九年级数学周考13
江苏省南通市通州区2024-2025学年九年级上学期11月期中考试数学试题答案
2024~2025学年(上)初三期中学业水平质量监测数学试卷一、 选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上. B 1.函数解析式y=x²+2x-1的二次项系数、一次项系数和常数项分别是A.1,2,1B.1,2,-1C.0,2,-1D.0,-2,-1D 2.平面内,☉O 的半径为10,若点P 在☉O 内,则OP 的长可能为 A.14cmB.12cmC.10cmD.8cmC 3.如图,AB,AC 为☉O 的两条弦,连接OB, OC.若∠A=45°,则∠BOC 的度数为A.60°B.75°C.90°D.135°D 4.将抛物线y=3x²-x 向下平移k(k >0)个单位长度,关于平移前后的抛物线,下列说法正确的是 A.开口大小改变B.开口方向改变C.顶点位置不变D.对称轴不变A 5.掷两枚质地均匀的骰子,下列事件是随机事件的是 A. 点数的和为6B.点数的和为1C. 点数的和大于12D.点数的和小于13C 6.若抛物线y=ax²+bx+c 如图所示,则关于x 的方程ax²+bx+c=0根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根D.只有一个实数根注意事项考生在答题前请认真阅读本注意事项:1. 本试卷共6页,满分为150分,考试时间为120分钟。
2. 答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在答题卡上 指定的位置。
3. 答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
A7.一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是A.23B.13C.59D.49B8.某校九年级学生参加社团活动,学习编制圆锥型工艺品。
九年级数学第一周周清试卷及答案
九年级数学第一周周清一、选择题(每小题3分,共30分) 1. -2的倒数是( )A. -2B. 2C. -12D. 122. 柳絮纤维的直径约是0.00000105 m .数据“0.00000105”用科学记数法表示为( )A. 1.05×106B. 0.105×10-6C. 1.05×10-6D. 105×10-83. 下列图形中,既是轴对称图形又是中心对称图形的是( )4. 下列运算准确的是( ) A. a 2+a 2=a 4 B. a 3·a 2=a 6 C. (3a )2=6a 2 D. 2a 4÷a 2=2a 25. 如图是正方体的一种展开图,其每个面上都标有一个汉字,那么在原正方体中,与汉字“智”相对的面上的汉字是( )第5题图A. 义B. 仁C. 信D. 礼6. 不等式组⎩⎨⎧2x >3x -114x ≤1的解集在数轴上表示准确的是( )7. 如图,在平面直角坐标系中,第二象限内的点P 是反比例函数y =kx (k ≠0)图象上的一点,过点P 作P A ⊥x 轴于点A ,点B 为AO 的中点,若△P AB 的面积为3,则k 的值为( )第7题图A. 6B. -6C. 12D. -128. 某校有47名同学参加学校举行的科技创新比赛,预赛分数各不相同,取前24名同学参加决赛,其中一名同学知道自己的分数后,要判断自己能否进入决赛,还需要知道这47名同学分数的( )A. 平均数B. 中位数C. 众数D. 方差9. 如图,四边形OABC 是矩形,A (2,1),B (0,5),点C 在第二象限,则点C 的坐标是( )A. (-1,3)B. (-1,2)C. (-2,3)D. (-2,4)第9题图10.如图,边长为2的正方形ABCD绕AD的中点O顺时针旋转后得到正方形A′B′C′D′,当点A的对应点A′落在对角线BD上时,点B所经过的路径与A′B,A′B′围成的阴影部分的面积是( )第10题图A. 73 B.52C. 54π-32 D.52π-23二、填空题(每小题3分,共15分)11.-|-2|+9=________.12.化简2mm2-n2-1m-n的结果是________.13.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆,背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张,请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是________.14.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用以下步骤作图:①以点A为圆心,适当长为半径画弧交射线AN于点C,交线段AB于点D;②以点C为圆心,适当长为半径画弧;然后再以点D为圆心,同样长为半径画弧,前后两弧在∠NAB内交于点E;③作射线AE,交PQ于点F,若AF=23,∠F AN=30°,则线段BF的长为________.第14题图15.如图,在四边形纸片ABCD中,AB=12,CD=2,AD=BC =6,∠A=∠B.现将纸片沿EF折叠,使点A的对应点A′落在AB边上,连接A′C.若△A′BC恰好是以A′C为腰的等腰三角形,则AE的长为________.第15题图三、解答题(8分)16. (8分)先化简,再求值:2x-y -x+yx2-2xy+y2÷x+yx-y,其中x=5-2,y=5+2.答案1. C2. C 【解析】0.00000105=1.05×10-6. 3. D4. D 【解析】5. A6. A 【解析】由2x >3x -1,解得x <1,由14x ≤1,解得x ≤4,∴不等式组的解集为x <1.在数轴上表示为选项A .7. D 【解析】如解图,连接PO ,第7题解图∵点B 为AO 的中点,△P AB 的面积为3,S △OAP =2S △P AB =2×3=6.又∵S △OAP =12|k |.∴12|k |=6,|k |=12.∵双曲线的一支位于第二象限,∴k <0.∴k =-12.8. B9. D 【解析】如解图,过点C 作CE ⊥y 轴于点E ,过点A 作AF ⊥y 轴于点F ,∴∠CEO =∠AFB =90°.∵四边形OABC 是矩形,∴AB =OC ,AB ∥OC .∴∠ABF =∠COE .∴△OCE ≌△BAF (AAS ).同理△BCE ≌△OAF ,∴CE =AF ,OE =BF ,BE =OF .∵A (2,1),B (0,5),∴AF =CE =2,BE =OF =1,OB =5.∴OE =4.∴点C 的坐标是(-2,4).第9题解图10. C 【解析】如解图,连接OB ,OB ′.∵四边形ABCD 是正方形,∴∠ADB =45°.∵点O 是AD 的中点,∴OA =OD .由旋转的性质可知OA ′=OA ,∵∠OA ′D =∠ODA ′=45°,∴∠AOA ′=90°.∴∠BOB ′=90°.在Rt △AOB 中,AO =1,AB =2,∴OB =12+22= 5.∴S 扇形BOB ′=90π×(5)2360=54π.∵S △OBA ′=12×1×1=12,S △OB ′A ′=12×1×2=1,S 阴影=S 扇形BOB ′-S △OBA ′-S △OB ′A ′,∴S阴影=54π-12-1=54π-32.故选C .第10题解图11. 1 【解析】原式=-2+3=1. 12.1m +n 【解析】原式=2m(m +n )(m -n )-m +n (m +n )(m -n )=m -n (m +n )(m -n )=1m +n.13. 916【解析】记矩形、菱形、等边三角形、圆分别为A 、B 、C 、D .列表如下:从表中能够得到,所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种,∴两次都抽到既是中心对称图形又是轴对称图形的概率是916.14. 2 【解析】如解图,过点B 作BG ⊥AF 于点G ,∵MN ∥PQ ,∴∠F AN =∠3=30°.由题意得AF 平分∠NAB ,∴∠1=∠2=30°.∴∠1=∠3=30°.∴AB =BF .又∵BG ⊥AF ,∴AG =GF =12AF = 3.∴Rt △BFG 中,BF =GF cos30°=332=2.第14题解图15. 1或215 【解析】如解图,过点C 作CM ⊥AB 于点M ,过点D 作DN ⊥AB 于点N ,∵AD =BC =6,∠A =∠B ,∠DNA =∠CMB =90°,∴△ADN ≌△BCM (AAS ).∴AN =BM ,DN =CM ,且DN ∥CM ,DN ⊥AB .∴四边形DCMN 是矩形,.∴CD =MN =2.∴AN =BM =AB -MN2=5.∵将纸片沿EF 折叠,使点A 的对应点A ′落在AB 边上,∴AE =A ′E .如解图①,若A ′C =BC ,且CM ⊥AB ,∴BM =A ′M =5.∴AA ′=AB -A ′B =12-10=2.∴AE =1;如解图②,若A ′C =A ′B ,过点A ′作A ′H ⊥BC ,于点H ,∵CM 2=BC 2-BM 2=A ′C 2-A ′M 2,∴36-25=A ′B 2-(5-A ′B )2,解得A ′B =185.∴AA ′=AB -A ′B =12-185=425.∴AE =215.综上所述,AE 的长为1或215.图①图②第15题解图16. 解:原式=2x -y -x +y (x -y )2·x -y x +y=2x -y -1x -y =1x -y, 当x =5-2,y =5+2时,原式=15-2-(5+2)=-14.。
2020-2021学年九年级上学期数学周测试题及答案(19)
2020-2021学年九年级上学期数学周测试题(19)一、单选题(每题3分,共30分)1.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .2.关于x 的方程210x mx --=根的情况,下列说法正确的是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定 3.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( ) A .1B .2C .3D .44.若关于x 的一元二次方程2(1)320a x x -+-=有两个不相等的实数根,则a 的取值范围是( ) A .18a >-B .18a ≥-C .18a >-且1a ≠D .18a ≥-且1a ≠5.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( ) A .50° B .60° C .80° D .100°第5题图 第6题图 第7题图 第9题图 6.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >5 7.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( ) A .B .4C .D .88.如果反比例函数y =2a x-(a 是常数)的图象在第二、四象限,那么a 的取值范围是( ) A .a >2 B .a <2 C .a >0 D .a <09.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACB B .∠ADB=∠ABC C .AB 2=AD•ACD .AD ABAB BC=10.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤二、填空题(每题4分,共28分)11.若m 是方程x 2+2x -1=0的一个根,则m 2+2m -4=______.12.从5-,0,4,π,3.5这个数中随机抽取一个,则抽到无理数的概率是___________. 13.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.第13题图 第14题图 第15题图14.如图,已知反比例函数y=(k 为常数,k≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则k=________________. 15..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.16.如图,△ABC 中,点 D 在边 AB 上,满足∠ACD=∠ABC ,若 AC=2,AD=1,则 DB=________.第16题图 第17题图17.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE=1,FM 的长是________.三、解答题(一)(每小题6分,共18分) 18.解下列方程:(1)x 2﹣4x =0; (2)x 2+x =56.19.动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.20.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.四、解答题(二)(每小题8分,共24分)21.2018年,某市某楼准备以每平方米5000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金的周转,决定进行降价促销,经过连续两年的下调后,2020年的均价为每平方米4050元.(1)求平均每年下调的百分率;(2)假设2021年的均价仍然下调相同的百分率,则购买一套100平方米的房子需要多少万元?22.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.23.如图,在平行四边形ABCD中,过点A作AE⊥BC ,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.五、解答题(三)(每小题10分,共20分)24.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.25.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2020-2021学年九年级上学期数学周测试题(19)参考答案一、选择题1-5. C C A C D 6-10. D C B D B二、填空题11.-312.2 513.1-或3 14.-215.16.DB=317.5 2三、解答题一18.(1)x1=0,x2=4;(2)x1=﹣8,x2=719.(1)14;(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A 佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)1 12 =20.如图,连接OD,∵OD=OA,∴∠ODA=∠DAB=30°,∴∠DOB=∠ODA+∠DAB=60°,∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°,即OD⊥BD,∴直线BD与⊙O相切.四、解答题二21.(1)设平均每年下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1=10%,x2=190%(舍去).答:平均每年下调的百分率为10%.(2)如果下调的百分率相同,2021年的房价每平方米为:4050×(1﹣10%)=3645(元),买100平方米的住房需3645×100=364500(元)=36.45(万元),答:购买一套100平方米的房子需要36.45万元.22.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣2;(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<2.23.(1)见解析(2)3【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC AB∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180︒,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形∴AD∥BC CD=AB=4又∵AE⊥BC ∴ AE⊥AD在Rt△ADE中,2222(33)36AD AE+=+=∵△ADF∽△DEC∴AD AFDE CD=334AF=∴AF=23五、解答题三24.(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD 平分∠BAC , ∴∠BAC=2∠BAD , ∵∠BOD=2∠BAD , ∴∠BOD=∠BAC=90°, ∵DP ∥BC ,∴∠ODP=∠BOD=90°, ∴PD ⊥OD , ∵OD 是⊙O 半径, ∴PD 是⊙O 的切线;(2)∵PD ∥BC , ∴∠ACB=∠P , ∵∠ACB=∠ADB , ∴∠ADB=∠P ,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°, ∴∠DCP=∠ABD , ∴△ABD ∽△DCP ;(3)∵BC 是⊙O 的直径, ∴∠BDC=∠BAC=90°,在Rt △ABC 中,,∵AD 平分∠BAC , ∴∠BAD=∠CAD , ∴∠BOD=∠COD , ∴BD=CD ,在Rt △BCD 中,BD 2+CD 2=BC 2,∴BD=CD=2BC=2,∵△ABD ∽△DCP ,∴AB BDCD CP=, ∴132521322CP =, ∴CP=16.9cm .25.(1)抛物线的解析式为y=﹣x 2+2x+3.(2)证明见解析;(3)点P 坐标为(352+,552-2,3). (1)∵二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),∴将A (﹣1,0)、C (0,3),代入,得30{33a b a a --=-=,解得12a b =-=⎧⎨⎩,∴抛物线的解析式为y=﹣x 2+2x+3;(2)如图,连接DC 、BC 、DB ,由y=﹣x 2+2x+3=﹣(x ﹣1)2+4得,D 点坐标为(1,4),∴22(10)(43)-+-22233+2,22(31)(40)-+-5∵CD 2+BC 2=2)2+(2)2=20,BD 2=(52=20,∴CD 2+BC 2=BD 2,∴△BCD 是直角三角形;(3)y=﹣x 2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD 为底边,则P 1D=P 1C ,设P 1点坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3﹣y )2,P 1D 2=(x ﹣1)2+(4﹣y )2,因此x 2+(3﹣y )2=(x ﹣1)2+(4﹣y )2,即y=4﹣x .又P 1点(x ,y )在抛物线上,∴4﹣x=﹣x 2+2x+3,即x 2﹣3x+1=0,解得x 1=352+,x 2=352-<1,(不满足在对称轴右侧应舍去),∴x=352+,∴y=4﹣x=552-,即点P1坐标为(352+,552-).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(352+,552-)或(2,3).考点:1.二次函数图象性质;2.等腰三角形性质;3.直角三角形的判定.。
九年级数学课堂周测及答案
周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有( )A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为( )A .-2B .43-2C .3- 3D .1+ 3 5.一元二次方程x 2-6x -6=0配方后可化为( )A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=( )A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为( )A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m = . 10.用适当的数填空:x 2-3x + =(x - )2;x 2+27x + =(x + )2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是 .12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值: . 13.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为 . 14.对于两个不相等的实数a ,b ,我们规定max{a ,b}表示a ,b 中较大的数,如max{1,2}=2.那么方程max{2x ,x -2}=x 2-4的解为 . 三、解答题(共44分)15.(8分)写出下列方程的一般形式、二次项系数、一次项系数以及常数项.16.(15(1)4x2-3x+1=0; (2)3(x-3)2-25=0; (3)3x2+1=23x.17.(10分)阅读例题:解方程:x2-|x|-2=0.解:当x≥0时,得x2-x-2=0,解得x1=2,x2=-1<0(舍去);当x<0时,得x2+x-2=0,解得x1=1>0(舍去),x2=-2.故原方程的根为x1=2,x2=-2.请参照例题的方法解方程:x2-|x+1|-1=0.18.(11分)已知关于x的一元二次方程x2+(2m+1)x+m2=0.(1)若方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.单元测试(一) 一元二次方程(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0 B.1x 2+1x =2 C .x 2+2x =y 2-1 D .3(x +1)2=2(x +1)2.方程x 2-3=0的根是( )A. 3 B .- 3 C .± 3 D .3 3.一元二次方程2x 2+x +1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 4.用配方法解方程x 2+10x +9=0,配方后可得( )A .(x +5)2=16 B .(x +5)2=1 C .(x +10)2=91 D .(x +10)2=109 5.若x =-1是关于x 的一元二次方程x 2-2kx +k 2=0的一个根,则k 的值为( )A .-1B .0C .1D .26.在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根为x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( )A .甲错误,乙正确 B .甲正确,乙错误 C .甲、乙都正确 D .甲、乙都错误7.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为( )A .(40-2x)(30-x)=168×6B .30×40-2×30x -40x =168×6C .(30-2x)(40-x)=168D .(40-2x)(30-x)=1688.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是( ) A .3或-1 B .3 C .1 D .-3或1 二、填空题(每小题4分,共24分)9.一元二次方程(x -2)(x +3)=2x +1化为一般形式是 . 10.若一元二次方程(m +2)x 2+2x +m 2-4=0的常数项为0,则m = . 11.已知实数a ,b 是方程x 2-x -1=0的两根,则b a +a b的值为 .12.六一儿童节当天,某班同学每人向本班其他每名同学送一份小礼品,全班共互送306份小礼品,则该班有 名同学.13.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为 .14.阅读材料:如果a ,b 分别是一元二次方程x 2+x -1=0的两个实数根,则有a 2+a -1=0,b 2+b -1=0;创新应用:如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 009= . 三、解答题(共44分)15.(12分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择合适的方法解下列方程.(1)x2-3x+1=0; (2)(x-1)2=3; (3)x2-3x=0; (4)x2-2x=4.16.(10分)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程2x2-bx+a=0的根的情况.17.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为29米的篱笆围成,已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示).设这个苗圃园垂直于墙的一边长为x米,苗圃园的面积为100平方米,求x的值.18.(12分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.周测(22.1.1~22.1.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知函数:①y =2x -1;②y =2x 2-1;③y =2x 2;④y =2x 3+x 2;⑤y =x 2-x -1,其中二次函数的个数为( )A .1B .2C .3D .42.二次函数y =a(x -1)2+b(a ≠0)的图象经过点(0,2),则a +b 的值是( )A .-3B .-1C .2D .33.对于抛物线y =12x 2,y =x 2和y =-x 2的共同性质有以下说法:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数是( )A .1B .2C .3D .44.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为( )A .y =-12x 2B .y =-12(x +1)2C .y =-12(x -1)2-1D .y =-12(x +1)2-15.已知二次函数y =2(x -3)2-2,下列说法:①其图象开口向上;②顶点坐标为(3,-2);③其图象与y 轴的交点坐标为(0,-2);④当x ≤3时,y 随x 的增大而减小,其中正确的有( )A .1个B .2个C .3个D .4个6.若正比例函数y =mx(m ≠0),y 随x 的增大而减小,则它和二次函数y =mx 2+m 的图象大致是( )7.如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h >0,k >0 二、填空题(每小题5分,共25分)8.函数y =-12(x +3)2中,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.9.将二次函数 y =x 2-1 的图象向上平移 3 个单位长度,得到的图象所对应的函数解析式是 . 10.若二次函数y =a(x -1)2+b 有最大值2,则a b(填“>”“=”或“<”).11.若点A(0,y 1),B(-3,y 2),C(1,y 3)为二次函数y =(x +2)2-9的图象上的三点,则y 1,y 2,y 3的大小关系是12.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 且与x 轴平行的直线交抛物线y =13x 2于点B ,C ,则BC 的长为 .三、解答题(共47分)13.(10分)已知二次函数y =12(x +1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出由此函数图象经过怎样平移可得到函数y =12x 2的图象.14.(10分)函数y =(m -3)xm2-3m -2是关于x 的二次函数.(1)若函数的图象开口向上,求函数的解析式,并说明在函数图象上y 随x 怎样变化?(2)在(1)中的图象上是否存在一点P ,使其到两坐标轴的距离相等?若存在,求出点P 的坐标;若不存在,请说明理由.15.(12分)如图,已知二次函数y =(x -1)2图象的顶点为C ,图象与直线y =x +m 交于A ,B 两点,其中点A 的坐标为(3,4),点B 在y 轴上.(1)求m 的值;(2)P 为线段AB 上的一个动点(点P 与点A ,B 不重合),过点P 作x 轴的垂线与这个二次函数的图象交于点E ,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数解析式,并写出自变量x 的取值范围.16.(15分)如图,抛物线y =-14x 2+x 的顶点为A ,它与x 轴交于点O 和点B.(1)求点A 和点B 的坐标; (2)求△AOB 的面积;(3)若点P(m ,-m)(m ≠0)为抛物线上一点,求与点P 关于抛物线对称轴对称的点Q 的坐标.周测(22.1.4~22.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =-1时,y =4,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-22.如图,抛物线与x 轴的两个交点为A(-3,0),B(1,0),则由图象可知y <0时,x 的取值范围是( )A .-3<x <1B .x >1C .x <-3D .0<x <1 3.对于二次函数y =-14x 2+x -4,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点4.二次函数y =2x 2-4x +3的图象先向左平移4个单位长度,再向下平移2个单位长度后的抛物线解析式为( )A .y =2(x -4)2-4x +1 B .y =2(x +4)2+1 C .y =2x 2+12x +17 D .y =2x 2-10x -175.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n)x +n 关于y 轴对称,则符合条件的m ,n 的值为( )A .m =57,n =-187B .m =5,n =-6C .m =-1,n =6D .m =1,n =-26.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y =-4x +440,要获得最大利润,该商品的售价应定为( )A .60元B .70元C .80元D .90元7.如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在(2,0)和(3,0)之间,对称轴是直线x =1.对于下列说法:①ab<0;②2a +b =0;③3a +c>0;④a +b ≥m(am +b) (m 为实数);⑤当-1<x<3时,y>0.其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 二、填空题(每小题5分,共25分)8.当x =1时,二次函数y =x 2-2x +6有最小值 .9.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是10.如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m .已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系.若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线的解析式是 .11.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是12.如图,在等腰Rt △ABC 中,∠C =90°,AB =10,点F 是AB 的中点,点D ,E 分别在AC ,BC 边上运动,且始终保持DF ⊥EF ,则△CDE 面积的最大值为 . 三、解答题(共47分)13.(8分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.14.(12分)抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求出m的值,并画出这条抛物线;(2)求抛物线与x轴的交点和顶点坐标;(3)当x取什么值时,抛物线在x轴上方?(4)当x取什么值时,y的值随x的增大而减小.15.(12分)用一段长32 m的篱笆和长8 m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成.①设DE=x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110 m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值.16.(15分)已知二次函数y=-x2+bx+c的图象过点A(3,0),C(-1,0).(1)求二次函数的解析式;(2)如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;(3)在第一象限内的抛物线上有一点Q,当△QAB的面积最大时,求点Q的坐标.单元测试(二) 二次函数(A卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,y是x的二次函数的是( )A.xy+x2=1 B.x2-y+2=0 C.y=1x2D.y2-4x=32.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x-1)2+4 D.y=(x-1)2+23.将抛物线y=2(x-4)2-1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为(A)A.y=2x2+1 B.y=2x2-3 C.y=2(x-8)2+1 D.y=2(x-8)2-34.二次函数图象上部分点的坐标对应值列表如下:x …-3 -2 -1 0 1 …y …-3 -2 -3 -6 -11 …A.直线x=-3 B.直线x=-2 C.直线x=-1 D.直线x=05.若抛物线y=x2-x-1与x轴的一个交点的坐标为(m,0),则代数式m2-m+2 019的值为( ) A.2 019 B.2 017 C.2 018 D.2 0206.已知抛物线y=a(x-2)2+k(a>0,a,k为常数),A(-3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依次排列为( )A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y3<y2<y17.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )A.a<0,b<0,c>0 B.-b2a=1 C.a+b+c<0 D.关于x的方程ax2+bx+c=-1有两个不相等的实数根8.如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1 cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△APQ的最大面积是( )A.8 cm2 B.16 cm2 C.24 cm2 D.32 cm2二、填空题(每小题5分,共20分)9.若点A(3,n)在二次函数y=x2+2x-3的图象上,则n的值为.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的函数解析式:.11.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.12.已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧).若B,C是线段AD的三等分点,则m的值为.三、解答题(共48分)13.(12分)二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为 ; (2)不等式ax 2+bx +c>0的解集为 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 . 14.(10分)如图,一次函数y 1=kx +b 与二次函数y 2=ax 2的图象交于A ,B 两点.(1)利用图中条件,求两个函数的解析式; (2)根据图象写出使y 1>y 2的x 的取值范围.15.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?16.(14分)如图,在平面直角坐标系中,二次函数y =x 2-2x -3的部分图象与x 轴交于点A ,B(A 在B 的左边),与y 轴交于点C ,D 为顶点,连接BC.(1)求∠OBC 的度数;(2)在x 轴下方的抛物线上是否存在一点Q ,使△ABQ 的面积等于5?如存在,求Q 点的坐标;若不存在,说明理由;(3)点P 是第四象限的抛物线上的一个动点(不与点D 重合),过点P 作PF ⊥x 轴交BC 于点F ,求线段PF 长度的最大值.时间x(天) 1≤x <50 50≤x ≤90售价(元/件) x +40 90 每天销量(件)200-2x单元测试(二) 二次函数(B卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.抛物线y=-2(x-3)2+1的顶点坐标是( )A.(-3,1) B.(-3,-1) C.(3,1) D.(3,-1)2.下表给出了二次函数y=x2+2x-10中x,y的一些对应值,则可以估计一元二次方程x2+2x-10=0的一个近似解为( )x … 2.1 2.2 2.3 2.4 2.5 …y …-1.39 -0.76 -0.11 0.56 1.25 …A.2.2 B.2.3 C3.已知二次函数y=-x2+2x+1,若y随x的增大而增大,则x的取值范围是( )A.x<1 B.x>1 C.x<-1 D.x>-14.如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是( )A.-1≤x≤3 B.x≤-1 C.x≥1 D.x≤-1或x≥35.为搞好环保,某公司准备修建一个长方体污水处理池,池底矩形的周长为100 m,则池底的最大面积是( ) A.600 m2 B.625 m2 C.650 m2 D.675 m26.对于二次函数y=x2-2mx-3,下列结论不一定成立的是( )A.它的图象与x轴有两个交点 B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧 D.当x<m时,y随x的增大而减小7.将二次函数y=x2的图象先向下平移1个单位长度,再向右平移3个单位长度,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是( )A.b>8 B.b>-8 C.b≥8 D.b≥-88.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共20分)9.当a=时,函数y=(a-1)xa2+1+x-3是二次函数.10.如果点A(-2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y1 y2.(填“>”“=”或“<”) 11.二次函数y=x2-4x+3,当0≤x≤5时,y的取值范围为.12.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度(其他条件均相同)的环境中,经过一天后,测试出这种植物高度的增长情况如下表:温度x/℃…-4 -2 0 2 4 4.5 …植物每天高度增长量y/mm …41 49 49 41 2519.75…①该植物在0 ℃时,每天高度增长量最大;②该植物在-6 ℃时,每天高度增长量仍能保持在20 mm以上;③该植物与大多数植物不同,6 ℃以上的环境下高度几乎不增长.其中正确的是.(填序号)三、解答题(共48分)13.(10分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.14.(10分)已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?15.(14分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.16.(14分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一个动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.单元测试(三) 旋转(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分) 1.下列运动属于旋转的是( )A .足球在草地上滚动B .一个图形沿某直线对折的过程C .气球升空的运动D .钟表钟摆的摆动2.下面四个手机应用图标中,属于中心对称图形的是( )3.如图,在Rt △ABC 中,∠BAC =90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ,点A 在边B ′C 上,则∠B ′的度数为( )A .42°B .48°C .52°D .58°4.如图,经过矩形对称中心的任意一条直线把矩形分成面积分别为S 1和S 2的两部分,则S 1与S 2的大小关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1与S 2的关系由直线的位置而定 5.点P(ac 2,b a)在第二象限,则点Q(a ,b)关于原点对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .37.如图,在△ABO 中,AB ⊥OB ,OB =3,∠AOB =30°,把△ABO 绕点O 旋转150°后得到△A 1B 1O ,则点A 1的坐标为( )A .(-1,-3)B .(-1,-3)或(-2,0)C .(-3,-1)或(0,-2)D .(-3,-1)8.如图,将△ABC 沿BC 翻折得到△DBC ,再将△DBC 绕点C 逆时针旋转60°得到△FEC ,延长BD 交EF于点H.已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为( )A.312B.36C.33D.32二、填空题(每小题5分,共20分)9.王明、杨磊两家所在位置关于学校成中心对称.如果王明家距离学校500米,那么他们两家相距米.10.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.11.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB绕点C转动的角度为.12.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG.若BE=2,DF=3,则AH的长为.三、解答题(共48分)13.(10分)如图,正方形网格中,△ABC的顶点及点O都在格点上.(1)画出△ABC关于点O中心对称的图形△A′B′C′;(2)画出△ABC绕点O顺时针旋转90°的图形△A″B″C″.14.(12分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(请将两个小题依次作答在图1、图2中,均只需画出符合条件的一种情形)15.(12分)如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)判断四边形ABED的形状,并说明理由.16.(14分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状,并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图1图2期中测试(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,属于中心对称图形的是( )A. B.C.D.2.将一元二次方程x 2-2x -2=0配方后所得的方程是( )A .(x -2)2=2 B .(x -1)2=2 C .(x -1)2=3 D .(x -2)2=33.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数解析式是 ( )A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-14.在平面直角坐标系中,将点(-2,3)关于原点对称的点向左平移2个单位长度得到的点的坐标是( )A .(4,-3)B .(-4,3)C .(0,-3)D .(0,3) 5.用公式法解方程4y 2=12y +3,解为( )A .y =-3±62B .y =3±62C .y =3±232D .y =-3±2326.已知抛物线y =x 2-8x +c 的顶点在x 轴上,则c 的值是( )A .16B .-4C .4D .87.已知关于x 的一元二次方程(k -1)x 2-2x +2=0有两个不相等的实数根,则k 的取值范围值是( )A .k<32B .k ≤32C .k <32且k ≠1D .k ≤32且k ≠18.在同一平面直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )9.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A.7 B .2 2 C .3 D .2 310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的是( ) A.①②③ B.②④ C.②⑤ D.②③⑤二、填空题(每小题3分,共24分)11.方程x2=x的根是.12.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有.①②③④13.已知方程3x2-4x-2=0的两个根是x1,x2,则1x1+1x2=.14.某楼盘2018年房价为每平方米8 100元,经过两年连续降价后,2020年房价为每平方米7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为.15.已知点P在抛物线y=(x-2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是.16.如图,若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时抛物线位于x轴下方的图象对应的x的取值范围是.17.如图,在边长为1的正方形网格中,A(1,7),B(5,5),C(7,5),D(5,1).若线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为.18.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=;③足球被踢出9.5 s2时落地;④足球被踢出7.5 s时,距离地面的高度是11.25 m,其中不正确的结论是.三、解答题(共66分)19.(8分)解方程:(1)2x2+3=7x; (2)(2x+1)2+4(2x+1)+3=0.20.(8分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(-1,3),B(-4,0),C(0,0).(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到的△A2B2O.21.(9分)如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,点E在BD上.(1)求证:FD=AB;(2)连接AF,求证:∠DAF=∠EFA.22.(9分)已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x21+x22=6x1x2时,求m的值.23.(10分)某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m.(1)若养鸡场的面积为200 m2,求养鸡场平行于墙的一边长;(2)养鸡场的面积能达到250 m2吗?如果能,请给出设计方案;如果不能,请说明理由.24.(10分)服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y 与x 之间所满足的函数关系式,并写出x 的取值范围;(2)设服装厂所获利润为w(元),若10≤x ≤50(x 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?25.(12分)如图,二次函数y =12x 2+bx +c 的图象交x 轴于A ,D 两点并经过点B ,已知点A 的坐标是(2,0),点B的坐标是(8,6).(1)求二次函数的解析式;(2)若抛物线的对称轴上是否存在一个动点P ,使点P 到点B ,点D 的距离之和最短,若存在,求出点P 的坐标;若不存在,请说明理由;(3)该二次函数的对称轴交x 轴于点C ,连接BC ,并延长BC 交抛物线于点E ,连接BD ,DE ,求△BDE 的面积.周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有(A)A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为(C)A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为(D)A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为(A)A .-2B .43-2C .3- 3D .1+ 35.一元二次方程x 2-6x -6=0配方后可化为(A)A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是(D)A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=(A)A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为(D)A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2 二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m =2.10.用适当的数填空:x 2-3x +94=(x -32)2;x 2+27x +7=(x 2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是-1.12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:3(答案不唯一,满足b 2>8即可).。
2021年九年级上学期期末考试数学人教版试题(必刷卷十三+答案)
2021届九年级上学期期末考试数学试题(必刷卷十三)一、选择题1.一元二次方程(x+2017)2)1的解为) )A. )2016))2018B. )2016C. )2018D. )20172.一元二次方程2t2﹣4t﹣6=0配方后化为()A. (t﹣1)2=4B. (t﹣4)2=10C. (t+1)2=4D. (x﹣4)2=103.对于反比例函数y=﹣2x,下列说法不正确的是()A. 图象分布在第二、四象限B. 当x>0时,y随x的增大而增大C. 图象经过点(1,﹣2)D. 若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.下列四条线段能成比例线段的是()A. 1)1)2)3B. 1)2)3)4C. 2)2)3)3D. 2)3)4)55.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.6.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A. 越长B. 越短C. 一样长D. 随时间变化而变化7.将等腰△ABC沿对称轴折叠,使点B与C重合,展开后得到折痕AF,再沿DE折叠,使点A与F重合,展开后得到折痕DE,则四边形ADFE是()A. 平行四边形B. 菱形C. 矩形D. 等腰梯形8.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出 20 元的费用)当房价定为多少元时)宾馆当天的利润为10890元?设房价定为x 元.则有( )A. )180+x)20))50)10x )=10890 B. )x)20))50)18010x )=10890 C. x)50) 18010x ))50×20=10890 D. )x+180))50)10x ))50×20=10890 9.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的条件是( )A. AO=OCB. AC=BDC. AC ⊥BDD. BD 平分∠ABC10.在同一坐标系中(水平方向是x 轴),函数y =k x和y =kx +3的图象大致是( ) A. B. C. D.二、填空题11.如果反比例函数y=k x的图象经过点(1,3),那么它一定经过点(﹣1,_____). 12.关于x 的方程x 2﹣3x+m=0有一个根是1,则方程的另一个根是_____. 13.如图,在△ABC 中,DE△BC ,EF△AB .若AD=2BD ,则CF BF 的值等于_____14.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为___米.15.如图,四边形ABCD是菱形,△DAB=50°,对角线AC,BD相交于点O,DH△AB于H,连接OH,则△DHO= 度.16.林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为______(结果精确到0.01).17.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点 F 在AB 上,点B、E 在反比例函数y=kx(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k 值为____.18.如图,四边形ABCD 为矩形,H)F 分别为AD)BC 边的中点,四边形EFGH 为矩形,E)G 分别在AB)CD 边上,则图中四个直角三角形面积之和与矩形EFGH 的面积之比为_____)三、解答题19.解方程:x 2-4x -5=020.若关于x 的一元二次方程22210x a x a 有两个不相等的实数根,求a 的取值范围.21.如图,在11×14的网格图中,△ABC三个顶点坐标分别为A))4)1))B))1)1))))2)4)))1)以A为位似中心,将△ABC放大为原来的2倍得到△AB1C1,请在网格图画出△AB1C1))2)直接写出(1)中点B1)C1的坐标.22.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1)2)3))1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为____))2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?24.已知:如图1所示,等腰直角三角形ABC中,△BAC=90°,AB=AC,直线MN经过点A,BD△MN于点D,CE△MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.25.画图:如图是小明与妈妈(线段AB)、爸爸(线段CD)在同一路灯下的情景,其中粗线分别表示三人的影子.请根据要求进行作图(不写画法,但要保留作图痕迹)(1)画出图中灯泡P所在的位置.(2)在图中画出小明的身高(线段EF)26.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数,且n≠0)的图象在第二象限交于点C.CD△x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤nx的解集.27.已知:如图,在梯形ABCD 中,AB △CD ,△D=90°,AD=CD=2,点E 在边AD 上(不与点A 、D 重合),△CEB=45°,EB 与对角线AC 相交于点F ,设DE=x .(1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作C △CAE ,△BAF 的周长记作C △BAF ,设CAE BAF CC =y ,求y 关于x 的函数关系式,并写出它的定义域;(3)当△ABE 的正切值是35时,求AB 的长.2021届九年级上学期期末考试数学试题(必刷卷十三)一、选择题1.一元二次方程(x+2017)2=1的解为()A. ﹣2016,﹣2018B. ﹣2016C. ﹣2018D. ﹣2017【答案】A【解析】【分析】利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-2016.故选A.【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.2.一元二次方程2t2﹣4t﹣6=0配方后化为()A. (t﹣1)2=4B. (t﹣4)2=10C. (t+1)2=4D. (x﹣4)2=10【答案】A【解析】【分析】首先把-6移到等号右边,然后再等式两边同时除以2,可得t2-2t=3,然后等式两边同时+1进行配方即可.【详解】解:2t2﹣4t﹣6=0,2t2﹣4t=6,t2﹣2t=3,t2﹣2t+1=4,(t﹣1)2=4,故选:A.【点睛】此题主要考查了配方法解一元二次方程,关键是掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.3.对于反比例函数y=﹣2x,下列说法不正确的是()A. 图象分布在第二、四象限B. 当x>0时,y随x的增大而增大C. 图象经过点(1,﹣2)D. 若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221,∴点(1,−2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0< x2,则y2<y1,故本选项错误.故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.4.下列四条线段能成比例线段的是()A. 1,1,2,3B. 1,2,3,4C. 2,2,3,3D. 2,3,4,5【答案】C【解析】分析:根据成比例线段的定义进行分析判断即可.详解:A选项中,因为1:12:3,所以A中的四条线段不是成比例线段;B选项中,因为1:23:4,所以B中的四条线段不是成比例线段;C选项中,因为2:2=3:3,所以C中的四条线段是成比例线段;D选项中,因为2:33:4,所以D中的四条线段不是成比例线段.故选C.点睛:熟记成比例线段的定义:“若四条线段a、b、c、d满足a:b=c:d,我们就说线段a、b、c、d是成比例线段”是解答本题的关键.5.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.【答案】C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.6.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A. 越长B. 越短C. 一样长D. 随时间变化而变化【答案】B【解析】由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.【点睛】本题考查了中心投影,用到的知识点为:影长是点光源与物高的连线形成的在地面的阴影部分的长度.7.将等腰△ABC沿对称轴折叠,使点B与C重合,展开后得到折痕AF,再沿DE折叠,使点A与F重合,展开后得到折痕DE,则四边形ADFE是()A. 平行四边形B. 菱形C. 矩形D. 等腰梯形【答案】B【解析】【分析】要证四边形AEFD是菱形,只需通过定义证明四边相等即可.此题实际是对判定菱形的方法“对角形垂直平分的四边形为菱形”的证明.【详解】解:∵等腰△ABC沿对称轴折叠后点B与C重合,∴AF⊥BC∵沿DE折叠,使点A与F重合,∴ED∥CB∴AF⊥DE又∵点A与F重合,点B与C重合,∴AF与DE互相平分,∵AF与DE是四边形AEFD的对角线,AF与DE垂直且平分,∴四边形AEFD是菱形.故选:B.【点睛】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.8.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出 20 元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A. (180+x ﹣20)(50﹣10x )=10890 B. (x ﹣20)(50﹣18010x )=10890 C. x (50﹣ 18010x )﹣50×20=10890 D. (x+180)(50﹣10x )﹣50×20=10890 【答案】B【解析】【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x 元,根据题意,得(x ﹣20)(50﹣18010x )=10890. 故选:B .【点睛】本题主要考查了一元二次方程的应用,解题的关键是掌握宾馆每天的总利润=每间每天利润已租出房间数量=(每间每天定价-每间每天支出)×已租出房间数量.9.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的条件是( )A. AO=OCB. AC=BDC. AC ⊥BDD. BD 平分∠ABC【答案】B【解析】分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.详解:添加的条件是AC =BD .理由是:∵AC =BD ,四边形ABCD 是平行四边形,∴平行四边形ABCD 是矩形.故选B.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.10.在同一坐标系中(水平方向是x轴),函数y=kx和y=kx+3的图象大致是()A. B. C. D. 【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、因为y=kx+3的图象交y轴于正半轴,故B选项错误;C、因为y=kx+3的图象交y轴于正半轴,故C选项错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,解题的关键是要掌握反比例函数和一次函数的性质.二、填空题11.如果反比例函数y=kx的图象经过点(1,3),那么它一定经过点(﹣1,_____).【答案】-2【解析】由于反比例函数y=kx的图象经过点(1,2),一次即可确定k的值,然后把x=-1代入函数解析式中即可求出所经过的另一个点的坐标.解:∵反比例函数y=kx的图象经过点(1,2),∴2=k/1,∴k=2,∴y=2/x,当x=-1时,y=-2,∴那么它一定经过点(-1,-2).故答案为:-2.12.关于x的方程x2﹣3x+m=0有一个根是1,则方程的另一个根是_____.【答案】x=2【解析】解:设方程的另一根为a.∵关于x的方程x2﹣3x+m=0有一个根是1,∴1+a=3,解得:a=2.故答案为:2.13.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则CFBF的值等于_____【答案】1 2【解析】【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵DE∥BC,AD=2BD,∴123 CE CE BDAC AE BD BD,∵EF∥AB,∴132 CF CE CE CEBF AE AC CE CE CE,故答案为:1 2 .【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为___米.【答案】1.4【解析】由题意得,40.8 43h,解得h=1.4.故答案为:1.4.15.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO= 度.【答案】25.【解析】试题分析:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12×50°=25°.考点:菱形的性质.16.林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为______(结果精确到0.01).【答案】0.88【解析】分析:首先结合现实生活,对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法,然后再根据算术平均数的求法计算出这种幼树移植过程中统计的10次的成活率的平均数即可.详解:1(0.8650.9040.8880.8680.8750.8920.8820.8788.8790.881)0.88.10x故答案为:0.88.点睛:本题主要考查的是利用频率估计概率,正确理解大量反复试验下频率稳定值即是概率是解题的关键.17.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点 F 在AB 上,点B、E 在反比例函数y=kx(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k 值为____.【答案】-6【解析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t-2),解得t=-1,k=-6.考点:反比例函数系数k的几何意义.18.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.【答案】1:1【解析】【分析】根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是12CD×DH=12S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【详解】连接HF,∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分别为AD、BC边的中点,∴DH=CF,DH∥CF,∵∠D=90°,∴四边形HFCD 是矩形,∴△HFG 的面积是12CD×DH=12S 矩形HFCD , 即S △HFG =S △DHG +S △CFG ,同理S △HEF =S △BEF +S △AEH ,∴图中四个直角三角形面积之和与矩形EFGH 的面积之比是1:1,故答案为:1:1.【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.三、解答题19.解方程:x 2-4x -5=0【答案】x 1 ="-1," x 2 =5【解析】根据十字相乘法因式分解解方程即可。
2024年北京西城区九年级初三一模数学试卷及答案
北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数 学 2024.4考生须知1. 本试卷共7页,共两部分, 28道题。
满分 100分。
考试时间120分钟。
2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3. 试题答案一律填涂或书写在答题卡上, 在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束, 将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的展开图,该几何体是 (A) 圆锥 (B)三棱柱 (C)三棱锥 (D)四棱锥2. 2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit)的数据. 将 10000000000用科学记数法表示应为(A )0.1×10¹¹ (B )1×10¹⁰ (C )1×10¹¹ (D) 10×10⁹3.下列图形中,既是中心对称图形也是轴对称图形的是4. 直尺和三角板如图摆放,若∠1=55°,则∠2的大小为 (A)35° (B)55° (C) 135° (D) 145°北京市西城区九年级统一测试试卷 数学2024.4 第1页 (共7页)15.如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上, 点O₁, O₂分别为两个正六边形的中心. 则tan∠O₂AC的值为.16. 将1, 2, 3, 4, 5, …, 37这37个连续整数不重不漏地填入37个空格中. 要求: 从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第 1 个空格填入 37,则第 2 个空格所填入的数为,第 37 个空格所填入的数为 .37三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:|−3|−+2sin60∘−12.18.解不等式组: 2(+1)<x+5, x+23≥x−12.19. 已知x²−x−4=0,求代数式 (x−2)²+(x−1)(x+3)的值.20. 如图,点E在▱ABCD的对角线DB的延长线上,AE=AD.AF⊥BD于点F,EG∥BC交AF的延长线于点G, 连接DG.(1) 求证: 四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=12,AB=4,求菱形AEGD的面积.21.某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22. 在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5), B(-2,0), 且与y轴交于点 C.(1)求该函数的解析式及点C的坐标;(2)当x<2时, 对于x的每一个值, 函数y=-3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.北京市西城区九年级统一测试试卷 数学2024.4 第3页 (共7页)24. 如图, AB 为⊙O 的直径, 弦CD⊥AB 于点H, OO 的切线CE 与BA 的延长线交于点E, AF∥CE, AF 与⊙O 的交点为F.(1) 求证: AF=CD;(2) 若⊙O 的半径为6, AH=2OH,求AE 的长.25. 如图,点O 为边长为1的等边三角形ABC 的外心. 线段PQ 经过点O,交边AB 于点P, 交边AC 于点Q. 若 AP =x,AQ =y 1,S APQ :S ABC =y 2,下表给出了x, y ₁, y ₂的一些数据 (近似值精确到0.0001).x 0.50.550.60.650.70.750.80.850.90.951y ₁10.84620.750.68420.63640.60.57140.54840.52940.51350.5y ₂0.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy 中描出了部分点( x ,y ₁,x ,y ₂..请补全表格中数据的对应点,并分别画出y ₁与y ₂关于x 的函数图象;(3)结合函数图象,解决下列问题:①当△APQ 是等腰三角形时, y ₁关于x 的函数图象上的对应点记为(a ,b),请在x轴上标出横坐标为a 的点;C ②当y ₂取最大值时,x 的值为 .北京市西城区九年级统一测试试卷 数学2024.4 第5页 (共7页)5.不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为(A) 14(B) 13(C) 12(D)236. 已知-2<a<-1, 则下列结论正确的是(A) a<1<-a<2 (B) 1<a<-a<2 (C) 1<-a<2<a (D) -a<1<a<27.若关于x 的一元二次方程 lnx²+x−2=0有两个实数根,则实数k 的取值范围是(A )k ≤−18 (B )k >−18且k≠0 (C )k ≥−18且k≠0 (D )k ≥−14且k≠08. 如图, 在Rt△ABC 中, ∠ACB=90°, BC=a, AC=b(其中a<b). CD⊥AB 于点D,点E 在边AB 上, BE=BC. 设CD=h, AD=m, BD=n, 给出下面三个结论:①n²+h²<(m+n)²;②2h²>m²+n²;③AE 的长是关于 x 的方程 x²+2ax−b²=0的一个实数根.上述结论中,所有正确结论的序号是(A)① (B) ①③ (C) ②③ (D) ①②③第二部分 非选择题二、填空题 (共16分,每题2分)9. 若 x−3在实数范围内有意义,则实数x 的取值范围是 .10. 分解因式:x²y-12xy+36y= .11. 方程43x−1=3x−2的解为 .12.在平面直角坐标系xOy 中,若函数 y =kx(k ≠0)的图象经过点(-1,8)和(2,n), 则n 的值为.13. 如图, 在▱ABCD 中, 点E 在边AD 上, BA, CE 的延长线交于点F. 若AF=1, AB=2, 则 AEED =¯.14. 如图, 在⊙O 的内接四边形ABCD 中, 点A 是 ⌢BD 的中点,连接AC, 若∠DAB=130°, 则∠ACB= °.北京市西城区九年级统一测试试卷 数学2024.4 第2页 (共7页)23.某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8, 8.8, 8.9, 9.4, 9.4, 9.4, 9.6, 9.6, 9.6, 9.8, 10, 10, 10, 10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n根据以上信息,回答下列问题:(1)写出表中m, n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的 10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为和 ;(3)估计这些山楂共能制作多少串冰糖葫芦.北京市西城区九年级统一测试试卷 数学2024.4 第4页 (共7页)26. 在平面直角坐标系xOy中,点A−2y₁,B2y₂,C m y₃在抛物线y=ax²+bx+3(a⟩0)上.设抛物线的对称轴为直线x=t.(1)若y₁=3,,求t的值;(2) 若当t+1<m<t+2时,都有y₁>y₃>y₂,求t的取值范围.27. 在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点 (不与点 A, B重合), 点 E 在射线 AC 上且满足.AE=AD,,过点D 作直线 BE 的垂线交直线BC于点F, 垂足为点 G, 直线BE交射线AM于点P.(1) 如图1, 若点D在线段AB上, 当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP, AB的数量关系, 并证明.北京市西城区九年级统一测试试卷 数学2024.4第6页 (共7页)28.在平面直角坐标系xOy 中,已知⊙O 的半径为1.对于⊙O 上的点 P 和平面内的直线l:y =ax 给出如下定义:点P 关于直线l 的对称点记为 P¹,,若射线OP 上的点Q 满足 OQ =PP ′,则称点Q 为点P 关于直线l 的“衍生点”.(1)当a=0时,已知⊙O 上两点 PP 2−22,在点Q ₁(1,2), QQ 3(−1,−1),Q 4(−2,−2)中,点P ₁关于直线l 的“衍生点”是 ,点P ₂关于直线l 的“衍生点”是 ;(2) P 为⊙O 上任意一点, 直线y=x+m (m≠0)与x 轴, y 轴的交点分别为点 A,B.若线段AB 上存在点S ,T ,使得点S 是点P 关于直线l 的“衍生点”,点T 不是点P 关于直线l 的“衍生点”,直接写出m 的取值范围;(3) 当-1≤a≤1时,若过原点的直线s 上存在线段 MN,对于线段 MN 上任意一点R,都存在⊙O 上的点P 和直线l ,使得点R 是点P 关于直线l 的“衍生点”. 将线段MN 长度的最大值记为D(s),对于所有的直线s ,直接写出D(s)的最小值.北京市西城区九年级统一测试试卷 数学2024.4 第7页 (共7页)北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数学答案及评分参考 2024.4一、选择题(共16分,每题2分)题号12345678答案C B D D A A C B二、填空题(共16分,每题2分)9. x≥3 10.y(x−6)² 11. x=-1 12. -413.1214. 25 15.3516. 1, 19三、解答题(共68分, 第17-22题, 每题5分, 第23-26题, 每题6分, 第27-28题,每题7分)17. 解: |−3|−+2sin60∘−12=3−5+2×32−23 4分 =-5 . 5分18.解:原不等式组为2(x+1)<x+5, x+23≥x−12.解不等式①, 得x<3. ·2分 解不等式②, 得x≤7. 4分 ∴ 原不等式组的解集为x<3. 5分19. 解: (x−2)²+(x−1)(x+3)=(x²−4x+4)+(x²+2x−3)=2x²−2x+1.…… 3分∵x²−x−4=0,∴x²−x=4.∴原式=2(x²−x)+1=9. ·5分20. (1) 证明: 如图1.∵ AE=AD, AF⊥BD于点F,∴ ∠EAG=∠DAG, EF=DF.∵ 四边形 ABCD 是平行四边形,北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第1页(共6页)①②∴ AD∥BC.∵ EG∥BC,∴ AD∥EG.∴ ∠AGE=∠DAG.∴ ∠EAG=∠AGE.∴ AE=EG.∴ AD=EG.∴ 四边形AEGD 是平行四边形.又∵ AE=AD,∴四边形AEGD是菱形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2) 解: 在Rt△ABF中, ∠AFB=90°, AF=BF, AB=4,∴ ∠ABF=45° , AF=AB·sin45°=22.在Rt△AEF中,∠AFE=90∘,tan∠AEF=12,AF=22,∴EF=AFtan∠AEF=4 2.∵ 四边形 AEGD 是菱形,∴AG=2AF=42,DE=2EF=8 2.∴S差πAEGD =12AG×DE=12×42×82=32. …5分21.解:设购买x套围棋,y套象棋 (1)假设所购买围棋的套数能是所购买象棋套数的2倍,①则40x+30y=1000,x=2y.② 3分解得y=10011. 4分此时 y不为正整数,不合题意.答:所购买围棋的套数不能是所购买象棋套数的2倍.⋯⋯⋯⋯⋯⋯⋯⋯5分22. 解: (1) ∵ 函数y=kx+b (k≠0) 的图象经过点 A(3,5), B(-2,0),∴3k+b=5,−2k+b=0.解得k=1,b=2.∴该函数的解析式为y=x+2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分点C的坐标为C(0,2).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)n≥10.……………………………………………………………………………5分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第2页 (共6页)23.解:(1)9.4,10;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)①甲;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分②9.3,9.6;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)76009.5×5=160(串).答:估计这些山楂共能制作160串糖葫芦.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分24. (1) 证明: 如图2, 连接OC, OC与AF交于点 G.∵ CE 与⊙O 相切, 切点为C,∴CE⊥OC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴ ∠OCE=90° .∵ AF∥CE,∴ ∠OGA=∠OCE=90° .∴ OC⊥AF于点 G.∴ AF=2AG.∵ CD⊥AB 于点 H,∴ ∠OHC=90° , CD=2CH .∴ ∠OGA=∠OHC.又∵ ∠AOG=∠COH, OA=OC,∴ △OAG≌△OCH.∴ AG=CH.∴AF=CD.…………………………………………………… 3分(2) 解: ∵ ⊙O的半径为6, AH=2OH,∴ OH=2, AH=4.在Rt△OCH中,∠OHC=90∘,cos∠COH=OHOC =13.在Rt△OCE中,∠OCE=90∘,cos∠COE=13,OC=6,∴OE=OCcos∠COE=18.∴AE=OE-OA=18-6=12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第3页(共6页)25. 解: (1)0.5; ……………………… 1分(2)3分(3)①见图3; ·4分 ②0.5, 1. …6分26. 解: (1) 抛物线 y =ax²+bx +3与y 轴的交点的坐标为(0,3).∵ 抛物线. y =ax²+bx +3过A(-2,y ₁), y ₁=3,∴ A(-2,3)与(0,3)关于直线x=t 对称.∴t =−2+02=−1. 2分(2) ∵ a>0,∴ 当x≤t 时, y 随x 的增大而减小; 当x≥t 时, y 随x 的增大而增大.A(-2,y ₁), B(2,y ₂), C(m,y ₃).①当t≤-2时,∵ t≤-2<2,|.y₁<y₂,不合题意.②当-2<t<2时, A(-2,y ₁)关于对称轴x=t 的对称点为 A ′(2t +2,y ₁).∵ 当t+1<m<t+2时, 都有 y₁>y₃>y₂,∴t +1≥2,t +2≤2t +2.解得 t≥1.∴ 1≤t<2.③当t≥2时,A(-2,y ₁),B(2,y ₂)关于对称轴x=t 的对称点分别为 A ′(2t +2,y ₁), B ′(2t−2,y ₂).北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第4页(共6页)∵当t+1<m<t+2时, 都有. y₁>y₃>y₂,∴t +1≥2t−2,t +2≤2t +2.解得 0≤t≤3.∴ 2≤t≤3.综上所述,t 的取值范围是1≤t≤3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分27. 解: (1) 如图4.∵在△ABC 中, ∠ABC=∠ACB=45° ,∴ AB=AC, ∠BAC=90° , ∠1+∠2=90°.∵ AM⊥BC 于点 M,∴∠3=∠BAC 2=45∘,BM =CM.∵ AP=AE, ∴∠2=180∘−∠32=180∘−45∘2=67.5∘.∵ DF⊥BE 于点 G,∴ ∠1+∠BDF=90°.∴∠BDF=∠2=67.5°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)补全图形见图5.CF =2MP +2AB.证明: 如图4, 作 CQ∥AP 交BE 于点 Q.∵ CQ∥AP, BM=CM, AM⊥BC, ∴MP CQ =BM BC =12,∠BCQ =∠AMC =90∘ ∴CQ =2MP,∠5=180°−∠ACB−∠BCQ =45°.∵∠4=∠ABC =45°,∴ ∠4=∠5.北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第5页 (共6页)∵∠DBG=∠ABE,DG⊥BE于点 G,∠BAC=90°,∴ ∠D=∠E.∵AD=AE,AB=AC,∴AD−AB=AE−AC, 即BD=CE.∴△BDF≅△CEQ.:.BF=CQ.∵CF=BF+BC,BC=2AB,∴CF=CQ+2AB=2MP+2AB. ……………… 7分28. 解: (1)Q₂,Q₃; · ·2分(2)−22≤m≤−2或 2≤m≤22; ·5分(3)2−2. 7分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第6页(共6页)。
2024年北京市通州区名校九年级数学第一学期开学学业质量监测试题【含答案】
2024年北京市通州区名校九年级数学第一学期开学学业质量监测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,ABC ∆中,6,8,AB AC BC AE BC ===⊥于点E ,点D 为AB 的中点,连接DE ,则BDE ∆的周长是()A .B .C .12D .102、(4分)不等式组3x a x ≥⎧⎨⎩<的整数解有三个,则a 的取值范围是()A .﹣1≤a <0B .﹣1<a ≤0C .﹣1≤a ≤0D .﹣1<a <03、(4分)点()3,2P -关于原点的对称点Q 的坐标为()A .()3,2-B .()3,2--C .()3,2D .()2,3-4、(4分)下列各式:2a b -,3x x +,5yπ+,a ba b +-,1m (x+y )中,是分式的共有()A .1个B .2个C .3个D .4个5、(4分)如图,在△ABC 中,∠B =90°,以A 为圆心,AE 长为半径画弧,分别交AB 、AC 于F 、E 两点;分别以点E 和点F 为圆心,大于12EF 且相等的长为半径画弧,两弧相交于点G ,作射线AG ,交BC 于点D ,若BD =43,AC 长是分式方程135(2)x x =-的解,则△ACD 的面积是()A .103B .203C .4D .36、(4分)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,使点D 落在E 处,CE 交AB 于点O ,若BO =3m ,则AC 的长为()A .6cm B .8cm C .cm D .4cm 7、(4分)下列几组数中,不能作为直角三角形三边长度的是()A .3,4,5B .5,7,8C .8,15,17D .18、(4分)如图直线1l :y ax b =+与直线2l :y mx n =+相交于点P (1,2).则关于x 的不等式ax b mx n +>+的解集为()A .x<1B .x>2C .x>1D .x<2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若()()22616x m x x x -+=--,则m=__10、(4分)已知△ABC 中,AB =12,AC =13,BC =15,点D 、E 、F 分别是AB 、AC 、BC 的中点,则△DEF 的周长是_____.11、(4分)在△ABC 中,AC =BC ,AB =2,则△ABC 中的最小角是_____.12、(4分)如图所示,直线y =kx +b 经过点(﹣2,0),则关于x 的不等式kx +b <0的解集为_____.13、(4分)((2013201422-+=__________.三、解答题(本大题共5个小题,共48分)14、(12分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x (元)与每天销售量y (件)之间满足如图所示的关系.(1)求y 与x 之间的函数关系式;(2)若某天小张销售该产品获得的利润为1200元,求销售单价x 的值.15、(8分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”某校本学年开展了读书活动,在这次活动中,八年级()1班40名学生读书册数的情况如表读书册数45678人数(人)6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.16、(8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并根据统计结果绘制成如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,样本容量为;(2)补全条形统计图;(3)“乘车”所对应的扇形圆心角为°;(4)若该学校共有2000名学生,试估计该学校学生中选择“步行”方式的人数.17、(10分)甲、乙两人同时从P 地出发步行分别沿两个不同方向散步,甲以3/km h 的速度沿正北方向前行;乙以4/km h 的速度沿正东方向前行,(1)过t 小时后他俩的距离是多少?(2)经过多少时间,他俩的距离是15km ?18、(10分)如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形,AC 、DE 相交于点O .(1)求证:四边形ADCE 是矩形.(2)若∠AOE=60°,AE=4,求矩形ADCE 对角线的长.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在矩形ABCD 中,2AB =,1BC =,E 是AB 边的中点,点F 是BC 边上的一动点,将EBF △沿EF 折叠,使得点B 落在G 处,连接CG ,BEG m BCG ∠=∠,当点G 落在矩形ABCD 的对称轴上,则m 的值为______.20、(4分)若关于x 的一元二次方程260x x m ++=有实数根,且所有实数根均为整数,请写出一个符合条件的常数m 的值:m=_____.21、(4分)若23a b =,则2a b b +=________.22、(4分)设直角三角形的两条直角边分别为a 和b,斜边为c,若a=6,c=10,则b=_____.23、(4分)如图所示四个二次函数的图象中,分别对应的是①y =ax 1;②y =bx 1;③y =cx 1;④y =dx 1.则a 、b 、c 、d 的大小关系为_____.二、解答题(本大题共3个小题,共30分)24、(8分)下面是小明设计的“作平行四边形ABCD 的边AB 的中点”的尺规作图过程.已知:平行四边形ABCD .求作:点M ,使点M 为边AB 的中点.作法:如图,①作射线DA ;②以点A 为圆心,BC 长为半径画弧,交DA 的延长线于点E ;③连接EC 交AB 于点M .所以点M 就是所求作的点.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AC ,EB .∵四边形ABCD 是平行四边形,∴AE ∥BC .∵AE =,∴四边形EBCA 是平行四边形()(填推理的依据).∴AM =MB ()(填推理的依据).∴点M 为所求作的边AB 的中点.25、(10分)已知1<x <2,171x x +=-的值是_____.26、(12分)已知:a ,b ,c 为一个直角三角形的三边长,且有2(2)0b +-=,求直角三角形的斜边长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】根据等腰三角形三线合一的性质,先求出BE ,再利用直角三角形斜边中线定理求出DE 即可.【详解】∵在△ABC 中,AB=AC=6,AE 平分∠BAC ,∴BE=CE=12BC=4,又∵D 是AB 中点,∴BD=12AB=3,∴DE 是△ABC 的中位线,∴DE=12AC=3,∴△BDE 的周长为BD+DE+BE=3+3+4=1.故选:D .本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.2、B 【解析】根据不等式组的整数解有三个,确定出a 的范围即可.【详解】∵不等式组3x ax <≥⎧⎨⎩的整数解有三个,∴这三个整数解为2、1、0,则﹣1<a≤0,故选:B .此题考查了一元一次不等式组的整数解,表示出不等式组的解集是解本题的关键.3、A 【解析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:根据中心对称的性质,可知:点P (-3,2)关于原点O 中心对称的点的坐标为(3,-2).故选:A .本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.4、C 【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】3x x +,a b a b +-,()1x y m +分母中含有字母,因此是分式;2a b -,5y π+的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选C .本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.5、A 【解析】利用角平分线的性质定理证明DB=DH=43,再根据三角形的面积公式计算即可【详解】如图,作DH ⊥AC 于H ,∵135(2)x x =-∴5(x-2)=3x ∴x=5经检验:x=5是分式方程的解∵AC 长是分式方程135(2)x x =-的解∴AC=5∵∠B=90°∴DB ⊥AB,DH ⊥AC ∵AD 平分∠BAC,∴DH=DB=43S ADC =14105=233⨯⨯故选A 此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线6、D 【解析】根据折叠前后角相等可证AO =CO ,在直角三角形CBO 中,运用勾股定理求得CO ,再根据线段的和差关系和勾股定理求解即可.【详解】根据折叠前后角相等可知∠DCA =∠ACO ,∵四边形ABCD 是矩形,∴AB ∥CD ,AD =BC =4cm ,∴∠DCA =∠CAO ,∴∠ACO =∠CAO ,∴AO =CO ,在直角三角形BCO 中,CO ==5cm ,∴AB =CD =AO+BO =3+5=8cm ,在Rt △ABC 中,AC ==cm ,故选:D .本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.7、B 【解析】根据勾股定理的逆定理依次判断各项后即可解答.【详解】选项A ,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;选项B ,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;选项C ,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;选项D ,12+)22,符合勾股定理的逆定理,能作为直角三角形三边长度.故选B .本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.8、C 【解析】根据函数图象交点右侧直线y ax b =+图象在直线:y mx n =+图象的上面,即可得出不等式ax b mx n +>+的解集.【详解】解:直线1:l y ax b =+与直线2:l y mx a =+交于点(1,2)P ,∴不等式ax b mx n +>+解集为1x >.故选:C此题主要考查了一次函数与不等式关系,利用数形结合得出不等式的解集是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】利用多项式乘以多项式计算(x-m )(x+2)可得x 2+(2-m )x-2m ,然后使x 的一次项系数相等即可得到m的值.【详解】∵(x-m)(x+2)=x2+(2-m)x-2m,∴2-m=-6,m=1,故答案是:1.考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10、20【解析】首先根据△ABC中,点D、E、F分别是AB、AC、BC的中点,判断出四边形DBFE和四边形DFCE为平行四边形,又根据平行四边形的性质,求出DE、EF、DF的值,进而得出△DEF 的周长.【详解】解:∵△ABC中,点D、E、F分别是AB、AC、BC的中点,∴DE∥BC,DF∥AC,EF∥AB∴四边形DBFE和四边形DFCE为平行四边形,又∵AB=12,AC=13,BC=15,∴DB=EF=12AB=6DF=CE=12AC=6.5DE=FC=12BC=7.5∴△DEF的周长是DE+EF+DF=7.5+6+6.5=20.此题主要考查平行四边形的判定,即可得解.11、45°.【解析】根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.【详解】解:∵AC =BC ,AB =2,∴AC 2+BC 2=2+2=4=22=AB 2,∴△ABC 是等腰直角三角形,∴△ABC 中的最小角是45°;故答案为:45°.本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.12、x <﹣1.【解析】结合函数图象,写出直线在x 轴下方所对应的自变量的范围即可.【详解】∵直线y kx b =+经过点(-1,0),∴当2x <-时,0y <,∴关于x 的不等式0kx b +<的解集为2x <-.故答案为:2x <-.本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.13、2+【解析】把((2013201422+变形为(((20132013222⋅+⋅+,逆用积的乘方法则计算即可.【详解】原式=(((20132013222⋅+⋅+=(((2013222⎡⎤⋅+⋅+⎣⎦=2+.故答案为:2+.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题(本大题共5个小题,共48分)14、(1)y=−x+180;(2)120元或160元;【解析】(1)设y 与x 之间的函数关系式为y=kx+b (k≠0),根据所给函数图象列出关于k 、b 的关系式,求出k 、b 的值即可;(2)根据题意列出方程,解方程即可.【详解】(1)设y 与x 之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:1305015030k b k b +=+=⎧⎨⎩,解得:1180k b =-=⎧⎨⎩故y 与x 的函数关系式为y=−x+180;(2)由题意得:(−x+180)(x−100)=1200,解得:x=120,或x=160.答:若某天该网店店主销售该产品获得的利润为1200元,则销售单价为120元或160元.此题考查一元二次方程的应用,一次函数的应用,解题关键在于列出方程15、(1)该班学生读书册数的平均数为6.3册.(2)该班学生读书册数的中位数为6.5册.【解析】(1)根据平均数=读书册数总数÷读书总人数,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【详解】解:()1该班学生读书册数的平均数为:()1465461071288 6.3(40⨯⨯+⨯+⨯+⨯+⨯=册),答:该班学生读书册数的平均数为6.3册.()2将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:676.5(2+=册).答:该班学生读书册数的中位数为6.5册.本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16、(1)50;(2)图略;(3)144︒;(4)600.【解析】(1)用此次调查的乘车的学生数除以其占比即可得到样本容量;(2)用调查的总人数减去各组人数即可得到步行的人数,即可补全统计图;(3)用360°×40%即可得到“乘车”所对应的扇形圆心角度数;(4)用2000乘以“步行”方式的占比即可.【详解】(1)样本容量为20÷40%=50(2)步行的人数为50-20-10-5=15(人)补全统计图如下:(3)“乘车”所对应的扇形圆心角为40%×360°=144°(4)估计该学校学生中选择“步行”方式的人数为2000×1550=600(人)此题主要考查统计调查,解题的关键是根据统计图求出样本容量.17、(1)5t;(2)3小时【解析】(1)根据两人行驶的路线围成一个直角三角形,利用勾股定理求解即可;(2)利用(1)中所求,结合两人距离为15km ,即可求出时间.【详解】(1)∵甲以3km/h 的速度沿正北方向前行;乙以4km/h 的速度沿正东方向前行,∴两人行驶的路线围成一个直角三角形,∴过t 个小时后他俩的距离是:5()S t km ==,答:过t 个小时后他俩的距离是5tkm ;(2)由题意可得:5t=15,解得:t=3,答:经过3小时,他俩的距离是15km .本题考查了勾股定理的实际应用,解题的关键是从实际问题中整理出直角三角形模型,利用勾股定理解决问题.18、(1)证明见解析;(2)1.【解析】分析:(1)根据四边形ABDE 是平行四边形和AB=AC ,推出AD 和DE 相等且互相平分,即可推出四边形ADCE 是矩形.(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE 为等边三角形,即可求出AO 的长,从而得到矩形ADCE 对角线的长.详解:(1)∵四边形ABDE 是平行四边形,∴AB=DE ,又∵AB=AC ,∴DE=AC .∵AB=AC ,D 为BC 中点,∴∠ADC=90°,又∵D 为BC 中点,∴CD=BD .∴CD ∥AE ,CD=AE .∴四边形AECD 是平行四边形,又∴∠ADC=90°,∴四边形ADCE 是矩形.(2)∵四边形ADCE 是矩形,∴AO=EO ,∴△AOE 为等边三角形,∴AO=4,故AC=1.点睛:本题考查了矩形的判定和性质,二者结合是常见的出题方式,要注意灵活运用等边三角形的性质、等腰三角形的性质和三角形中位线的性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、2【解析】根据旋转的性质在三角形EHG 中,利用30°角的特殊性得到∠EGH=30°,再利用对称性进行解题即可.【详解】解:如下图过点E 作EH 垂直对称轴与H ,连接BG ,∵2AB =,1BC =,∴BE=EG=1,EH=12,∴∠EGH=30°,∴∠BEG=30°,由旋转可知∠BEF=15°,BG⊥EF,∴∠EBG=75°,∠GBF=∠BCG=15°,即2BEG BCG ∠=∠∴m=2故答案是:2本题考查了图形旋转的性质,中垂线的性质,直角三角形中30°的特殊性,熟悉30°角的特殊性是解题关键.20、0(答案不唯一)【解析】利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【详解】△=62-4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,所以m=0满足条件.故答案为:0(答案不唯一).本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21、7 3【解析】由23ab=,得到a=23b,代入所求的代数式,即可解决问题.【详解】∵23 ab=,∴a=23b,∴2a bb+=4733b bb+=,故答案为:7 3.该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.22、8【解析】根据题意,已知直角三角形的一条直角边和斜边长,求另一直角边时直接利用勾股定理求斜边长即可.据此解答即可.【详解】解:由勾股定理的变形公式可得b =8,故答案为:8.本题考查了勾股定理的运用,属于基础题.本题比较简单,解答此类题的关键是灵活运用勾股定理,可以根据直角三角形中两条边求出另一条边的长度.23、a >b >d >c 【解析】设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a ),(1,b ),(1,d ),(1,c ),所以,a >b >d >c .本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)详见解析【解析】(1)根据要求作出点M 即可.(2)首先证明四边形EBCA 是平行四边形,再利用平行四边形的性质解决问题即可.【详解】解:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AC ,EB .∵四边形ABCD 是平行四边形,∴AE ∥BC .∵AE =BC ,∴四边形EBCA 是平行四边形(一组对边平行且相等的四边形是平行四边形)(填推理的依据).∴AM =MB (平行四边形的对角线互相平分)(填推理的依据).∴点M 为所求作的边AB 的中点.故答案为(1)详见解析;(2)详见解析.本题考查作图-复杂作图,平行四边形的判定和性质,解题的关键是掌握平行四边形的判定和性质.25、2.【解析】2+(2=6,再根据完全平方公式求出即可.【详解】解:∵171x x +=-∴1161x x +-=-)2+)2=6,∵1<x <2,>=2.故答案为:2.本题考查二次根式的混合运算和求值,完全平方公式等知识点,能灵活运用公式进行计算是解题关键.26、该直角三角形的斜边长为3【解析】试题分析:根据非负数的性质求得a 、b 的值,然后利用勾股定理即可求得该直角三角形的斜边长.2(2)0b +-=,∴a ﹣3=2,b ﹣1=2,解得:a =3,b =1.①以a 为斜边时,斜边长为3;②以a ,b 综上所述:即直角三角形的斜边长为3点睛:本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为2时,则其中的每一项都必须等于2.。
北师大课标版九年级数学周考测试卷
九年级数学周考测试卷一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程042=-x 的解是( )A .2=xB .2-=xC .21=x ,22-=xD .21=x ,22-=x2.下列性质中正方形具有而矩形没有的是( )A .对角线互相平分B .对角线相等C .对角线互相垂直D .四个角都是直角3.小明从上面观察下图所示的两个物体,看到的是( )A B C D4.若一元二次方程(m-2)x 2+3(m 2+15)x +m 2-4=0的常数项是0,则m 为( )A.2B.±2C.-2D.-105.如果代数式x x 72-的值为-6,那么代数式532+-x x 的值为( )A 3B 23C 3或23D 不能确定6.如图5,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地. A 600m 2 B 551m 2 C 550 m 2 D 500m 27.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少,若设二、三月份平均每月的增长率为x ,则可得方程( )正面图5A.560(1+x )2=1850B.560+560(1+x )2=1850C.560(1+x )+560(1+x )2=1850D.560+560(1+x )+560(1+x )2=18508.下列正多边形中,能够铺满地面的正多边形有( )①正六边形;②正方形;③正五边形;④正三角形;A 1种B 2种C 3种D 4种二、填空题(本大题共8个小题,每小题3分,满分24分)9.方程0)3)(12(=+-x x 的根是 ;10.已知063=-+-y x ,则以x ,y 为两边长的等腰三角形的周长是11.如图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交 AB 于点D,交边AC 于点E ,△BCE 的周长等于18 cm ,则AC 的长等于 cm . 12.三角形的三条 交于一点,这点到三角形各边的距离相等; 13.在平行四边形ABCD 中,对角线AC 长为10cm ,∠CAB=30°, AB= 6cm ,则平行四边形ABCD 的面积为___________2cm ;14.等腰梯形的上、下底分别为6cm 、8cm ,且有一个角为60°,则它的腰为___________cm ;15.等腰直角三角形斜边上的中线长为4cm ,则其面积为 __________;16.已知关于x 的方程()04322=+-+m x m x 有两个不相等的实数根,那么m 的最大整数值是 ;三、解答题(本大题共7个小题,满分72分)16.(本小题12分)解方程:(1)3(3)x x x -=- (2)07432=-+x x17.(本小题8分)已知x =1是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.18.(本小题10分)已知关于x 的方程03)12(22=-+++k x k x 有实数根,求k 的取值范围;19.(本小题10分)已知:如图,D 是△ABC 中BC 边上一点,E 是AD 上的一点, EB=EC ,∠1=∠2.求证:AD 平分∠BAC .20.(本小题10分)某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2 1A B C E21、(本小题10分)已知:菱形ABCD 的对角线AC=6m ,周长是20m ,求另一条对角线BD 的长及菱形的面积。
【人教版】九年级上期末数学试卷13含答案(1)
【人教版】九年级上期末数学试卷13含答案(1)(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )2.用配方法解一元二次方程x 2-4x +1=0时,下列变形正确的为( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=3 D .(x -2)2=3 3.抛物线y =x 2+4x +4的对称轴是( )A .直线x =4B .直线x =-4C .直线x =2D .直线x =-24.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=485.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,∠BCD =54°,则∠A 的度数是( ) A .36° B .33° C .30° D .27°6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A ·12B ·14C ·16D ·1127.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( )A .15°B .20°C .25°D .30°8.如图,在等腰直角三角形ABC 中,AB =AC =4,点O 为BC 的中点,以O 为圆心作半圆O 交BC 于点M ,N ,半圆O 与AB ,AC 相切,切点分别为D ,E ,则半圆O 的半径和∠M ND 的度数分别为( )A .2,22·5°B .3,30°C .3,22·5°D .2,30°(第5题)(第7题)(第8题)(第9题)9.如图所示,MN 是⊙O 的直径,作AB ⊥MN ,垂足为点D ,连接AM ,AN ,点C 为AN ︵上一点,且AC ︵=AM ︵,连接CM ,交AB 于点E ,交AN 于点F ,现给出以下结论:①AD =BD ;②∠MAN =90°;③AM︵=BM ︵;④∠ACM +∠ANM =∠MOB ;⑤AE =12MF ·其中正确结论的个数是( )(第10题)A .2B .3C .4D .510.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0·其中正确结论的个数是( )A .1B .2C .3D .4 二、填空题(每题3分,共30分)11.若关于x 的一元二次方程(m -1)x 2+5x +m 2-1=0的一个根是0,则m 的值是________.12.在平面直角坐标系中,点(-3,2)关于原点对称的点的坐标是________. 13.已知关于x 的一元二次方程x 2+2x +m =0有实数根,则m 的取值范围是________. 14.已知点A(4,y 1),B(2,y 2),C(-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是________.15.工程上常用钢珠来测量零件上小孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的宽口AB的长度为________mm·16.某市组织的“五城联创”演讲比赛中,小明等25人进入总决赛,赛制规定,13人上午参赛,12人下午参赛,小明抽到上午比赛的概率是________.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2·分别以AC,BC为直径画半圆,则图中阴影部分的面积为________.(结果保留π)(第15题)(第17题)(第18题) 18.如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1 cm,则这个扇形的半径是________cm·19.如图所示,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为________.(第19题)(第20题)20.如图,菱形ABCD的三个顶点在二次函数y=ax2-2ax+3 2(a<0)的图象上,点A,B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为__ ______.三、解答题(21题8分,22、23题每题6分,24题10分,27题12分,其余每题9分,共60分) 21.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6·22.已知关于x的方程x2+ax+a-2=0·(1)若该方程的一个根为1,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.23.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).(第23题)24.如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD·(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r·(第24题)25.学校实施新课程改革以来,学生的学习能力有了很大提高,王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第25题)26.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A,B两种营销方案;方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.27.如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O,A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.(第27题)答案一、1·C 2·D 3·D 4·D 5.A点拨:连接BD ,∵CD 是⊙O 的直径,∴∠DBC =90°,∴∠BDC =90°-∠BCD =90°-54°=36°,∴∠A =∠BDC =36°·6.C 7.C点拨:∵正方形ODEF 是由正方形OABC 绕点O 逆时针旋转40°得到的,∴∠AOC =90°,∠COF =40°,OA =OF ,∴∠AOF =90°+40°=130°,∴∠OFA =180°-130°2=25°· 8.A 9·D 10.B点拨:∵函数图象开口向上,∴a >0·又∵顶点为(-1,0),∴-b2a=-1,∴b =2a >0·由抛物线与y 轴的交点坐标可知:c +2>2,∴c >0,∴abc >0,故①错误.∵抛物线顶点在x 轴上,∴b 2-4a(c +2)=0·又a >0,故②错误.∵顶点为(-1,0),∴a -b +c +2=0·∵b =2a ,∴a =c +2·∵c >0,∴a >2,故③正确.由抛物线的对称性可知x =-2与x =0时的函数值相等,∴4a -2b +c +2>2·∴4a -2b +c >0,故④正确.二、11·-1 12·(3,-2) 13·m ≤1 14·y 3>y 1>y 2 15.8 16·1325 17·5π2-418.3点拨:扇形的弧长等于圆锥底面圆的周长,设扇形的半径为r cm ,则120180×πr =2π×1,解得r =3·19.2r点拨:连接OD ,OE ·易知:BD =BE =r ·∵MN 与⊙O 相切于点P ,且⊙O 是△ABC 的内切圆,∴MD =MP ,NP =NE ·∴△MBN 的周长=BM +MP +PN +BN =BM +MD +NE +BN =BD +BE =2r ·20·⎝⎛⎭⎫2,32 点拨:易知抛物线y =ax 2-2ax +32(a <0)的对称轴是直线x =1,与y 轴的交点坐标是⎝⎛⎭⎫0,32,∴点B 的坐标是⎝⎛⎭⎫0,32·∵菱形A BCD 的三个顶点在二次函数y =ax 2-2ax +32(a <0)的图象上,点A ,B 分别是抛物线的顶点和抛物线与y 轴的交点,∴点B 与点D 关于直线x =1对称,∴点D 的坐标为⎝⎛⎭⎫2,32· 三、21·解:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32·∴(x -1)2=32·∴x -1=±32=±62· ∴x 1=1+62,x 2=1-62· (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0· ∴x +1=0或x +1-6=0· ∴x 1=-1,x 2=5·22.(1)解:将x =1代入方程x 2+ax +a -2=0,得1+a +a -2=0·解得a =12·∴方程为x 2+12x -32=0,即2x 2+x -3=0·解得x 1=1,x 2=-32·故a 的值为12,该方程的另一个根为-32·(2)证明:∵Δ=a 2-4(a -2)=a 2-4a +8=a 2-4a +4+4=(a -2)2+4>0, ∴不论a 取何实数,该方程都有两个不相等的实数根. 23.解:(1)如图.点A 1的坐标为(2,-4). (2)如图.(3)BC =32+22=13,所以C 点旋转到C 2点所经过的路径长=90π·13180=13π2·(第23题)24.解:(1)猜想:AC 与⊙O 相切.证明如下:∵AC =BC ,∠ACB =120°, ∴∠A =∠ABC =30°· ∵OB =OC ,∴∠OCB =∠OBC =30°·∴∠A CO =∠ACB -∠OCB =90°· ∴OC ⊥AC ·又OC 是⊙O 的半径, ∴AC 是⊙O 的切线.(2)四边形BOCD 为菱形.证明如下: 连接OD ,∵CD ∥AB , ∴∠AOC =∠OCD ·∵∠AOC =∠OBC +∠OCB =60°, ∴∠OCD =60°· 又OC =OD ,∴△OCD 为等边三角形. ∴CD =OD =OB ·∴四边形BOCD 为平行四边形. 又OB =OC ,∴▱BOCD 为菱形.(3)在Rt △AOC 中,AC =6,∠A =30°, ∴OA =2OC · ∴OC 2+62=(2OC)2· 解得OC =23(负值舍去). 由(2)得∠AOC =60°, ∴∠COB =120°·根据扇形的弧长等于底面圆的周长,得120π×23180=2πr ·解得r =233·25.解:(1)20 (2)如图:(第25题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2, 男A 1 男A 2 女A 男D(男A 1,男D) (男A 2,男D) (女A ,男D) 女D (男A 1,女D) (男A 2,女D) (女A ,女D)共有6种等可能的结果,其中,一男一女的有3种,所以所选两名学生恰好是一名男生和一名女生的概率为36=12·26.解:(1)由题意得,销售量为250-10(x -25)=-10x +500,则w =(x -20)(-10x +500)=-10x 2+700x -10 000·(2)w =-10x 2+700x -10 000=-10(x -35)2+2 250·∵-10<0,∴函数图象开口向下,w 有最大值.当x =35时,w 最大=2 250·故当销售单价为35元时,该文具每天的销售利润最大.(3)A 方案的最大利润更高,理由如下:A 方案中:20<x ≤30,∵函数w =-10(x -35)2+2250的图象开口向下,对称轴为直线x =35,∴当x =30时,w 有最大值,此时w A 最大=2 000;B 方案中:⎩⎨⎧-10x +500≥10,x -20≥25,故x 的取值范围为45≤x ≤49·∵函数w =-10(x -35)2+2 250的图象开口向下,对称轴为直线x =35,∴当x =45时,w 有最大值,此时w B 最大=1 250·∵w A 最大>w B 最大,∴A 方案的最大利润更高.27.解:(1)∵函数的图象与x 轴相交于O ,∴0=k +1·∴k =-1·∴y =x 2-3x ·(2)设B 点的坐标为(x 0,y 0).∵△AOB 的面积等于6,∴12AO·|y 0|=6·当x 2-3x =0时,即x(x -3)=0,解得x =0或3·∴AO =3·∴|y 0|=4,即|x 02-3x 0|=4·化简得⎝⎛⎭⎫x0-322=254或⎝⎛⎭⎫x0-322=-74(舍去). 解得x 0=4或x 0=-1(舍去). 当x 0=4时,y 0=x 02-3x 0=4,∴点B 的坐标为(4,4).(3)假设存在点P ·设符合条件的点P 的坐标为(x 1,x 12-3x 1) ∵点B 的坐标为(4,4),∴∠BOA =45°,BO =42+42=42·当∠POB =90°时,易得点P 在直线y =-x 上,∴x 12-3x 1=-x 1·解得x 1=2或x 1=0(舍去).∴x 12-3x 1=-2·∴在抛物线上存在点P ,使∠POB =90°,且点P 的坐标为(2,-2). ∴OP =22+22=22·∴△POB 的面积为12PO·BO =12×22×42=8·。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
辽宁省沈阳市第七中学2024-2025学年九年级上学期9月考 数学试卷
九年级上数学第一次数学周考(9.10)一.选择题(共10小题)1.下列关于x 的方程中,是一元二次方程的为( ) A.B.k²-4=2yC.-2r²+3=0D.(a-1)x²-2x=0 2.下列各组线段(单位:cm) 中,成比例线段的是( )A.1 、2 、3 、4B.2 、3 、4 、6C.1 、√3 、2 、√6D.√2 、2 、√3 、3 3.用配方法解一元二次方程2x²-2x-1=0, 下列配方正确的是( )4. ·一元二次方程x²+2x-1=0 的根的情况是( )A.有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根 5.'已B. C. 口6.如图,I//1₂//l ₃,若AB=6,BC=4,DF=15, 则 EF 等于( ) A.5 B.6 C.7 D.9D. 不能确定7.如图,△ABC中,∠A=76°,AB=8,AC =6. 将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A.C.8D.8.如图,在菱形ABCD 中,点E 在边AD 上,射线CE 交BA 的延长线于点F, AB=3, 则AF 的长为( )A.1B.C.D.2 9.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(BP<AP), 如果AB 的长度为8cm, 那么AP 的长度是( ) A.(4√5-4)cn B.(4-2√5)cm c.(8-2√5)cn D.(12-4√5)cuB.10.如图,已知OABCD,AB=2,AD=6, 将口ABCD 绕点A 顺时针旋转得到口AEFG,且点G 落在对角线AC 上,延长AB 交EF 于点H, 则FH 的长为( ) A.二.填空题(共5小愿)11.一元二次方程x²+x=0 的根是_12. 已知关于x 的一元二次方程(m-1)r+4x-1=0 有实数根,则m 的取值范围是 13. 已且a+b-2c=9, 则 c 的值为14.如图,在边长为1的正方形网格中,A 、B 、C 、D 为格点,连接AB 、CD 相交于点E, 则AE 的长为15.如图,Rt △ABC 中,∠ACB=90°, 在BC 的延长线上截取BD=AB, 连接AD, 过点 B 作BE ⊥AD 于点E, 交AC 于点F, 连接DF,点 P 为射线BE 上一个动点,若AC=9, BC=12, 当△APB 与△AFD 相似时,BP 的长为 三.解答题(共5小题) 16.解一元二次方程:(1)(2x-3)²=9(x+2)², (2)3x²+6x-4=0.17.由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次侨格的上调、口單的价格由每包10元涨到了 包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一灭 以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价 少元?C.5D. 无法确定B.18.如图,用一段77米的篱笆围成三个一边靠墙、大小相间的长方形羊圈,每个长方形都有一个1米的门,墙的最大可用长度为30米。
九年级数学上册 周测练习题及答案
2016-2017 学年度第一学期九年级数学一选择题:周测练习题12.2姓名:_班级:_得分:_1.下列说法正确的有几个( )①经过三个点一定可以作圆;②任意一个圆一定有内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆并且只有一个外接圆;④垂直于弦的直径必平分弦;⑤经过不在同一直线上的四个点一定可以作圆.A.3B.2C.1D.0 2.如图,在平面直角坐标系xOy 中,△ABC 顶点的横、纵坐标都是整数.若将△ABC 以某点为旋转中心,顺时针旋转 90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)第2 题图第3 题图第4 题图 3.如图,正三角形ABC 内接于圆O,动点P 在圆周的劣弧AB 上,且不与A,B 重合,则∠BPC 等于( )A.30°B.60°C.90°D.45°4.如图,△ABC 内接于⊙O,∠OBC=40°,则∠A 的度数为()A.80°B.100°C.110°D.130°5.如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P,则∠ADP 的度数为( )A.40°B.35°C.30°D.45°第5 题图第6 题图6.如图,正方形ABCD 的边长为6,点E,F 分别在AB,AD 上,若CE=3,且∠ECF=45°,则CF 长为( )A.2B.3C.D.7.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE⊥EF,下列结论:①∠BAE=30°;②CE2=AB•CF;③CF=FD;④△ABE∽△AEF.其中正确的有( )A.1 个B.2 个C.3 个D.4 个8.如图所示,半径为1 的圆和边长为1 的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S 与t 的大致图象为( )A. B. C. D.9.如图,正六边形的边长为π,半径是1 的⊙O 从与AB 相切于点D 的位置出发,在正六边形外部按顺时针方向沿正六边形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了( )A.4 周B.5 周C.6 周D.7 周第9 题图第10 题图第11 题图10.如图,一个半径为r 的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.11.如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN⊥AB,垂足为N,P、Q 分别是弧AM、弧BM 上一点(不与端点重合).若∠MNP=∠MNQ.下面结论:①∠PNA=∠QNB;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.正确的结论有()A.2 个B.3 个C.4 个D.5 个12.如图所示,已知△ABC 中,BC=8,BC 上的高h=4,D 为BC 上一点,EF∥BC,交AB 于点E,交AC 于点F(EF不过A、B),设E 到BC 的距离为x.则△DEF 的面积y 关于x 的函数的图象大致为( )A. B. C. D.二填空题:13.两个相似多边形相似比为 1:2,且它们的周长和为 90,则这两个相似多边形的周长分别是,.14.如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E,则图中相似的三角形有对.第14 题图第15 题图第16 题图15.如图,点E 在正方形ABCD 的边CD 上,把△ADE 绕点A 顺时针旋转90°至△ABF 位置,如果AB=,∠EAD=30°,那么点E 与点F 之间的距离等于.16.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏图中△ABC 外接圆的圆心坐标是.17.在Rt△ABC 中,∠C=90°,AC=5,BC=12,若以C 点为圆心、r 为半径所作的圆与斜边AB 只有一个公共点,则r 的范围是.第17 题图第18 题图第19 题图18.如图,正方形ABCD 中,E 为AB 的中点,AF⊥DE 于点O,则=.19.如图,在Rt△ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点C 逆时针旋转60°,得到△MNC,连接BM,则BM 的长是.20.如图,一块直角三角板ABC 的斜边AB 与量角器的直径恰好重合,点D 对应的刻度是58°,则∠ACD 的度数为.21.如图,正三角形ABC 的边长为4,D、E、F 分别为BC、CA、AB 的中点,以A、B、C 三点为圆心,2 为半径作圆,则图中的阴影面积为.第21 题图第22 题图22.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2 为半径作⊙A、⊙B,M、N 分别是⊙A、⊙B 上的动点,P 为x 轴上的动点,则PM+PN 的最小值等于.三简答题:23.如图,正方形网格中,△为格点三角形(即三角形的顶点都在格点上).(1)把△沿方向平移后,点移到点,在网格中画出平移后的△;(2)把△绕点按逆时针旋转,在网格中画出旋转后的△;(3)如果网格中小正方形的边长为,求点经过(1)、(2)变换的路径总长.24.如图是一个转盘,(转盘被等分成四个扇形),上面标有红黄蓝三种颜色,小明和小强做游戏,规定:转到红色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次).(1)小颖认为转盘上共有三种不同的颜色,所以,指针停在红色、黄色或蓝色区域的概率都是,他们的游戏对小明和小强都是公平的,你认为呢?请说明理由.(2)若你认为游戏不公平,请你设计一种方案,使他们的游戏公平.25.如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A.(1)求证:△ACD∽△ABC;(2)如果 BC=,AC=3,求CD 的长来.26.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB,CD 的延长线交于点E,已知AB=2DE.(1)若∠E=20°,求∠AOC 的度数;(2)若∠E=α,求∠AOC 的度数.27.如图,点B、C、D 都在⊙O 上,过C 点作CA∥BD 交OD 的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC 是⊙O 的切线;(2)求由线段AC、AD 与弧CD 所围成的阴影部分的面积.(结果保留π)28.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB 于 E,BD 交CE 于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,则⊙O 的半径为,CE 的长是.29.如图,在△ABC 中,∠ABC=90°,边AC 的垂直平分线交BC 于点D,交AC 于点E,连接BE,BE 是△DEC 外接圆的切线.(1)求∠C;(2)若CD=2,求BE.30.如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.(1)求证:是的切线;(2)求证:;(3)点是弧AB 的中点,交于点,若,求MN ·MC 的值.参考答案1、B.2、C3、B4、D5、C6、A7、B8、D.9、B. 10、C. 11、B. 12、D13、30,60.14、3 15、16、(5,2).17、5<r≤12 或.18、19、+120、61°21、4﹣2π.22、﹣323、(1)作图略;(2)作图略;(3),弧所以总长=.24、【解答】解:(1)游戏不公平.理由如下:共有 4 种等可能的结果数,其中指针停在红色的结果数为,指针停在黄色的结果数为1,指针停蓝色区域的结果数为2,所以小明赢的概率== ,小强赢的概率= ,所以小明赢的概率大,游戏不公平;(2)可设计为:转到蓝色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次).25、(1)证明:∵∠DBC=∠A∠DCB=∠BAC ∴△ACD∽△ABC .(2)解:∵△ACD∽△ABC∴BC:AC=CD:BC∵BC= ,AC=3∴CD=2.26、解:(1)∵AB=2DE,又 OA=OB=OC=OD,∴OD=OC=DE.∴∠DOE=∠E=20°.∴∠CDO=∠DOE+∠E=40°=∠C.∴∠AOC=∠C+∠E=60°.(2)由(1)可知:∠DOE=∠E=α,∠C=∠ODC=2∠E,∴∠AOC=∠C+∠E=3α.27【解答】(1)证明:连接OC,交BD 于E,∵∠B=30°,∠B= ∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC 是⊙O 的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE= BD= ,∵sin∠COD= ,∴OD=2,=×2×2 ﹣=2 ﹣.在Rt△ACO 中,tan∠COA=,∴AC=2 ,∴S阴影28、解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB﹦90°又∵CE⊥AB,∴∠CEB﹦90°∴∠2=90°-∠A=∠1又∵C 是弧BD 的中点,∴∠1=∠A ∴∠1=∠2,∴ CF=BF(2)⊙O 的半径为5 , CE 的长是﹒﹒29、【解答】解:(1)连接OE,∵BE 是△DEC 外接圆的切线,∴∠BEO=90°,∵∠ABC=90°,E 是AC 的中点,∴BE=AE=EC=AC,∴∠EBC=∠ECB,∵OE=OC,∴∠OEC=∠OCE,∴∠BOE=2∠OCE,即∠BOE=2∠EBC,∴∠EBC=30°,∴∠C=30°;(2)∵CD=2,∴OE=OD=OC=1,∵∠EBC=30°,∠BEO=90°,∴BO=2OE=2,∴BD=1,BC=3,由切割线定理得,BE2=BD•BC=3,∴BE= .30、解:(1)∵,又∵.又∵是的直径,,,即,而是的半径,是的切线.(2)∵,,又∵,.(3)连接,∵点是弧AB 的中点,,而,,,∴MN·MC=BM2,又∵是的直径,AM=BM,.∵,∴MN·MC=BM2=8。
初三数学上册周考试卷
考试时间:120分钟满分:100分一、选择题(每题4分,共20分)1. 下列各数中,无理数是()A. 3.14B. √2C. -0.5D. 2/32. 若a > 0,则下列不等式中正确的是()A. a + 2 > a - 2B. a - 3 > a + 3C. a^2 > aD. a/2 > a3. 已知方程 x^2 - 5x + 6 = 0,则该方程的解是()A. x = 2 或 x = 3B. x = 1 或 x = 4C. x = 3 或 x = 2D. x = 4 或 x = 14. 在平面直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)5. 若一个等腰三角形的底边长为10cm,腰长为8cm,则该三角形的面积是()A. 40cm^2B. 48cm^2C. 32cm^2D. 36cm^2二、填空题(每题4分,共16分)6. 若 |x| = 5,则 x 的值为_________。
7. 在直角坐标系中,点B的坐标为(-3,4),则点B关于x轴的对称点的坐标为_________。
8. 若 a = -3,b = 2,则 |a - b| 的值为_________。
9. 等腰三角形ABC中,AB = AC,若底边BC的长度为6cm,则该三角形的周长为_________。
10. 已知方程 2x - 5 = 3x + 1,则 x 的值为_________。
三、解答题(共64分)11. (12分)解下列方程:(1) 2x + 3 = 5x - 1(2) 3(x - 2) - 2(2x + 1) = 012. (12分)已知数列 {an} 中,a1 = 3,且对于任意n ≥ 2,有 an = 2an-1 + 1。
求:(1) 数列 {an} 的前5项;(2) 数列 {an} 的通项公式。
13. (16分)在平面直角坐标系中,点A(2,3)和点B(-3,4)的连线的斜率为2。
初中数学周考试卷
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 下列各数中,有理数是()A. √2B. πC. -√3D. √-13. 已知a > b,下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a - 3 > b - 3D. a + 3 > b + 34. 若方程2x - 3 = 5的解为x,则方程x + 1 = 4的解为()A. x = 3B. x = 2C. x = 1D. x = 05. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)二、填空题(每题5分,共25分)6. 有理数-3的相反数是__________。
7. 计算:(-5) × (-3) + 2 = ________。
8. 分式3/4 - 1/2 的值为__________。
9. 若a = -2,则|a + 5|的值为__________。
10. 在△ABC中,∠A = 90°,∠B = 30°,则△ABC是__________三角形。
三、解答题(共45分)11. (10分)已知:a = 2x - 1,b = 3x + 4。
(1)求x的值。
(2)求a + b的值。
12. (10分)已知:x + 2y = 6,3x - 4y = 2。
(1)求x的值。
(2)求y的值。
13. (10分)已知:a、b、c是等差数列的前三项,且a + b + c = 9,a + c = 3。
(1)求公差d。
(2)求b的值。
14. (15分)已知:在△ABC中,∠A = 45°,∠B = 60°,AB = 8。
(1)求BC的长度。
(2)求AC的长度。
(3)求△ABC的面积。
四、附加题(共10分)15. (5分)若x² - 5x + 6 = 0,求x的值。
九年级上册数学周末试卷【含答案】
九年级上册数学周末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 21B. 19C. 17D. 155. 若一个等边三角形的周长为18cm,则其边长为()A. 6cmB. 9cmC. 12cmD. 18cm二、判断题(每题1分,共5分)6. 任何两个等边三角形都是相似的。
()7. 两条平行线的斜率一定相等。
()8. 一元二次方程的解一定是实数。
()9. 对角线互相垂直的四边形一定是菱形。
()10. 在同一平面内,垂直于同一直线的两条直线一定平行。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则其直径是______。
12. 若一个数的平方是64,则这个数是______。
13. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是______。
14. 若等差数列{an}的前n项和为Sn,则第n项an = ______。
15. 在直角坐标系中,点(3, -2)到x轴的距离是______。
四、简答题(每题2分,共10分)16. 简述等边三角形的性质。
17. 什么是直角坐标系?如何表示平面上的点?18. 解释一元二次方程的解的意义。
19. 什么是等差数列?给出一个等差数列的例子。
20. 什么是圆的标准方程?如何表示?五、应用题(每题2分,共10分)21. 已知一个正方形的对角线长为10cm,求其面积。
22. 若一元二次方程x² 5x + 6 = 0,求其解。
哈工大附中九年级数学周考
哈工大附中九年级数学周考一、选择题(共30分) 1.-2的绝对值是( ) A .B .C .﹣2D .22.下列运算正确的是( ) A .x 2+x 2=2x 2 B .2x ﹣2=-2x 2 C .x 6÷x 2=x 3 D .(xy 2)2=xy 4 3.下列图形中,是中心对称,但不是轴对称图形的是( )4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是( )A .B .C .D . 5.下列事件中,是必然事件的是( ). A . 明天太阳从东方升起B . 射击运动员射击一次,命中靶心C . 随意翻到一本书的某页,这页的页码是奇数D . 经过有交通信号灯的路口,遇到红灯6.已知点()1,2P x -, ()2,2Q x , ()3,3R x 三点都在反比例函数x a y 32+=的图像上,则下列关系正确的是( ).A .123x x x <<B .321x x x <<C .132x x x <<D .231x x x <<7. 如图,AB 是 的直径, ,若∠COD=340,则AE0的度数是( ). A .51° B .56° C .68° D .78°8.在Rt △ABC 中,∠ACB=90°,AC=2,BC=4,则cos ∠ABC 值是( )A .2 B. 552 C. 21D.559.下列说法中,正确的有( )①相等的圆周角所对的弧相等;②同圆或等圆中,同弦或等弦所对的圆周角相等;③等弧所对圆周角相等;④圆心角等于圆周角的2倍.A.1个B.2个C.3个D.4个10. 如图,△ABC 等腰直角三角形,∠BAC=90°,AB=2,∠DAE=45°,设 BE=x ,CD=y (x ≠0,y ≠0),则y 关于x 的函数图象大致是( ). A B C D二、填空题(共30分)11. 把0.0000045用科学计数法表示为 . 12. 在函数32-=x xy 中,自变量x 的取值范围是 . 13.把多项式2x 2y ﹣12xy+18y 因式分解的结果是 .14.不等式组32463x x x x <+⎧⎨+≤⎩的整数解是_____________.15.若一个正六边形的外接圆的半径长为4cm ,则这个正六边形的边心距的长为__________. 16.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100)x -件,获利y 元,当获利最大时,售价x = 元.17.某学校举行物理实验操作测试,共准备了三项不同的实验,要求每位学只参加其中一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是_________.18.三个连续正整数的和小于333,这样的正整数有________组.19.在菱形ABCD 中,点A 到边BC 的距离AE 长为3,E 为垂足,连接DE ,若DE=5,则CE 的长为___________. 20.如图,在△ABC 中,AD ⊥BC 于D ,CE 平分∠ACB 交AB 于点E ,∠AEC=45°,,若BD=6,CD=4,则AB 的长为__________.三、解答题(21、22题各7分,23、24题各8分,25、 26、 27题各10分)21. 先化简,再求代数式25(3)33x x x x -÷-+++的值,其中x=8cos30°-2tan45°.y xOyxOy xO第10题图22.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在图1中画一个以线段AB为一边的平行四边形ABCD,点C、D均在小正方形的顶点上,且平行四边形ABCD的面积为8;(2)在图2中画一个钝角三角形ABE,点E在小正方形的顶点上,1tan2AEB∠=,且三角形ABE 的面积为6,请直接写出AE的长.23.为了参加哈市举办“科学发现杯”知识竞赛活动,南岗区开展了预赛,400名学生参加此次比赛,为了解此次竞赛情况,从中随机抽取一部分学生成绩,并用得到的数据绘成不完整的统计表(得分整数,满分为100分)和如图所示的不完整的频数分布直方图.请根据图表信息回答下列问题:(1)补全频数分布表和频数分布直方图;(2)这组数据的中位数落在第几组?(3)若90分以上成绩为优秀,估计南岗区获得优秀学生约有多少?图1 图224. 如图,反比例函数(0)ky x x=>过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数的图像于点B. (1) 求k 的值与点B 的坐标;(2) 在平面内有一点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,直接写出符合条件的所有点D 的坐标.25.某中学为了创建良好的校园读书环境,去年购买了一批图书.其中故事书的单价比文学书的单价多4元,用1200元购买的故事书与用800元购买的文学书数量相等. (1)求去年购买的文学书和故事书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,故事书的单价与去年相同,这所中学今年计划再购买文学书和故事书共200本,且购买文学书和故事书的总费用不超过2120元,这所中学今年至少要购买多少本文学书?26.已知四边形ABCD内接于⊙O,且BC=CD.(1)如图1,求证:AC平分∠BAD;(2)如图2,过点D作DE∥BC,交AB于点E,点F在AC上,且∠BEF=∠AED,连接BF,求证:BF=BC;(3)如图3,在(2)的条件下,连接BD,延长EF交BD于点G,且EG⊥CD于点K,连接CG,若DG=4,△BCG的面积等于16,求⊙O的半径.图1图2图327. 在平面直角坐标系中,O 为坐标原点,抛物线223y ax ax =--交x 轴的负半轴于点A ,交x 轴的正半轴于点B ,交y 轴的负半轴于点C ,且AB=4. (1)求a 的值;(2)如图1,点E 在线段OC 上,点F 在OB 的延长线上,CE=BF ,点D 在第四象限内,若DE=DF ,DE ⊥DF ,求点D 的坐标;(3)如图2,在(2)的条件下,点P 在第四象限的抛物线上,射线DP 交x 轴于点G ,线段CF 、BD 交于点K ,若2,23BG DK OCF GDB =∠=∠,求点P 的坐标.图1图2。
江苏省苏州市工业园区西安交通大学苏州附属初级中学2022-2023学年九年级上学期数学第十三周周测卷
2022-2023学年第一学期西附初中初三数学第十三周周测卷一.选择题(共8小题,满分24分,每小题3分)1.⊙O的半径为2,线段OP=4,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.下列命题中,正确的是()A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.弦是直径D.同圆或等圆中,相等的弦所对的圆周角相等3.已知点A(3,y1),B(4,y2),C(5,y3)均在抛物线y=2x2﹣4x+m上,下列说法中正确的是()A.y3<y2<y1B.y2<y1<y3C.y3<y1<y2D.y1<y2<y34.若抛物线y=x2﹣bx+8的顶点在x轴的负半轴上,则b的值为()A.±4B.﹣4C.﹣2D.±25.如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=82°,那么∠BOD的度数为()A.160°B.162°C.164°D.170°6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°7.如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°8.如图,⊙O中,BC为直径,A为BC弧的中点,点D在AC弧上,BD与AC相交于M,若CD=1,BC =,则DM的长是()A.B.C.D.(第5题)(第6题)(第7题)(第8题)二、填空题(共8小题,满分24分,每小题3分)9.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC=°.10.如图,△ABC中,∠C=90°,tan B=3,MN垂直平分AB,AN=10,则BC=.11.如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC=.12.如图,弦CD垂直于⊙O的直径AB,垂足为H,CD=6,BD=,则OH的长为.(第9题)(第10题)(第11题)(第12题)13.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE 与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A 点到B点的距离AB=1.6m,则盲区中DE的长度是.(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)(第13题)(第14题)14.如图,在平面直角坐标系中,⊙M经过原点,且与x轴交于点A(﹣4,0),与y轴交于点B(0,2),点C在第二象限⊙M上,且∠AOC=60°,则OC=.15.如图,某同学用圆规BOA画一个半径为4cm的圆,测得此时∠O=90°,为了画一个半径更大的同心圆,固定A端不动,将B端向左移至B′处,此时测得∠O′=120°,则BB′的长为.(第15题)(第16题)16.如图,在四边形ACBD中,AB=BD=BC,AD∥BC,若CD=4,AC=2,则AB的长为.三、解答题(共8小题,满分82分)17.(本题满分8分)计算:(1)2tan45°•sin30°+cos30°•tan60°;(2)cos60°﹣cos45°+3tan230°.18.(本题满分8分)解方程:(1)x2﹣2x﹣3=0.(2)3x2+6x﹣4=0.19.(本题满分6分)如图,在平面直角坐标系中,点A的坐标为(0,7),点B的坐标为(0,3),点C 的坐标为(3,0).(1)若△ABC的外接圆的圆心为M,则圆心M的坐标为;(2)△ABC的外接圆与x轴的另一个交点坐标是.20.(本题满分12分)如图,在平面直角坐标系中,二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求a,b的值;(2)若点P为直线BC上一点,点P到A,B两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点P,求新抛物线的顶点坐标.21.(本题满分12分)如图,AB是⊙O的直径,点D,E在⊙O上,连接AE,ED,DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是的中点,AE与BC交于点F;①求证:CA=CF;②当BD=5,CD=4时,请直接写出BF的长为.22.(本题满分12分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,小区楼房BC的高度为15米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+,tan15°=2﹣.计算结果保留根号)23.(本题满分12分)已知:抛物线y=﹣x2+2x+m﹣2交y轴于点A(0,2m﹣7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式;(2)在线段AB的下方是否存在点G,使得∠GBA = 45°且AG = AB,存在的话,请求出点G的坐标;(3)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得∠BFE=∠CFE?若存在,求出点F 的坐标;若不存在,说明理由.24.(本题满分12分)已知⊙O为△ABC的外接圆,AC=BC,点D是劣弧上一点(不与点A,B重合),连接DA,DB,DC.(1)如图1,若AB是直径,将△ADC绕点C逆时针旋转得到△BCE.若CD=4,求四边形ADBC的面积;(2)如图2,若AB=AC,半径为2,设线段DC的长为x,四边形ADBC的面积为S.①用含有x的代数式表示S;②若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置.△DMN的周长有最小值t,随着点D的运动,t的值会发生变化.则所有t值中的最大值是,此时四边形ADBC的面积S为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4题图
1.给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.
61 B. 31 C.21 D.3
2 2.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A .
B .
C .
D . 1 3.如图,二次函数y =ax 2+bx +c 图象的对称轴是1
3
x =
,下面四条个信息的判断: ①c <0,②abc <0,③a -b +c >0,④2a +3b =0.你认为其中正确的有(). A .4个 B .3个 C .2个 D .1个 4.如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 直径BE 上,连结AE ,若∠E =36°,则∠ADC 的度数是( ) A .44° B .54° C .72° D .53°
5..在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,
随机地摸出一个小球,记录标号后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是 6.将抛物线
21
(2)12
y x =
+-绕着坐标原点作中心对称后,所得到的抛物线的解析式为.
7.在平面直角坐标系中,已知直线l
:y =-x 轴、y 轴相交于A 、B 两点,点P (0,m )是y 轴上一个动点,若以点P 为圆心的P 与x 轴和直线l 都相切,则m 的值是. 8.如图,正三角形ABC 内接于圆O ,AD ⊥BC 于点D 交圆于点E , 动点P 在优弧BAC 上,且不与点B ,点C 重合,则∠BPE 等于 9、如图,在□ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心, AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的 面积是 (结果保留π).
10.如图,在平面直角坐标系xOy 中,□OABC 的顶点A 、B 的坐标分别为(6,0)、 (7,3),将□OABC 绕点O 逆时针方向旋转得到□O C B A ''',当点C '落在BC 的延长线上时,线段A O '交BC 于点E ,则线段E C '的长度为.
11.某校学生会就全校1 000名同学周末期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.
(1)求样本容量,并估计全校同学在周末期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数; (2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
1
4
123
4
12.将两块全等的三角板如图①摆放,其中∠A 1CB 1=∠ACB =90°,∠A 1=∠A =30°.
(1)将图①中的△A 1B 1C 顺时针旋转45°得图②,点P 1是A 1C 与AB 的交点,点Q 是A 1B 1与BC 的交点,求证:CP 1=CQ ;(2)在图②中,若AP 1=2,则CQ 等于多少?
13.如图,CD 为⊙O 的直径,P 是CD 延长线上一点,PA 为⊙O 的切线,点A 为切点, 过A 点作AB ⊥PC , 交PC 于E ,交⊙O 于B ,连结PB . (1)求证:PB 与⊙O 相切;
(2)若AB
=CE =3,求线段PO 的长,及弓形ADB 的面积.
14.小明有三张扑克牌2、4、9,小红也有三张扑克牌2、5、8;将扑克牌反扣在各自的课桌上,花色、材质等均相同;
每人、每次随机地从自己的桌面上抽取一张扑克牌. (1)小明抽出牌点数最大的概率是多少?
(2)两人每次将抽取的扑克牌比较牌点数大小,谁的大则谁获胜,每一次将扑克牌放回后再进行下一次抽取;请问谁获胜的概率更大一些?画出树状图加以说明.
15.如图,抛物线2
13
y x mx n =
-+与x 轴交于A 、B 两点,与y 轴交于点 C (0,-1).且对称轴为1=x .
(1)求抛物线的解析式及A 、B 两点的坐标;
(2)点D 在x 轴下方的抛物线上,则四边形ABDC 的面积是否存在最大值,若存在,求出此时点D 的坐标;若不存在,请说明理由;
(3)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,求出所有满足条件的点P 的坐标.
x
第
15题图。