《等比数列》第一课时教学设计
等比数列的概念和通项公式(教学设计)
《等比数列》(第1课时)教学设计授课地点:武威八中授课时间:20XX年4月22日授课人:武威六中杨志隆一、教学目标知识与技能1.理解等比数列的概念;2.掌握等比数列的通项公式;3.会应用定义及通项公式解决一些实际问题。
过程与方法培养运用归纳类比的方法去发现并解决问题的能力。
通过实例,归纳并理解等比数列的概念,探索并掌握等比数列的通项公式,培养学生严密的思维习惯。
情感态度与价值观充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
二、教学重点、难点教学重点:等比数列的概念及通项公式;教学难点:通项公式的推导及初步应用。
三、教学方法发现式教学法,类比分析法四、教学过程(一)旧知回顾,情境导入1. 回顾等差数列的相关性质设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。
2.情境展示情境1:“一尺之棰,日取其半,万世不竭。
”情境2:一张纸的折叠问题把以上实例表示为数学问题,并引导学生通过观察、联想,得到两个数列:① ⋅⋅⋅⋅⋅⋅161,81,41,21,1 ② 1,2,4,8,16,32,64⋅⋅⋅⋅⋅⋅设计意图:让学生通过观察,得到两个数列的共同特点:从第二项起,每一项与它前面一项的比都等于同一个常数.由此引入等比数列。
(二)概念探究1.引导学生通过联想并类比等差数列给出该数列的名称:等比数列2.归纳总结,形成等比数列的概念.一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比(引导学生经过类比等差数列的定义得出)。
同时给出等比中项的定义,并和等差中项做比较,加深学生对概念的理解。
3.对等比数列概念的深化理解给出几个数列让学生判断是否是等比数列,以加深对概念的理解。
问题1:等比数列的项可以为零吗?问题2:等比数列的公比可以为零吗?问题3:若0>q ,等比数列的项有什么特点?0<q 呢?特别地,若1=q ,数列的项有什么特点?问题4:形如a ,a ,a ,…(R a ∈)的数列既是等差数列,又是等比数列吗?设计意图:通过让学生分析讨论,加深学生对概念的深层次理解,培养学生严谨的思维习惯和良好的自主探究能力。
等比数列教学设计
等比数列一教案描述1.教案的背景等比数列是另一类重要的特殊数列,研究方向、内容、方法与等差数列类似。
首先,归纳出等比数列的定义,再导出等比数列的通项,最后是应用。
我在教学设计中,通过创设一系列的问题情境把这些内容有机地串联起来,整个过程如一次重大战役,环环紧扣,层层深入,促进学生思维的展开,增强创新意识的培养。
教学目标(1)理解等比数列的定义及通项公式。
掌握通项公式的推导方法(2)通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
(3)通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
2.教学过程设计2.1创设情境,自学质疑教师先借助电脑投影几个数列①-2,1,4,7,10,13,16,19,…②8,16,32,64,128,256,…③3,3,3,3,3,3,3,…④243,81,27,9,3,1, , ,…⑤31,29,27,25,23,21,19,…⑥1,-1,1,-1,1,-1,1,-1,…⑦1,-10,100,-1000,10000,-100000,…然后提出下列问题问题1:①我们已学过等差数列,以上数列哪些是等差数列?②如果不是,那么数列的后一项与前一项又具有怎样的共同特征?③能为这类数列命名吗?设计意图:是让学生体验类比及从特殊到一般和从一般到特殊的思想方法.这里教师的任务是:展示创设的问题情境,为学生观察、思考、讨论、交流等学习活动提供材料。
2.2合作交流,互动探究(1)等比数列的定义问题2:类比等差数列的概念,归纳等比数列的定义讨论结果:①相邻两项的商是一个常数②每一项与前一项的比是同一个常数③从第二项起,后一项与前一项的比是同一个常数对于这一问题,有了等差数列的基础,学生是可以概括出来的,尽管总结的语言很可能不太理想,教者也不要着急地照本宣科或越俎代庖,要相信学生在经历了一番挫折后会逐步完善他们的表达语言,这样形成的知识更加牢固。
高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案
等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。
1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。
人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版
2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。
《等比数列的前n项和》(第一课时)教学设计
《等比数列的前n项和》(第一课时)教学设计一、教学目标1. 知识与技能:掌握等比数列的概念和性质,能够求等比数列的第n项;掌握等比数列的前n项和的计算公式;能够解决一些实际问题,应用等比数列的前n项和的计算公式进行计算。
2. 过程与方法:通过讲解、演示、示例分析等方式引导学生理解等比数列的概念和性质;通过举例和引导,让学生自主发现并掌握等比数列前n项和的计算公式;通过实际问题的引入,培养学生应用数学知识解决问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高数学学习的积极性;通过培养思维能力,提高学生的解决实际问题的能力;建立合作学习的氛围,培养学生的团队协作精神。
2. 教学难点:如何引导学生发现等比数列的前n项和计算公式;如何应用等比数列的前n项和计算公式解决实际问题。
三、教学准备1. 教学工具:黑板、彩色粉笔、PPT;学生课前准备的练习册。
四、教学过程Step 1 引入新知识(15分钟)1. 通过一些日常生活中的场景介绍等比数列,并引导学生思考:(1)你们在购物时是否遇到过折扣问题?是否觉得价格之间存在某种规律?(2)在旅行中,大部分的车票、门票都是按照一定比例的折扣出售的。
你们有没有想过,如果给定了第一项和公比,如何求前n项的和呢?(3)在金字塔的设计中,每一层的砖块数量都是前一层数量的2倍,那么你们有没有想过,如何计算指定层数金字塔的砖块总数呢?2. 引出本节课的内容:等比数列的前n项和的计算方法。
Step 2 等比数列的概念和性质(10分钟)1. 引导学生回顾等差数列的概念,并通过问题引出等比数列的概念。
(1)请大家回顾一下我们之前学的等差数列,能否从中总结出什么规律?(2)为什么等差数列的通项公式能够找到等差数列中任意一项?(3)如果将等差数列进行分割,每一项分割成两部分,两部分的比例保持不变,这样的数列是否存在?2. 让学生通过运算验证等比数列的概念和性质。
等比数列的概念和性质:如果一个数列,从第二项起,每一项与前一项的比值等于同一个非零常数,那么这个数列就是等比数列。
等比数列教学案
等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。
授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。
教学难点:等比数列通项公式的探求。
教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。
《等比数列》教学设计
《等比数列》教学设计一、目的要求1.理解等比数列的概念。
2.掌握等比数列的通项公式,并会根据它进行有关计算。
二、内容分析1.等比数列与等差数列在内容上是完全平行的,包括定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项、两种数列在函数角度下的解释、具体问题里成等差(等比)数列的三个数的设法等。
因此在教学与复习时可用对比方法,以便于弄清它们之间的联系与区别。
这里指出,如果一个数列既是等差数列又是等比数列,其充要条件是它为非0的常数列。
事实上,由等比数列的定义可知这个数列是非0数列。
取这个数列中的任意连续3项,由题设知这个数列是非0的常数列。
2.数列的学习中,等差数列与等比数列是两种最重要的数列模型。
事实上,等差数列描述的是一种绝对均匀的变化,等比数列描述的是一种相对均匀的变化。
因为非均匀变化通常要转化或近似成均匀变化来进行研究,所以本章里重点研究等差数列和等比数列。
3.从函数的角度看,如果说等差数列可以与一次函数联系起来,那么等比数列则可以与指数函数联系起来。
事实上,由等比数列的通项公式可得,当q>0,且q≠1时,是一个指数函数,而上式则是一个不为0的常数与指数函数的积,因此等比数列{}的图象是函数的图象上的一些孤立点。
4.本课内容的重点是等比数列的概念及其通项公式。
与等差数列一样,在讲等比数列的概念时,关键是要讲清“等比”的意义,即数列中任一项与前一项的比是同一个常数。
等比数列的定义,是我们判断一个数列是否为等比数列的基本方法。
与等差数列一样,等比数列也具有一种对称性。
对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍。
类似地,对于等比数列来说,与数列中任一项等距离的两项之积等于该项的平方。
利用上面的性质,常可使一些问题变得简便。
例如在具体问题里设成等差数列的3个数时,常设成a-d,a,a+d;三、教学过程1.提出教科书中的数列①、②、③,让学生观察其特点。
4 等比数列(第一课时)一等奖创新教案
4 等比数列(第一课时)一等奖创新教案《等比数列》第一课时教学设计【教学内容】人教A版高中数学必修5第2章第四节【教学对象】高一年级(下)理科平行班学生【课时安排】一课时【教材分析】1.内容简析本节内容先由师生共同分析一系列日常生活中的实际问题,提炼出其中存在的特殊数列来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程。
在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想。
2.教材的地位与作用本节内容在教材中起到承上启下的作用。
一方面,学法的承上,本节课之前学习了等差数列,而等比数列和等差数列具有相似性,可以让学生从已有的学习经验出发,将研究等差数列的方法类比到等比数列,促进学生在数学学习活动中获得更扎实的基本技能和基本思想;另一方面,为后续进一步研究等比数列的性质、等比数列前项和公式,求一般数列通项公式做好准备。
3.教学目标确定从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念。
从而可以确定如下教学目标(三维目标):(1)知识与技能:理解等比数列、等比中项的概念,掌握等比数列的通项公式及公式的推导,并学会用定义法证明等比数列(2)过程与方法:在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力以及计算能力(3)情感、态度与价值观:通过对等比数列通项公式的推导,培养学生发现意识、创新意识4.教学重点与难点重点:等比数列的定义及通项公式及其应用难点:通项公式的推导和应用5.学情分析学生在之前已经学习过“等差数列”的内容,对数列已经有了初步的认识,并且具有一定的的观察、分析、归纳能力,和类比思想。
等比数列的概念(教案)
§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。
而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。
所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。
人教版数学必修五《等比数列》教学设计
等比数列(第一课时)教学设计教材分析:等比数列是一种特殊的数列,它有着非常广泛的实际应用:如存款利息、购房贷款、资产折旧等一些计算问题.教材将等比数列安排在等差数列之后,有承前启后的作用.一方面与等差数列有密切联系,另一方面为进一步学习数列求和等有关内容做好准备.学情分析:学生已经学习了等差数列,对特殊数列的定义及性质研究方法有一定的基础和研究能力,但对等比数列变化规律还不了解。
从教学经验上看,学生在等比数列的计算上能力欠缺。
设计理念:长期以来的课堂教学太过于重视结论,轻视过程.为了应付考试,为了使公式定理应用达到所谓“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化.在概念公式的教学中往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策.数学是思维的体操,是培养学生分析问题,解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受,必须让学生有追求过程的体验.基于以上原因,在设计本节课时,我考虑的不是简单地告诉学生等比数列的定义及其通项公式,而是将内容按照“问题情境——学生活动——数学建构——数学运用——回顾反思”的顺序展开,通过列举生活中的大量实例,给出等比数列的实际背景,让学生自己去发现,去探索其意义,公式.从发现等比数列定义及通项公式的过程中让学生体会到:有些看似陌生的知识并不都是高不可攀的事情,通过我们的努力,也可以做一些看似数学家才能完成的事.在这个过程中,学生在课堂上的主体地位得到充分发挥,极大地激发了学生的学习兴趣,也提高了他们提出问题,解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念.教学目标:A.知识目标:理解等比数列的概念,推导并掌握通项公式.B.能力目标:(1)通过公式的探索,发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力.(2)通过通项公式的探求过程,培养学生用不完全归纳法去发现并解决问题的能力.C.情感目标:(1)公式的发现反映了普遍性寓于特征性之中,从而使学生受到辨证唯物主义思想的熏陶.(2)通过对等比数列概念的归纳,进一步培养学生严密的思维习惯以及实事求是的科学态度.(3)培养学生勇于探索、善于猜想的学习态度,调动学生主动参与课堂教学的积极性,增强学生学好数学的心理体验,产生热爱数学的情感.教学重点、难点:等比数列的定义、通项公式的推导;通项公式的初步应用.教学方法:发现式教学法,类比分析法.教学过程:一、问题情境首先请同学们看以下几个事例:(电脑显示)情境1:国王奖赏国际象棋发明者的事例,发明者要求:在第1个方格放1颗麦粒,在第2个方格上放2颗麦粒,在第3个方格上放4颗麦粒,在第4个方格上放8颗麦粒,依此类推,直到第64个方格子.国王能否满足他的要求呢?情境2:“一尺之棰,日取其半,万世不竭.”情境3:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价格依次为多少?问题1:上述例子可以转化为什么样的数学问题?问题2:上述例子有何共同特点?二、学生活动通过观察、联想,发现:1、上述例子可以与数列联系起来.(有了等差数列的学习作基础)2、得到以下3个数列:①1,2, 22,⋅⋅⋅, 632②111,,,24⋅⋅⋅, 12n⎛⎫⎪⎝⎭,⋅⋅⋅③36,36×0.9, 36×0.92,⋅⋅⋅, 36×0.9n,⋅⋅⋅通过讨论,得到这些情境的共同特点是从第二项起,每一项与它前面一项的比都相等(等于同一个常数).三、数学建构1、问题:①②③这样的数列和等差数列一样是一类重要的数列,谁能试着给这样的数列取个名字?(学生通过联想、尝试得出最恰当的命名)等比数列2、归纳总结,形成等比数列的概念.一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比.(引导学生经过类比等差数列的定义得出)评注:对于等比数列,你想对它作些什么研究呢?问题是怎样产生的?这是数学教学中的一个重要问题。
等比数列第一课时教学设计
等比数列第一课时教学设计教学设计:等比数列第一课时一、教学目标1. 了解等比数列的概念和特点;2. 理解等比数列的通项公式和前n项和公式;3. 能够应用等比数列的知识解决实际问题;4. 培养学生的逻辑思维和数学推理能力。
二、教学重点与难点1. 等比数列的特点与通项公式;2. 运用等比数列解决实际问题的能力。
三、教学准备1. 教材:数学教材、教学课件;2. 教具:黑板、白板笔、多媒体设备、计算器;3. 学具:学生练习册、习题册。
四、教学过程导入引入(5分钟)1. 开场导入:通过展示一组数字,让学生观察并思考规律。
例:2,4,8,16,32,...2. 提问导入:引导学生回忆等差数列的概念和特点,并引出等比数列的概念。
提问:你们还记得等差数列吗?它有什么特点?那么,我们来思考一下等比数列有什么特点?新课讲解(20分钟)1. 定义等比数列:引导学生对等比数列进行定义。
等比数列是指一个数列,从第二项开始,每一项与前一项的比都相等。
2. 等比数列的特点:通过例题与学生进行互动,让学生观察等比数列的特点,并总结出规律。
例题:观察数列2,4,8,16,...,这个数列是等比数列吗?他的比是多少?学生回答:是等比数列,比为2。
教师引导:我们可以发现,在这个数列中,每一项与前一项的比都是2。
这就是等比数列的一个特点,比值相等。
3. 等比数列的通项公式:结合实例,讲解等比数列的通项公式的推导过程。
例:观察数列2,4,8,16,...,求第n项的值。
教师引导:我们可以发现,每一项与前一项的比都是2,那么我们可以通过一个公式来计算第n项的值。
a1 a2 a3 a4————————2 4 8 16可以观察到,第n项与第1项的比是a^(n-1)。
因此,第n项的值可以通过通项公式计算:an = a1 * r^(n-1),其中a1是首项,r是公比。
4. 等比数列的前n项和公式:引导学生思考等比数列的前n项和公式。
例:观察数列2,4,8,16,...,求这个数列的前n项和。
高中数学《等比数列第一课时》教学设计
“等比数列〞第一课时教学设计一、教材分析1、教材的地位和作用在教学大纲中要求“理解等比数列的概念,掌握等比数列的同项公式并能解决实际问题。
〞结合学生的学习能力,我将“等比数列及其通项公式〞安排两个课时来完成。
第一课时,深刻理解等比数列的概念及其通项公式;第二课时,对概念及其通项公式的灵活运用。
本节课是第一课时,重点是理解理解等比数列的概念,及等比数列的同项公式。
通过本节的学习,即能为等比数列的学习打好根底,同时通过类比联想,对等差数列的学习稳固也能起到承上启下的作用。
b5E2RGbCAP2、、教学目标〔1〕知识教学目标:使学生理解等比数列的概念,掌握其通项公式,并能运用定义及其通项公式解决一些简单的实际问题。
〔2〕能力训练目标:培养用不完全归纳法去发现并解决问题的能力〔即归纳、猜想能力〕,方程的思想,计算能力。
3〕德育目标:培养明辨是非,吸其精华,去其糟粕的能力及互助合作精神。
3、教学重点、难点、关键点本节的重点难点是深刻理解等比数列的概念及其通项公式,关键是讲清等比数列“等比〞的特点。
二、教法与学法分析:遵循“以教师为主导,学生为主体,面向全体学生〞的原那么,实行教师指导下的学生实践探索的模式。
数学教学是数学活动的教学,“问题〞是数学的心脏,把“问题〞作为教学的出发点,指导尝试,总结反思。
用“发现式教学法、类比分析法〞来组织课堂教学。
这样,可充分调动学生学习的积极性和能动性,突出学生的主体作用,并培养学生互助合作精神;这堂课用类比的方法学习等比数列是一种较好的学法,因此,在教学过程中应着重提醒学生重视等比与等差数列的比照。
p1EanqFDPw三、课堂设计1.复习提问:〔1〕等差数列的定义是什么?〔2〕等差数列的通项公式怎样?3〕简单回想等差数列定义及其通项公式的运用。
设计意图:创设“问题〞情境,激发学习兴趣,通过复习等差数列相关知识,为类比学好本节课的内容做好准备,分散本节课的难点。
DXDiTa9E3d2.导入新课:让学生观察章头图,阅读国际象棋的有关故事,体会故事中用麦粒填充象棋盘的空格,从前后两格麦粒粒数及所有空格麦粒粒数的变化情况,来引导学生通过“观察、分析、归纳〞尝试得出等比数列的定义及其通项公式。
《等比数列》教学设计
《等比数列》教学设计一、教材分析:1、内容简析:本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。
2、教学目标确定:从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。
在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质(1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导(2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力(3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识念,掌握等比数列的性质(2)运用等比数列的定义及通项公式解决问题,增强学生的应用3、教学重点与难点:重点:等比数列的定义及通项公式难点:应用等比数列的定义及通项公式,解决相关简单问题二、学情分析:从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。
本课正是由此入手来引发学生的认知冲突,产生求知的欲望。
而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。
本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。
多数学生愿意积极参与,积极思考,表现自我。
所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。
这也体现了教学工作中学生的主体作用。
三、教法选择与学法指导:由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。
等比数列第一课时优质课
等比数列的判定方法
介绍了如何判断一个数列是否 为等比数列,包括定义法、通 项公式法和性质法等。
等比数列的应用举例
通过具体例题,展示了等比数 列在解决实际问题中的应用, 如增长率、分期付款等问题。
课堂练习与解析
通过课堂练习,巩固学生对等 比数列的理解和应用能力,并 对练习进行详细解析,帮助学 生掌握解题思路和方法。
在日常生活中的应用
房屋按揭贷款
房屋按揭贷款的月供金额通常按 照等比数列的方式进行计算,通 过等比数列的公式可以快速计算 出未来某个时间点的月供金额。
健康管理
在健康管理中,定期检查身体指 标(如血压、血糖等)可以视为 等比数列问题,通过等比数列的 公式可以预测未来某个时间点的
身体状况。
音乐节奏
音乐中的节奏通常按照一定的比 例进行排列,这些比例可以视为 等比数列,通过等比数列的公式 可以计算出音乐的节奏和节拍。
下课时内容预告
等比数列的求和公式
下课时将讲解等比数列的求和公式,包括公式的 推导、应用和注意事项等内容。
等比数列在实际生活中的应用
通过具体实例,展示等比数列在金融、物理等领 域中的应用,培养学生的数学应用意识。
等比数列与等差数列的对比
通过对比等差数列和等比数列的定义、性质和判 定方法,加深学生对两者的理解。
求解未知数
在某些情况下,通过已知的等比数列项,利用通项公式可 以求解未知数,如首项、公比或项数等。
公式推导过程中涉及的数学思想
80%
归纳法
在推导等比数列通项公式的过程 中,使用了归纳法,通过对前几 项的观察和归纳,总结出通项公 式的规律。
100%
累乘法
利用累乘法将等比数列的通项公 式进行变形,得到$a_n = a_1 times q^{(n-1)}$的形式,便于 理解和记忆。
等比数列说课稿
等比数列说课稿《等比数列》说课稿尊敬的各位老师:大家好!我今天的说课内容是《等比数列》的第一课时。
本节课我尝试用新课标的理念来指导教学,以问题串的形式引领学生,激发学生的兴趣,力图做到使学生面对问题而不是面对习题,从而达到新课程标准中提出的“关注学生体验、感悟和实践活动”的要求。
下面我从教材分析、教法分析、学法分析、教学过程、教学评价和教学反思六个方面进行一下说明。
一、教材分析:1、教材的地位和作用:数列内容是高中代数部分的重要内容,它既联系着函数和方程的有关知识,又为解决数列的研究性课题和以后进一步学习数列的极限打下基础,更是高等数学的基础知识,具有承上启下的重要作用,因此也是高考的热点内容之一。
《等比数列》作为《数列》这一章中两个最重要的数列之一,它的研究和解决集中体现了研究《数列》问题的思想和方法,对提高学生用函数的观点和方程的思想解决问题的能力以及提高学生分析、猜想、概括、总结、归纳的综合思维能力有着重要的作用,同时,也能大大培养学生的探索精神和参与意识,突出课堂教学“以学生为主体,教师为主导”的新课程理念。
2、教学重点与难点:本节课的教学重点为:理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。
教学难点为:在具体的问题情境中,抽象出数列的模型和数列的等比关系,并能运用有关知识解决相应的问题。
3、教学目标分析:根据上述对教材的分析,以及学生现有的知识水平和数学能力,结合新课程标准我把这节课的教学目标分为知识与能力目标、过程与方法目标、情感态度与价值观目标三个层面。
(一)知识与能力目标:使学生掌握等比数列的定义及通项公式,并能运用定义及其通项公式解决一些实际问题。
(二)过程与方法目标:通过从丰富实例中抽象出等比数列模型让学生体会数学建模的思想方法;在通项公式的推导和应用过程中培养学生运用归纳类比的数学思想方法。
(三)情感、态度与价值观目标:体会等比数列与等差数列的相似美及其结构美;体会数学的应用价值;培养学生积极动脑,互帮互助以及锲而不舍的精神。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等比数列(第一课时)》教学设计
一、教学任务和目标
(一)教学任务分析:通过观察、分析、归纳、猜想、类比等思维活动,展示等比数列概念的形成与指数函数的对应等的深化过程;体会研究等比数列通项公式简单归纳方法:特殊到一般的过程。
(二)教学目标知识与技能:理解并掌握等比数列的定义和通项公式,并加以初步应用。
过程与方法:通过概念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到一般的数学思想,培养观察、分析、归纳、猜想、概括等思维能力。
情感、态度与价值观:培养勇于探索、大胆尝试与创新的精神,养成科学、良好的学习习惯和品质。
(三)教学重、难点教学重点:等比数列概念的形成与深化,等比数列通项公式的推导与应用
教学难点:等比数列概念的深化,等比数列的判定、证明和应用
二、教法与学法
(一)教学方法分析:本节课是《等比数列》第一课时,核心任务是概念的本质理解,而概念教学应注重概念的形成过程,引导学生主动探索、发现、类比和归纳,因此本节课采用教为主导、学为主体、练为主线的教学方法,培养学生的学习热情,发挥学生的主动性和创造性。
(二)学法分析:一方面,学生领会数学概念学习的一般过程,并主动探索概念的形成;另一方面,由于等比数列与等差数列在内容上是完全平
行的,因此,学生可以将类比等差数列的概念形成和拓展过程,来构建等比数列的知识系统。
三、教学过程
(一)复习引新
等差数列与等比数列的内容平行,因此类比法是本节课学生学习过程中采用的主要数学方法。
学生已经学习过等差数列相关内容和思想方法,因此本节课先复习等差数列知识点,为类比思想的应用提供基础。
问题1:等差数列的定义是什么?
一般地,如果一个数列从第2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示。
问题2:等差数列的通项公式是什么?如何推导该公式?等差数列通项公式:a n = a1 +(n - 1)d 推广公式: a n = a m +(n- m)d 推导过程:方法一:不完全归纳法:归
纳、猜想。
方法二:累加法
问题3:等差数列的通项公式与相应的一次函数解析式之间有何
区别和联系?
等差数列通项公式是数列的项a n 关于项数n 的一次函数,它的定 义域
是正整数集或其子集,其图像是对应的一次函数图像上孤立的一 群点。
(二)新课教学
1、等比数列概念的形成
教师呈现:在日常生活中,我们还会遇上下面一些特殊的数列:
(1) 2, 4, 8, 16, 32…
(2) 1, 1,1,1丄
2 4 8
(3) -1, 2, -4, 8,…
(4) 2,2,222,…
问题1:以上四个数列有什么共同特点?
从第2项起,每一项与前一项的比分别等于 2, 1 , -2, 1,归纳 为从
第2项起,每一项与前一项的比都等于同一个常数。
问题2:类比等差数列的定义,试归纳出等比数列的定义?
一般地,如果一个数列从第2项起,每一项与前一项的比等于同 一个
常数,那么这个数列就叫做等比数列。
这个常数叫做等比数列的 公比,通常用字母q 表示。
问题3:用数学符号语言怎么表示等比数列的定义呢?
利用定义式可以证明或者判断一个数列是否为等比数列
问题4:从上面具体的等比数列中我们看到公比 q 可以为正数,
a n-1 =q (n ?2) a
n+1
一 =q (n ?1
)
可以为负数,那么可以q=0吗?
不可以,因为q=0时,则根据定义,数列中必然会有 0这一项, 而这一
项0又会做分母,导致没有意义,因此 q z 0,等比数列任意 一项都不会为0.
问题5:既是等差数列又是等比数列的数列存在吗?
存在,非零常数列既是等差数列又是等比数列。
2、等比中项的概念
问题1求下列各组数中插入怎样的数后是等比数列。
(1) 1, ____ , 9
(2) -1, ____ , -4
(3) -12, ____ , -3
(4) 1, ______ , 1
像这样,在两数之间插入一个数,使得这三个数成等比数列,我们把插入的 这
个数叫做这两个数的等比中项。
例如:在 a 与b 中间插入一个数G,使a , G , b 成等比数列,那么G 叫做a 与b 的等比中项。
由此大家能够得到它们的数量关 系:G 2 = ab ,所以G = ? . ab ,显然a 与b 必定同号。
3、等比数列的通项公式
问题1:试写出案例中前三个等比数列的通项公式,并猜想等比数列通项公
式的一般表达式?
因此等比数列{a n }首项为a 1 ,公比为q ,猜想通项公式为%二a^- 问题2:除了用不完全归纳法猜想得到通项公式外,你还有其他
(1)
2n-1 n-1 = 1g2 n n ・1
(3) a n =(-1)g2n-1 = -1%2)
办法来推导通项公式吗?可以类比等差数列的通项公式的推导过程。
等比数列{a n }首项为a i ,公比为q ,根据等比数列的定义,有:
类比累加的过程,我们可以将上式累乘得到: 色=q n-1
a i
因此得到等比数列的通项公式a n =a i q n-1
4、从函数角度理解等比数列的通项公式
问题1:完成教材50页探究中的(2)、( 3),联系等差数列 通项公
式a n =a i +(n-1)d 与一次函数的关系,来发现等比数列通项公式 与我们学过的哪个函数模型有关系?
等比数列通项公式务二aR -1与指数型函数y = c?a x 有关系。
(三)例题讲练
例1、已知在数列{a n }中,务=2,a n+1 = 2a n ,求a 100的值。
证明或判断一个数列为等比数列,采用定义法即:
判断严二q (n? 2)或者亍=q (n ? 1),q 为与n 无关的非零常数。
例2、
(1) 在等比数列{a n }中,a 4=27,q=-3,求数列通项公式及a 7的值
(2) 在等比数列{a n }中,a 3 = 20, a 6 =120,求 a .
突出解决通项公式时方程思想的应用
(四)应用与深化
a2 = q , ai a3 = q , a4 = q , a ? a 3
a n a n-1 =q
学生完成教材53页1题4个小题,请四位同学板演,教师巡视其他同学的情况,然后由同学讲解过程,教师点评和纠错,强调解题的规范性。
(五)课堂小结知识:等比数列的概念、通项公式及其应用方法:类比思想、函数思想、方程思想的应用
(六)作业布置4 《导学案》等比数列第一课时
四、板书设计
五、教学反思本堂课自我感到成功之处有:首先我自始至终坚持以学生为主体,除了课前的精心设计,在课堂上都由学生来完成,学生的配合度好,发言踊跃,体现了学生是课堂中学习的主体。
其次在整个课堂教学过程中,突出了对学生的思维训练和思维品质的培养,如对等比数列的定义的教学进行六个环节的深化,极大地训练了学生思维的全面性与深刻性。