二次函数的图象及性质知识精讲(一)

合集下载

初三下学期数学二次函数的图象与性质 知识点精讲 教案 教学设计 课件

初三下学期数学二次函数的图象与性质 知识点精讲 教案 教学设计 课件

初三下学期数学二次函数的图象与性质知识点精讲定义与定义表达式:一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二次函数的三种表达式:一般式:y=ax²+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b²2;)/4ax1,x2=(-b±√b²;-4ac)/2a二次函数的图像:在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。

抛物线的性质:1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b²;)/4a]。

当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b²-4ac>0时,抛物线与x轴有2个交点。

二次函数的图象和性质(第1课时 )九年级数学上册课件(人教版)

二次函数的图象和性质(第1课时 )九年级数学上册课件(人教版)

然后描点、连线,得到图象如下图.
y
-4 -2 O 2 4
-2 4 6 8
由图象可知,这个函数 具有如下性质: 当x<-1时,函数值y随x
x
的增大而增大; 当x>-1时,函数值y随x 的增大而减小; 当x=-1时,函数取得最 大值,最大值y=3.
练一练 已知二次函数y=x2﹣6x+5. (1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式; (2)求该二次函数的图象的对称轴和顶点坐标; (3)当x取何值时,y随x的增大而减小.
( C) A.直线x=2
B.直线x=-2
C.直线x=1
D.直线x=-1
4.【2020·温州】已知(-3,y1),(-2,y2),(1,y3)是抛 物线y=-3x2-12x+m上的点,则( B )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
5.【2020·河北】如图,现要在抛物线y=x(4-x)上找点 P(a,b),针对b的不同取值,所找点P的个数,三人的 说法如下,
6.【中考·温州】已知二次函数y=x2-4x+2,关于该函 数在-1≤x≤3的取值范围内,下列说法正确的是( D)
A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1 C.有最大值7,有最小值-1 D.有最大值7,有最小值-2
7.【中考·成都】在平面直角坐标系xOy中,二次函数y= ax2+bx+c的图象如图所示,下列说法正确的是( B)
(1)求 b、c 的值;
解:把 A(0,3),B-4,-92的坐标分别代入
y=-136x2+bx+c,得 c-=1336,×16-4b+c=-92,解得bc==398.,
(2)二次函数 y=-136x2+bx+c 的图象与 x 轴是否有公共点? 若有,求出公共点的坐标;若没有,请说明理由.

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

九年级数学二次函数的图象与性质湘教版知识精讲

九年级数学二次函数的图象与性质湘教版知识精讲

九年级数学二次函数的图象与性质湘教版【本讲教育信息】一. 教学内容:二次函数的图象与性质教学要求:(一)知识与技能要求1. 知道二次函数的图象是抛物线,并且知道抛物线的顶点2. 通过“列表、描点、连线”三步作二次函数y=ax2,y=a(x+d)2,y=a(x+d)2+k,y=ax2+bx+c的图象3. 能说出上述抛物线的对称轴、顶点坐标、开口方向4. 能根据二次函数的图象说明函数值随自变量取值的变化而升或降的性质5. 知道抛物线的顶点坐标与抛物线的最大值(最小值)之间的关系,并能依据抛物线的开口方向确定抛物线的最值(二)过程与方法要求1. 经历探索二次函数y=ax2,y=a(x+d)2,y=a(x+d)2+k,y=ax2+bx+c的图象的作法和性质的过程2. 体会数形结合的思想(三)情感态度与价值观要求1. 积极投入到探索活动中,勇于发表个人意见。

2. 数学活动中充满着探索性,通过认识、观察、归纳、类比可以获得数学猜想二. 重点、难点重点:1. 二次函数y=ax2(a≠0)的性质2. 二次函数y=ax2+bx+c的平移规律3. 求二次函数的最大值或最小值难点:二次函数的性质的应用三. 主要内容:(一)y=ax2(a≠0)的图象及性质1. 二次函数y=ax2的图象是一条抛物线当a>0时,抛物线开口向上,且向上无限伸展a<0时,抛物线开口向下,并且向下无限伸展2. 二次函数y=ax2的性质对称轴是y轴,顶点在原点处a>0,开口向上;a<0,开口向下(二)二次函数y=ax2+bx+c的图象1. 二次函数y=ax2+k的图象可由抛物线y=ax2向上(下)平移得到当k>0时,抛物线y=ax2向上平移|k|个单位,得y=ax2+kk<0时,抛物线y =ax 2向下平移|k|个单位,得y =ax 2+k2. 二次函数y =a (x +d )2的图象由抛物线y =ax 2向左(右)平移 当d>0,抛物线y =ax 2向左平移|d|个单位,得y =a (x +d )2d<0,抛物线y =ax 2向右平移|d|个单位,得y =a (x +d )23. 一般地,抛物线y =a (x +d )2+k 与y =ax 2的形状相同,只是位置不同。

中考数学 第三单元 函数及其图象 第13课时 二次函数的图象与性质(一) 数学

中考数学 第三单元 函数及其图象 第13课时 二次函数的图象与性质(一) 数学
单元思维导图
UNIT THREE
第三单元
第 13 课时 二次函数的图象与性质(一)
函数及其图象
课前双基巩固
考点一 二次函数的定义
若 y=(m-1)
2 +2-1
+2mx-1 是二次函数,则 m 的值是
-3
.
课前双基巩固
知识梳理
1.定义:形如y=ax2+bx+c(a
≠0
)的函数叫二次函数,其中a,b,c为常数.
点、与坐标轴的交点等.
高频考向探究
针对训练
[2017·丽水] 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是
A.向左平移1个单位
B.向右平移3个单位
C.向上平移3个单位
D.向下平移1个单位
(
)
高频考向探究
[答案]D
[解析]
选项
A
B
C
D
知识点
将函数y=x2的图象向左平移1个单位得到函数y=(x+1)2,其
3
1 2
把(1,0)和(0, )代入 y=- x +bx+c,得 2 3
解得
3
2
2
= ,
= ,
2
2
1
3
2
2
∴抛物线的函数表达式为 y=- x2-x+ .
高频考向探究
1
3
2
2
例 2 [2018·宁波] 已知抛物线 y=- x2+bx+c 经过点(1,0),(0, ).
1
(2)将抛物线 y=- x2+bx+c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.

(整理)第10讲二次函数图象和性质

(整理)第10讲二次函数图象和性质

第10讲 二次函数(一)专题一:二次函数的图像与性质(一)知识点梳理1. 二次函数2()y a x h k =-+的图像和性质 a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中 h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定. 5、图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c )形状、对称轴、开口方向与抛物线y=ax 2相同. ⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.(二):经典考题精讲例1、二次函数y=ax 2+bx 2+c 的图象如图所示,则a 0,b 0,c 0.(填“>”或“<”=.)例2、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )例3、在同一坐标系中,函数y=ax 2+bx 与y=xb的图象大致是图中的( )例4、如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x 2+0.9x +10表示,而且左右两条抛物线关于y 轴对称,你能写出右面钢缆的表达式吗?例5、图中各图是在同一直角坐标系内,二次函数y=ax 2+(a +c )x +c 与一次函数y=ax +c 的大致图象,有且只有一个是正确的,正确的是( )例6、抛物线y=ax 2+bx +c 如图所示,则它关于y 轴对称的抛物线的表达式是 .例7、已知二次函数y=(m -2)x 2+(m +3)x +m +2的图象过点(0,5)(1)求m 的值,并写出二次函数的表达式; (2)求出二次函数图象的顶点坐标、例8、 如图所示,有一边长为5cm 的正方形ABCD 和等腰三角形PQR ,PQ=PR=5cm ,QR=8cm ,点B 、C 、Q 、R 在同一直线ι上.当CQ 两点重合时,等腰△PQR 以1cm/秒的速度沿直线ι按箭头所示方向开始匀速运动,t 秒后,正方形ABCD 与等腰△PQR 重合部分的面积为Scm 2.解答下列问题:(1)当t=3秒时,求S 的值; (2)当t=5秒时,求S 的值;三:拓展与应用1. 抛物线()22-=x y 的顶点坐标是 .2.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .3. 如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .4.二次函数2(1)2y x =-+的最小值是( ) A.-2 B.2 C.-1 D.15. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .6.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .7.已知函数y=x 2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A .-1≤x≤3B .-3≤x≤1C .x≥-3D .x≤-1或x≥38. 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个 第3题图第6题图9. 已知二次函数243y ax x=-+的图象经过点(-1,8).(1)求此二次函数的解析式;(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;(3)根据图象回答:当函数值y<0时,x的取值范围是什么?专题二:二次函数与一元二次方程(一):【知识梳理】1.二次函数与一元二次方程的关系:(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0时的情况.(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程y=ax2+bx+c 有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+ bx+c的图象与x轴没有交点时,则一元二次方程y=ax2+bx+c没有实数根(二):【经典考题剖析】1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴J轴相交的交点坐标;(2)抛物线的顶点坐标;(3)画出此抛物线图象,利用图象回答下列问题:①方程x2-6x+8=0的解是什么?②x取什么值时,函数值大于0?③x取什么值时,函数值小于0?2.已知抛物线y=x2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积.3.如图所示,直线y=-2x+2与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90o, 过C 作CD ⊥x 轴,垂足为D (1)求点A 、B 的坐标和AD 的长(2)求过B 、A 、D 三点的抛物线的解析式4.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发,沿BC 边向点C 以2cm/s 的速度移动,回答下列问题:(1) 设运动后开始第t (单位:s )时,五边形APQCD 的面积为S(单位:cm 2),写出S 与t 的函数关系式,并指出自变量t 的取值范围 (2)t 为何值时S 最小?求出S 的最小值5. 如图,直线334y x k=+(0)k >与x 轴、y 轴分别交于A 、B 两点,点P 是线段AB 的中点,抛物线283y x bx c =-++经过点A 、P 、O (原点)。

人教版九年级数学上册课件:22.1二次函数的图像和性质(第1课时)

人教版九年级数学上册课件:22.1二次函数的图像和性质(第1课时)

3.练习、巩固二次函数的定义
解:(1)由题意,得 2x 2y 18,y 9 x. ∵ x>y>0, ∴ x 的取值范围是 92<x<9, ∴ S矩形 = xy = x(9-x)=-x2+9x.
3.练习、巩固二次函数的定义
(2)当矩形面积 S矩形 = 18 时,即 - x2 + 9x = 18,
3.练习、巩固二次函数的定义
例 某小区要修建一块矩形绿地,设矩形的长为 x m,宽为 y m,面积为 S m2(x>y).
(1)如果用 18 m 的建筑材料来修建绿地的边缘 (即周长),求 S 与 x 的函数关系,并求出 x 的取值范 围.
(2)根据小区的规划要求, 所修建的绿地面积必 须是 18 m2,在满足(1)的条件下,矩形的长和宽各 为多少 m ?
九年级 上册
22.1 二次函数的图象和性质 (第1课时)
课件说明
• 本课是在学生已经学习了一次函数的基础上,继续进 行函数的学习,学习二次函数的定义,这是对函数知 识的完善与提高.
课件说明
• 学习目标: 通过对实际问题的分析,体会二次函数的意义.
• 学习重点: 理解二次函数的定义.
1.由实际生活引入二次函数
• 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午4时9分 28秒下午4时9分16:09:2821.11.7
2.通过实例,归纳二次函数的定义
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午4时9分21.11.716:09November 7, 2021

二次函数的图像和性质(共48张PPT)

二次函数的图像和性质(共48张PPT)
C、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向上,对称轴 x= >0,应在 y 轴的右侧,故符合 题意; D、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向下,a<0,故不合题意,图形错误; 故选:C.
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0

二次函数图像及性质完整归纳

二次函数图像及性质完整归纳

二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2以4-=x 为中间值,取x 的一些值,列表如下:【例2】求作函数342+--=x x y 的图象。

专题课堂(一) 二次函数及二次函数的图象与性质

专题课堂(一) 二次函数及二次函数的图象与性质
第十三页,编辑于星期六:九点 四十八分。
7.小明在白纸上画上了直角坐标系,然后将透明纸覆盖在白纸上,在透明纸上描 出了抛物线y=-2(x-3)2,欣赏时他不小心将画有坐标系的白纸向右移动了2个 单位, 这时透明纸上的抛物线的表达式是 y=-2(x-1)2 .
第十四页,编辑于星期六:九点 四十八分。
y2,y3 的大小关系为
y3>y1>y2

分析:根据两个图象的上下位置及函数的增减性,从而进行比较大小,
当两个点在对称轴两侧时,利用抛物线的对称性转化到同侧进行比较.
第八页,编辑于星期六:九点 四十八分。
解: (1)m=-1,y=x2-3x+2
(2)x>3或x<1
(3)y3>y1>y2
第九页,编辑于星期六:九点 四十八分。
A.k≥-4 B.k≤-4 C.k=-2 D.k=-6
第四页,编辑于星期六:九点 四十八分。
二、函数图象的判断
类型:(1)二次函数图象的判断;(2)同一坐标系内不同函数图象的判 断.
【例2】函数y=ax+b和y=ax2+bx+c在同一平面直角坐标系内的图象大致是 () C
分析:根据选项,由一个图象确定系数a,b的取值范围,再由另一个图象 检验a,b的取值范围是否一致.从而得到正确的选项.
类型:(1)平移;(2)旋转;(3)对称. 【例4】二次函数y=-2x2+4x+1的图象通过变换得到:①y=-2x2-2;② y=2x2-8x+11;③y=-2x2-4x+1,试分别说明变换的方法. 分析:将二次函数配方化成顶点式,根据顶点,结合平移、对称、旋转等 规律即可解答. 解:①向左平移1个单位,再向下平移5个单位得到;②向右平移1个单位, 再绕顶点旋转180°得到;③作关于y轴对称的图象,或向左平移2个单位得到

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质知识点一:图像函数性质a>0定义域x∈R(个别题目有限制的,由解析式确定)值域a>0 a<0y∈[4ac-b24a,+∞) y∈(-∞,4ac-b24a]奇偶性b=0时为偶函数,b≠0时既非奇函数也非偶函数a<0单调性a>0a<0x∈(-∞,-b2a]时递减,x∈[-b2a,+∞)时递增x∈(-∞,-b2a]时递增,x∈[-b2a,+∞)时递减图像特点①对称轴:x=-b2a;②顶点:(-b2a,4ac-b24a)例:1、求函数1352++-=xxy图象的顶点坐标、对称轴、最值及它的单调区间。

2、如果cbxxxf++=2)(对于任意实数t都有)3()3(tftf-=+,那么()(A))4()1()3(fff<<(B))4()3()1(fff<<(C))1()4()3(fff<<(D))1()3()4(fff<<3、求函数522--=xxy在给定区间]5,1[-上的最值。

4、已知函数1)2(2-+-=nxxny是偶函数,试比较)2(f,)2(f,)5(-f的大小。

5、求当k为何值时,函数kxxy++-=422的图象与x轴(1)只有一个公共点;(2)有两个公共点;(3)没有公共点.6、抛物线642--=xaxy的顶点横坐标是-2,则a=7、已知二次函数bxay+-=2)1(有最小值–1,则a与b之间的大小关系是()A .a <bB .a=bC .a >bD .不能确定 8、二次函数y=(x-k )2与直线y=kx(k>0)的图像大致是( )知识点二:(1)当Δ=b2-4ac=0,方程有两个相等的实根,这时图象与x 轴只有一个公共点; (2)当Δ=b2-4ac>0,方程有两个不相等的实根,这时图象与x 轴有两个公共点; (3)当Δ=b2-4ac<0,方程有两个不相等的实根,这时图象与x 轴无公共点;课堂练习: 一.选择题1.二次函数522+-=x x y 的值域是( )A.)4∞+, [ B.),4(∞+ C.(4, ∞-] D.)4,( -∞2.如果二次函数452++=mx x y 在区间)1,(--∞上是减函数,在区间),1[+∞-上是增函数,则=m ( )A.2 B.-2 C.10 D.-103.如果二次函数)3(2+++=m mx x y 有两个不相等的实数根,则m 的聚值范围是( ) A.),6()2,(+∞⋃--∞ B.)6,2(- C.)6,2[- 0 D.}6,2{- 4.函数3212-+=x x y 的最小值是( ) A.-3. B..213- C.3 D..2135.函数2422---=x x y 具有性质( ) A.开口方向向上,对称轴为1-=x,顶点坐标为(-1,0)B.开口方向向上,对称轴为1=x ,顶点坐标为(1,0) C.开口方向向下,对称轴为1-=x ,顶点坐标为(-1,0) D.开口方向向下,对称轴为1=x,顶点坐标为(1,0)6.函数(1)3422-+=x x y ;(2)3422++=x x y ;(3)3632---=x x y ;(4)3632-+-=x x y 中,对称轴是直线1=x 的是( )A.(1)与(2) B.(2)与(3) C.(1)与(3) D.(2)与(4) 7.对于二次函数x x y 822+-=,下列结论正确的是( )A.当2=x 时,y 有最大值8 B.当2-=x 时,y 有最大值8 C.当2=x 时,y 有最小值8 D.当2-=x 时,y 有最小值8 8.如果函数)0(2≠++=a c bx ax y ,对于任意实数t 都有)2()2(t f t f -=+,那么下列选项中正确的是( )A.)4()1()2(f f f <-< B.)4()2()1(f f f <<- C.)1()4()2(-<<f f f D.)1()2()4(-<<f f f二.填空1.若函数12)(2-+=x x x f ,则)(x f 的对称轴是直线2.若函数322++=bx x y 在区间]2,(-∞上是减函数,在区间],2(+∞是增函数,则=b3.函数9322--=x x y 的图象与y 轴的交点坐标是 ,与x 轴的交点坐标是 、 4.已知6692+-=x x y ,则y 有最 值为 5.已知12842++-=x x y ,则y 有最 值为 三.解答题1.已知二次函数342-+-=x x y(1)指出函数图象的开口方向;(2)当x 为何值时0=y ;(3)求函数图象的顶点坐标、对称轴和最值。

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。

通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。

但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。

三. 教学目标1.理解二次函数的一般形式和图象特点。

2.掌握二次函数的顶点坐标、开口方向和判别式的概念。

3.能够运用二次函数的性质解决一些实际问题。

四. 教学重难点1.二次函数的一般形式和图象特点。

2.二次函数的顶点坐标、开口方向和判别式的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。

2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。

3.注重数学语言的训练,引导学生规范表达。

六. 教学准备1.多媒体课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。

例如,抛物线运动、物体抛掷等。

从而引出二次函数的概念。

2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。

引导学生观察并总结二次函数的性质。

3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。

同时,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。

教师及时批改并给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。

二次函数的图像与性质(第一课时)优质课件

二次函数的图像与性质(第一课时)优质课件
对称轴与抛物 线的交点叫做 抛物线的顶点.
抛物线y=x2在x轴的上方(除顶点外), 顶点是它的最低点,开口向上, 当x=0 时,函数y的值最小,最小值是0.
【内容】独立完成探究点一的针对练习、 探究点二。(5min)
【要求】1.独立思考,认真分析总结; 2.标记好自己的疑难问题,以便讨论 探究; 3.自主独立做题,2min时间到后学 科组长组织组员针对疑难问题及 小组任务进行讨论交流。
2.2 二次函数的图像与性质(一)
我们把物体抛射时所经过的路线叫做抛物线.
1.经历探索二次函数y=x2 的图像的作法
和性质的过程,获得利用图像研究函数性质 的经验;
2.能够利用描点法作出二次函数y=x2的图 像,并能根据图像认识和理解二次函数y=x2 的性质;
3.能够作出二次函数 y=-x2的图像,并能 够y=x2比较出与 的图像的异同,初步建立二 次函数表达式与图像之间的联系.
【内容】快速、独立完成训练案“自测反馈”(8min) 【要求】1.独立思考,认真分析总结
2.标记好自己的疑难问题,以便课后讨论探究
探究内容 展示小组
14组小2源自2组组 合3
6组

4
5组
能力提升1
1组
能力提升2
3组
【要求】1.独立完成训练案的填空题;2.标记好自己的疑难
问题,以便讨论 ;3.针对疑难,自由探讨,互帮互助.
2、剩余时间思考探究案中其他问题,并把你认为正确的答 案写在学案上。
1.列表时注意自变量X的取值是否有意义.
(1)反比例函数: y
2
x
(x≠0)
(2)圆的面积公式:S r 2 (r≥0)
(3)二次函数: y=-x2 (x取全体实数)

北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)

北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)

北师大版九年级下册数学第 5 讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理【学习目标】1.经历探索二次函数y=ax2 和y=ax2+c 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2 和y=ax2+c 的图象,并能比较它们与y=x2 的异同,理解a 与c 对二次函数图象的影响.3.能说出y=ax2+c 与y=ax2 图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=a x2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y 轴,它的顶点是坐标原点.当a>0 时,抛物线的开口向上,顶点是它的最低点;当a<0 时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=a x2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x 的值,求出相应的y 值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x 和y 的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值.(2)二次函数y=ax2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.3.二次函数y=a x2(a≠0)的图象的性质二次函数y=ax2(a≠0)的图象的性质,见下表:要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y 轴,│a│越小,开口越大,图象两边越靠近x 轴.要点二、二次函数y=a x2+c(a≠0)的图象与性质1.二次函数y=a x2+c(a≠0)的图象(1)a 0yy = ax 2+ c (c > 0)c Oxyy = ax 2 + c (c < 0) Oc x(2) a < 0yc OxyOcx2.二次函数 y =a x 2+c (a ≠0)的图象的性质y = ax 2 + c (c > 0)y = ax 2 + c (关c < 0于) 二 次 函 数y = ax 2 + c (a ≠ 0) 的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数y= ax 2 + c (a > 0, c > 0)y = ax 2 + c (a < 0, c > 0)图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当 x > 0 时,y 随 x 的增大而增大; 当 x < 0 时,y 随 x 的增大而减小.当 x > 0 时,y 随 x 的增大而减小; 当 x < 0 时,y 随 x 的增大而增大.最大(小)当x = 0 时,y最小值=c当x = 0 时,y最大值=c 值【典型例题】类型一、二次函数y=ax2(a≠0)的图象与性质1.(2014 秋•青海校级月考)二次函数y=ax2与直线y=2x﹣1 的图象交于点P(1,m)(1)求a,m 的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.【思路点拨】(1)把点P(1,m)分别代入二次函数y=ax2与直线y=2x﹣1 即可求出未知数的值;(2)把a 代入二次函数y=ax2与即可求出二次函数表达式;根据二次函数的对称轴及增减性判断出x 的取值.(3)根据二次函数的性质直接写出即可.【答案与解析】解:(1)点P(1,m)在y=2x﹣1 的图象上∴m=2×1﹣1=1 代入y=ax2∴a=1(2)二次函数表达式:y=x2因为函数y=x2的开口向上,对称轴为y 轴,当x>0 时,y 随x 的增大而增大;(3)y=x2的顶点坐标为(0,0),对称轴为y 轴.【总结升华】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性.举一反三:【变式1】二次函数y =ax2与y =-2x2的形状相同,开口大小一样,开口方向相反,则a=.【答案】2.【变式2】(2015•山西模拟)抛物线y=﹣x2不具有的性质是().A.开口向上B. 对称轴是y 轴C. 在对称轴的左侧,y 随x 的增大而增大D. 最高点是原点【答案】A.2.已知y=(m+1)x m2+m 是二次函数且其图象开口向上,求m 的值和函数解析式.【思路点拨】根据二次函数的定义以及函数y=ax2(a≠0)的图象性质来解答.【答案与解析】⎩⎧m 2 + m = 2由题意, ⎨m +1>0 ,解得 m=1,∴二次函数的解析式为:y= 2x 2 .【总结升华】本题中二次函数还应该有 m+1≠0 的限制条件,但当 m +1>0 时,一定存在 m+1≠0,所以就不再考虑了.类型二、二次函数 y =a x 2+c (a ≠0)的图象与性质3. 求下列抛物线的解析式:(1) 与抛物线 y = - 1 x 2+ 3 形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; 2(2) 顶点为(0,1),经过点(3,-2)并且关于 y 轴对称的抛物线.【思路点拨】抛物线形状相同则| a | 相同,再由开口方向可确定 a 的符号,由顶点坐标可确定 c 的值,从而确定抛物线的解析式 y = ax 2 + c .【答案与解析】(1) 由于待求抛物线 y = -1x 2 + 3 21形状相同,开口方向相反,可知二次项系数为 , 2又顶点坐标是(0,-5),故常数项 k = -5 ,所以所求抛物线为 y = 1x 2 - 5 .2(2) 因为抛物线的顶点为(0,1),所以其解析式可设为 y = ax 2 +1 ,又∵该抛物线过点(3,-2),∴ 9a +1 = -2 ,解得 a = - 1.3∴所求抛物线为 y = - 1x 2 +1.3【总结升华】本题考察函数 y = ax 2 + c (a ≠ 0) 的基本性质,并考察待定系数法求简单函数的解析式.4. 在同一直角坐标系中,画出 y = -x 2 和 y = -x 2 +1的图象,并根据图象回答下列问题.(1)抛物线y =-x2+1向平移个单位得到抛物线y =-x2;(2)抛物线y =-x2+1开口方向是,对称轴为,顶点坐标为;(3)抛物线y =-x2+1,当x时,随x 的增大而减小;当x时,函数y 有最值,其最值是.【思路点拨】利用描点法画出函数图象,根据图象进行解答.【答案与解析】函数y =-x2与y =-x2+1的图象如图所示:(1)下;l ;(2)向下;y 轴;(0,1);(3)>0;=0;大;大; 1.【总结升华】本例题把函数y =-x2+1与函数y =-x2的图象放在同一直角坐标系中进行对比,易得出二次函数y =ax2+c(a ≠ 0) 与y =ax2 (a ≠ 0) 的图象形状相同,只是位置上下平移的结论.y =ax2+c(a ≠ 0) 可以看作是把y =ax2 (a ≠ 0) 的图象向上(k > 0) 或向下(k < 0) 平移| k | 个单位得到的.举一反三:【变式】函数y = 3x2可以由y = 3x2-1 怎样平移得到?【答案】向上平移1 个单位.。

22.1.4二次函数y=ax2+bx+c的函数图象和性质(1)

22.1.4二次函数y=ax2+bx+c的函数图象和性质(1)

a+b+c>0
点在x轴下方
a+b+c<0
点在x轴上
a+b+c=0
(8)a-b+c的符号:
由x=-1时抛物线上的点的位置确定
点在x轴上方 点在x轴下方 点在x轴上
a-b+c>0 a-b+c<0 a-b+c=0
练习
11、已知:二次函数y=ax2+bx+c的图象如图所 示,下列结论中下不正确的是 ( D )
根据图形填表:
抛物线
y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
顶点坐标 对称轴 位置
b
4ac b2 ,
2a 直线x
4ab
2a
由a,b和c的符号确定
b , 4ac 2a 4a 直线x
b2 b
2a
由a,b和c的符号确定
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
配方: y 3x2 6x 5
3 x2 2x 5
3
提取二次项系数
老师提示:
3
x2
2x11
5 3
配方:加上再减去一次 项系数绝对值一半的 平方
3x
12
2 3
整理:前三项化为平方形 式,后两项合并同类项
配方后的表达 3x 12 2. 化简:去掉中括号
式通常称为顶
点式
简单说成:一提、二配、三化简
【左同右异】
⑶ c决定抛物线与y轴交点的位置:
① c>0 ↔图象与y轴交点在x轴上

1.2二次函数的图象与性质(第1课时)课件(共13张ppt)

1.2二次函数的图象与性质(第1课时)课件(共13张ppt)
图象的开口向 上 ; 图象是轴对称图形,对称轴是_y轴____x_=_0 对称轴与图象的交点是 O(0,0) ;
图象在对称轴左边的部分,函数值随
自变量取值的增大而 减小 ,
简称为“左降”;
图象在对称轴右边的部分,函数值随自变量取
值的增大而 增大 , 简称为“右升”; 当x= 0 时,函数值最 小 .
谢谢观赏
You made my day!
我们,还在路上……
当x= 0 时,函数值最 小 .
类似地,当a>0时,y=ax2的图象也具 有上述性质.
于是我们在画y=ax2(a>0)的图象时,可以先画出图象在y轴 右边的部分,然后利用对称性,画出图象在y轴左边的部分.
在画右边部分时,只要“列表、描点、连线”三个步骤 就可以了(因为我们知道了图象的性质).
例1 画二次函数y=x2的图象. 列表: x 0 0.5 1 1.5 2 3
,简称为“右升”.
观察
我们已经正确地画出了y =
现在可以从图象看出
y
=
1 2
x
2
的12 x其2 的他图一象些,性因质此(除,
了上面已经知道的关于y轴对称和“右升”外):
对称轴与图象的交点是 O(0,0) ;图象的开口向 上 ;
图象在对称轴左边的部分,函数值随自变量取值的
增大而 减小 , 简称为“左降”;
解:(1)把A(2,8)代人y=ax2 ∴ a=2 ∴ y=2x2
(2) 当x=1时,y=2 ≠ 4 ∴ B(1,4)不在y=2x2的图像上。
(3) 当y=18时,即2x2=18,x=3或x=-3 ∴ 纵坐标是18的点是:(3,18)和(-3,18)
对于y=ax2(当a>0时)的图象也具有上述性质.

《二次函数y=ax^2+bx+c的图象和性质(1)》名师课件

《二次函数y=ax^2+bx+c的图象和性质(1)》名师课件
43;1的图象的对称轴是x=1, 在对称轴的右侧y随x的增大而增大,
∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上 两点, 1<2<3, ∴y1<y2. 【思路点拨】根据已知条件求出二次函数的图象的对称轴, 再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.
4.你能归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性 质吗?
知识回顾
问题探究
课堂小结
随堂检测
重点、难点知识★▲
探究三:二次函数的图象及性质 活动 师生共研,探究性质
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与性质: (1)当a>0时,抛物线开口向上,并且向上无限延伸. a>0 b (2)对称轴是直线 x , 2a b 4ac b 2 顶点坐标为 ( , ). 2a 4a b (3)在对称轴的左侧,即相当于 x< 时, 2a y随x的增大而减小; b 在对称轴的右侧,即相当于 x 时, 简记为“左减右增”. 2a y随x的增大而增大;
1 2 解: y x 6 x 21 2 1 2 ( x 12 x 42) 2 1 2 ( x 12 x 36 6) 2 1 ( x 6)2 3 2
所以它的开口向上,对称轴是x=6, 顶点坐标是(6,3).
对称轴和顶点坐标.
同学们自己画图! 归纳: 一般式化为顶点式的思路:
b 4ac b 2 则: h , k . 2a 4a
2.在二次函数y=ax2+bx+c与二次函数y=a(x-h)2+k中,
b 4ac b 2 h ,k . 2a 4a
知识回顾
问题探究
课堂小结
随堂检测

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。

二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。

3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。

顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。

三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。

2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。

3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。

4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。

四、应用二次函数在几何、物理、经济等领域有着广泛的应用。

例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。

结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。

希望本文的介绍能帮助读者更好地掌握二次函数的知识。

(完整版)二次函数图象和性质知识点总结

(完整版)二次函数图象和性质知识点总结

二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。

③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。

2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。

②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。

然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。

a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图象及性质知识精讲
【知识精讲】
1. 一般地,形如)0a c ,b ,a (c bx ax y 2≠++=是常数,的函数叫作x 的二次函数。

2. 如图,二次函数2x y =的图象是一条抛物线,它的开口向上,且关于y 轴对称,对称轴与抛物线的交点是抛物线的顶点,它是图象的最低点。

10 y x
2 2
-2 -4 4
4 6 8 O
3. 二次函数2x y -=的图象是一条抛物线,它的开口向下,且关于y 轴对称,对称轴与抛物线的交点是抛物线的顶点,它是图象的最高点,它的图象与2x y =的图象关于x 轴对称。

4. 二次函数2ax y =的图象是一条抛物线,且关于y 轴对称,当a>0时,它的开口向上,图象有最低点——原点;当a<0时,它的开口向下,图象有最高点——原点。

|a|越大,开口越小。

5. 二次函数b ax y 2+=的图象与二次函数2ax y =的图象形状相同,开口方向和对称轴也相同,但顶点坐标不同,b ax y 2+=的图象的顶点坐标是(0,b )。

6. 二次函数h )k x (a y ,)k x (a y ,ax y 222+-=-==的图象都是抛物线,并且形状相同,只是位置不同,将2ax y =的图象向右平移k 个单位就得到2)k x (a y -=的图象,再向上平移h 个单位就得到h )k x (a y 2+-=的图象。

7. 二次函数h )k x (a y 2+-=的图象,当0a >时,开口向上,对称轴是直线k x =,顶点坐标为(k ,h );当a<0时,开口向下,对称轴是直线x=k ,顶点坐标为(k ,h )。

8. 二次函数)0a c ,b ,a (c bx ax y 2≠++=是常数,的图象是一条抛物线,它的对称轴是直
线a
2b
x -=,顶点是)a 4b ac 4,
a 2
b (2--。

【典型例题】
例1. 已知抛物线c bx ax y 2++=经过原点和第一、二、三象限,则( )
A. a>0,b<0,c=0
B. a<0,b<0,c=0
C. a<0,b<0,c<0
D. a>0,b>0,c=0
例2. 在同一直角坐标系中,直线y=ax+b 和抛物线)0c (c bx ax y 2≠++=的图象只可能是图中的( )
例3. 在同一直角坐标系中,函数ax bx y b ax y 22+=+=和的图象只可能是图中的
( )
例4. 抛物线m 3)1m 2x (2
1
y 2-+-=
的顶点在y 轴上,则m 的值为______________。

例5. 按要求求出下列二次函数的解析式:
(1)形状与2x 3
1y 2+-=的图象形状相同,但开口方向不同,顶点坐标是(0,-3)
的抛物线的解析式; (2)与抛物线2x 5
1y 2
-=
关于x 轴对称的抛物线的解析式; (3)对称轴是y 轴,顶点的纵坐标是2
7
-,且经过(1,1)点的抛物线的解析式。

例6. 已知函数1x 2x 2
1
y 2++=
(1)写出抛物线的开口方向,顶点坐标、对称轴及最值; (2)求抛物线与x 轴、y 轴的交点;
(3)观察图象:x 为何值时,y 随x 的增大而增大;
(4)观察图象:当x 为何值时,y>0时,当x 为何值时,y=0;当x 为何值时,y<0。

例7. 已知二次函数k 3kx 2x )2k (y 2++-=,根据下列给出的条件求出相应的k 的值。

(1)抛物线的顶点在x 轴上; (2)抛物线的顶点在y 轴上; (3)抛物线的顶点在y=4x 上。

【同步拓展训练】(答题时间:45分钟)
一、选择题
1. 下列函数中,不是二次函数的是( )
A. )为常数,且,,(0a c b a c bx ax y 2≠++=
B. 22x 2)2x (2y --=
C. 1)2x (y 2--=
D. 2
x 3
1x y -
= 2. 已知二次函数)0a (ax y 2≠-=,下列说法不正确的是( )
A. 当a>0且x ≠0时,y 总取负值
B. 当a<0且x<0时,y 随x 的增大而减小
C. 当a<0时,函数的图象有最低点,即y 有最小值
D. 当x<0时,2ax y -=的对称轴是y 轴
3. 直线1x 2y -=与抛物线2x y =的交点坐标为( )
A. (0,0),(1,1)
B. (1,1)
C. (0,1),(1,0)
D. (0,2),(2,0)
4. 已知1a -<,点),)、(,)、(,(321y 1a y a y 1a +-都在函数2x y =的图象上,则( )
A. 321y y y <<
B. 231y y y <<
C. 123y y y <<
D. 312y y y <<
5. 函数)(和函数0a a ax y ax y 2≠-==在同一坐标系中的图象大致是图中的( )
y
y
y
y x
x
x
x
O
O
O
O
A B C D
二、填空题
1. 抛物线3x 2
1y 2--=的图象开口___________,对称轴是___________,顶点坐标为___________,当x=___________时,y 有最___________值为___________。

2. 当m=___________时,抛物线3x )1m (y m
m
2
++=+开口向下,对称轴是___________,
在对称轴左侧,y 随x 的增大而___________,在对称轴右侧,y 随x 的增大而___________。

3. 抛物线22x 3y x y ==与相比,___________的开口更小,也就是说明某函数值的增长速度较快一些。

4. 若点P (1,a )和Q (-1,b )都在抛物线1x y 2+-=上,则线段PQ 的长是___________。

5. 设21x x 、是关于x 的一元二次方程2a ax x 2=++的两个实数根,则
)x 2x )(x 2x (1221--的最大值为___________。

【思维能力提升】
三、解答题
1. 某商人如果将进货单价为8元的商品按每件10元出售,每天可售出100件。

现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件,如果他每天所赚利润为y 元,试求出y 与售出价x 之间的函数关系式。

2. 已知抛物线3x 2y ax y 2+==与直线交于A 、B 两点,已知A 点的横坐标是3,求A 、B 两点的坐标及抛物线的关系式。

3. 某地解放大桥拱形钢梁呈抛物线状,拱顶A 离桥面50m ,桥面上拱形钢梁之间距离BC=120m ,建立如图所示的直角坐标系。

(1)写出A 、B 、C 三点的坐标; (2)求该抛物线的解析式。

4. 卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示大桥拱内桥长,DE//AB,如图1所示。

在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2所示。

(1)求出图2上,以这一部分抛物线为图象的函数关系式,并写出函数自变量取值范围。

2 ,计算
(2)如果DE与AB的距离OM=0.45cm,求卢浦大桥拱内实际桥长。

(4.1
结果精确到1米)。

5. 如图,有一座抛物线形拱桥,在正常水位时,水面AB的宽为20cm,如果水位上升3m 时,水面CD的宽是10m。

(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计),货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行)。

试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由。

若不能,要使货车安全通过此桥,速度应超过每小时多少千米?。

相关文档
最新文档