标。

四、应用二次函数在现实生活中有广泛的应用。

以下是几个常见的应用领域:1. 物理学:抛物线的运动轨迹可以由二次函数来表达,例如自由落体运动中的位移函数、抛体运动中的轨迹函数等。

2. 经济学:二次函数可以用来描述市场的供求关系、成本与收益的关系等。

3. 工程学:在设计桥梁、弧线排水管道等工程项目时,二次函数可以用来描述曲线的形状和变化趋势。

结语通过对二次函数的定义、图像、性质和应用的精讲,我们可以更全面地理解和掌握二次函数的相关知识。

二次函数在数学和现实生活中都具有重要的应用,希望本文对读者有所帮助。

九年级数学上册二次函数讲义

九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数说课稿11篇整理

二次函数说课稿11篇整理

二次函数说课稿11篇整理二次函数说课稿11篇作为一名老师,通常会被要求编写说课稿,说课稿有助于提高老师理论素养和驾驭教材的力量。

那么大家知道正规的说课稿是怎么写的吗?下面是我为大家整理的二次函数说课稿,仅供参考,盼望能够关心到大家。

二次函数说课稿1一、说课内容:苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解“数形结合”的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(=x+b,≠0;=x ,≠0;= , ≠0)3.一次函数(=x+b)的自变量是什么?函数是什么?常量是什么?为什么要有≠0的条件?值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调≠0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

《二次函数》数学教学PPT课件(4篇)

《二次函数》数学教学PPT课件(4篇)
x 2 不是整式
×
知1-讲
(2) y=-5x2
解:
二次项系数
所以y=-5x2的二次项系数为-5,一次项系
数为0,常数项为0.
二次项系数
(5)化为一般式,得到y=3x2-21x+30,
常数项
一次项系数
所以y=3(x-2)(x-5)的二次项系数为3,
一次项系数为-21,常数项为30.(来自《点拨》)
知1-练
值而确定,y与x之间的关系应怎样表示?
两年后的产量
y=20(1+x)2,
即y=20x2+40x+20.
知1-导
思考:函数y=6x2,m=
1
2
n2- 1 n,
2
y=20x2+40x+20有什么共同点?
可以发现
1、函数解析式是整式;
2、化简后自变量的最高次数是2;
3、二次项系数不为0.
知1-讲
定义 一般地,形如y=ax2+bx+c(a,b,c是常数,
(6)y=x2+
.
知1-讲
解: (1)y=7x-1; 自变量的最高次数是1
(2)y=-5x2; 自变量的最高次数是2
(3)y=3a3+2a2;自变量的最高次数是3
(4)y=x-2+x; x-2不是整式
×

×
×
(5)y=3(x-2)(x-5);
2-21x+30,是二次函数 √
整理得到y=3x
1
1
2
(6)y=x + x 2
a≠0)的函数,叫做二次函数.其中,x是自变
量,a,b,c分别是函数解析式的二次项系数、
一次项系数和常数项.
知1-讲
例1 下列函数中,哪些是二次函数?并指出二次函

《二次函数》课件

《二次函数》课件
3 经济模型
二次函数可以用来构建经济模型,分析不同变量之间的关系。
二次函数的应用举例
跳水比赛
二次函数可以描述跳水运动员 的下落轨迹。
抛物面天线
抛物面天线的形状可以用二次 函数来描述。
拱桥
拱桥的形状可以用二次函数来 描述。
结论和要点
二次函数的定义
二次函数是y=ax^2+bx+c,其中a、b、c是常 数且a≠0。
求解二次方程
可以使用公式法、配方法或图像法来求解二 次方程。
图像和性质
二次函数的图像为抛物线,其顶点、对称轴、 最值和零点与a、b、c的关系密切。
实际应用
二次函数在物理、经济、工程等领域有广泛 的应用。
2
配方法
通过配方使二次方程转化为平方完成形式,然后求解。
3
图像法
通过观察图像的顶点、对称轴和与x轴的交点来求解二次方程。
利用二次函数解决实际问题
1 运动物体的轨迹
二次函数可以描述运动物体的竖直方向的轨迹,例如抛物线的形状可以用来描述抛出的 物体的轨迹。
2 广告营销
二次函数可以用来分析广告效果随时间的变化趋势,从而优化广告营销策略。
《二次函数》课件
欢迎来到《二次函数》课件!本课件将带你深入了解二次函数的定义、图像 及性质、通项公式、求解二次方程的方法、实际问题的解决方式、应用举例 等。
二次函数的定义
二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c是常数,并且a不等于0。
二次函数的图像及性质
抛物线形状
顶点和对称轴
二次函数的图像是一条抛物线, 其口方向由a的正负确定。
抛物线的顶点是图像的最低点 或最高点,对称轴是过顶点和 抛物线开口方向相反的直线。

二次函数的课件ppt课件ppt课件

二次函数的课件ppt课件ppt课件
二次函数的极坐标表示
二次函数$y = ax^{2} + bx + c$在极 坐标系下的表示为$r = a\cos^{2}\theta + b\cos\theta + c$。
05
二次函数的应用实例
生活中的二次函数应用
打篮球的抛物线
篮球运动员投篮时,篮球的运动 轨迹可以近似为二次函数。通过 调整投篮角度和力度,可以最大
数是偶函数。
03
二次函数的公式与运算
二次函数的公式
标准的二次函数公式
y = ax^2 + bx + c,其中a、b、c为系数,且a≠0。
顶点式
y = a(x-h)^2 + k,其中(h,k)为顶点坐标。
交点式
y = a(x-x1)(x-x2),其中x1、x2为与x轴的交点坐标。
二次函数的运算规则

根据顶点式,可知顶点坐标为(1.5, -0.75);根据交点式,可知 与x轴的交点坐标为(2.5, 0)和(2.5, 0);与y轴的交点坐标为(0, 5)。
例题2
已知二次函数y = -3x^2 + 6x + 9,求函数的对称轴和最小值。
04
二次函数的图像变换
平移变换
水平平移
二次函数$y = ax^{2} + bx + c$ 向右平移$m$个单位,得到新的 二次函数$y = a(x - m)^{2} + b(x - m) + c$。
垂直平移
二次函数$y = ax^{2} + bx + c$ 向上平移$n$个单位,得到新的 二次函数$y = ax^{2} + bx + c + n$。

二次函数的说课稿课件

二次函数的说课稿课件
详细描述
平移变换包括左移和右移、上移和下移。对于函数y=a(x-h)^2+k,若h>0,则 图像向左平移h个单位;若h<0,则图像向右平移h个单位;若k>0,则图像向 上平移k个单位;若k<0,则图像向下平移k个单位。
伸缩变换
总结词
伸缩变换是指二次函数图像在平面上 的横向或纵向的放大或缩小。
详细描述
二次函数的图像
总结词:形象展示
详细描述:二次函数的图像是一个抛物线。为了让学生更好地理解,可以在PPT课件中绘制几个不同 参数的二次函数图像,并标注出它们的开口方向、顶点位置等关键特征。通过对比这些图像,学生可 以更直观地理解二次函数的性质。
二次函数的性质
总结词:详细解析
详细描述:二次函数有许多重要的性质,例如对称性、开口方向、最值等。这些性质都可以通过观察二次函数的图像得出。 在PPT课件中,可以逐一讲解这些性质,并通过例题和练习题加深学生对这些性质的理解。同时,也可以引导学生自己探索二 次函数的性质,培养他们的数学思维和探究能力。
05
二次函数的考点解析
考点的分布情况
1 2
二次函数的图像和性质
这部分主要考察二次函数的基本性质,如开口方 向、顶点坐标、对称轴等。
二次函数的解析式
这部分主要考察如何根据已知条件求二次函数的 解析式。
3
二次函数与一元二次方程的关系
这部分主要考察如何利用二次函数图像解一元二 次方程。
考点的考查形式
通过顶点式,我们可以直接读出抛物线的顶点坐标和对称轴 。
二次函数的交点式
二次函数的交点式为:$y = a(x x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是抛物线与x轴的交点坐标。

九年级数学上册二次函数讲义

九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质: 上加下减。

()2x h -4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;0a >二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y 1 10 x o-1 x 0 x 0 -1 x A B C D考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数的基本概念

二次函数的基本概念

二次函数的基本概念二次函数是一种重要的数学概念,广泛应用于数学、物理、经济等领域。

它的基本形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。

本文将介绍二次函数的定义、图像特征以及常见的应用。

一、二次函数的定义二次函数是一个具有二次项的多项式,其中最高次数是 2。

它的标准形式为 y = ax^2 + bx + c,其中 a 是二次项的系数,b 是一次项的系数,c 是常数项。

二、二次函数的图像特征1. 开口方向二次函数图像的开口方向由二次项的系数 a 决定。

如果 a > 0,图像开口向上;如果 a < 0,图像开口向下。

2. 对称轴二次函数的图像是关于对称轴对称的,对称轴的方程为 x = -b/2a。

3. 顶点对于开口向上的二次函数,顶点是图像的最低点;对于开口向下的二次函数,顶点是图像的最高点。

顶点的 x 坐标为 -b/2a,y 坐标为代入 x 值所得到的 y 值。

4. 零点零点是二次函数图像与 x 轴交点的横坐标值,可以通过求解方程ax^2 + bx + c = 0 来确定。

三、二次函数的常见应用1. 抛物线二次函数的图像形状类似于一个U型的抛物线,因此在物理学中经常用于描述抛体运动的轨迹。

例如,从地面抛出的物体在忽略风阻等因素时,其运动轨迹可以使用二次函数来描述。

2. 经济学在经济学中,二次函数常常用于建模分析。

例如,成本函数、收益函数等均可使用二次函数来表达。

通过对二次函数的研究,可以分析经济决策的最优解以及变化的趋势。

3. 工程工程领域中,二次函数广泛应用于设计和优化问题。

例如,工程结构的抗弯强度、最优路径的寻找等问题都可以通过建立相应的二次函数模型来解决。

4. 自然科学自然科学中,二次函数可以用于描述和分析物理量之间的关系。

例如,光的折射、声音的传播等现象可以通过二次函数来描绘。

总结通过对二次函数的基本概念的介绍,我们了解了二次函数的定义、图像特征以及常见的应用。

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

二次函数说课ppt课件ppt课件ppt课件

二次函数说课ppt课件ppt课件ppt课件

详细描述
二次函数在日常生活中有着广泛的应用,如最优化问题、经济模型、物理学中的抛物线 运动等。通过这些实际应用场景,学生可以更好地理解二次函数的实际意义和重要性。
物理中的二次函数
总结词
运动轨迹、能量变化
VS
详细描述
在物理学中,二次函数经常用于描述物体 的运动轨迹,如抛物线运动。此外,在能 量守恒问题中,二次函数也经常出现,用 于描述能量随时间的变化关系。通过与物 理学的结合,学生可以更深入地理解二次 函数的物理意义。
因式分解法
要点一
总结词
通过因式分解将二次函数转化为两个一次函数的乘积,便 于分析函数的零点、单调性和值域。
要点二
详细描述
因式分解法是将二次函数 $f(x) = ax^2 + bx + c$ 转化为 两个一次函数的乘积,如 $f(x) = (ax + b)(cx + d)$。通 过因式分解,可以方便地找到函数的零点(即 $f(x) = 0$ 的解),分析函数的单调性(根据导数符号判断)和值域 (根据函数图像和定义域判断)。
数学竞赛中的二次函数
总结词
难度高、技巧性强
详细描述
在数学竞赛中,二次函数经常作为压轴题目 出现,难度较高,技巧性强。通过解决这类 问题,学生可以提高自己的数学思维能力和 解决问题的能力,为未来的学习和竞赛打下 坚实的基础。
CHAPTER 04
二次函数的解题策略
配方法
总结词
通过配方将二次函数转化为顶点式,便于分 析函数的开口方向、对称轴和顶点坐标。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时 ,抛物线开口向下。系数$b$和$c$决定了抛物线的位置和顶点。通过研究二次 函数的图像,我们可以更好地理解其性质和特点。

二次函数概念讲课文档

二次函数概念讲课文档

(是)(4)y=(x+3)²-x² (否)
(5)y= _x1_- ² x
(否)(6)v= 3r ²
(7) y=x²+x³+25 (否) (8)y=2²+2x
(是) (否)
思考:(9)y=mx²+nx+p (m,n,p为常数)
第十一页,共21页。
例1、下列函数中,哪些是二次函数?若是,分别指
出二次项系数,一次项系数,常数项.
y 1 x2 13x
1
2
2
y x2
4213000二次函数y=ax²+bx+c中a≠0,但b、c可以为0.
第十页,共21页。
例1、下列函数中,哪些是二次函数?若是,分 别指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1
(是) (2)y=x+
_1_ x
(否)
(3)s=3-2t²
原产量是20件, 一年后的产量是 20(1+x)件,
再经过一年后的产量是 20(1+x)2 件,即两年后的产 量为

y 20 x2 40 x 20③
③式表示两年后的产量y与计划增产的倍数x之间的关系, 对于x的每一个值, y都有一个对应值,即y是x的函数.
第六页,共21页。
观察
函数①②③有什么共同点?
(1) y=3(x-1)²+1
(2) y=x+
_1_ x
(3) s=3-2t²
(5)y= _x1_²-x
(4) y=(x+3)²-x² (6) v=10π r²
第十二页,共21页。
解: (1)y=3(x-1)²+1 =3(x2-2x+1)+1 =3x2-6x+3+1

二次函数讲义详细.doc

二次函数讲义详细.doc

第一讲二次函数的定义知识点归纳:二次函数的定义:一般地,如果y ax2 bx c(a, b,c 是常数, a 0) ,那么y叫做x 的二次函数. 二次函数具备三个条件,缺一不可:( 1)是整式方程;( 2)是一个自变量的二次式;(3)二次项系数不为0考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式例 1、函数y=(m+ 2 )x m2 2+2x-1是二次函数,则m=.例 2、下列函数中是二次函数的有()1 1①y=x+x;② y=3( x- 1)2+ 2;③ y=( x+ 3)2-2x2;④ y= x2+x.A.1 个B.2 个C.3 个D.4 个例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表达式.例 4 、如图,正方形 ABCD 的边长为 4, P 是 BC 边上一点, QP⊥ AP 交 DC 于 Q,如果 BP=x ,△ ADQ 的面积为 y,用含 x 的代数式表示 y.训练题 :1、已知函数 y=ax 2+ bx + c (其中 a , b , c 是常数),当 a 当 a, b, c时,是正比例函数.2、若函数 y=(m 2+2m - 7)x 2+4x+5 是关于 x 的二次函数,则时,是二次函数;当m 的取值范围为a , b。

时,是一次函数;3、已知函数 y=(m - 1)x2m +1+5x -3 是二次函数,求 m 的值。

4、已知菱形的一条对角线长为 a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线 a 的关系.5、请你分别给a ,b ,c 一个值,让yax 2bxc 为二次函数,且让一次函数y=ax+b的图像经过一、二、三象限6.下列不是二次函数的是()1A . y=3x2+ 4 B . y= -3 x 2 C . y=x 25 D . y= (x + 1)( x - 2)7.函数 y= ( m - n )x 2 +mx + n 是二次函数的条件是()A . m 、 n 为常数,且 m ≠0B .m 、 n 为常数,且 m ≠ nC . m 、 n 为常数,且 n ≠0D . m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135° 的两面墙,另外两边是总长为 30 米的铁栅栏.(1)求梯形的面积 y 与高 x 的表达式;( 2)求 x 的取值范围.9.如图,在矩形 ABCD 中, AB=6cm ,BC=12cm .点 P 从点 A 开始沿 AB 方向向点 B 以 1cm/s 的速度移动,同时,点 Q 从点 B 开始沿 BC 边向 C 以 2cm/s 的速度移动.如果P 、 Q 两点分别到达 B 、 C 两点停止移动,设运动开始后第 t 秒钟时,五边形 APQCD 的面积为 Scm 2,写出 S 与 t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在 Rt△ ABC 中,∠ C=90 °, BC=4 , AC=8 .点 D 在斜边 AB 上,分别作DE ⊥ AC , DF⊥ BC ,垂足分别为 E、F,得四边形 DECF .设 DE=x , DF=y .( 1)AE 用含y 的代数式表示为:AE= ;( 2)求y 与 x 之间的函数表达式,并求出x 的取值范围;( 3)设四边形DECF 的面积为S,求 S 与 x 之间的函数表达式.第二讲二次函数的图像和性质知识点归纳:1、求抛物线的顶点、对称轴的方法22 4ac b2( 1)公式法:y ax 2 b 4ac b ,∴顶点是 b ,对称轴是直线bx c a x4a (,)2a 2a 4abx.2a(2)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.2、二次函数的图象及性质:( 1)二次函数 y=ax 2 (a≠ 0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当 a> 0 时,抛物线开口向上,顶点是最低点;当 a<0 时,抛物线开口向下,顶点是最高点; a 越小,抛物线开口越大.(2)二次函数 y ax2 bx c的图象是一条对称轴平行 y 轴或者与 y 轴重合的抛物线.要会根据对称轴和图像判断二次函数的增减情况。

二次函数(公开课)

二次函数(公开课)
们可以通过将特定的横坐标代入二次函数的方程来求得对应的函数值。这样我们可以得到函数图像上的点。
二次函数的图像
二次函数的图像形状可以是抛物线,其凹性取决于a的正负。正数a使抛物线开口朝上,负数a使抛物线开口朝 下。这种图像帮助我们直观地理解二次函数的变化规律。
开口朝上
正数a使抛物线形状开口朝上。
开口朝下
负数a使抛物线形状开口朝下。
二次函数的顶点
二次函数的顶点是抛物线的最高(或最低)点。顶点的横坐标可以通过求根 公式(-b/2a)得到,纵坐标是函数的最大值或最小值。
二次函数的轴对称线
抛物线的轴对称线在顶点处垂直于x轴。它将抛物线分为两个对称的部分,使 我们能够推断出函数值的对应关系。
二次函数的零点
二次函数的零点是使函数值为零的横坐标。我们可以使用求根公式找到二次函数的零点。
零点
零点是函数与x轴相交的点,使函数值为零。
二次函数的判别式
二次函数的判别式为Δ = b² - 4ac,它可以告诉我们方程的根有多少个,以及根 的性质。
二次函数(公开课)
欢迎参加我们的二次函数公开课!本课程将详细讲解二次函数的定义、特点 以及其在实际中的应用。让我们一起探索二次函数的奥秘吧!
二次函数的一般式
二次函数可以表示为y = ax²+ bx + c的一般式,其中a、b、c为常数,且a ≠ 0。这种形式使我们能够直观地了解 二次函数的性质和特点。

二次函数讲解范文

二次函数讲解范文

二次函数讲解范文二次函数是一种基本的函数形式,其形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是实数,而 x 则是变量。

下面将从定义、性质和图像三个方面进行讲解。

一、定义:二次函数是一个包含二次项的多项式函数。

其中二次项的指数是2,因此二次函数的最高次项为二次项。

二次函数的定义域是所有实数,即对于任何实数x,函数都有良好定义。

二、性质:1.顶点:二次函数的顶点是其图像的最低点或最高点。

二次函数的顶点坐标可以通过公式(-b/2a,f(-b/2a))计算得出。

其中(-b/2a)是二次函数的对称轴的x坐标。

2.对称轴:二次函数的对称轴是通过顶点且垂直于x轴的一条直线。

对称轴的方程可以通过公式x=-b/2a计算得出。

3.开口方向:二次函数的a的符号决定了它的开口方向。

当a大于0时,二次函数向上开口,也就是图像开口朝上;当a小于0时,二次函数向下开口,图像开口朝下。

4.零点:二次函数的零点是使得函数值等于0的 x 值。

它们可以通过求解二次方程 ax^2 + bx + c = 0 得出。

二次函数的零点的个数和性质与判别式有关。

当判别式大于0时,函数有两个不相等的实根;当判别式等于0时,函数有一个实根;当判别式小于0时,函数没有实根。

5.增减性:二次函数在开口向上的区间内是递增的,在开口向下的区间内是递减的。

开口向上的二次函数在顶点处达到最小值,开口向下的二次函数在顶点处达到最大值。

三、图像:根据二次函数的性质,我们可以画出二次函数的图像。

为了画出二次函数的图像,我们可以按照以下步骤进行:1.计算顶点坐标:使用公式(-b/2a,f(-b/2a))计算出顶点坐标。

2.计算对称轴:使用公式x=-b/2a计算出对称轴的方程。

3.选择$x$值并计算$y$值:选择一些$x$值,并计算相应的$y$值。

可以使用顶点坐标和对称轴的方程来简化计算。

4.画出点并绘制曲线:将计算得到的点绘制在坐标纸上,并连接它们以得到函数的图像。

九年级上册数学二次函数三分钟演讲稿

九年级上册数学二次函数三分钟演讲稿

九年级上册数学二次函数三分钟演讲稿
各位老师和同学们:
大家好!我今天要给大家演讲的主题是关于九年级上册数学中的二次函数。

二次函数是我们在数学课上学习的一个重要内容,它在我们生活中有着广泛的应用。

我将通过以下三个方面来介绍二次函数:
首先,二次函数是什么?二次函数是一个数学概念,它的一
般形式是y=a*x^2+b*x+c,其中a、b、c为常数,且a不等于零。

二次函数的关键在于二次项(x^2),通过二次项构成的
抛物线形状特点,使二次函数的图像表现出很多有趣的性质。

其次,二次函数的图像特点。

当a大于零时,二次函数的图像是开口向上的抛物线;当a小于零时,二次函数的图像是开口向下的抛物线。

抛物线的对称轴是x轴的负半轴点,同时也是抛物线的最小值或最大值点。

我们可以通过对二次函数的图像进行分析,解决很多实际问题。

最后,二次函数的应用场景。

二次函数广泛应用于生活中的各个领域。

例如:数学建模中的抛物线运动,通过对二次函数进行图像和函数转化,可以预测出物体的运动轨迹;经济学中的成本和收益分析,通过二次函数可以求解最佳生产数量;生活中的花坛设计或者喷泉设计,都可以通过二次函数的图像来展示出美丽的形态。

总而言之,二次函数是我们九年级上册数学中的一个重要内容,它不仅仅具有理论意义,更有着丰富的实际应用。

希望在今后的学习中,大家能够深入理解二次函数的性质和应用,并能够通过二次函数的知识解决实际问题。

谢谢大家!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数概念讲稿
师:同学们好,现在我们开始上课。

首先我想请一位同学说一下我们以前学过哪些函数?
生1:一次函数、正比例函数、反比例函数。

师:恩,很好,那么我再问一下它们的形式都是怎样的?自变量和因变量是什么?
生2:一次函数是y=kx+b ,k ≠0;二次函数是y=kx ,k ≠0;反比例函数是y=x
k , k ≠0,其中x 是自变量,y 是因变量。

师:很好,请坐。

以上是我们学习的三种函数,请同学们做下面几个例题,看看他们的自变量与因变量有什么样的关系。

【多媒体展示题目:
例1、圆的半径是r(cm)时,面积s (cm ²)与半径之间的关系是什么?
例2、用周长为20m 的篱笆围成矩形场地,场地面积y(m ²)与矩形一边长x(m)之间的关系是什么?
例3、设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

如果存款额是100元,那么请问两年后的本息和y (元)与x 之间的关系是什么(不考虑利息税)?】
【教师在教室走动,指导学生完成】
师:好,我请同学回答一下
生3:第一题答案是s=πr ²(r>0),第二题答案是 y=x(20/2-x)=x(10-x)=-x ²+10x (0<x<10) ,第三题答案是y=100(1+x)² =100(x ²+2x+1) = 100x ²+200x+100(0<x<1)
师:【展示答案】回答非常好,同学们再看一下,这些函数式与我们学过的一次函数有什么相同点与不同点?
生4:函数解析式均为整式这是共同的特征,自变量的最高次数是2,这与一次函数不同。

师:说的很好,以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

【多媒体演示二次函数的定义:形如y=ax 2+bx+c (a ≠0,a, b, c 为常数) 的函数叫做二次函数。


师:对于二次函数,我们从以下几个方面进行理解【多媒体展示下面内容】
1、强调“形如”,即由形来定义函数名称。

二次函数即y 是关于x 的二次多
项式(关于的x 代数式一定要是整式)。

2、在 y=ax 2+bx+c 中自变量是x ,它的取值范围是一切实数。

但在实际问题中,自变量的取值范围是使实际问题有意义的值。

(如例1中要求r>0)
3、为什么二次函数定义中要求a ≠0 ?
(若a=0,ax 2+bx+c 就不是关于x 的二次多项式了)
4、b 和c 是否可以为零?
若b=0,则y=ax 2+c ; 若c=0,则y=ax 2+bx ; 若b=c=0,则y=ax 2. 到现在,同学们对二次函数的概念能理解吗?
生:能。

师:那我们来做几道习题,大家自己做一下。

【多媒体展示题目:
例:判断下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a 、b 、c .
(1)y=3(x-1)²+1 (2)
x x y 1
2+= (3)s=3-2t ² (4)y=(x+3)²- x ²

师:我再请一位同学回答啊。

生5:第一题是二次函数,第二题不是,第三题是,第四题不是。

师:非常好,那我们再看下一道例题
【多媒体展示题目:例:篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式】
生6:
师:同学们说他回答的对不对?好好考虑一下?
生:不对,还有自变量的取值范围没有说。

师:恩,是的,当我们将数学应用于实际的时候,一定要保证它有意义,因此这道题的自变量取值范围是什么?
生:
师:以后同学们做题的时候一定要注意自变量的取值范围,以保证函数式有意义。

我们再来做一个延伸题,大家仔细思考一下。

【多媒体展示题目例:确定下列函数中k的值
(1)如果函数y= x k^2-3k+2 +kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)x k^2-3k+2+kx+1是二次函数,则k的值一定是______
】【给学生几分钟的思考时间】
师:有谁做出来了?
生7:第一题因为二次函数最高次数为2,故可得k,于是得到k的值为
师:很好。

生8:
师:同学们回答的都很好,做这种题目的时候,同学们一定要牢记,二次函数最高项次数为2,且最高项系数部位0。

师:好,同学们,今天我们这节课内容就结束了,对于二次函数的学习,同学们有什么收获?
生9:
师:说的很好,请大家课后将本节内容课后的习题全部做完,并且预习下一节内容,二次函数的图像与性质。

好,今天我们就到这里了,同学们再见!
生:老师再见!。

相关文档
最新文档