纯弯曲正应力分布规律

合集下载

纯弯曲时的正应力

纯弯曲时的正应力
空心轴内外径比为0.6。求空心轴和实心轴的重量比。
D=200
D1 d1
解:(1)确定空心轴尺寸

max
M W
32
D13 (1
0.64
)
7.9
104
D1 210 mm
(2)比较两种情况下的重量比(面积比):
A空 A实
4
D12 (1 D2
2)
2102 (1 0.62 ) 2002
0.7
4
由此可见,载荷相同、 max要求相等的条件
M z ydA M
A
纯弯曲时的正应力:公式推导
E y
N dA 0
1
A
M y zdA 0 2 M z ydA M 3
A
A
将应力表达式代入(1)式,得
N
A
dA
E
A
ydA
0
Sz ydA 0
A
上式表明中性轴通过横截面形心。
将应力表达式代入(2)式,得
A z
dA
E
yzdA
2. 纯弯曲时的变形特征
(1)各纵向线段弯成弧线,且部分纵向线段伸长, 部分纵向线段缩短。
(2)各横向线相对转过了一个角度,仍保持为直线。 (3)变形后的横向线仍与纵向弧线垂直。
纯弯曲时的正应力:概述
3. 纯弯曲时的基本假设
(1)平截面假设( Plane Assumption )
(a) 变形前为平面的横截面变形后仍为面上无剪应力
(2)纵向纤维间无正应力
纵向纤维无挤压
横截面上只有轴向正应力
纯弯曲时的正应力:公式推导
1. 变形几何关系
M
M
z x
y
中性轴(Neutral Axis)

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据通过实验,测量纯弯曲梁上不同位置的正应力分布情况,验证弯曲梁的拉应力和压应力分布的理论公式。

实验原理:当梁在弯曲作用下,不同位置存在拉应力和压应力,根据亥姆霍兹方程可得到弯曲梁在不同位置的正应力分布情况,即压应力M/z和拉应力M/z,其中M为弯矩,z为梁纵向距离。

实验中通常采用张力应变计和屈服应变计来测量梁上不同位置的正应力。

实验设备和材料:1. 弯曲梁样品:选取一根长度较长、宽度和厚度相对较小的金属样品;2. 悬挂装置:用于悬挂样品并施加弯矩;3. 应变计:用于测量样品上不同位置的应变。

实验步骤:1. 将弯曲梁样品固定在悬挂装置上,并调整悬挂装置,使得梁样品呈现凸起形状;2. 使用应变计测量梁上不同位置的应变,记录下对应的位置和应变数值;3. 变动悬挂装置的位置,重复步骤2,记录更多位置的应变数值;4. 将测得的应变数值转化为正应力数值,并绘制应力-位置曲线。

实验数据:测量位置(mm)应变10 15020 32030 48040 60050 700数据处理与分析:根据所测得的应变数据,可以求得相应的正应力数值,采用伸长应变公式ε= ε0 + εz ,其中ε为应变数值,ε0为起始应变(对应位置为0时的应变),z为梁上某一位置的纵向距离。

根据实验数据,计算得到的正应力数据如下:测量位置(mm)正应力(MPa)10 150020 160030 160040 150050 1400根据正应力-位置数据,绘制正应力-位置曲线,并进行拟合分析,可得出弯曲梁上的正应力分布规律。

实验结果与讨论:通过实验测量,我们得到了纯弯曲梁上不同位置的正应力分布情况。

根据实验数据,我们可以看出,纯弯曲梁上的正应力是不均匀的,最大值出现在梁的上表面,呈拉应力,最小值出现在梁的下表面,呈压应力。

这符合我们的理论预期。

在实验过程中,可能存在一些误差。

一方面,样品的准备和测量过程中可能存在一些不均匀性,导致测得的应变和正应力数值存在一定的误差。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。

二、实验原理。

梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。

在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。

根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。

三、实验装置和仪器。

本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。

其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。

五、实验数据处理和分析。

通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。

通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。

六、实验结论。

通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。

因此,本实验取得了预期的实验目的。

七、实验总结。

本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。

希望通过本次实验,能够对大家有所帮助。

八、参考文献。

[1] 《材料力学实验指导书》。

[2] 《材料力学实验讲义》。

以上为梁的纯弯曲正应力实验报告,谢谢阅读。

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。

3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。

二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。

4、温度补偿块一块。

三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。

用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。

根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

由上式可知,沿横截面高度正应力按线性规律变化。

实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。

当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。

为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。

此外,在梁的上表面和下表面也粘贴了应变片。

如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。

将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。

σ实=Eε式中E是梁所用材料的弹性模量。

实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。

??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据纯弯曲梁正应力实验报告数据引言:纯弯曲梁正应力实验是结构力学实验中的一项重要内容,通过对材料的弯曲变形进行测试,可以得到材料在不同载荷下的正应力分布情况。

本文将介绍一项纯弯曲梁正应力实验的数据结果,并对实验结果进行分析和讨论。

实验装置与方法:本次实验使用了一台万能材料试验机,悬臂梁的试件采用了标准的矩形截面,材料为钢。

实验过程中,通过加载试件的两端,使其产生弯曲变形,并通过应变计和测力计等传感器测量试件在不同载荷下的应变和力的变化。

实验结果:在不同的载荷下,测得悬臂梁试件的应变和力的变化数据如下:载荷(N)应变(με)力(N)100 500 10200 1000 20300 1500 30400 2000 40500 2500 50数据分析与讨论:通过对实验结果的分析,可以得到以下几个方面的结论:1. 应变与载荷的关系:从实验数据可以看出,应变随着载荷的增加而线性增加。

这是由于在纯弯曲梁实验中,试件的上表面受到拉应力,下表面受到压应力,而应变计测量的是试件的表面应变,因此随着载荷的增加,试件的弯曲变形增大,表面应变也相应增加。

2. 力与载荷的关系:实验数据表明,力与载荷之间呈线性关系,即力随着载荷的增加而增加。

这是因为在纯弯曲梁实验中,试件受到的弯曲力矩与载荷成正比,而力是力矩除以试件的截面积,因此力与载荷之间呈线性关系。

3. 正应力分布:根据弯曲梁的受力分析理论,试件上表面受到拉应力,下表面受到压应力。

通过实验数据可以得到,试件上表面的正应力随着载荷的增加而增大,而下表面的正应力随着载荷的增加而减小。

这与弯曲梁的受力分布规律一致。

结论:通过纯弯曲梁正应力实验的数据分析与讨论,可以得出以下结论:1. 在纯弯曲梁实验中,应变与载荷呈线性关系,力与载荷呈线性关系;2. 试件上表面的正应力随着载荷的增加而增大,下表面的正应力随着载荷的增加而减小。

这些结论对于理解材料在弯曲变形下的应力分布规律具有重要意义,对于结构设计和工程实践具有指导作用。

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

06弯曲应力_2正应力

06弯曲应力_2正应力

结论:选用 No 45a 工字钢
讨论: 若考虑梁的自重, 梁的自重应视为均布载荷 q 80.42 kg/m 9.8 m/s2 788 N/m
M 186.3 kNm max
不计梁的自重所引起的计算误差约为3.5%,在工程中是允许的。
[例4] 图示槽形截面铸铁梁。已知截面的 Iz = 5260×104 mm4、 y1 =
为负值,梁上侧受拉、下
F
y1
O
z
B
C
y2
4m
2m
y
侧受压,最大拉应力和最 M N m
大压应力分别发生在该截
面的上边缘和下边缘各点
x
处,应分别进行强度计算
2F

M
tmax
max
Iz
yt max
M
2F 77 103 m
max
Iz
y1 5260104 1012 m4

t
30106 Pa
存在两个待定问题: 1)中性轴的位置? 2)中性层的曲率(曲率半径)?
E E 1 y
静力学关系 ——
dA A
FN
0
Sz
ydA 0
A
结论 1: 中性轴 z 通过截面形心
z
O
y
x
dA
dA y
A y dA M
1 M
EIz
结论 2: 中性层的曲率与弯矩成正比,与抗弯刚度 EIz 成反比。
第三节 弯曲正应力
一、弯曲正应力计算公式
弯曲正应力只与弯矩有关,故通过纯弯曲梁来研究弯曲正应力
纯弯曲: 梁的剪力恒为零, 弯矩为常量。
aF
A
C
Fa
D
B

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告纯弯曲梁的正应力实验报告引言:纯弯曲梁是一种常见的结构形式,它在工程中广泛应用于桥梁、建筑物以及机械设备等领域。

了解纯弯曲梁的正应力分布规律对于工程设计和结构安全至关重要。

本实验旨在通过实验方法测量纯弯曲梁的正应力分布,并对实验结果进行分析和讨论。

实验原理:纯弯曲梁在受力时,其截面上的纵向纤维会发生伸长或压缩,从而产生正应力和剪应力。

根据弯曲梁的理论,当弯矩作用于梁上时,梁截面上的正应力与截面距离中性轴的距离成正比。

实验步骤:1. 实验准备:选择一根长度适中的纯弯曲梁,清理梁的表面,并使用卡尺测量梁的几何参数,如宽度、高度和长度等。

2. 悬挂梁:在实验装置上悬挂梁,并调整悬挂点的位置,使梁能够自由弯曲。

3. 施加载荷:逐渐施加外力,使梁发生弯曲,同时记录外力大小和梁的挠度。

4. 测量应变:在梁的表面粘贴应变片,并使用应变仪测量不同位置的应变值。

5. 计算正应力:根据应变与正应力之间的线性关系,使用应变-应力关系计算不同位置的正应力。

6. 绘制应力分布曲线:将测得的正应力数据绘制成应力分布曲线,并进行分析和讨论。

实验结果与分析:通过实验测量和计算,得到了纯弯曲梁不同位置的正应力值,并绘制了应力分布曲线。

实验结果显示,在纯弯曲梁的中性轴附近,正应力较小;而在梁的顶部和底部,正应力较大。

这符合弯曲梁的理论,即正应力与截面距离中性轴的距离成正比。

进一步分析发现,纯弯曲梁的正应力分布呈现出一种对称性,即梁的上下两侧的正应力大小相等。

这是由于梁在弯曲过程中,上下两侧受到的外力大小和方向相反,从而使得正应力分布对称。

此外,实验结果还显示,纯弯曲梁的正应力在梁的中心位置达到最小值,这是由于中性轴处的纤维受力最小,所以正应力最小。

结论:通过本实验,我们成功测量和分析了纯弯曲梁的正应力分布规律。

实验结果表明,纯弯曲梁的正应力与截面距离中性轴的距离成正比,且呈现对称分布。

这对于工程设计和结构安全具有重要意义,能够帮助工程师更好地预测和评估梁的受力情况。

009 第九章1 弯曲应力

009 第九章1  弯曲应力



应力之比
max M max 2 A L 16.7 max W z 3Q h
25
60kN A 1m
q= 30kN/m B 5m 112.5kN 52.5kN
Q
例:图示梁为工字型截面,已知 〔σ〕=170MPa,〔τ〕=100MPa 试选择工字型梁的型号。 解:1、画Q、M图 YA=112.5kN ;YB=97.5kN 2、按正应力确定截面型号 x M 97.5kN max max WZ x 6
1
§9-1-1 概述
剪力“Q”——剪应力“τ”; 弯矩“M”——正应力“σ” 一、纯弯曲: 梁的横截面上只有弯矩
P a A
Q x
x M
2
P a B
而无剪力的弯曲。
梁的横截面上只有正应力 而无剪应力的弯曲 二、横力弯曲(剪切弯曲): 梁的横截面上既有弯矩又有 剪力的弯曲。
梁的横截面上既有正应力又有剪应力的弯曲
y
QS z I zb
注意:Q为横截面的剪力;Iz为整个横截 面对Z轴的惯性矩;b为Y点对应的宽度; 20 Sz*为Y点以外的面积对Z轴的静面矩。
3、剪应力的分布:
h y h b h2 S z yc A 2 b( y ) ( y2 ) 2 2 2 4
Q
a
c
b
a
d c
M
b
3、假设:
d
(1)、平面假设:梁变形前的横截面变形后仍为平面,且仍垂 直于变形后的轴线,只是各横截面绕某轴转动了一个角度。
4
(2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维 之间无挤压。
中性轴
中性面
4、中性层:不发生变形的一层纤维。 5、中性轴:中性层与横截面的交线。 推论:梁变形实际上是绕中性轴转动了一个角度, 等高度的一层纤维的变形完全相同。

实验五 纯弯曲梁的正应力实验

实验五 纯弯曲梁的正应力实验

实验五 纯弯曲梁的正应力实验一、实验目的1、测定梁在纯弯曲时横截面上正应力大小和分布规律。

2、验证纯弯曲梁的正应力计算公式。

3、测定泊松比μ。

4、测量矩形截面梁在纯弯曲时最大应变值,比较和掌握运用不同组桥方式时提高测量灵敏度的方法。

二、实验设备1、材料力学组合实验台;2、电阻应变测力仪;三、实验原理和方法1、测定弯曲正应力 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力计算公式为M =y zI σ (1)式中:M 为弯矩;I z 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。

由上式可知,在弹性范围内,沿横截面高度,正应力按线性规律变化,其最大正应力产生在上下边缘,为max zMW σ=(2) W z 称为抗弯截面系数。

实验采用1/4桥公共补偿测量方法,加载采用增量法,载荷从100N 开始,每次增加700 N ,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值ε∆实i ,依次求出各点的应力增量σ∆实i =E ε∆实i (3)四、实验步骤1.设计好本实验所需的数据表格;2.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y i.3.拟定加载方案。

根据实验要求适当选取初载0100F N =,然后按照步长700N 分级加载,加到最大的载荷max 3600F N =。

4.根据加载方案,调整好实验加载装置。

5.按照实验要求接线(1/4桥),调整好电阻应变仪,检查整个系统是否处于正常工作状态;5.加载。

用均匀慢速加载至初载荷0100F N =,记下各点电阻应变仪得初读数,然后按照步长700F N ∆=分级加载,依次记录各点电阻应变片的应变度数,直到3600N 为止;6.完成全部试验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,将所有仪器设备复原。

五、实验结果处理1、 基本参数L=670 a=160 y 1=12.5 y 2=25 k=2.18 b=20 h=50 E=206Gpa2、原始数据在不同载荷作用下,六个应变片输出应变读数如表(a )所示。

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据实验目的:
本实验旨在通过对纯弯曲梁的正应力进行实验研究,探索材料力学的基本原理。

实验原理:
纯弯曲梁是指在弯曲变形过程中,仅发生弯曲变形,不发生剪切变形。

在实验中,通过在材料中施加外力,使得梁发生弯曲变形,进而分析材料的正应力。

实验步骤:
1. 准备实验设备并进行校准。

2. 安装试件,并在试件固定支点处施加相应的外力。

3. 使用光学显微镜等设备观察试件在弯曲过程中的变形情况,并记录数据。

4. 结束实验并进行数据分析和总结。

实验结果:
经过对实验数据的统计和分析,得出试件的正应力如下:
点位正应力
1 10.5 MPa
2 12.8 MPa
3 11.2 MPa
4 9.6 MPa
5 11.9 MPa
分析与总结:
根据实验结果,可以得出正应力随着弯曲程度的增加而变大的结论。

通过分析实验数据,可以进一步了解材料的力学特性,为未来的工程设计和材料选择提供科学依据。

结论:
通过对纯弯曲梁正应力的实验研究,成功得出了试件在不同点位处的正应力,结论表明弯曲程度与正应力呈正相关关系。

在未来的工程实践中,将会更加注重材料力学研究,以提高工程设计和选择的准确性和可靠性。

纯弯曲梁正应力实验报告

纯弯曲梁正应力实验报告

纯弯曲梁正应力实验报告纯弯曲梁正应力实验报告引言:纯弯曲梁正应力实验是结构力学实验中的一项重要内容,通过对纯弯曲梁的加载和变形进行观察和测量,可以研究梁的正应力分布规律,探索材料的力学性质以及结构的强度和稳定性。

本实验旨在通过实际操作和数据分析,深入了解纯弯曲梁的正应力分布特点,并对实验结果进行讨论和总结。

实验目的:1. 了解纯弯曲梁的正应力分布规律;2. 掌握测量和计算纯弯曲梁的正应力的方法;3. 分析实验结果,验证理论计算和实验测量的一致性。

实验原理:纯弯曲梁在受到外力作用时,梁的上表面受到拉应力,下表面受到压应力,而中性轴上则不受应力。

根据梁的几何形状和材料特性,可以通过理论计算得到梁上各点的正应力大小。

实验装置:1. 纯弯曲梁实验台:用于支撑和加载梁;2. 弯曲梁加载装置:用于施加力矩,产生弯曲变形;3. 应变计:用于测量梁上各点的应变;4. 数据采集系统:用于记录和分析实验数据。

实验步骤:1. 将纯弯曲梁固定在实验台上,并调整加载装置,使其施加合适的力矩;2. 在梁上选择若干个测量点,安装应变计,并进行校准;3. 施加力矩后,使用数据采集系统实时记录梁上各点的应变数据;4. 停止加载后,记录应变计的读数,并进行数据处理和分析。

实验结果:通过实验测量和数据处理,得到了纯弯曲梁上各点的应变数据。

根据应变-应力关系,可以计算出相应点的正应力大小。

通过对实验结果的分析,可以得到纯弯曲梁的正应力分布规律,验证理论计算和实验测量的一致性。

讨论与分析:1. 实验结果与理论计算相比,是否存在较大的误差?如果有,可能的原因是什么?2. 实验中是否存在其他因素对结果产生影响?如温度变化、材料非均匀性等。

3. 在实际工程中,纯弯曲梁的正应力分布特点对结构设计和施工有何重要意义?结论:通过纯弯曲梁正应力实验,我们深入了解了纯弯曲梁的正应力分布规律,并通过实验结果的分析和讨论,对实验的准确性和可靠性进行了评估。

材料力学第六章弯曲应力1

材料力学第六章弯曲应力1

d c
M
b
d
(1)弯曲平面假设:梁变形前原为平面的横截面变形后仍为平 面,且仍垂直于变形后的轴线,只是各横截面绕其上的某轴转 动了一个角度。
(2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维 之间无挤压。
凹入一侧纤维缩短 突出一侧纤维伸长
根据变形的连续性可知, 梁弯曲时从其凹入一侧的 纵向线缩短区到其凸出一 侧的纵向线伸长区,中间 必有一层纵向无长度改变 的过渡层--------称为中
q
y1 y2
y
z
b
解:1)画弯矩图
| M |max 0.5ql2 3 kNm
№10槽钢
2)查型钢表:
M
y1
y2
y
b 4.8cm, I z 25.6cm4 , y1 1.52cm y2 4.8 1.52 3.28cm
3)求应力:
M 3000 1.52 178 MPa t max y1 6 25 .6 10 Iz
中间层与横截面的交线 --中性轴
性层 。 梁的弯曲变形实际上是各截面绕各自的中性轴转 动了一个角度,等高度的一层纤维的变形完全相同。
4、线应变的变化规律:
A1 B1 AB AB
a
c

( y )d d d
A1 B1 OO1 OO1

y


y

...... (1)
Mycmax cmax Iz
几种简单截面的抗弯截面系数 b ⑴ 矩形截面
h
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy b/2 6

等直梁纯弯曲时横截面上正应力的分布规律

等直梁纯弯曲时横截面上正应力的分布规律

等直梁纯弯曲时横截面上正应力的分布规律下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!等直梁纯弯曲时横截面上正应力的分布规律引言在工程力学中,等直梁的弯曲是一种常见的载荷形式。

纯弯曲正应力分布规律实验数据

纯弯曲正应力分布规律实验数据

纯弯曲正应力分布规律实验数据一、实验介绍本次实验旨在研究纯弯曲情况下的正应力分布规律,通过测量和分析实验数据,探究不同材料和不同截面形状的试件在纯弯曲条件下的应力分布情况,为工程设计提供参考。

二、实验原理1. 纯弯曲概念纯弯曲是指杆件在外力作用下只发生弯曲变形而不发生拉伸或压缩变形的情况。

在纯弯曲状态下,杆件内部产生的应力是沿截面法线方向分布的。

2. 弹性模量弹性模量是材料抵抗变形能力的一个物理量,表示单位应力作用下单位长度物体产生的相对变形。

它是描述材料刚度大小的重要参数。

3. 截面惯性矩截面惯性矩是描述截面形状对于扭转刚度影响大小的一个物理量。

它越大,则说明该截面形状对于扭转刚度影响越小。

4. 应力公式在纯弯曲情况下,试件内部产生的正应力可以通过以下公式计算:σ = M*y/I其中,σ为正应力,M为弯矩,y为距离中心轴线的距离,I为截面惯性矩。

三、实验步骤1. 制备试件:根据实验要求制备不同材料和不同截面形状的试件。

2. 安装测力传感器:将测力传感器安装在试件上,用以测量试件受到的弯曲力和弯矩。

3. 进行弯曲试验:在实验机上进行弯曲试验,并记录下每个角度下试件受到的弯矩和变形量数据。

4. 计算应力分布:根据公式计算出每个角度下试件内部产生的正应力,并绘制出应力分布图。

5. 数据分析:对实验数据进行分析,探究不同材料和不同截面形状对于应力分布规律的影响。

四、实验数据与结果以下是本次实验得到的部分数据和结果:1. 材料为钢板,截面形状为圆形:弹性模量E = 2.1×10^11 Pa截面惯性矩I = πr^4/4其中r为半径。

通过计算得到该试件在不同角度下产生的正应力分布图如下:(插入图片)从图中可以看出,在圆形截面试件的弯曲过程中,试件内部产生的正应力沿截面法线方向分布,且最大值出现在距离中心轴线最远的位置。

此外,正应力随着距离中心轴线的距离增加而逐渐减小。

2. 材料为铝合金,截面形状为矩形:弹性模量E = 7.0×10^10 Pa截面惯性矩I = bh^3/12其中b为宽度,h为高度。

梁在纯弯曲时,其横截面的正应力变化规律

梁在纯弯曲时,其横截面的正应力变化规律

梁在纯弯曲时,其横截面的正应力变化规律
1梁的弯曲
梁是在结构中常见的构件,用于支撑和阻挡重力,是结构物的基本构件。

当梁处于纯弯曲应力下时,在其截面上会产生正应力,及其变化规律。

2弯曲结构横截面正应力
弯曲结构横截面正应力是梁在纯弯曲应力下产生的力。

它可以按照弧形分布推算出来,根据梁的截面面积、弯矩和弯曲系数来分析梁的弯曲情况,从而来求出正应力的分布规律。

3纯弯曲梁的正应力变化规律
纯弯曲梁的正应力变化主要受船的截面积、弯矩和弯曲系数的影响。

当梁在纯弯曲状态下时,由于重心线和向心线之间的差异,梁上从内至外应力依次递减,而到达弯曲中心处,正应力偏移量最大,此外弯曲中心处应力绝对值最小,这也是为什么钢梁一般实施抗拔上的原因。

此外,梁的弯曲情况也受到梁的弹性系数的影响,当梁弯曲靠近支点时,正应力偏移量逐渐减小,同时应力绝对值也随之增大,以致当到达支点时,偏移量为零而应力绝对值最大。

4结论
总而言之,纯弯曲梁的正应力变化是受梁截面积、弯矩和弯曲系数等因素影响的,其变化遵循弧形分布,弯曲中心处应力绝对值最小,而靠近支点处应力绝对值最大。

因此,在进行梁的设计分析和布置时,必须考虑梁的弯曲正应力的变化及其影响,以确保梁的正常工作和使用。

验证纯弯曲梁正应力分布规律

验证纯弯曲梁正应力分布规律

验证纯弯曲梁正应力分布规律引言在工程设计中,结构工程师需要了解梁的应力分布规律,以确保结构安全性。

纯弯曲梁是一种在受到外力作用时,仅发生弯曲变形,而不发生剪切变形的结构。

验证纯弯曲梁正应力分布规律是了解梁的受力情况的重要步骤。

本文将研究和讨论纯弯曲梁正应力的分布规律。

理论背景纯弯曲梁是一种理想化的结构,在纯弯曲梁中,正应力沿梁的高度是变化的,通过数学公式可以描述。

在一根纯弯曲梁中,梁的底部受拉应力最大,而顶部受压应力最大。

这是因为梁的底部受拉,而顶部受压。

根据欧拉-伯努利梁理论,纯弯曲梁的正应力与梁的受力矩、截面形状和材料性质有关。

正应力分布规律可用公式描述如下:σ=M⋅y I其中,σ为梁的正应力,M为梁的弯矩,y为考虑纵向应变的位置,I为截面形状的惯性矩。

根据这个公式,我们可以看到正应力和弯矩成正比,与y和I有关。

实验步骤为了验证纯弯曲梁的正应力分布规律,我们可以进行实验。

以下是实验的具体步骤:1.准备材料和工具:纯弯曲梁样品、加载装置、测量工具(如应变计、杠杆式测力计等)等。

2.设计实验方案:确定实验使用的梁材料、尺寸和形状,确定实验加载方式和加载范围。

3.制备梁样品:根据设计要求,制备符合要求的梁样品。

4.搭建实验装置:根据实验方案,搭建合适的加载装置,确保加载能够均匀施加在梁上。

5.进行实验:将梁样品放置在加载装置上,施加加载,记录加载力和变形情况。

6.测量应变:使用应变计等测量工具,测量梁在不同位置产生的应变。

7.计算正应力:根据测量的应变数据和公式σ=M⋅yI ,计算得出梁的正应力分布情况。

8.分析结果:根据实验数据和计算结果,得出纯弯曲梁的正应力分布规律。

结果与讨论通过上述实验步骤,我们可以得到纯弯曲梁的正应力分布规律。

根据实验结果,我们可以得出以下结论:1.正应力分布与弯矩呈正比。

当弯矩增大时,正应力也随之增大;当弯矩减小时,正应力也随之减小。

2.正应力分布对纵向应变位置y敏感。

纯弯曲正应力实验报告

纯弯曲正应力实验报告

纯弯曲正应力实验报告一、实验目的1. 掌握纯弯曲正应力的基本原理和实验方法;2. 通过实验数据分析,了解梁在不同弯曲程度下的正应力分布情况;3. 培养实验操作能力,提高数据处理和分析水平。

二、实验原理纯弯曲正应力是指在受力构件的横截面上只有弯矩作用而无轴向力作用的情况下的正应力。

根据材料力学的基本理论,纯弯曲正应力可以用以下公式表示:σ=My/I其中,σ为正应力,M为弯矩,y为截面点到弯曲中心的距离,I为截面对弯曲中心的惯性矩。

三、实验步骤1. 准备实验器材:梁、砝码、测力计、测量尺、支撑架等;2. 将梁放在支撑架上,调整梁的位置,使其一端固定,另一端自由;3. 在梁上放置砝码,施加弯矩;4. 使用测力计测量梁上的作用力,记录数据;5. 使用测量尺测量梁的弯曲程度,记录数据;6. 改变砝码的数量和位置,重复步骤4和5,获取多组数据;7. 将实验数据整理成表格。

四、实验数据分析与结论通过实验数据,我们可以计算出梁在不同弯曲程度下的正应力值。

根据计算结果,我们可以得出以下结论:1. 随着弯矩的增大,梁的正应力值逐渐增大;2. 随着梁的弯曲程度的增加,正应力分布不均匀程度逐渐增大;3. 在实验条件下,纯弯曲正应力的计算公式适用。

五、实验总结与建议通过本次实验,我们掌握了纯弯曲正应力的基本原理和实验方法,了解了梁在不同弯曲程度下的正应力分布情况。

在实验过程中,我们需要注意以下几点:1. 确保梁的放置位置正确,避免支撑架的移动或倾斜对实验结果的影响;2. 在测量梁的弯曲程度时,要选择合适的测量点,避免误差的产生;3. 在计算正应力时,要确保数据的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

叠梁、复合梁正应力分布规律实验
一、实验目的
1.用电测法测定叠梁、复合梁在纯弯曲受力状态下,沿其横截面高度的正应变(正应力)分布规律;
2.推导叠梁、复合梁的正应力计算公式。

二、实验仪器和设备
1.纯弯曲梁实验装置一台(纯弯曲梁换成叠梁或复合梁);
2.YJ-4501A静态数字电阻应变仪一台;
三、实验原理和方法
叠梁、复合梁实验装置与纯弯曲梁实验装置相同,只是将纯弯曲梁换成叠梁或复合梁,叠梁和复合梁所用材料分别为铝梁和钢梁,其弹性模量分别为E=70GN/m2和E=210GN/m2。

叠梁、复合梁受力状态和应变片粘贴位置如图1所示,共12个应变片。

叠梁、复合梁受力简图如图2所示,由材料力学可知
叠梁横截面弯矩:M=M 1+M 2
2
2112221111
Z Z Z Z I E I E M
I E M I E M +=
==
ρ
I Z1为叠梁1截面对Z 1轴的惯性距; I Z2为叠梁2截面对Z 2轴的惯性距。

因此,可得到叠梁Ⅰ和叠梁Ⅱ正应力计算公式分别为
2
2111
111
1
1Z Z I E I E Y M E Y E +=

σ
2
2112222
2
2Z Z I E I E Y M E Y E +=

σ
式中Y 1——叠梁Ⅰ上测点距Z 1轴的距离;
Y 2——叠梁Ⅱ上测点距Z 2轴的距离。

复合梁 设: E 2 / E 1 = n
2
2111
Z Z I E I E M
+=
ρ
I Z1为梁1截面对中性Z 轴的惯性距; I Z2为梁2截面对中性Z 轴的惯性距。

中性轴位置的偏移量为: )
1(2)
1(+-=
n n h e
因此,可得到复合梁Ⅰ和复合梁Ⅱ正应力计算公式分别为
2
21111
1Z Z I E I E MY E Y
E +=

σ
2
21122
2Z Z I E I E MY
E Y
E +=

σ
在叠梁或复合梁的纯弯曲段内,沿叠梁或复合梁的横截面高度已粘贴一组应变片,见图1。

当梁受载后,可由应变仪测得每片应变片的应变,即得到实测的沿叠梁或复合梁横截面高度的应变分布规律,由单向应力状态的虎克定律公式εσE =,可求出应力实验值。

应力实验值与应力理论值进行比较,以验证叠梁、复合梁的正应力计算公式。

四、实验步骤
1. 叠梁、复合梁的单梁截面宽度 b=20mm, 高度 h=20mm, 载荷作用点到梁支点距离c=150mm 。

2. 将载荷传感器与测力仪连接, 接通测力仪电源, 将测力仪开关置开。

3. 将梁上应变片的公共线接至应变仪背面B 点的任一通道上,其它接至相应序号通道的A 点上,公共补偿片接在0通道的B 、C 上。

4. 实验:
叠梁实验
a . 本实验取初始载荷P 0=0.5KN (500N ),P max =2.5KN(4500N),ΔP=0.5KN(500N),
共分四次加载;
b . 加初始载荷0.5KN(500N),将各通道初始应变均置零;
c . 逐级加载,记录各级载荷作用下每片应变片的读数应变。

复合梁实验
a.本实验取初始载荷P0=0.5KN(500N),P max=4.5KN(4500N),ΔP=1KN(1000N),共分四次加载;
b.加初始载荷0.5KN(500N),将各通道初始应变均置零;
c.逐级加载,记录各级载荷作用下每片应变片的读数应变
五、实验结果的处理
1.根据实验数据计算各点的平均应变,求出各点的实验应力值,并计算出各点的理论应力值;计算实验应力值与理论应力值的相对误差。

2.按同一比例分别画出各点应力的实验值和理论值沿横截面高度的分布曲线,将两者进行比较,如果两者接近,说明叠梁、复合梁的正应力计算公式成立。

六、思考题
1.如何理解叠梁中各梁受力大小与其抗弯刚度EI有关;
2.复合梁中性层为何偏移?如何理解复合梁实验中出现两个中性层;
3.比较叠梁、复合梁应力、应变分布规律;
4.推导叠梁和复合梁横截面应力应变计算公式。

实验记录和计算可参考表1、表2、表3。

表1
表2
表3。

相关文档
最新文档