2.二次函数与三个二次的问题

合集下载

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

二次函数与实际问题

二次函数与实际问题

二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。

本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。

二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。

2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。

(4)零点:即方程ax²+bx+c=0的解。

当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。

3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。

(2)常数函数y=c是一个水平直线,其值始终为c。

(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。

三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。

2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。

可以使用求根公式或配方法等方式来求解。

3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。

例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。

由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。

由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。

谈三个二次关系及及综合运用--

谈三个二次关系及及综合运用--

谈“三个二次”关系及其综合运用济钢高级中学 杨同才 2011年7月17日 12:29隋宇为于11-7-17 16:02推荐杨老师的文章从最基本的问题入手,通过数形结合的方法将“三个二次”的问题说的很清楚很全面,很有参考价值。

邵丽云于11-7-19 14:28推荐杨老师的“三个二次”关系及其综合运用这篇文章,以二次函数为主线充分论述三个二次间的关系,并对相关问题进行了总结归纳,可见杨老师平时教学的用心,值得学习。

一、”三个二次”的关系”三个二次”指一元二次函数、一元二次方程、一元二次不等式,是中学数学的重要内容,具有丰富的内涵和广泛的应用,在研究二次曲线与直线的位置关系、运用导数解决复杂函数性质等问题时,常常转化成二次方程、二次函数、二次不等式的问题。

”三个二次”将等与不等、数与形紧密的结合在一起,对数形结合思想、函数方程思想、等价转化思想有较高的要求。

因而在高考试题中将近占一半的试题与“三个二次”问题有关,作为教师进一步澄清三者的内在联系对提高学生数学思维水平有很大帮助!“三个二次”中,一元二次函数最为重要,在初中学生就专题学习了二次函数,研究了二次函数的定义、图像、性质和实际问题中的最值,往往作为中考试题的最后一个压轴题。

初中也学习了一元二次方程及其规范解法,如公式法、配方法、因式分解法等。

只有一元二次不等式及解法在初中仅是初步了解。

初中阶段对函数、方程、不等式的学习都是彼此独立的,对于“三个二次”的横向联系缺乏认识。

升入高中才真正揭开三者的内在联系,逐步形成用函数、方程、不等式“三位一体”的思考方式审视问题、解决问题。

在“三个二次”中一元二次函数2y=a +b +c x x 是重点,从它的配方形式22b 4ac-b y=a ++ 2a 4x a ⎛⎫ ⎪⎝⎭中充分反映了函数值y 随自变量x 的变化而变化的规律,可以容易的观察出何时取最值,也能考查出自变量x 取关于2b a-对称值时函数值的取值特点。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数简介1.二次函数的定义2.二次函数的图像和性质二、二次函数与实际问题的联系1.实际问题中的二次函数模型2.二次函数在实际问题中的应用案例三、二次函数典型例题解析1.求解二次函数的顶点坐标2.求解二次函数的图像与x 轴的交点3.求解二次函数的最值问题4.二次函数在实际问题中的综合应用正文:二次函数与实际问题典型例题一、二次函数简介二次函数是数学中一种常见的函数形式,一般表示为f(x) = ax^2 + bx + c,其中a、b、c 为常数,x 为自变量。

二次函数的图像通常为抛物线,具有一定的对称性和顶点特征。

根据a 的值,二次函数可以分为开口向上或向下的两种情况,分别具有不同的性质。

二、二次函数与实际问题的联系1.实际问题中的二次函数模型在实际问题中,二次函数常常作为问题的数学模型出现。

例如,物体在重力作用下的自由落体运动、抛射物体的运动轨迹、电池的放电过程等都可以用二次函数来描述。

2.二次函数在实际问题中的应用案例(1)物体自由落体运动:假设物体从高度h 自由落下,空气阻力不计,仅受重力作用。

根据牛顿第二定律,物体下落的速度v 与时间t 的关系可以表示为v = gt - 1/2gt^2,其中g为重力加速度。

可以看出,这是一个开口向下的二次函数模型。

(2)抛射物体运动:假设一个物体在水平方向以初速度v0 抛出,仅受重力作用。

根据牛顿第二定律,物体在竖直方向上的运动可以表示为h = v0t - 1/2gt^2,其中h为物体的高度,t为时间。

这也是一个开口向下的二次函数模型。

三、二次函数典型例题解析1.求解二次函数的顶点坐标顶点坐标是二次函数的一个重要特征,可以通过公式法或配方法求解。

例如,对于二次函数f(x) = ax^2 + bx + c,顶点的x 坐标为x = -b/2a,y坐标为y = f(x) = c - b^2/4a。

2.求解二次函数的图像与x 轴的交点二次函数与x 轴的交点即为函数值为0 时的自变量解。

“三个二次”之间的关系(二次函数)

“三个二次”之间的关系(二次函数)

“三个二次”之间的关系注:上表中a>0,若a<0转化后再解不等式。

二次不等式的知识:1、概念:我们把只含有一个未知数,并且未知数的最高次数为2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2、一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其所有解的形成的范围,称为这个一元二次不等式的解集.3、解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零;(2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根;(4)根据函数图象与x 轴的相关位置写出不等式的解集.其他方法:十字相乘法(二次函数、不等式、方程)1. 解关于x 的不等式: x 2-(a +1)x +a <0,.2.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.3.已知二次函数y =x 2+px +q ,当y <0时,有-21<x <31,解x 的不等式qx 2+px +1>0.4.若不等式012>++p qx x p的范围为42<<x ,求实数p 与q 的值.5. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.6. 如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.7. 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;(2)如果21<x ,212=-x x ,求b 的取值范围.8. 为何值时,关于的方程的两根:(1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间。

三个“二次”之间的转化与应用 专题-23届高三数学一轮复习备考

三个“二次”之间的转化与应用 专题-23届高三数学一轮复习备考
要 f(1)<0 即可,此时 f(1)=-1<0,显然成立.
1
综上所述,m< .
6
例 2 已知函数 f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于 x 的
不等式 f(x)<c 的解集为(m,m+6),则实数 c 的值为
【解析】由题意知 f(x)=x +ax+b=
2
2
2
x+ +b- .
上有两个零点?
-1 < - < 3,
【解析】由题意得 (-1) > 0, 即
(3) > 0,
> 0,
解得 m 的取值范围为
13
- ,-1
9
.
-3 < < 1,
1-2 + 3 + 4 > 0,
9 + 6 + 3 + 4 > 0,
42 -4(3 + 4) > 0,
(2)有两个零点且均比-1 大?
时,a=-1.当直线 y=x-a 与 y=-x2+2x+3 的图象相切时,
= - 2 + 2 + 3,

得 x2-x-3-a=0.
= -,
所以 Δ=(-1) +4(3+a)=0,解得
2
13
a=- .
4
所以要使函数 f(x)=|x2-2x-3|与 y=x-a 的图象有 4 个不同的交点,
值非负.

7
当- <-2,即 a>4 时,f(x)min=f(-2)=7-3a≥0,解得 a≤ ,又 a>4,∴a 不存在.

二次函数及三个二次间的关系

二次函数及三个二次间的关系

第三讲:二次函数 及三个二次间的关系1.二次函数的基本性质 (1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21 (p +q ).若-ab 2<p ,则f (p )=m ,f (q )=M ;若p ≤-a b 2<x 0,则f (-ab 2)=m ,f (q )=M ;若x 0≤-ab 2<q ,则f (p )=M ,f (-ab 2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m .2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;(2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+ab 2|<|β+ab 2|,当a <0时,f (α)<f (β)⇔|α+ab 2|>|β+ab 2|;(3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q ab p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 若()2f x x bx c =++,且()10f =,()30f =,求()1f -的值. 若函数()()2312f x a x b x a b a x a =+++-≤≤是偶函数,则点(),a b 的坐标是________.二次函数图象的对称性例1: 若()()223,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______.例2:已知二次函数()2fx a x b x c=++,如果()()12f x f x =(其中12x x ≠),则 122x x f +⎛⎫= ⎪⎝⎭A .2b a-B .b a-C . cD .244ac b a-例3:二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________.例4:函数()2f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是A .()()()110f f f <-<B .()()()011f f f <-<C .()()()101f f f <<-D .()()()101f f f -<<二次函数的单调性及最值例5:已知函数()()215f x x a x =--+在区间(12 ,1)上为增函数,那么()2f 的取值范围是_________.例6:已知函数()223f x x x =-+在区间[0,m ]上有最大值3,最小值2,则m 的取值范围是A .[)1,+∞B .[]0,2C .[]1,2D .(),2-∞例7. 函数y x x =-+-242在区间[]03,上的最大值是_________,最小值是_______。

例析三个二次的关系

例析三个二次的关系

例析三个“二次”的关系055350 河北隆尧一中 焦景会一元二次方程,一元二次函数,一元二次不等式,是中学数学的重要内容,它们常被称为三个“二次”,高考中出现的三个“二次”的相关联问题,以及运用三个“二次”的相关性解决其它问题,较为复杂,有一定难度,为此举例分析如下:基础知识点:1、二次函数的三种表示形式(1)一般式:f(x)=ax 2+bx+c(a ≠0);(2)顶点式:若二次函数顶点坐标为(k, h),则f(x)=a(x -k)2+h(a ≠0);(3)双根式:若二次函数图象与x 轴交点坐标为(x 1, 0), (x 2, 0),则f(x)=a(x -x 1)( x -x 2) (a ≠0)。

2、二次函数的性质设f(x)=ax 2+bx+c(a >0),则定义式为R ,值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,对称轴为2b x a =-,在,2b a ⎛⎤-∞- ⎥⎝⎦ 是减函数,在,2b a ⎡⎫-+∞⎪⎢⎣⎭是增函数,当b=0时,f(x)是偶函数,当b ≠0时,f(x)是非奇非偶函数,特别的,当a >0时,f(x)在[p, q]上有最大值M ,最小值m ,设x 0=(p+q),则(1)若a b 2<p ,则f(p)=m, f(q)=M ;(2)若-ab 2≥q ,则f(q)=m, f(p)=M ; (3)若p ≤-a b 2<x 0,则f(-a b 2)=m ,f(q)=M ;(4)若x 0≤a b 2<q ,则f(-a b 2)=m ,f(p)=M 。

3、二次方程f(x)=0的实根分布一般情况下,需从三个方面考虑:①判别式;②区间端点函数值的正负;③对称轴x=-ab 2与区间端点的关系。

设x 1、x 2是实系数二次方程ax 2+bx+c=0(a >0)两实根,则x 1、x 2的分布范围与二次方程系数之间的关系如下:(1)120()02x x k f k b k a ⎧⎪∆>⎪<<⇔>⎨⎪⎪-<⎩ ; (2) 120()02k x x f k b k a⎧⎪∆>⎪<<⇔>⎨⎪⎪->⎩;(3) 12()0x k x f k <<⇔< (4) 112122120()0,(,)()02f k x x k k f k b k k a ∆≥⎧⎪>⎪⎪∈⇔>⎨⎪⎪<-<⎪⎩; (5) 12,x x 有且仅有一个在12(,)k k 内12()()0f k f k ⇔⋅<或1211()0,22k k b f k k a +=<-<或1222()0,22k k b f k k a+=<-<。

三个“二次”之间的关系

三个“二次”之间的关系

一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.其中二次函数图象是连接三个“二次”的纽带,是理解和解决问题的关键,应认真研究、熟练掌握.本文主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.首先,我们来回顾一下三个“二次”的基本关系:接下来,我们一起来谈谈有关三个“二次”的四类重要题型:(一)解含参二次不等式例1 解关于x的不等式:ax2+(a-1)x-1>0(a∈R)分析当a=0时,此不等式为一次不等式,可直接求出不等式的解集;当a≠0时,要分a>0与a<0两种情况进行讨论,再看方程ax2+(a-1)x-1=0根的情况.解①当a=0时,得x<-1.②当a>0时,不等式可化为(x-1a)(x+1)>0,解得x1a.③当a<0时,不等式可化为(x-1a)(x+1)<0,若1a<-1,即-1 若1a=-1,即a=-1,则不等式解集为空集;若1a>-1,即a<-1,则-1<x<1a.综上所述,当a>0时,不等式的解集为{x|x1a};当a=0时,不等式的解集为{x|x<-1};当-1 当a=-1时,不等式解集为空集;当a<-1时,不等式解集为{x|-1<x<1a}.变式若关于x的不等式ax2+(a-1)x-1>0的解集为{x|x12},求实数a的值.由一元二次不等式与二次方程的关系,借助根与系数的关系可得:a>0,12?(-1)=-1a,12+(-1)=-a-1a,解得a=2.解含参数的一元二次不等式的步骤:(1)二次项系数若含有参数应讨论二次项系数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.注意:二次项系数中含有参数时,参数的符号影响着不等号的方向.(2)判断方程的根的个数,即讨论判别式Δ与0的关系.(3)确定无根或有一根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集.(二)二次函数在给定区间上的最值问题例2 求函数f(x)=x2-2ax,x∈[0,4]的最小值与最大值.分析函数f(x)在区间[0,4]上的单调性不确定,因此需对对称轴与给定区间的关系进行分类讨论.解 f(x)的对称轴为x=a.当a≤0时,f(x)在[0,4]上单调递增,f(x)min=f(0)=0;当0 当a≥4时,f(x)在[0,4]上单调递减,f(x)min=f(4)=16-8a.所以f(x)min=0,-a2,16-8a, a≤0,0 a≥4.f(x)max=max{f(0),f(4)}=0,16-8a, a≥2,a<2.变式1 已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值h(t).解 f(x)的对称轴为x=4.当t+1≤4即t≤3时,h(t)=f(t+1);当t<4<t+1即3<t<4时,h(t)=f(4);当t≥4时,h(t)=f(t).所以h(t)=-t2+6t+7,16,-t2+8t, t≤3,3<t<4,t≥4.变式2 已知函数y=-x2+ax-a4+12在区间[0,1]上的最大值为2,求实数a的值.解令f(x)=-x2+ax-a4+12,函数的对称轴为x=a2,当a2≥1即a≥2时,ymax=f(1)=-12+34a=2.解得a=103∈[2,+∞).当0 当a2≤0即a≤0时,ymax=f(0)=-a4+12=2,解得a=-6∈(-∞,0].所以a=103或a=-6.求解二次函数y=ax2+bx+c(a≠0)在给定区间[p,q]上的最值问题:实际上是研究函数在[p,q]上的单调性.常用方法是:(1)当a>0时求最小值或当a0时最大值为max{f(p),f(q)},当a<0时最小值为min{f(p),f(q)}.(三)一元二次不等式恒成立问题例3 已知不等式mx2-2x-m+1<0.(1)若对所有的实数x不等式恒成立,求m的取值范围;(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.分析(1)不等式mx2-2x-m+12,不等式不恒成立;当m≠0时,函数f(x)=mx2-2x-m+1为二次函数,需满足图象开口向下且方程mx2-2x-m+1=0无解,即m<0,Δ=4-4m(1-m)<0,则m无解.综上可知不存在这样的m.(2)从形式上看,这是一个关于x的一元二次不等式,由于已知m的取值范围,不妨换个角度,把它看成关于m的一元一次不等式在m∈[-2,2]上恒成立,求参数x的范围.解设g(m)=(x2-1)m+(1-2x),则其为一个以m为自变量的一次函数(或常函数),其图象是线段,由题意知当-2≤m≤2时该线段在x轴下方,即g(m)max<0.所以g(-2)<0,g(2)<0,即-2x2-2x+3<0,2x2-2x-1<0.解得-1+72<x<1+32.所以x的取值范围为{x|-1+72<x<1+32}.变式1 定义在R上的奇函数f(x),当x≥0时,f(x)是减函数,如果当x∈[0,1]时不等式f(1-2x2+4a2)+f(4ax-3)≥0恒成立,求a的取值范围.解由题意得,f(x)是奇函数,所以f(1-2x2+4a2)≥f(3-4ax),又因为f(x)在R上是减函数,所以1-2x2+4a2≤3-4ax,即x2-2ax+1-2a2≥0对x∈[0,1]恒成立.下面转化为二次函数在给定区间上的最值问题:令g(x)=x2-2ax+1-2a,对称轴为x=a,当a≤0时,g(x)min=g(0)=1-2a2≥0,得-22≤a≤0;当0 当a≥1,g(x)min=g(1)=2-2a-2a2≥0,因为a≥1,所以无解.综上,{a|-22≤a≤33}.变式2 设函数f(x)=x2-1,对任意x∈[32,+∞),f(xm)-4m2f(x)≤f(x-1)+4f (m)恒成立,则实数m的取值范围是.解由题意得:(xm)-1-4m2(x2-1)≤(x-1)2-1+4(m2-1)恒成立,即(1m2-4m2-1)x2+2x+3≤0恒成立,即1m2-4m2-1≤-2x-3x2恒成立.因为g(x)=-2x-3x2=-3x2-22在[32,+∞)上是增函数,故当且仅当1m2-4m2-1≤g(32))即可.解得m≤-32或m≥32.解决一元二次不等式恒成立问题的方法:解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁做主元,求谁的范围,谁就是参数.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.1.一元二次不等式在x∈R上恒成立:(用Δ法)ax2+bx+c>0(a≠0)a>0,Δ<0;ax2+bx+c<0(a≠0)a<0,Δ<0.注意:a=0的情况.2. 一元二次不等式在区间上恒成立:①化归为区间最值问题:f(x)>0f(x)min>0;f(x)<0f(x)max<0.②分离参数法:a≥f(x)恒成立a≥f(x)max;a≤f(x)恒成立a≤f(x)min.以上就是对三个“二次”之间关系的几种题型的处理. 综合起来,可以这样说:一元二次方程是寻找二次函数图象上的点;一元二次不等式是截取二次函数图象上的一段,而研究二次函数则是探索无数函数中的一类特殊的函数关系.。

2019届高考数学二轮复习专题三不等式第1讲三个“二次”的问题学案

2019届高考数学二轮复习专题三不等式第1讲三个“二次”的问题学案

第1讲 三个“二次”的问题1. “三个二次”在历年高考中都有考查,体现出二次函数、二次方程和二次不等式之间有密不可分的联系,即函数的研究离不开方程和不等式;方程和不等式的解的讨论同样要结合函数的图象和性质.2. 主要涉及的题型有:一是求二次函数的解析式;二是求二次函数的值域或最值,考查二次函数和一元二次方程、一元二次不等式的综合应用;三是考查一元二次不等式的解法及“三个二次”间的关系问题;四是从实际情景中抽象出一元二次不等式模型;五是以函数、导数为载体,考查不等式的参数范围问题.1. 不等式(1+x)(1-x)>0的解集是________. 答案:{x|-1<x<1}解析:原式可化为(x +1)(x -1)<0,所以不等式的解集为-1<x<1.2. (2018·海安第一次学业质量测试)关于x 的不等式x +ax+b≤0(a,b ∈R )的解集为{x |3≤x ≤4},则a +b 的值为________.答案:5解析:由题意可得⎩⎪⎨⎪⎧3+a3+b =0,4+a 4+b =0,解得⎩⎪⎨⎪⎧a =12,b =-7,所以a +b =5.3. (2018·镇江期末)已知函数f(x)=x 2-kx +4,对任意的x∈[1,3],不等式f(x)≥0恒成立,则实数k 的最大值为________.答案:4解析:由题意知x 2-kx +4≥0,x ∈[1,3],所以k≤x +4x对任意的x∈[1,3]恒成立.因为x +4x≥4(当且仅当x =2时取等号),所以k≤4,故实数k 的最大值为4.4. (2018·昆山中学月考)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是________.答案:[-1,4]解析:x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a≤4., 一)一元二次不等式的求解, 1)已知f(x)=-3x 2+a(6-a)x +b.(1) 解关于a 的不等式f(1)>0;(2) 当不等式f(x)>0的解集为(-1,3)时,求实数a ,b 的值.解:(1) f(1)=-3+a(6-a)+b =-a 2+6a +b -3.因为f(1)>0,所以a 2-6a +3-b <0.Δ=24+4b ,当Δ≤0,即b≤-6时,f(1)>0的解集为∅;当Δ>0,即b >-6时,3-b +6<a <3+b +6,所以b >-6时,f(1)>0的解集为{a|3-b +6<a <3+b +6}.(2) 因为不等式-3x 2+a(6-a)x +b >0的解集为(-1,3),所以⎩⎪⎨⎪⎧2=a (6-a )3,-3=b -3,解得⎩⎨⎧a =3±3,b =9.(2018·苏北四市一模)已知函数f(x)= ⎩⎪⎨⎪⎧2-|x +1|,x≤1,(x -1)2,x >1.若函数g(x)=f(x)+f(-x),则不等式g(x)≤2的解集为________.答案:[-2,2] 解析:f(x)=⎩⎪⎨⎪⎧3+x ,x <-1,-x +1,-1≤x≤1,(x -1)2,x>1, 所以f(-x)=⎩⎪⎨⎪⎧(x +1)2,x<-1,x +1,-1≤x≤1,-x +3,x >1,所以g(x)=f(x)+f(-x)=⎩⎪⎨⎪⎧x2+3x +4,x<-1 ①,2,-1≤x≤1 ②,x2-3x +4,x>1 ③.由不等式g(x)≤2,解得①⎩⎪⎨⎪⎧x<-1,x2+3x +4≤2⇒-2≤x<-1;②⎩⎪⎨⎪⎧-1≤x≤1,2≤2⇒-1≤x≤1;③⎩⎪⎨⎪⎧x>1,x2-3x +4≤2⇒1<x ≤2.综上所述,不等式g(x)≤2的解集为[-2,2]., 二)二次函数与二次不等式, 2)(2018·北京朝阳统考)已知函数f(x)=x 2-2ax -1+a ,a ∈R .(1) 若a =2,试求函数y =f (x )x(x >0)的最小值;(2) 对于任意的x ∈[0,2],不等式f (x )≤a 恒成立,试求a 的取值范围.解:(1) 依题意得y =f (x )x =x2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2.当且仅当x =1x,即x =1时,等号成立.所以y ≥-2. 所以当x =1时,y =f (x )x的最小值为-2.(2) 因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 恒成立”,只要“x 2-2ax -1≤0在[0,2]上恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34,则a 的取值范围是⎣⎢⎡⎭⎪⎫34,+∞.已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上的最大值为4,最小值为1,记f (x )=g (|x |).(1) 求实数a ,b 的值;(2) 若不等式f (log 2k )>f (2)成立,求实数k 的取值范围;(3) 定义在[p ,q ]上的一个函数m (x ),用分法T :p =x 0<x 1<…<x i -1<x i <…<x n =q 将区间[p ,q ]任意划分成n 个小区间,如果存在一个常数M >0,使得和式错误!f(x i )=f(x 1)+f(x 2)+…+f(x n ))解:(1) g(x)=a(x -1)2+1+b -a ,因为a>0,所以g(x)在区间[2,3]上是增函数,故⎩⎪⎨⎪⎧g (2)=1,g (3)=4,解得⎩⎪⎨⎪⎧a =1,b =0.(2) 由已知可得f(x)=g(|x|)=x 2-2|x|+1为偶函数,所以不等式f(log 2k )>f (2)可化为|log 2k |>2,解得k >4或0<k <14,故实数k 的取值范围是(0,14)∪(4,+∞).(3) 设函数f (x )为[1,3]上的有界变差函数.因为函数f (x )为[1,3]上的单调递增函数, 且对任意划分T :1=x 0<x 1<…<x i -1<x i <…<x n =3, 有f (1)=f (x 0)<f (x 1)<…<f (x n -1)<f (x n )=f (3),所以错误!|m(x i )-m(x i -1)|≤M 恒成立,所以M 的最小值为4., 三)二次方程与二次不等式, 3)对于函数f(x),若f(x 0)=x 0,则称x 0为函数f(x)的“不动点”;若f(f(x 0))=x 0,则称x 0为函数f(x)的“稳定点”.如果f(x)=x 2+a(a∈R )的“稳定点”恰是它的“不动点”,求实数a 的取值范围.解:(解法1)因为函数的“稳定点”恰是它的“不动点”,由f (f (x ))=x ,可得(x 2+a )2+a =x .方程可化为(x 2-x +a )(x 2+x +a +1)=0,所以方程x 2-x +a =0有解,且方程x 2+x +a +1=0无解或其解都是x 2-x +a =0的解,由方程x 2-x +a =0有解,得Δ1=1-4a ≥0,解得a ≤14.由方程x 2+x +a +1=0无解,得Δ2=1-4(a +1)<0,解得a >-34.若方程x 2+x +a +1=0有解且都是x 2-x +a =0的解.因为方程x 2-x +a =0与方程x 2+x +a +1=0不可能同解, 所以方程x 2+x +a +1=0必有两个相等的实根且是方程x 2-x +a =0的解,此时,Δ2=1-4(a +1)=0,解得a =-34,经检验,符合题意.综上,a 的取值范围是[-34,14].(解法2)显然,函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以f (x )=x 有解,但方程组⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1(x 1≠x 2)无解.由f (x )=x ,得x 2-x +a =0有解,所以1-4a ≥0,解得a ≤14.由⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1,得⎩⎪⎨⎪⎧x21+a =x 2,x 2+a =x 1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1, 代入消去x 2,得x 21+x 1+a +1=0.因为方程x 21+x 1+a +1=0无解或仅有两个相等的实根,所以1-4(a +1)≤0,解得a ≥-34,故a 的取值范围是[-34,14].定义:关于x 的两个不等式f (x )<0和g (x )<0的解集分别为(a ,b )和(1b ,1a),则称这两个不等式为对偶不等式.如果不等式x 2-43x cos θ+2<0与不等式x 2+2x sin θ+1<0为对偶不等式,且θ∈(π2,π),则θ=________.答案:2π3解析:由题意知不等式x 2-43x cos θ+2<0的解集为(a ,b ),所以a +b =43cos θ,ab =2.又不等式x 2+2x sin θ+1<0的解集为(1b ,1a),所以1b +1a=-2sin θ.又1b +1a =a +b ab =43cos θ2=-2sin θ,所以tan θ=-3. 又θ∈(π2,π),所以θ=2π3., 四)三个“二次”的综合问题, 4)设函数f(x)=ax 2+bx +c(a ,b ,c ∈R ),且f (1)=-a2,3a >2c >2b ,求证:(1) a >0且-3<b a <-34;(2) 函数f (x )在区间(0,2)内至少有一个零点;(3) 若x 1,x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.证明:(1) 因为f (1)=a +b +c =-a2,所以3a +2b +2c =0.又3a >2c >2b ,所以3a >0,2b <0,所以a >0,b <0. 又2c =-3a -2b ,3a >2c >2b ,所以3a >-3a -2b >2b .因为a >0,所以-3<b a <-34.(2) 因为f (0)=c ,f (2)=4a +2b +c =a -c ,①当c >0时,因为a >0,所以f (1)=-a2<0,且f (0)=c >0,所以函数f (x )在区间(0,1)内至少有一个零点;②当c ≤0时,因为a >0,所以f (1)=-a2<0,且f (2)=a -c >0,所以函数f (x )在区间(1,2)内至少有一个零点. 综合①②得函数f (x )在区间(0,2)内至少有一个零点.(3) 因为x 1,x 2是函数f (x )的两个零点,则x 1,x 2是方程ax 2+bx +c =0的两根.所以|x 1-x 2|=(x1+x2)2-4x1x2=(-b a )2-4(-32-ba)=(ba+2)2+2.因为-3<b a <-34,所以2≤|x 1-x 2|<574.已知函数f (x )=2x 2+ax -1,g (log 2x )=x 2-x2a -2.(1) 求函数g (x )的解析式,并写出当a =1时,不等式g (x )<8的解集;(2) 若f (x ),g (x )同时满足下列两个条件:①∃t ∈[1,4],使f (-t 2-3)=f (4t );②∀x ∈(-∞,a ],使g (x )<8.求实数a 的取值范围.解:(1) 令t =log 2x ,则x =2t,由g (log 2x )=x 2-x 2a -2,可得g (t )=22t -2t +2-a,即g (x )=22x -2x +2-a,当a =1时,不等式g (x )<8⇔22x-2x +1<8⇔(2x +2)(2x-4)<0,即2x<4,所以x <2,即不等式g (x )<8的解集为(-∞,2).(2) 因为f (x )=2x 2+ax -1,所以由①∃t ∈[1,4],使f (-t 2-3)=f (4t ),得∃t ∈[1,4],(-t 2-3)+4t =-a 2,即∃t ∈[1,4],a =2(t -2)2-2,所以a ∈[-2,6];由②∀x ∈(-∞,a ],使g (x )<8得∀x ∈(-∞,a ],42a >2x -82x,令μ=2x ,x ∈(-∞,a ],则y =2x-82x =μ-8μ,μ∈(0,2a],易知函数y =μ-8μ在(0,2a ]上是增函数,y max =2a-82a,所以42a>2a-82a,所以2a<23,所以a <1+12log 23.综上,实数a 的取值范围是[-2,1+12log 23).1. 函数y =3-2x -x2的定义域是 ________.答案:[-3,1]解析:要使函数有意义,必须有3-2x -x 2≥0,即x 2+2x -3≤0,所以-3≤x≤1.2. 设集合A ={x|x 2-4x +3<0},B ={x|2x -3>0},则A∩B=________.答案:(32,3)解析:集合A =(1,3),B =(32,+∞),所以A∩B=(32,3).3. (2017·山东卷)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .则命题p ∧綈q 的真假性为________.答案:真解析:易知命题p 为真命题,命题q 为假命题,所以綈q 为真命题,由复合命题真值表知,p ∧綈q 为真命题.4. 已知函数f (x )=⎩⎪⎨⎪⎧x2,x≤1,x +6x-6,x>1,则f (f (-2))=________,f (x )的最小值是________.答案:-1226-6解析:f (-2)=(-2)2=4,所以f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )≥0;当x >1时,f (x )≥26-6,当x =6时取等号,所以函数f (x )的最小值为26-6.5. 已知二次函数f(x)=ax 2+bx +c(a>0,c>0)的图象与x 轴有两个不同的公共点,且f(c)=0,当0<x<c 时,恒有f(x)>0. (1) 当a =13,c =2时,求不等式f(x)<0的解集;(2) 若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且ac =12,求a 的值;(3) 若f(0)=1,且f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,求正实数m 的最小值.解:(1) 当a =13,c =2时,f(x)=13x 2+bx +2,f(x)的图象与x 轴有两个不同交点.因为f(2)=0,设另一个根为x 1,则2x 1=6,x 1=3.则f(x)<0的解集为{x|2<x<3}.(2) 函数f(x)的图象与x 轴有两个交点,因为f(c)=0,设另一个根为x 2,则cx 2=c a ,于是x 2=1a.又当0<x<c 时,恒有f(x)>0,则1a >c ,则三交点分别为(c ,0),(1a,0),(0,c),以这三交点为顶点的三角形的面积为S =12(1a -c)c =8,且ac =12,解得a =18,c =4.(3) 当0<x<c 时,恒有f(x)>0,则1a>c ,所以f(x)在[0,c]上是单调递减的,且在x =0处取到最大值1,要使f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,必须f(x)max =1≤m 2-2m +1成立,即m 2-2m +1≥1,即m 2-2m ≥0,解得m ≥2或m ≤0,而m >0,所以m 的最小值为2.(本题模拟高考评分标准,满分16分)(2017·南通考前模拟)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ).(1) 当a =-6时,函数f (x )的定义域和值域都是[1,b 2],求b 的值;(2) 若函数f (x )在区间(0,1)上有两个零点,求b 2+ab +b +1的取值范围.解:(1) 当a =-6时,f (x )=x 2-6x +b ,函数的对称轴为直线x =3, 故f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.(2分)①当2<b ≤6时,f (x )在区间[1,b2]上单调递减;故⎩⎪⎨⎪⎧f (1)=b2,f (b2)=1,方程组无解;(4分)②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)≥f (b 2),故⎩⎪⎨⎪⎧f (1)=b 2,f (3)=1,解得b =10;(6分)③当b >10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)<f (b 2),故⎩⎪⎨⎪⎧f (b 2)=b 2,f (3)=1,方程组无解.所以b 的值为10.(8分)(2) 设函数f (x )=x 2+ax +b 的两个零点为x 1,x 2(0<x 1<x 2<1),则f (x )=(x -x 1)(x -x 2).又f (0)=b =x 1x 2>0,f (1)=1+a +b =(1-x 1)·(1-x 2)>0,(10分)所以b 2+ab +b +1=b (1+a +b )+1=f (0)f (1)+1,而0<f (0)f (1)=x 1x 2(1-x 1)(1-x 2)≤(x1+1-x12)2(x2+1-x22)2=116.(14分)由于x 1<x 2,故0<f (0)f (1)<116,则1<b 2+ab +b +1<1716,即b 2+ab +b +1的取值范围是(1,1716).(16分)1. 在R 上定义运算:⎝ ⎛⎭⎪⎫ab cd =ad -bc ,若不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.答案:32解析:由定义知,不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵ x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.2. 已知f(x)=-3x 2+a(6-a)x +6.(1) 解关于a 的不等式f(1)>0;(2) 若不等式f(x)>b 的解集为(-1,3),求实数a ,b 的值.解:(1) ∵ f(x)=-3x 2+a(6-a)x +6,∴ f(1)=-3+a(6-a)+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a<3+23,∴不等式的解集为{a|3-23<a<3+23}.(2) ∵ f(x)>b 的解集为(-1,3), ∴方程-3x 2+a(6-a)x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.3. 已知函数f(x)=x2+cax(x≠0,a >0,c <0),当x ∈[1,3]时,函数f(x)的取值范围是⎣⎢⎡⎦⎥⎤-32,56. (1) 求函数f(x)的解析式;(2) 若向量m =⎝ ⎛⎭⎪⎫-1x ,12,n =(k 2+k +2,3k +1)(k >-1),解关于x 的不等式f (x )<m ·n .解:(1) 因为c <0,f (x )=1a ⎝ ⎛⎭⎪⎫x +c x 在[1,3]上单调递增,所以⎩⎪⎨⎪⎧f (1)=-32,f (3)=56,解得⎩⎪⎨⎪⎧a =2,c =-4,故f (x )=x2-42x .(2) 由题意,得x2-42x <-k2+k +2x +3k +12,即x (x -2k )[x -(k +1)]<0.①当-1<k <0时,不等式的解集是(-∞,2k )∪(0,k +1); ②当0≤k <1时,不等式的解集是(-∞,0)∪(2k ,k +1);③当k =1时,不等式的解集是(-∞,0);④当k >1时,不等式的解集是(-∞,0)∪(k +1,2k ).。

三个二次之间的关系探究

三个二次之间的关系探究

《三个二次之间的关系探究》教学设计原州区第五中学田风高一、教学内容人教版九年级上第二十六章《二次函数》后续探究——二次函数、一元二次方程、一元二次不等式三者之间的关系。

二、教材分析1、教材的地位和作用函数是中学数学的经络,函数思想贯穿着中学数学教学的始终,也是微积分、泛函分析等高等数学的基础。

同时在现实生活及其它学科中具有广泛的应用,比如:物理学中的自由落体运动、生物学中的细胞繁殖、经济学中生产成本的核算、Excle中的数据处理、花园中喷水池的建造、拱形桥的设计、导弹的路径……,可以说,函数在现实生活中无处不在,无时不有。

2、学情分析学生已经掌握了一次函数、二次函数的图像与性质,已有数形结合思想,会用图像说话。

对于新知识也充满着好奇心和强烈的求知欲望。

因此,本节课学生在教师的引导下,自主探三个二次之间的关系,不仅能巩固二次函数的图像和性质,而且对他们的数形结合思想、二次函数模型的应用意识也有了一定的提高。

三、教学目标1、掌握二次函数的图像和性质,理解二次函数的图像、一元二次方程及一元二次不等式之间的关系。

2、通过绘制二次函数的图像体会一元二次方程的根与函数图像与x轴的交点的关系,一元二次不等式的解集与二次函数图像上的点的关系。

3、培养学生的识图、绘图、用图能力,体会数形结合思想及普遍联系的辩证观。

四、教学重点、难点因为,数形结合是函数学习的基本方法,所以熟练地绘制二次函数的大致图像及图像的变换是掌握二次函数的性质的基石。

因此,本节课的重点是二次函数的图像、性质及三个二次之间的关系。

由于学生的试图能力有限,对函数处理的方法不完整,没有形成模式,故而,在三个二次之间的关系探究中需要教师的指导,是本节的难点。

通过学生观察、讨论分散难点。

五、教法、学法分析义务教育《数学课程标准》(实验稿)指出“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

三个二次之间的关系

三个二次之间的关系

三个二次之间的关系作者:董中枝来源:《新课程学习·下》2015年第01期三个二次是指一元二次方程、一元二次不等式和二次函数。

这三个二次都是中学数学的重要内容,它们之间相互联系,相互渗透,其中二次函数最重要,其图象是纽带。

它将等与不等,数与形紧密结合在一起。

它既包含了方程的根,又包括了不等式的解集。

利用数形结合使一些数学问题得到很好的解决。

三个二次之间的关系表:上表告诉我们:利用函数观点认识方程和不等式。

一元二次方程的根分别对应着二次函数与x轴交点的横坐标,同时对应着一元二次不等式解集的端点。

函数的正值区间就是不等式大于0的解集对应着函数图象在x轴上方各点横坐标的集合。

函数的负值区间就是不等式小于0的解集对应着的函数图象在x轴下方各点的横坐标的集合。

下面通过例子来看这几种关系。

一、利用方程有无根与?驻之间的关系求解例1.当m为何值时,函数y=x2+2(m-1)x+3m2-11=0的图象与x轴有一个交点、两个交点、无交点?分析:函数图象与x轴有无交点,就是对应方程有无实数根。

一个交点?葑一个实根?葑?驻=0两个交点?葑两个实根?葑?驻>0无交点?葑无实数根?葑?驻<0而?驻=[2(m-1)]2-4×1×(3m2-11)我们来解关于m的方程或不等式可以使问题得以求解解:?驻=[2(m-1)]2-4×1(3m2-11)=-8(m2+m-6)当?驻>0时:m2+m-6<0 解得-3<m<2即:当-3<m<2时图象与x轴两个交点。

当?驻=0时:m2+m-6=0 解得m=-3或m=2即:当m=-3或m=2时图象与x轴一个交点。

当?驻<0时:m2+m-6>0 解得m<-3或m>2即:当m<-3或m>2时图象与x轴没有交点。

二、利用方程的根和不等式解集之间的关系求解例2.已知ax2-bx-1>0的解集为(-■,-■)求x2-bx-a<0的解集。

专题12三个二次之间的关系(原卷版)

专题12三个二次之间的关系(原卷版)

专题12 三个二次之间的关系【考点清单】“三个二次”指一元二次函数、一元二次方程、一元二次不等式,是中学数学的重要内容,具有丰富的内涵和广泛的应用,在研究有关于二次曲线的问题时,常常转化成二次方程、二次函数、二次不等式的问题解决。

”三个二次”将等与不等、数与形紧密的结合在一起,对数形结合思想、函数方程思想、等价转化思想有较高的要求。

因而在高考试题函数问题中,非常多的试题与“三个二次”问题有关。

初中阶段对函数、方程、不等式的学习都是彼此独立的,但对于“三个二次”的横向联系缺乏认识。

升入高中才真正揭开三者的内在联系,逐步形成用函数、方程、不等式“三位一体”的思考方式审视问题、解决问题。

1、二次函数①二次函数的三种形式在“三个二次”中一元二次函数是重点,它的一般形式)0(2≠++=a c bx ax y :它的配方形式: 224()(0)24b ac b y a x a a a-=++≠配方形式中充分反映了函数值y 随自变量x 的变化而变化的规律,可以容易的观察出何时取最值,也能考查出自变量x 取关于对称值时函数值的取值特点。

从而它的对称轴:2b x a=-它的顶点坐标:24(,)24b ac b a a--它的因式分解形式:12()()y a x x x x =--,其中12,x x 是一元二次方程的两根.从二次函数的因式分解形式,运用实数运算的符号法则,很容易看出函数y 值何时等于0、y 何时大于0、y何时小于0等特点。

总之一元二次函数反映y 与x 对应关系的全貌:既包括了方程的根、又包括了不等式等式的解。

②二次函数的最值设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:()()n f x f =(1)若[,]2bm n a-∈, 则max ()max{(),(),()}2b f x f m f f n a =-,min ()min{(),(),()}2bf x f m f f n a=- (2)若[,]2bm n a-∉,则max ()max{(),()}f x f m f n =,min ()min{(),()}f x f m f n = 另外,当二次函数开口向上时,自变量的取值离开x 轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开x 轴越远,则对应的函数值越小。

三个二次间关系(教师)

三个二次间关系(教师)

三个“二次”间的关系一.知识梳理一.二次函数、一元二次方程与一元二次不等式的关系二.含参数的一元二次型的不等式:在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:1. 关于不等式类型的讨论:二次项系数a>0,a<0,a=0.2. 关于不等式对应的方程根的讨论:二根(Δ>0),一根(Δ=0),无根(Δ<0).3. 关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.三.不等式的恒成立,能成立,恰成立等问题1. 恒成立问题若不等式f(x)>A在区间D上恒成立,则等价于在区间D上f(x)min>A;若不等式f(x)<B在区间D上恒成立,则等价于在区间D上f(x)max<B.2. 能成立问题若在区间D上存在实数x使不等式f(x)>A成立,则等价于在区间D上f(x)max>A;若在区间D上存在实数x使不等式f(x)<B成立,则等价于在区间D上f(x)min<B.3. 恰成立问题若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.四.二次方程ax2+bx+c=0(a>0)的根的分布分布情况两根都小于即k k x k x <<21,两根都大于即 kk x k x >>21,一个根小于,一个大于k k即12x k x <<)0()(2>++=a c bx ax x f 大致图象得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩()0<k f 分布情况两根都在内()n m ,两根有且仅有一根在内(有两种情况,()n m ,只画了一种)一根在内,另一根在()n m ,内,()q p ,q p n m <<<)0()(2>++=a c bx ax x f 大致图象得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f ()()()()0000f m f n f p fq ⎧>⎪<⎪⎨<⎪⎪>⎩二.典例剖析题型一 一元二次不等式的解法【例1】1.(2013·重庆高考)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A. B. C. D. 5272154152解: 法一:不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由韦达定理知Error!∴x 2-x 1===15,又∵a >0,∴a =,故选A.(x 1+x 2)2-4x 1x 2(2a )2-4(-8a 2)52解法二:由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a,4a ),又∵不等式x 2-2ax -8a 2<0的解集为kkk(x 1,x 2),∴x 1=-2a ,x 2=4a .∵x 2-x 1=15,∴4a -(-2a )=15,解得a =,故选A.522.(2013·江西高考)下列选项中,使不等式x <<x 2成立的x 的取值范围是( )1xA. (-∞,-1)B. (-1,0)C. (0,1)D. (1,+∞)解析:当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为Error!解得x <-1,选A.【课堂练习1】(2012·江苏)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析 (1)由题意知f (x )=x 2+ax +b =2+b -.∵f (x )的值域为[0,+∞),∴b -=0,即b =.∴f (x )(x +a 2)a 24a 24a 24=2.又∵f (x )<c .∴2<c ,即--<x <-+.(x +a 2)(x +a 2)a 2c a2c ∴Error!②-①得2=6,∴c =9.c 题型二 含参数的一元二次不等式的解法【例2】 1. 解不等式042>++ax x 解:∵ ∴当即时,解集为;当即Δ=0时,解集为162-=∆a ()4,4-∈a 0<∆R 4±=a ; ⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且当或即,此时两根分别为,,显然,4>a 4-<a 0>∆21621-+-=a a x 21622---=a a x 21x x >∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或2. 解不等式)0(01)1(2≠<++-a x aa x 解:原不等式可化为:,令,可得:()0)1(<--a x a x aa 1=1±=a ∴当或时, ,故原不等式的解集为;1-<a 10<<a a a 1<⎭⎬⎫⎩⎨⎧<<a x a x 1|当或时,,可得其解集为;当或时, ,解集为。

三个二次及其关系(完整版)

三个二次及其关系(完整版)

二次函数、二次方程及二次不等式的关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法 重难点归纳 1 二次函数的基本性质(1)二次函数的三种表示法 y =ax 2+bx +c ; y =a (x -x 1)(x -x 2); y =a (x -x 0)2+n(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21 (p +q ) 若-a b 2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-ab 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-a b 2)=m ; 若-ab 2≥q ,则f (p )=M ,f (q )=m 2 二次方程f (x )=ax 2+bx +c =0的实根分布及条件(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0; (2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a b ac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q a b p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a 3 二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是 (-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+ab 2|, 当a <0时,f (α)<f (β)⇔|α+a b 2|>|β+a b 2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b 或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或典型题例示范讲解例1已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R)(1)求证两函数的图象交于不同的两点A、B;(2)求线段AB在x轴上的射影A1B1的长的取值范围例2已知关于x的二次方程x2+2mx+2m+1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围(2)若方程两根均在区间(0,1)内,求m的范围巩固练习 1 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( )A (-∞,2]B [-2,2]C (-2,2]D (-∞,-2)2.已知函数282y x x =--和(y kx k k =+为常数)则不论k 为何值,这两个函数的图像( )A .只有一个交点B .只有二个交点C .只有三个交点D .只有四个交点3.设21212(,),(,)(0),A x m B x m y ax bx c a x x x =++≠=+是图上两点当时,二次函数的值( )A .22b c a+ B .24b c a -+ C .m D .c4.二次函数221,,0,y ax bx a b a =++->图象是下列四个图象之一若则=( )A .152-+ B .—1 C .152-- D .15.若二次函数2(0),(0,1),y ax bx c a A =++≠图象的顶点在第一象限且图象经过两点 (1,0),B S a b c -=++则的变化范围是( )A .0<S<2B .0<S<3C .1<S<2D .—1<S<16 设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( )A 正数B 负数C 非负数D 正数、负数和零都有可能7 已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________8 二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________9.二次函数21212132(,0),(,0),,0,22y x mx m x A x B x y C x x =--<<交轴于交轴于点 2121().AB CO O =+为原点(1)求m (2)在x 轴下方是否存在抛物线上的点P 。

三个二次问题综合练习

三个二次问题综合练习

一选择题1.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,2.不论x 为何值,二次函数y=ax 2+bx+c 的值恒为负的条件( )A.a >0,b 2-4ac <0 B .a >0,b 2-4ac >0 C. a <0,b 2-4ac <0 D. a <0,b 2-4ac >0 3.不等式20x x +>的解集是( )A.RB.{1}x x >-C. {1,}x x <-或x>0D. {01}x x >>-4.把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式A.()22412+--=x yB. ()42412+-=x yC.()42412++-=x yD. 321212+⎪⎭⎫ ⎝⎛-=x y 5.若0<a <1,则不等式(x -a )(x -a1)<0的解是( ) A.a <x <a1B. a 1<x <aC.x >a 1或x <aD.x <a1或x >a6.抛物线y=x 2+(2m -1)x+m 2与x 轴有两个交点,则m 的取值范围是( ) A .m>14 B .m>-14 C .m<14D .m<-147.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( ) A.y=x 2-x-2 B.y=121212++-x C.y=121212+--x x D.y=22++-x x8.根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数y 的对应值,•判断方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的一个解x 的范围是( )A .6<x<6.17B .6.17<x<6.18C .6.18<x<6.19D .6.19<x<6.209.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数()A .4个B .3个C .2个D .1个10.二次函数y=ax 2+bx+c (a≠0)的最大值是零,那么代数式│a│+244ac b a-的化简结果是( )A .aB .-aC .D .011.(2006,甘肃兰州)已知y=2x 2的图像是抛物线,若抛物线不动,把x 轴,y •轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是( ) A .y=2(x -2)2+2 B .y=2(x+2)2-2 C .y=2(x -2)2-2 D .y=2(x+2)2+212.若二次函数y=ax 2+bx+c (a≠0)的图像的顶点在第一象限且经过点(0,1)和(•-1,0),则S=a+b+c 的值的变化范围是( )A .0<S<2B .0<S<1C .1<S<2D .-1<S<1 二填空题13.不等式220x x -->的解集是14.已知不等式x 2+mx +n >0的解集是{ x |x <-1或x >2},则m =______,n =______.15.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则方程20(0)ax bx c a ++=> 的根为: 。

三个二次及其关系

三个二次及其关系

二次函数、二次方程及二次不等式的关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的 内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方 法 重难点归纳1二次函数的基本性质 2(1)二次函数的三种表示法y=ax +bx+c;卄 b右— <p,则 f(p)=m,f(q)=M;2abb右 x °≤—<q,则 f(p)=M,f( —)=m;2a 2a(4)f(x)>0恒成立a =b = 0c :: 0.⑵当a>O,f(x)在区间[p,q ]上的最大值 2y=a(x — X 1)(x — x 2); y=a(x — x 0) +n1最小值m,令X 0=(p+q)2若 P ≤ ------- <X 0,则 f( -------- )=m,f(q)=M;2a 2a2(1)方程∆=bb-4ac 0, (2)二次方程 f(x)=0的两根都大于rr,2aa f(r) 0(3)二次方程 f(x)=0在区间(p,q)内有两根 =«厂2.■: = b -4ac 0,b P C q, 2aa f (q) 0, a f (p) 0;(4)二次方程 在(p,q)内成立f(x)=0在区间(p,q)内只有一根 U f(p) ∙ f(q)<0,或 f(p)=0(检验)或 f(q)=0(检验)检验另一根若 (5)方程f(x)=0两根的一根大于p,另一根小于 q(p<q)=a f (p) 0 a f(q) 03二次不等式转化策略(1)二次不等式f(x)=ax 2+ bx+c ≤ 0的解集是 ⑵当 a>0 时,f( α )<f( β )= I a + ∣<∣β+2a当 a<0 时,f(α )<f(β )=|a + —|>|e +巴|;∞ ,α ]) U[ β ,+ ∞ ) := a<0 且 f( α )=f( β )=0;2a|, ⑶当a>0时,二次不等式f(x)>0在[p,q ]恒成立b .「2a * p 或* I f(P)RW b r J b ' 2a"或卜存$f (叮)0, f(q) -0;典型题例示范讲解例 1 已知二次函数f(x)=ax+bx+c和一次函数g(x)= —bx,其中a、b、C满足a>b>c,a+b+c=O,(a,b,c∈R) (1)求证两函数的图象交于不同的两点A、B;⑵求线段AB在X轴上的射影A i B i的长的取值范围例2已知关于X的二次方程X+2mx+2m+仁0(1) 若方程有两根,其中一根在区间(一1,0)内,另一根在区间(1,2)内,求m的范围(2) 若方程两根均在区间(0,1)内,求m的范围巩固练习21若不等式(a —2)x+2(a —2)x—4<0对一切x∈R恒成立,则a的取值范围是()A( —∞ ,2] B [ —2,2] C( —2,2] D( —∞ , —2)22.已知函数y = 8-2x-x和y=kx+k(k为常数)则不论k为何值,这两个函数的图像( )A •只有一个交点B •只有二个交点C.只有三个交点 D •只有四个交点3.设A(xι ,m), B(x>,m)是y =aχ2∙bx ∙ c(a = 0)图上两点,当x = Xι ∙χ?时,二次函数的值(-b2B∙ C C4a5.若二次函数y = ax2∙bx ∙ c(a = 0)图象的顶点在第一象限,且图象经过两点A(0,1),B(-1,0),则^a b C的变化范围是( )A∙0<S<2 B∙0<S<3 C. 1<S<2 D.—1<S<16 设二次函数f(x)=x2—x+a(a>0),若f(m)<0,则f(m —1)的值为()A正数B负数C非负数D正数、负数和零都有可能7已知二次函数f(x)=4x2—2(p —2)x—2p2—p+1,若在区间[—1 , 1]内至少存在一个实数c,使f(c)>0, 则实数P的取值范围是 __________ >8二次函数f(x)的二次项系数为正,且对任意实数X恒有f(2+x)=f(2 —x),若f(1 —2x2)<f(1+2x —x2),则X 的取值范围是___________D. C=ax :2 bx a2-1,图象是下列四个图象之一,若b 0,则a=( )4.二次函数y1 239.二次函数y=?x ~2mx-2m交X轴于A(xι,O), B(X2,O),交y轴于C点,X i ::0 .. X2, AB2=12CO 1(O 为原点).(1)求m( 2)在X轴下方是否存在抛物线上的点P。

二次函数的求和问题

二次函数的求和问题

二次函数的求和问题二次函数在数学中是一类非常重要且常见的函数,其表达式一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

二次函数的求和问题是指在给定一系列二次函数的情况下,求出它们在特定范围内的和。

一、二次函数的基本形式为了更好地理解和解决二次函数的求和问题,我们首先来复习一下二次函数的基本形式及其性质。

一般二次函数的基本形式可以表示为f(x) = ax^2 + bx + c,其中a、b、c分别代表函数的系数。

二次函数的图像是一条开口向上或向下的抛物线,其关键点是顶点。

二、二次函数的求和公式在求解二次函数的求和问题时,我们可以利用特定的公式来简化计算过程。

下面给出二次函数求和的公式:设有n个二次函数,它们分别为f1(x)、f2(x)、...、fn(x),我们需要求它们在区间[a, b]内的和S。

根据二次函数的性质,我们可以得到求和公式如下:S = ∫[a,b] (f1(x) + f2(x) + ... + fn(x))dx = ∫[a,b] f1(x)dx + ∫[a,b] f2(x)dx + ... + ∫[a,b] fn(x)dx其中,∫表示积分运算符,[a,b]表示积分的区间范围。

通过将多个二次函数逐个积分,并将结果相加,即可求得它们在区间[a, b]内的和S。

三、二次函数求和问题的例子为了更好地理解求和问题的具体操作,我们来看一个例子。

例子:求函数f(x) = 2x^2 + 3x + 4在区间[1, 5]内的和S。

解:根据求和公式,我们将函数f(x)逐个积分,并将结果相加,即可得到所求的和S。

∫[1,5] (2x^2 + 3x + 4)dx = (2/3)x^3 + (3/2)x^2 + 4x | [1,5]将上限值(5)代入并减去下限值(1)代入,得到:S = [(2/3)*(5^3) + (3/2)*(5^2) + 4*5] - [(2/3)*(1^3) + (3/2)*(1^2) + 4*1]通过简化计算,可得到S的具体数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年课标高考母题备战高考数学的一条捷径.预测高考试题的有效手段053[决胜高考数学母题](第013号)二次函数与三个二次的问题二次方程ax2+bx+c=0、二次不等式ax2+bx+c>0和二次函数f(x)=ax2+bx+c(a≠0)三者之间的密切关系是高考命题的一个热点,理解这三者之间的关系,就掌握了此类试题的母题.[母题结构]:(Ⅰ)(二次函数)研究二次函数的程序是:一讨论开口方向,二确定对称轴的位置,三抓住顶点.二次函数的常用问题有:对称性问题、单调性问题和最值问题.(Ⅱ)(二次方程)函数f(x)=ax2+bx+c(a≠0)的零点⇔方程f(x)=ax2+bx+c=0的根;零点基本定理:若连续函数f(x)满足f(a)f(b)<0(a<b),则方程f(x)=0在区间(a,b)内至少有一根.(Ⅲ)(二次不等式)若函数f(x)=ax2+bx+c(a≠0)有两个不等零点x1,x2(x1<x2),则:①当a>0时,不等式ax2+bx+c>0的解集为(-∞,x1)∪(x2,+∞),不等式ax2+bx+c<0的解集为(x1,x2);②当a<0时,不等式ax2+bx+c>0的解集为(x1,x2),不等式ax2+bx+c<0的解集为(-∞,x1)∪(x2,+∞).不等式恒成立:①ax2+bx+c>0恒成立⇔a>0,且b2-4ac<0;②ax2+bx+c<0恒成立⇔a<0,且b2-4ac<0.[母题解析]:略.1.二次函数子题类型Ⅰ:(2017年浙江高考试题)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m( )(A)与a有关,且与b有关 (B)与a有关,但与b无关 (C)与a无关,且与b无关 (D)与a无关,但与b有关[解析]:由b的变化,函数f(x)的图像上下平移⇒M-m与b无关;a的变化,函数f(x)的图像左右平移⇒M-m与a有关.故选(B).[点评]:关于二次函数f(x)在区间D内的单调性有如下结论:①f(x)在区间D内的单调⇔f(x)的对称轴不在区间D内(可以在区间D的端点);②f(x)在区间D内的单调递增或递减要根据开口方向,讨论对称轴与区间D的关系.[同类试题]:1.(1992年全国高考试题)如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么( )(A)f(2)<f(1)<f(4) (B)f(1)<f(2)<f(4) (C)f(2)<f(4)<f(1) (D)f(4)<f(2)<f(1)2.(1989年广东高考试题)如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是( )(A)a≥-3 (B)a≤-3 (C)a≤3 (D)a≥32.二次方程子题类型Ⅱ:(2013年重庆高考试题)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间( )(A)(a,b)和(b,c)内 (B)(-∞,a)和(a,b)内 (C)(b,c)和(c,+∞) (D)(-∞,a)和(c,+∞)[解析]:由a<b<c ⇒f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0⇒两个零点分别位于区间(a,b)和(b,c)内.故选(A).[点评]:关于二次方程ax 2+bx+c=0的问题有两种解决的途径:一是求根公式法(包括判断式和韦达定理);二是转化为二次函数f(x)=ax 2+bx+c 的零点问题,利用图像解决.[同类试题]:3.(1982年全国高中数学联赛试题)已知x 1,x 2是方程x 2-(k-2)x+(k 2+3k+5)=0(k 为实数)的两个实数根,x 12+x 22的最大值是( )(A)19 (B)18 (C)595(D)不存在 4.(2011年重庆高考试题)设m,k 为整数,方程mx 2-kx+2=0在区间(0,1)内有两个不同的根,则m+k 的最小值为( ) (A)-8 (B)8 (C)12 (D)13054 备战高考数学的一条捷径.预测高考试题的有效手段 2019年课标高考母题3.二次不等式子题类型Ⅲ:(2005年全国高中数学联赛河南预赛试题)若不等式ax 2+bx+4>0的解集为{x|-2<x<1},则二次函数y=bx 2+4x+a 在区间[0,3]上的最大值,最小值分别为( )(A)0,-8 (B)0,-4 (C)4,0 (D)8,0[解析]:由不等式ax 2+bx+4>0的解集为{x|-2<x<1}⇔-2,1是方程ax 2+bx+4=0的两根⇔-2+1=-ab ,-2×1=a4⇔a=-2,b=-2⇒y=-2x 2+4x-2⇒最大值=0,最小值=-8.故选(A).[点评]:关于二次不等式ax 2+bx+c>(≥,<,≤)0有两类问题:一是二次不等式的解集问题,利用二次不等式的解集端点是二次方程ax 2+bx+c=0的根,可巧解;二是二次不等式恒成立问题,利用等价命题解决.[同类试题]:5.(2013年重庆高考试题)关于x 的不等式x 2-2ax-8a 2<0(a>0)的解集为(x 1,x 2),且x 2-x 1=15,则a=( ) (A)25 (B)27 (C)415 (D)2156.(2013年重庆高考试题)设0≤α≤π,不等式8x2-(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为.4.子题系列:7.(2003年上海春招高考试题)若函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b= ;8.(1997年第八届“希望杯”全国数学邀请赛(高二)试题)如果函数f(x)=ax2+bx+c,x∈[2a-3,a2 ]是偶函数,则a= ,b= .9.(2010年北京市中学生数学竞赛高一试题)若二次函数f(x)=ax2+bx+c的对称轴为x=1且其图像过点(2,0),则)1()1(ff-的值是( )(A)-3 (B)-2 (C)2 (D)310.(1997年第八届“希望杯”全国数学邀请赛(高一)试题)对于任意实数t,函数f(x)=x2+mx+n都有f(t+2)=f(2-t)则有( )(A)f(2)<f(1)<f(4) (B)f(1)<f(2)<f(4) (C)f(2)<f(4)<f(1) (D)f(4)<f(2)<f(1)11.(2007年全国高中数学联赛四川预赛试题)已知函数f(x)=x2+bx+c满足f(2+x)=f(2-x),则使f(x)<c+5成立的x的取值范围是 .12.(2009年全国高中数学联赛安徽预赛试题)设二次函数f(x)=ax2+bx+c(a>0)满足f(5-x)=f(5+x),则f(40)、f(2π)、f(5sin450)由小到大排序为 .13.(2008年陕西高考试题)(文)己知函数f(x)=ax2+2ax+4(a>0).若x1<x2,x1+x2=0,则( )(A)f(x1)>f(x2) (B)f(x1)<f(x2) (C)f(x1)=f(x2) (D)f(x1)与f(x2)的大小不能确定14.(2008年陕西高考试题)(理)己知函数f(x)=ax2+2ax+4(0<a<3).若x1<x2,x1+x2=1-a,则( )(A)f(x1)>f(x2) (B)f(x1)<f(x2) (C)f(x1)=f(x2) (D)f(x1)与f(x2)的大小不能确定15.(1999年第十届“希望杯”全国数学邀请赛(高一)试题)已知二次函数f(x)=ax2+bx,且f(x1)=f(x2),x1≠x2,则f(x1+x2)= .16.(2002年第十三届“希望杯”全国数学邀请赛(高一)试题)已知f(x)=x2-2001x,若f(m)=f(n),m≠n,则f(m+n)等于( )(A)2001 (B)-2001 (C)0 (D)1000.517.(2015年福建高考试题)若a,b是函数f(x)=x2-px+q(p>0,q>0) 的两个不同的零点,且A,B,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则P+Q 的值等于( )(A)6 (B)7 (C)8 (D)918.(2013年浙江高考试题)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则(A)a>0,4a+b=0 (B)a<0,4a+b=0 (C)a>0,2a+b=0 (D)a<0,2a+b=019.(2002年新课程高考试题)函数f(x)=x2+bx+c(x∈[0,+∞)是单调函数的充分必要条件是( )2019年课标高考母题 备战高考数学的一条捷径.预测高考试题的有效手段 055(A)b ≥0 (B)b ≤0 (C)b>0 (D)b<020.(2011年全国高中数学联赛河南预赛试题)已知函数y=x 2+2(a-2)x+5在区间(4,+∞)上为增函数,则实数a 满足( ) (A)a ≥-2 (B)a ≤-6 (C)a ≤-2 (D)a ≥-621.(2004年北京高考试题)在函数f(x)=ax 2+bx+c 中,若a,b,c 成等比数列且f(0)=-4,则f(x)有最 值(填“大”或 “小”),且该值为 .22.(2002年北京市中学生数学竞赛高一试题)已知f(x)=x 2+x+c,若f(0)>0,f(p)<0,则( )(A)f(p+1)=0 (B)f(p+1)<0 (C)f(p+1)>0 (D)f(p+1)的符号不定23.(2011年全国高中数学联赛湖南预赛试题)设函数f(x)=x 2+x+m(m ∈R +),若f(t)<0,则你对函数y=f(x)在(t,t+1)中零点 存在情况的判断是 .24.(2012年江苏高考试题)已知函数f(x)=x 2+ax+b(a,b ∈R)的值域为[0,+∞),若关于x 的不等式f(x)<c 的解集为(m,m+6), 则实数c 的值为 .25.(2005年北京春招试题)若关于x 的不等式x 2-ax-a>0的解集为(-∞,+∞),则实数a 的取值范围是 .若关于x 的不等式x 2-ax-a ≤-3的解集不是空集,则实数a 的取值范围是 .26.(2007年山东高考试题)当x ∈(1,2)时,不等式x 2+mx+4<0恒成立,则m 的取值范围是 .27.(2014年江苏高考试题)已知函数f(x)=x 2+mx-1,若对于任意x ∈[m,m+1],都有f(x)<0成立,则实数m 的取值范围是 . 28.(2006年江西高考试题)若不等式x 2+ax+1≥0对一切x ∈(0,21]成立,则a 的最小值为( ) (A)0 (B)-2 (C)-25(D)-3 29.(2008年福建省高一数学夏令营选拔试题)若不等式x 2+ax+1≥0对一切x ∈[2,3]恒成立,则a 的最小值为( ) (A)-2 (B)0 (C)-310 (D)-25 5.子题详解:1.解:由f(x)=x 2+bx+c ⇒f(x)的图像的开口向上;又由对任意实数t 都有f(2+t)=f(2-t)⇒f(x)的图像关于直线x=2对称⇒f(2)<f(1)<f(4).故选(A).2.解:由f(x)=x 2+2(a-1)x+2⇒f(x)的图像的开口向上,对称轴x=1-a;所以,f(x)在区间(-∞,4]上是减函数⇔1-a ≥4⇔a ≤-3.故选(B).3.解:由(k-2)2-4(k 2+3k+5)≥0⇔k ∈[-4,-34];又由x 1+x 2=k-2,x 1x 2=k 2+3k+5⇒x 12+x 22=(x 1+x 2)2-2x 1x 2=(k-2)2-2(k 2+3k+5)= -(k+5)2+19⇒最大值-(-4+5)2+19=18.故选(D).4.解:令f(x)=mx 2-kx+2,则f(0)=2>0,所以,方程mx 2-kx+2=0在区间(0,1)内有两个不同的根⇔m>0,f(1)=m-k+2>0,k 2-8m >0,0<mk 2<1⇒0<k<2m ⇒m+2<2m ⇒m>2⇒m ≥4⇒k 2>32⇒k ≥6;①当k=6时,m>4,36-8m>0,矛盾;②当k=7时,m>5,49-8m >0⇒m=6⇒m+k 的最小值=6+7=13.故选(D).5.解:由不等式x 2-2ax-8a 2<0(a>0)的解集为(x 1,x 2)⇔x 1,x 2是方程x 2-2ax-8a 2=0的两根⇔x 1=-2a,x 2=4a;由x 2-x 1=15⇒ 6a=15⇒a=25.故选(A). 6.解:由不等式8x 2-(8sin α)x+cos2α≥0对x ∈R 恒成立⇔(8sin α)2-32cos2α≤0⇔2sin 2α-(1-2sin 2α)≤0⇔ 0≤sin α≤21⇔α∈[0,6π]∪[65π,π].7.解:由直线x=1对称⇔-(a+2)=2,且a+b=2⇒a=-4,b=6.8.解:f(x)是偶函数⇔b=0,2a-3+a 2=0⇒a=-3,1,b=0.056 备战高考数学的一条捷径.预测高考试题的有效手段 2019年课标高考母题9.解:因为二次函数f(x)=ax 2+bx+c 的对称轴为x=1且其图像过点(2,0),所以曲线过点(0,0),因此c=f(0)=0,于是f(x)= ax 2+bx,得f(1)=a+b,f(−1)=a-b;又图形对称轴为x=1,则-ab 2=1⇒)1()1(f f -=-3.故选(A).10.解:由f(x)的图像的开口向上;又由f(x)的图像关于直线x=2对称⇒f(2)<f(1)<f(4).故选(A). 11.解:由f(2+x)=f(2-x)⇒对称轴x=2⇒b=-4;所以,f(x)<c+5⇔x 2-4x-5<0⇔x ∈(-1,5).12.解:由f(5-x)=f(5+x)⇒对称轴x=5,且|5sin450-5|>|40-5|>|2π-5|⇒f(2π)<f(40)<f(5sin450). 13.解:由对称轴x=-1⇒|x 1+1|<|x 2+1|⇒f(x 1)<f(x 2).故选(B). 14.解:由f(x 1)-f(x 2)=(x 1-x 2)[a(1-a)+4]<0.故选(B). 15.解:由f(0)=0⇒f(x 1+x 2)=0. 16.解:由f(m+n)=0.故选(C).17.解:由a+b=p,ab=q,则a>0,b>0,当a,b,-2适当排序后成等比数列时,-2必为等比中项,故ab=q=4,当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时得a=1,b=4;当b 是等差中项时得a=4,b=1.综上,a+b=p=5,p+q=9.故选(D). 18.解:由f(0)=f(4)⇒对称轴x=2⇒4a+b=0;又由f(0)>f(1)⇒开口向上⇒a>0.故选(A). 19.解:由对称轴x=-b/2≤0⇔b ≥0.选(A).20.解:由对称轴x=2-a ≤4⇔a ≥-2.选(A). 21.解:由ac=b 2,c=-4⇒a<0,且f(x)的最大值=-3.22.解:由f(0)>0⇒c>0;又由f(p)<0⇒x 2+x+c=0有两不等实根x 1,x 2⇒c<41,且|x 1-x 2|=212214)(x x x x -+=c 41-<1;所以,由f(p)<0⇒f(p+1)>0.故选(C).23.解:由f(t)<0⇒f(t+1)>0⇒在(t,t+1)中存在一个零点. 24.解:由f(x)的值域为[0,+∞)⇔a 2-4b=0⇔f(x)=(x+2a )2;所以,f(x)<c ⇔(x+2a )2<c ⇔-2a -c <x<-2a +c ⇔m=-2a - c ,且m+6=-2a+c ,两式相减得:2c =6⇒c=9. 25.解:由不等式x 2-ax-a>0的解集为(-∞,+∞)⇔a 2+4a<0⇔a ∈(-4,0);不等式x 2-ax-a ≤-3的解集不是空集⇔a 2-4(3-a)≥0⇔a ∈(-∞,-6)∪(2,+∞).26.解:令f(x)=x 2+mx+4,则x 2+mx+4<0⇔f(1)<0,且f(2)<0⇔m ∈(-∞,-5). 27.解:据题意⎩⎨⎧<+<0)1(0)(m f m f ⇒-22<m<0. 28.解:令f(x)=x 2+ax+1,则对称轴x=-2a ;①当-2a ≤0,即a ≥0时,由f(0)=1>0满足条件;②当0<-2a <21,即-1<a<0时,由a 2-4≤0⇒-2≤a ≤2⇒-1<a<0;③当-2a ≥21,即a ≤-1时,由f(21)≥0⇒a ≥-25.综上,a ∈[-25,+∞).故选(C). 29.解:令f(x)=x 2+ax+1,则对称轴x=-2a ;①当-2a ≤2,即a ≥-4时,由f(2)≥0⇒a ≥-25;②当2<-2a <3,即-6<a<-4时,由a 2-4≤0⇒-2≤a ≤2⇒a ∈∅;③当-2a ≥3,即a ≤-6时,由f(3)≥0⇒a ≥-310⇒a ∈∅.综上,a ∈[-25,+∞).故选(D).。

相关文档
最新文档