湖南省安仁三中高一数学第一单元(集合)测试题

合集下载

(必考题)高中数学必修一第一单元《集合》测试卷(有答案解析)(3)

(必考题)高中数学必修一第一单元《集合》测试卷(有答案解析)(3)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭ B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-3.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .34.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-25.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .06.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个7.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .48.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )A B CD .39.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =10.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<12.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________. 14.已知集合(){|221,}A k k k Z απαπ=≤≤+∈,{|55}B a α=-≤≤,则A B ⋂=__________.15.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 16.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.17.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________18.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.19.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个. 20.若集合{,,,}{1,2,3,4}a b c d =,且下列四个关系:(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是___________.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由. 23.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.24.已知集合{}2230A x x x =--≤,{}22210B x x mx m =-+-≤. (1)若332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,求实数m 的值; (2)x A ∈是x B ∈的________条件,若实数m 的值存在,求出m 的取值范围;若不存在,说明理由.(请在①充分不必要,②必要不充分,③充要;中任选一个,补充到空白处) 25.已知集合A ={x |a -1<x <2a +1},B ={x |x 2-x <0} (I )若a =1,求AB ,()R AB ;(II )若A B =∅,求实数a 的取值范围26.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0, 即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RAB ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.4.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.5.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题6.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.7.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.8.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.9.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,AB =∅,符合题意.当0a >时,由于A B =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤.故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.【分析】由集合相等可求出直接计算即可【详解】即故解得故答案为:【点睛】本题主要考查了集合相等的概念集合中元素的互异性属于中档题 解析:1-【分析】由集合相等可求出,a b ,直接计算20192019a b +即可. 【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 0,0a b ∴≠=,即{}{}2,0,1,,0a a a =,故21,1a a =≠,解得1a =-,2019201920192019(1)01a b +=-+=-故答案为:1- 【点睛】本题主要考查了集合相等的概念,集合中元素的互异性,属于中档题.14.或【分析】分别讨论时集合A 与集合B 的交集即可求解【详解】当时当时当时当时或故答案为: 或【点睛】本题主要考查了集合的交集分类讨论的思想属于中档题解析:{|5ααπ-≤≤- 或0}απ≤≤ 【分析】分别讨论1,0,k =-时集合A 与集合B 的交集即可求解. 【详解】(){|221,}A k k k Z απαπ=≤≤+∈,∴当1k =-时,2παπ-≤≤-,当0k =时,0απ≤≤, 当1k时,5α<,当2k ≤-时,5α<-{|55}B a α=-≤≤,A B ∴={|5ααπ-≤≤-或0}απ≤≤故答案为:{|5ααπ-≤≤- 或0}απ≤≤ 【点睛】本题主要考查了集合的交集,分类讨论的思想,属于中档题.15.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.16.【分析】解出集合PQ 根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围【详解】由题:是的必要不充分条件即P Q 解不等式所以0P Q 所以解得:故答案为:【点睛】此题考查根据充分条件和必要条解析:9m ≥【分析】解出集合P ,Q ,根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围. 【详解】 由题:“Ux P ∈”是“∈Ux Q ”的必要不充分条件,UQUP ,即P Q ,解不等式1123x --≤,12123x --≤-≤, 646x -≤-≤,210x -≤≤所以[]1122,103x P x ⎧-⎫=-=-⎨⎬⎩⎭≤, (){}()()()(){}22|210|110Q x x x m x x m x m =-+-=-+--≤≤,m >0,P Q , 所以11012m m +≥⎧⎨-≤-⎩,解得:9m ≥.故答案为:9m ≥ 【点睛】此题考查根据充分条件和必要条件判断集合的包含关系求解参数范围,关键在于准确判断两个集合的包含关系,列出不等式组求解.17.或【分析】化简集合对集合是否为空集分类讨论若满足题意若根据条件确定集合的端点位置即可求解【详解】由得若满足题意;若可得或解得或;综上:或故答案为:或【点睛】本题考查集合间的运算不要遗漏空集情况属于中解析:4m >或2m < 【分析】化简集合B ,对集合A 是否为空集分类讨论,若A =∅满足题意,若A =∅,根据条件确定集合A 的端点位置,即可求解. 【详解】由21030x x +-≥得25,[2,5]x B -≤≤∴=-, 若,121,2A m m m =∅+>-<,满足题意; 若,A AB ≠∅=∅,可得12115m m m +≤-⎧⎨+>⎩或121212m m m +≤-⎧⎨-<-⎩,解得4m >或m ∈∅; 综上:4m >或2m <. 故答案为:4m >或2m < 【点睛】本题考查集合间的运算,不要遗漏空集情况,属于中档题.18.【分析】根据函数性质求值域解出两个集合再根据新定义运算求交集并集进而求解【详解】对于P 集合即对于Q 集合即则故答案为:【点睛】本题考查函数的值域求法观察法集合的交集并集运算新定义题型属中等题 解析:{}01,2y y y ≤≤>【分析】根据函数性质求值域,解出两个集合,再根据新定义运算求交集并集,进而求解P Q ,【详解】对于P 集合,y =2,2x ,[]0,2y ∈,即{}=02P y y ≤≤ 对于Q 集合,4xy =,()0,x ∈+∞,()1,y ∈+∞,即{}1Q y y =>{}12P Q y y ⋂=<≤,{}0P Q y y ⋃=≥ 则{}01,2P Q y y y =≤≤>故答案为:{}01,2y y y ≤≤> 【点睛】本题考查函数的值域求法观察法,集合的交集并集运算,新定义题型,属中等题. 19.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛 解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.20.6【分析】利用集合的相等关系结合(1);(2);(3);(4)有且只有一个是正确的通过分析推理即可得出结论【详解】若(1)正确则(2)也正确不合题意;若(2)正确则(1)(3)(4)不正确即则满足条解析:6利用集合的相等关系,结合(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,通过分析推理即可得出结论.【详解】若(1)正确,则(2)也正确不合题意;若(2)正确,则(1)(3)(4)不正确,即1,1,3,4a b c d ≠≠≠=,则满足条件的有序组为: 2,3,1,4a b c d ====;或3,2,1,4a b c d ====;若(3)正确,则(1)(2)(4)不正确,即1,1,3,4a b c d ≠===,则满足条件的有序组为: 2,1,3,4a b c d ====;若(4)正确,则(1)(2)(3)不正确,即1,1,3,4a b c d ≠=≠≠,则满足条件的有序组为: 2,1,4,3a b c d ====或3,1,4,2a b c d ====或4,1,2,3a b c d ====,所以符合条件的有序数组(,,,)a b c d 的个数是6个.故答案为6【点睛】本题考查集合的相等关系,考查分类讨论思想,正确分类是关键,属于中档题.三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞.结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可;(2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在.【详解】 {}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆ 42432a a -<<⎧∴⎨-<<⎩ 4233a ⇒-<<, 即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件, 则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅.【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 23.(1)(1,1]A B ⋂=-;(2)1m .【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C AC ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解.【详解】 (1)因为集合423(1,5]1a A a a ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-, 所以(1,1]A B ⋂=-. (2)因为()C A C ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意,②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩, 解得132m -<≤, 综上:1m【点睛】 本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题.24.(1)12-;(2)答案见解析. 【分析】(1)首先求出集合A 、B ,再根据并集的结果得到方程,解得即可;(2)若选①,则A B ,若选②,B A ,若选③,A B =,得到不等式组,解得即可;【详解】解:(1)对()()2:23013013A x x x x x --≤⇒+-≤⇒-≤≤ 即{}13A x x =-≤≤对()()22:210110B x mx m x m x m -+-≤⇔--⋅-+≤⎡⎤⎡⎤⎣⎦⎣⎦ 11m x m ⇒-≤≤+,即{}11B x m x m =-≤≤+332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,则312m -=-,即12m =- 经检验满足题意.(2)选①,1131m A B m -≤-⎧⇒⎨≤+⎩,此时m 必无解.即不存在实数m ,使得题意成立 选②,110213m B A m m -≤-⎧⇒⇒≤≤⎨+≤⎩ 选③,1113m A B m -=-⎧=⇒⇒⎨+=⎩此时m 无解,即不存在实数m ,使得题意成立; 【点睛】本题考查一元二次不等式的解法,并集的结果求参数的值,以及集合的包含关系求参数的取值范围,属于中档题.25.(I )(0,3),AB =()[1,3)R A B =;(II )12a ≤-或2a ≥ 【分析】(I )先解不等式得集合B ,再根据并集、补集、交集定义求结果;(II )根据A =∅与A ≠∅分类讨论,列对应条件,解得结果.【详解】(I )2{|0}(0,1)B x x x =-<=a =1,A ={x |0<x <3},所以(0,3),AB = (,0][1,)()[1,3)R R B A B =-∞+∞∴=;(II )因为A B =∅,所以当A =∅时,1212a a a -≥+∴≤-,满足题意;当A ≠∅时,须212112*********a a a a a a a a >-⎧-<+⎧⎪∴∴-<≤-⎨⎨+≤-≥≤-≥⎩⎪⎩或或或2a ≥ 综上,12a ≤-或2a ≥ 【点睛】本题考查集合交并补运算、根据并集结果求参数,考查基本分析求解能力,属中档题. 26.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.。

中专-数学期中集合练习题

中专-数学期中集合练习题

高一数学第一章集合数学测试题一、选择题(每小题5分,计5×12=60分)1.下列集合中,结果是空集的为()(A)(B)(C)(D)2.设集合,,则()(A)(B)(C)(D)3.下列表示①②③④中,正确的个数为( )(A)1 (B)2 (C)3 (D)44.满足的集合的个数为()(A)6 (B) 7 (C) 8 (D)95.若集合、、,满足,,则与之间的关系为()(A)(B)(C)(D)6.下列集合中,表示方程组的解集的是()(A)(B)(C)(D)7.设,,若,则实数的取值范围是()(A)(B)(C)(D)8.已知全集合,,,那么是()(A)(B)(C)(D)9.已知集合,则等于()(A)(B)(C)(D)10.已知集合,,那么()(A)(B)(C)(D)11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()(A)(B)(C)(D)12.设全集,若,,,则下列结论正确的是()(A)且(B)且(C)且(D)且二、填空题(每小题4分,计4×4=16分)13.已知集合,,则集合————14.用描述法表示平面内不在第一与第三象限的点的集合为——----------15.设全集,,,则的值为16.若集合只有一个元素,则实数的值为-----------三、解答题(共计74分) 17.(本小题满分12分)若 ,求实数的值。

18.(本小题满分12分)设全集合,,,求,, , 19.(本小题满分12分)设全集,集合与集合,且,求,20.已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =Æ ,求实数a 的取值范围。

、21.(本小题满分12分)已知集合,,,求实数的取值范围 22.(本小题满分14分)已知集合,,若,求实数的取值范围。

1. 设集合M =,24},17|{=£a x x 则(则() A. M a Î B. M a Ï C. a = M D. a > M 2. 有下列命题:①}{F 是空集 ② 若N b N a ÎÎ,,则2³+b a ③ 集合}012|{2=+-x x x 有两个元素有两个元素 ④ 集合},100|{Z x N x x B ÎÎ=为无限集,其中正确命题的个数是(题的个数是( )A. 0 B. 1 C. 2 D. 3 3. 下列集合中,表示同一集合的是(下列集合中,表示同一集合的是( )A. M ={(3,2)} , N ={(2,3)} B. M ={3,2} , N ={(2,3)} C. M ={(x ,y )|x +y =1}, N ={y|x +y =1} D.M ={1,2}, N ={2,1} 4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是(合是( )A. }21,2,3{-B. {-3} C. }21,3{-D. {-3,2} 5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A Í,则实数a 的范围是( ) A. 2³a B. 2>a C. 1£aD. 1>a 6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x y y x , 则集合A ,B 的关系是( ) A. A B B. B A C. A =B D. A ÍB 7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =(=() A. Φ B. M C. N D. R 8. 已知A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________ 9. 若A B },01|{},023|{22Í=-+-==+-=且a ax x x B x x x A ,则a 的值为_____ 10. 若{1,2,3}ÍA Í{1,2,3,4,5}, 则A =____________ 11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值的值 12. 已知集合B,A }02|{},04|{22Í>--=<++=且x x x B p x x x A 求实数p 的范围。

高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库一、单选题1.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e -2.集合{}240x A x =->,{}lg 10B x x =-<,则A B =( ) A .()2,e B .()e,10 C .()2,10 D .()0,10 3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则U A 所表示的平面区域的面积为( )A .1πBC .1D .π5.已知集合{}0,1,2,3,4A =,集合{}R 326x B x =∈<,则A B =( ) A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,36.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1B .{}0,1C .{}0,1,2D .{}1,3,57.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,58.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<9.已知集合{}1|32|22x A x x B x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( ) A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-10.已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( )(1){}∅(2){}{}∅(3)∅(4){}{},∅∅A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)11.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3-12.设集合{}{}123235M N ==,,,,,,则M N ⋃=( ) A .{2,3}B .{1,2,3,5}C .{1,2,5}D .{1,5} 13.已知集合21|01x M x x -⎧⎫=>⎨⎬+⎩⎭,集合{}2|40N x x x =-<,则集合M N =( )A .{}|0x x >B .{}|14x x <<C .{|0x x <或}1x >D .{|0x x <或}4x >14.已知集合{}{}220,1A x x x B x x =+-<=<-,则()U A B =( )A .{}11x x -<<B .{}11x x -≤<C .{}21x x -<<-D .{}12x x -≤< 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.18.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.19.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.20.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.21.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.22.设函数()1ln 12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.23.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.24.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.25.设集合1,1,1,22A ⎧⎫=--⎨⎬⎩⎭,{}2220B x x m x m =-+=,若{}1A B ⋂=,则实数m =______. 三、解答题26.设全集U =R ,集合{}{}24,3782A x x B x x x =≤<=->-(1)求(),U A B A B ⋃⋂;(2)若集合{}20C x x a =+>,且C C =B ∪,求a 的取值范围.27.已知集合{}2,1,0,1,2A =--,{}0,1B =,{}1,2C =.(1)求B C ⋃;(2)求()A B C .28.已知集合{}3A x x =≤,{}31B x a x a =-<<+.(1)当4a =时,求()A B R ;(2)若A B A =,求实数a 的取值范围.29.已知全集{1,2,3,4,5,6,7}U =,集合{2,3,6}A =,集合{1,2,3,5}B =,(1)求A B ,U B (2)求()()U U A B A B ,30.已知集合{}250A x x x a =-+≤,B =[3,6]. (1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.【参考答案】一、单选题1.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.2.C【解析】【分析】根据指数函数、对数函数的性质求出集合A 、B ,再根据交集的定义计算可得;【详解】解:由240x ->,即2242x >=,所以2x >,所以{}{}2402x A x x x =->=; 由lg 10x -<,即lg 1x <,解得010x <<,所以{}{}lg 10|010B x x x x =-<=<<; 所以{}|210A B x x =<<故选:C3.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U M N ∴=- 故选:B. 4.D【解析】【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到U A ,即可求出所表示的平面区域的面积;【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合,所以(){}22,|1U A x y x y =+<,则U A 所表示的平面区域的面积为π;故选:D5.A【解析】【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可.【详解】由333262log 26log 273x x <⇒<<<=,因此A B ={}0,1,2,故选:A6.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭, 又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A7.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】 由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C8.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D9.B【解析】【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案.【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭, 所以A B ={}|12x x -<<, 故选:B.10.B【解析】【分析】根据元素与集合的关系判断.【详解】集合A 有两个元素:{}∅和∅,故选:B11.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .12.B【解析】【分析】依据并集的定义去求M N ⋃即可解决.【详解】{}{}{}1232351235M N ⋃=⋃=,,,,,,,故选:B13.B【解析】【分析】分别化简集合M ,N 再求交集即可【详解】2101011x x x x ->⇒->⇒>+ ()2404004x x x x x -<⇒-<⇒<<则{}|1M x x =>,{}04|N x x =<<,所以{}|14M N x x ⋂=<<故选:B14.B【解析】【分析】先化简集合A ,在求集合A 与集合B 补集的交集【详解】220x x +-<()()210x x ⇒+-<21x ⇒-<<所以{}|21A x x =-<<{}|1B x x =<-{}U |1B x x ⇒=≥- 所以(){}U |11AB x x =-≤< 故选:B15.D【解析】【分析】 根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,6 18.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.19.[1,3]【解析】【分析】根据交集的定义求解即可.【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ ,即[]1,5B = ,[]1,3A B ∴= ;故答案为:[]1,3 .20.10,1,2⎧⎫-⎨⎬⎩⎭【解析】【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-,所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a =当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭, 因为N M ⊆,所以1M a -∈, 所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭, 故答案为:10,1,2⎧⎫-⎨⎬⎩⎭ 21.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.22.10,2⎛⎤ ⎥⎝⎦【解析】【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解.【详解】解:因为函数1()ln 12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>, 所以()()f x f x -=-,即1112lnln ln 12121mx mx x x x mx -+-=-=+-+, 所以112121mx x x mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln12x f x x +=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦. 故答案为:10,2⎛⎤ ⎥⎝⎦. 23.2a ≤【解析】【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围.【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤.24.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.25.2【解析】【分析】根据题意得1x =是方程2220x m x m -+=一个实数根,进而代入解方程得2m =或1m =-,再分别检验即可得答案.【详解】解:因为{}1A B ⋂=,所以1B ∈,即1x =是方程2220x m x m -+=一个实数根,所以220m m --=,解得2m =或1m =-,当1m =-时,{}21210,12B x x x ⎧⎫=--==-⎨⎬⎩⎭,此时不满足{}1A B ⋂=,舍; 当2m =时,{}{}224201B x x x =-+==,满足条件. 故答案为:2三、解答题26.(1){|2}A B x x ⋃=≥,(){}|4U A B x x ⋂=≥(2)6a ≥-【解析】【分析】(1)根据交集,并集和补集的定义即可得出答案;(2)根据C C =B ∪,可得B C ⊆,从而可得出答案.(1) 解:{}|24,A x x =≤<{}{}37823B x x x x x =->-=>, ∴{|2U A x x =<或4}x ≥,{|2}A B x x ∴⋃=≥,(){}|4;U A B x x ⋂=≥(2) 解:{}202a C x x a x x ⎧⎫=+>=>-⎨⎬⎩⎭, B C C =,B C ∴⊆, 所以32a -≤,解得6a ≥-. 27.(1){0,1,2}(2){2,1,0,2}--【解析】【分析】(1)利用并集的概念即可求解;(2)利用交集及补集的运算即可求解.(1){}0,1B =,{}1,2C =,{0,1,2}B C ∴=(2)∵{}0,1B =,{}1,2C =,∴{1}B C =,又{}2,1,0,1,2A =--故(){2,1,0,2}A B C =--.28.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案; (2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > ,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .29.(1){1,2,3,5,6}A B ⋃=,{4,6,7}U B = (2)(){1,5},(){1,4,5,6,7}U U A B A B ⋂=⋂=【解析】【分析】(1)根据并集和补集的概念与运算直接求得结果;(2)根据补集和交集的概念与运算先求出U A 、A B ,再求出()()U U A B A B ⋂⋂、即可. (1)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{1,2,3,5,6}A B ⋃=,{4,6,7}U B =; (2)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{}1,4,5,7U A =,{}2,3A B ⋂=,所以(){1,5}(){1,4,5,6,7}U U A B A B ⋂=⋂=,.30.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线, 故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-.。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。

$\varnothing \in A$ B。

$2\in A$ C。

$2\in A$ D。

$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。

$2$ B。

$5$ C。

$6$ D。

$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。

若 $A\subseteq B$,则 $a$ 的范围是()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。

$(,\infty)$ B。

$[。

\infty)$ C。

$(-\infty,)$ D。

$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。

$\{0,2,3,6\}$ B。

$\{0,3,6\}$ C。

$\{2,1,5,8\}$ D。

$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。

$(2,3)$ B。

$[-1,5]$ C。

$(-1,5)$ D。

$(-1,5]$7.下列函数是奇函数的是()A。

$y=x$ B。

$y=2x-3$ C。

$y=x^2$ D。

$y=|x|$8.化简:$(\pi-4)+\pi=$()A。

$4$ B。

$2\pi-4$ C。

$2\pi-4$ 或 $4$ D。

$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。

(必考题)高中数学必修一第一单元《集合》测试题(有答案解析)(4)

(必考题)高中数学必修一第一单元《集合》测试题(有答案解析)(4)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,3.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<4.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞5.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .276.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >7.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( ) A .2B .5C .6D .38.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个9.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥10.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .212.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.设P 为非空实数集满足:对任意给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈,则称P 为幸运集.①集合{2,1,0,1,2}P =--为幸运集;②集合{|2,}P x x n n ==∈Z 为幸运集; ③若集合1P 、2P 为幸运集,则12PP 为幸运集;④若集合P 为幸运集,则一定有0P ∈;其中正确结论的序号是________ 14.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________. 16.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____17.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.18.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;19.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个. 20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.已知集合A ={x |3<x <7},B ={x |4<x ≤10},C ={x ||x -a |>2}. (1)求A ∪B 与RR ()()A B ⋂(2)若A ∩B ⊆C ,求a 的取值范围. 23.在①{}23B x x =-<<,②{}35RB x x =-<<,③{}26B x x a =≥+且{}A B x x a ⋃=>这三个条件中任选一个,补充在下面的问题中,并解答该问题.问题:已知非空集合{}8A x a x a =<<-,______,若A B =∅,求a 的取值集合.24.已知集合{|1A x x =≤或5}x,集合{|221}B x a x a =-≤≤+(1)若1a =,求A B 和A B ;(2)若记符号{A B x A -=∈且}x B ∉,在图中把表示“集合A B -”的部分用阴影涂黑,并求当1a =时的A B -; (3)若AB B =,求实数a 的取值范围.25.已知集合A ={x |a -1<x <2a +1},B ={x |x 2-x <0} (I )若a =1,求AB ,()R AB ;(II )若A B =∅,求实数a 的取值范围26.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.A解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.3.B解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.4.A解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.5.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.6.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.7.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.8.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.9.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意;②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.10.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).11.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.②④【分析】①取判断;②设判断;③举例判断;④由可以相同判断;【详解】①当所以集合P 不是幸运集故错误;②设则所以集合P 是幸运集故正确;③如集合为幸运集但不为幸运集如时故错误;④因为集合为幸运集则当时解析:②④ 【分析】①取2x y ==判断;②设122,2x k P y k P =∈=∈判断;③举例12{|2,},{|3,}P x x k k Z P x x k k Z ==∈==∈判断;④由x y 、可以相同判断; 【详解】①当2x y ==,4x y P +=∉,所以集合P 不是幸运集,故错误; ②设122,2x k P y k P =∈=∈,则()()1212122,2,2x y k k A x y k k A xy k k A +=+∈-=-∈=⋅∈,所以集合P 是幸运集,故正确;③如集合12{|2,},{|3,}P x x k k Z P x x k k Z ==∈==∈为幸运集,但12P P 不为幸运集,如2,3x y ==时,125x y P P +=∉⋃,故错误;④因为集合P 为幸运集,则x y P -∈,当x y =时,0x y -=,一定有0P ∈,故正确; 故答案为:②④ 【点睛】关键点点睛:读懂新定义的含义,结合“给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈”,灵活运用举例法.14.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.15.【分析】根据与可知再根据集合相等求解即可【详解】由可知即故当时当时即故不满足故故答案为:【点睛】本题主要考查了根据集合的基本关系求解参数的问题需要根据题意分情况讨论同时注意集合的互异性属于中档题【分析】根据{}2U C A =与{}22,3,3U a a =+-可知{}23,3A a a =+-,再根据集合相等求解即可.【详解】由{}2U C A =,{}22,3,3U a a =+-可知{}23,3A a a =+-,即{}{}23,3,3a a a +-=.故232,3a a a a ⎧+-=⎪⎨≠⎪⎩ .当0a ≥时,23a a a a +-=⇒=当0a <时,23a a a +-=-即 ()()2230130a a a a +-=⇒-+=,故3a =-.不满足2,3a ≠.故a =【点睛】本题主要考查了根据集合的基本关系求解参数的问题,需要根据题意分情况讨论,同时注意集合的互异性,属于中档题.16.【分析】分类讨论:当时;当时分别讨论中元素为1和-1两种情况依次求解【详解】由题:当时符合题意;当时或所以或1所以实数所有取值的集合为故答案为:【点睛】此题考查通过集合的包含关系求参数的值其中的易漏 解析:{}1,0,1-【分析】分类讨论:当B =∅时,0a =;当B ≠∅时,分别讨论B 中元素为1和-1两种情况依次求解.【详解】由题:B A ⊆当0a =时,B =∅符合题意;当0a ≠时,1B A a ⎧⎫=-⊆⎨⎬⎩⎭,11a -=或11a -=- 所以,1a =-或1,所以实数a 所有取值的集合为{}1,0,1-.故答案为:{}1,0,1-【点睛】此题考查通过集合的包含关系求参数的值,其中的易漏点在于漏掉考虑子集为空集的情况,依次分类讨论即可避免此类问题.17.-2或0【分析】由可得即可得到或分别求解可求出答案【详解】由题意①若解得或当时集合中不符合集合的互异性舍去;当时符合题意②若解得符合题意综上的值是-2或0故答案为:-2或0【点睛】本题考查了交集的性解析:-2或0【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.18.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键 解析:13a ≤- 【分析】 计算集合{}12A x x =≤≤,A B =∅等价于在[]1,2上11x a x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】 {}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭ A B =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤-【点睛】本题考查了集合的关系求参数,将AB =∅等价于在[]1,2上11x a x -≥+恒成立是解题的关键. 19.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121U A x x m x m =≤+>-或,{}|25U B x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞故答案为:(),3-∞【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1){|310}A B x x ⋃=<,()(){|3R R A B x x ⋂=或10}x >;(2){|9a a 或2}a【分析】(1)直接进行并集、交集和补集的运算即可;(2)先得出{|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<,根据AB C ⊆即可得出27a -或24a +,解出a 的范围即可.【详解】(1)因为集合A ={x |3<x <7},B ={x |4<x ≤10},所以{|310}A B x x ⋃=<,{|3R A x x =或7}x ,{|4R B x x =或10}x >;()(){|3R R A B x x ⋂=或10}x >;(2){|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<;A B C ⋂⊆;27a ∴-,或24a +;9a ∴,或2a ;a ∴的取值范围为{|9a a 或2}a .【点睛】考查描述法表示集合的定义,绝对值不等式的解法,交集、并集和补集的运算,以及子集的概念.属于中档题.23.答案见解析.【分析】选①:本题首先可根据A 是非空集合得出4a <,然后根据A B =∅得出3a ≥或82a -≤-,最后通过计算即可得出结果.选②:本题首先可以根据A 是非空集合得出4a <,然后根据{}R 35B x x =-<<求出集合B ,最后根据A B =∅列出不等式组,通过计算即可得出结果.选③:本题首先可以根据A 是非空集合得出4a <,然后根据题意得出268a a +=-,最后通过计算即可得出结果.【详解】选①:因为A 是非空集合,所以8a a ->,解得4a <,因为{}23B x x =-<<,A B =∅,所以3a ≥或82a -≤-,解得3a ≥或10a ≥,综上所述,a 的取值集合是{}34a a ≤<.选②:因为A 是非空集合,所以8a a ->,解得4a <,因为{}R 35B x x =-<<,所以{3B x x =≤-或}5x ≥,因为A B =∅,所以3854a a a ≥-⎧⎪-≤⎨⎪<⎩,解得34a ≤<,故a 的取值集合是{}34a a ≤<.选③:因为A 是非空集合,所以8a a ->,解得4a <,因为A B =∅,{}26B x x a =≥+,{}A B x x a ⋃=>,所以268a a +=-,解得2a =-或1,故a 的取值集合是{}2,1-.【点睛】关键点点睛:本题考查根据集合的运算结果求参数的取值范围,若两个集合的交集为空集,则这两个集合没有相同的元素,考查集合的混合运算,考查计算能力,是中档题. 24.(1){|01}AB x x =≤≤,{|2A B x x =≤或5}x ;(2)阴影图形见解析,{|0A B x x -=≤或5}x ;(3)0a ≤或3a >. 【分析】(1)当1a =时,求得集合B ,根据交集、并集的运算法则,即可求得答案;(2)阴影图形见解析,当1a =时,求得集合B ,根据A B -的定义,即可求得答案; (3)由题意得B A ⊆,分别讨论B =∅和B ≠∅两种情况,根据集合的包含关系,即可求得a 的范围.【详解】(1)当1a =时,02{}|B x x ≤≤=,所以{|01}A B x x =≤≤,{|2A B x x =≤或5}x ;(2)A-B 的部分如图所示:,当1a =时,{|0A B x x -=≤或5}x; (3)因为A B B =,所以B A ⊆,当B =∅时,221a a ->+,解得3a >,当B ≠∅时,则11221a a a +≤⎧⎨-≤+⎩或225221a a a -≥⎧⎨-≤+⎩, 解得0a ≤或∅,综上:0a ≤或3a >.【点睛】易错点为:根据集合包含关系求参数时,当B A ⊆,且集合B 含有参数时,需要讨论集合B 是否为空集,再进行求解,考查分析理解,计算求值的能力,属中档题.25.(I )(0,3),AB =()[1,3)R A B =;(II )12a ≤-或2a ≥ 【分析】(I )先解不等式得集合B ,再根据并集、补集、交集定义求结果;(II )根据A =∅与A ≠∅分类讨论,列对应条件,解得结果.【详解】(I )2{|0}(0,1)B x x x =-<= a =1,A ={x |0<x <3},所以(0,3),AB = (,0][1,)()[1,3)R R B A B =-∞+∞∴=;(II )因为A B =∅,所以当A =∅时,1212a a a -≥+∴≤-,满足题意;当A ≠∅时,须212112*********a a a a a a a a >-⎧-<+⎧⎪∴∴-<≤-⎨⎨+≤-≥≤-≥⎩⎪⎩或或或2a ≥ 综上,12a ≤-或2a ≥ 【点睛】本题考查集合交并补运算、根据并集结果求参数,考查基本分析求解能力,属中档题. 26.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A=∅,则A∩B=∅成立.此时2a+1>3a-5,即a<6.若A≠∅,则2135{2113516a aaa+≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B=∅的实数a的取值范围是{a|a≤7}.(2)因为A⊆(A∩B),且(A∩B)⊆A,所以A∩B=A,即A⊆B.显然A=∅满足条件,此时a<6.若A≠∅,则2135{351a aa+≤--<-或2135{2116a aa+≤-+>由2135{351a aa+≤--<-解得a∈∅;由2135{2116a aa+≤-+>解得a>152.综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6或a>152}.考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用。

新高一第一章集合测试题(含答题卡和答案).doc

新高一第一章集合测试题(含答题卡和答案).doc

高一第一章集合测试题班级: 姓名: 分数:一、选择题(每小题5分,计5×12=60分)1.下列集合中,结果是空集的为()(A)(B)(C)(D)2.设集合,,则()(A)(B)(C)(D)3.下列表示①②③④中,正确的个数为( )(A)1 (B)2 (C)3 (D)44.满足的集合的个数为()(A)6 (B)7 (C)8 (D)95.若集合、、,满足,,则与之间的关系为()(A)(B)(C)(D)6.下列集合中,表示方程组的解集的是()(A)(B)(C)(D)7.设,,若,则实数的取值范围是()(A)(B)(C)(D)8.已知全集合,,,那么是()(A)(B)(C)(D)9.已知集合,则等于()(A)(B)(C)(D)10.已知集合,,那么()(A)(B)(C)(D)11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()(A)(B)(C)(D)12.设全集,若,,,则下列结论正确的是( )(A ) 且(B ) 且(C ) 且(D )且二、填空题(每小题4分,计4×4=16分)13.已知集合,,则集合14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若 ,求实数的值。

18.(本小题满分12分)设全集合,,,求,,,19.(本小题满分12分)设全集,集合与集合,且,求,20. (本小题满分12分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅ ,求实数a 的取值范围。

21.(本小题满分12分)已知集合,,,求实数的取值范围22.(本小题满分14分)已知集合,,若,求实数的取值范围。

高一第一章集合测试题答题卡班级: 姓名: 分数:二、填空题(每小题4分,计4×4=16分)13、14、15、16、高一第一章集合测试题答题卡班级: 姓名: 分数:二、填空题(每小题4分,计4×4=16分)13、{y︱y≥1}14、{(x,y)︱xy≤0} 15、2或8 16、0或1或,,,适合条件,且,,,,,中至少含有一个负数,,或。

(好题)高中数学必修一第一单元《集合》测试(包含答案解析)(4)

(好题)高中数学必修一第一单元《集合》测试(包含答案解析)(4)

一、选择题1.由实数x ,﹣x ,|x |,2x ,33x -组成的集合中,元素最多有( ) A .2个B .3个C .4个D .5个2.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂3.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集4.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,110D .(1,110+5.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆6.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( ) A 2B 5C 6D .37.已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆A ∩B ,则满足条件的集合C的个数是( ). A .7B .8C .15D .168.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]29.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集 D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集10.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈11.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.若集合(){}2220A x Z x a x a =∈-++-<中有且只有一个元素,则正实数a 的取值范围是_____.14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 15.我们将b a -称为集合{|}M x a x b =≤≤的“长度”,若集合2{|}3M x m x m =≤≤+,{|0.5}N x n x n =-≤≤,且集合M 和集合N 都是集合{|01}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是________16.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 17.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.18.若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.19.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________ 20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设集合(){lg 1A x y x ==-,{}230B x x x a =-+=.(1)若2a =时,求AB ;(2)若A B A ⋃=,求a 的取值范围.22.已知集合{}2230A x x x =--≤,{}22210B x x mx m =-+-≤. (1)若332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,求实数m 的值; (2)x A ∈是x B ∈的________条件,若实数m 的值存在,求出m 的取值范围;若不存在,说明理由.(请在①充分不必要,②必要不充分,③充要;中任选一个,补充到空白处) 23.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤ (1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围.24.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ). 25.已知全集{}|0U x x =>,集合{}|37A x x =≤<,{}|210B x x =<<,{}|5C x a x a =-<<. (1)求()U AB A B ,;(2)若()C A B ⊆⋃,求实数a 的取值范围.26.已知0a ≠,集合{}2|60A x x x =--<,{}2|280B x x x =+-≥,{}22|430C x x ax a =-+<,且()RC A B ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.3.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集. 对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集.故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.4.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.5.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤, {}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.6.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.7.D解析:D 【分析】推导出C ⊆A ∩B ={-2,-1,0,1},由此能求出满足条件的集合C 的个数. 【详解】∵集合A ={x |-3≤x -1<1}={x |-2≤x <2},B ={-3,-2,-1,0,1,2},C ⊆A ∩B ={-2,-1,0,1}, ∴满足条件的集合C 的个数是:24=16. 故选:D . 【点睛】本题考查满足条件的集合C 的个数的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.8.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.9.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.10.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.11.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.【分析】因为集合A 中的条件是含参数的一元二次不等式首先想到的是十字相乘法但此题行不通;应该把此不等式等价转化为的形式然后数形结合来解答需要注意的是尽可能让其中一个函数不含参数【详解】解:且∴令∴∴是解析:12,23⎛⎤⎥⎝⎦【分析】因为集合A 中的条件是含参数的一元二次不等式,首先想到的是十字相乘法,但此题行不通;应该把此不等式等价转化为()()f x g x <的形式,然后数形结合来解答,需要注意的是尽可能让其中一个函数不含参数.【详解】 解:()2220x a x a -++-<且0a >∴()2221x x a x -+<+令()()()222;1f x x x g x a x =-+=+∴()()},{|A x f x g x x Z =∈<∴()y f x =是一个二次函数,图象是确定的一条抛物线; 而()y g x =一次函数,图象是过一定点()1,0-的动直线. 又∵,0x Z a ∈>.数形结合,可得:1223a <≤ 故答案为:12,23⎛⎤⎥⎝⎦【点睛】此题主要考查集合A 的几何意义的灵活运用,利用数形结合的数学思想来解决参数取值范围问题.14.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1ax a =-,当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a a a =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想15.【分析】当集合的长度的最小值时与应分别在区间的左右两端由此能求出的长度的最小值【详解】由题的长度为的长度为当集合的长度的最小值时与应分别在区间的左右两端故的长度的最小值是故答案为:【点睛】本题考查交解析:16【分析】当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,由此能求出M N ⋂的“长度”的最小值 【详解】由题,M 的“长度”为23,N 的“长度”为12, 当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端, 故M N ⋂的“长度”的最小值是2111326+-=, 故答案为:16【点睛】本题考查交集的“长度”的最小值的求法,考查新定义的合理运用16.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=.故答案为:2.【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力. 17.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当 解析:2a ≥或1a =【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可.【详解】由题意可得,集合A 为φ或有且仅有一个元素,当A φ=时,方程()21210a x x -++=无实数根, 所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根, 当10a -=,即1a =时,方程有一根12x =-符合题意; 当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=, 解得2a =;综上可知a 的取值范围为:2a ≥或1a =.故答案为:2a ≥或1a =【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.18.【分析】首先讨论的取值解不等式;再由集合的元素个数最少推出只有满足若集合的元素个数最少由集合只需求的最大值即可再由集合中只需即可求解【详解】由题知集合内的不等式为故当时可得;当时可转化为或因为所以不 解析:[]3,2--【分析】首先讨论k 的取值,解不等式;再由集合A 的元素个数最少,推出只有k 0<满足,若集合A 的元素个数最少,由k 0<,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,只需求6k k +的最大值即可,再由集合A 中x ∈Z ,只需654k k -<+<-即可求解. 【详解】由题知集合A 内的不等式为2(6)(4)0,kx k x x Z ---≥∈,故当0k =时,可得{}4A x Z x =∈<;当0k >时, 2(6)(4)0kx k x ---≥可转化为 24060x kx k -≥⎧⎨--≥⎩ 或24060x kx k -≤⎧⎨--≤⎩,因为64k k <+, 所以不等式的解集为{4x x ≤或6x k k ⎫≥+⎬⎭,所以A ={4x Z x ∈≤或6x k k ⎫≥+⎬⎭ 当k 0<时,由64k k +<,所以不等式的解集为64x k x k ⎧⎫+≤≤⎨⎬⎩⎭, 所以A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,此时集合A 的元素个数为有限个. 综上所述,当0k ≥时,集合A 的元素个数为无限个,当k 0<时,集合A 的元素个数为有限个,故当k 0<时,集合A 的元素个数最少,且当6k k+ 的值越大,集合A 的元素个数越少,令6()f k k k =+(k 0<),则26()1f k k'=-,令()0f k '= 解得k =()f k在(,-∞内单调递增,在()内单调递减,所以max ()(f k f ==-又因为x ∈Z ,54-<-<-,所以当654k k -≤+<-,即32k -≤≤-时, 集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭中元素的个数最少,故32k -≤≤- 故答案为:[]3,2--【点睛】本题主要考查集合的运算和解不等式,综合性比较强.19.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案.【详解】{{|2}42x A x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞--- 【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力. 20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1){}2;(2)()2,+∞【分析】(1)先求出A ,代入2a =,求出集合B ,然后直接求出A B ⋂即可.(2)由题意得,A B A ⋃=,可得B A ⊆,然后分类讨论:①当B =∅;②当B ≠∅;然后直接【详解】(1)由题意得(){{}lg 11A x y x x x ==--=>,因为a=2,所以{}{}2301,2B x x x a =-+== 则{}2A B ⋂=(2)因为A B A ⋃=,所以B A ⊆①当B =∅时,由题意得9-4a <0.解得94a >; ②当B ≠∅时,由题意得94011a ⎧⎪-≥>> 解得924a <≤. 综上,a 的取值范围为()2,+∞.【点睛】本题考查含参集合的交集和并集运算,难点在于不要遗漏空集情况的考虑,属于难题. 22.(1)12-;(2)答案见解析. 【分析】(1)首先求出集合A 、B ,再根据并集的结果得到方程,解得即可;(2)若选①,则A B ,若选②,B A ,若选③,A B =,得到不等式组,解得即可;【详解】解:(1)对()()2:23013013A x x x x x --≤⇒+-≤⇒-≤≤即{}13A x x =-≤≤对()()22:210110B x mx m x m x m -+-≤⇔--⋅-+≤⎡⎤⎡⎤⎣⎦⎣⎦ 11m x m ⇒-≤≤+,即{}11B x m x m =-≤≤+332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,则312m -=-,即12m =- 经检验满足题意.(2)选①,1131m A B m -≤-⎧⇒⎨≤+⎩,此时m 必无解.即不存在实数m ,使得题意成立 选②,110213m B A m m -≤-⎧⇒⇒≤≤⎨+≤⎩ 选③,1113m A B m -=-⎧=⇒⇒⎨+=⎩此时m 无解,即不存在实数m ,使得题意成立; 【点睛】本题考查一元二次不等式的解法,并集的结果求参数的值,以及集合的包含关系求参数的取值范围,属于中档题.23.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出A B 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.24.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A =∅,则A∩B =∅成立.此时2a +1>3a -5,即a <6.若A≠∅,则2135{2113516a a a a +≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B =∅的实数a 的取值范围是{a|a≤7}.(2)因为A ⊆(A∩B ),且(A∩B )⊆A ,所以A∩B =A ,即A ⊆B .显然A =∅满足条件,此时a <6.若A≠∅,则2135{351a a a +≤--<-或2135{2116a a a +≤-+>由2135{351a a a +≤--<-解得a ∈∅;由2135{2116a a a +≤-+>解得a >152.综上,满足条件A ⊆(A∩B )的实数a 的取值范围是{a|a <6或a >152}.考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用25.(1){|210}A B x x ⋃=<<,(){|23U A B x x =<<或710}x ≤<;(2)(,3]-∞.【分析】(1)根据集合的运算法则计算;(2)由子集的定义求解.【详解】(1)∵{}|37A x x =≤<,{}|210B x x =<<,{}|0U x x =>,{|210}A B x x ⋃=<<,{|03U A x x =<<或7}x ≥,则(){|23U A B x x =<<或710}x ≤<;(2)∵{}|5C x a x a =-<<,()C A B ⊆⋃,若5a a ≤-,即52a ≤,则B =∅,满足题意;若52a >,则2510a a ≤-⎧⎨≤⎩,解得3a ≤,∴532a <≤, 综上,a 的范围是(,3]-∞.【点睛】本题考查集合的综合运算,考查由包含关系确定参数范围,解题时要注意空集是任何集合的子集,这类问题一般要分类讨论.26.22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】先化简集合,A B ,求出R AB ,再对a 分类讨论,根据()RC A B ⊆得解.【详解】 {}{}2|60|23A x x x x x =--<=-<<,{}{2|2804B x x x x =+-≥=≤-或}2x ≥,∴{}|42R B x x =-<<,则(){}|22R A B x x =-<<,又∵{}()(){}22|430|30C x x ax a x x a x a =-+<=--<, ∵0a ≠,∴当0a >时,{}|3C x a x a =<<,当0a <时,{}|3C x a x a =<<.∵()R C A B ⊆,∴0232a a a >⎧⎪≥-⎨⎪≤⎩或0322a a a <⎧⎪≥-⎨⎪≤⎩, 解得203a <≤或203a -≤<. 所以实数a 的取值范围是22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】本题主要考查一元二次不等式的解法,考查集合的关系和运算,意在考查学生对这些知识的理解掌握水平.。

高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞3.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -4.集合{}240xA x =->,{}lg 10B x x =-<,则A B =( )A .()2,eB .()e,10C .()2,10D .()0,105.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( )A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,6.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤<B .{}|33x x -<≤C .{}|32x x -<≤D .{}|13x x -≤≤7.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a 的取值范围是( ) A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭8.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤-C .{}3a a >D .{}1a a <- 9.已知集合{1,3}A =,{(3)()0}B xx x a =--=∣,若A B A ⋃=,则=a ( ) A .1B .1-或1C .1或3D .310.集合{}2{}|5,8,3100x x A B x =--≤=,则A B ⋂=R( )A .{}5B .{}8C .{}2,5,8-D .{}5-11.已知集合(){}lg 2A x y x ==-,{}2540B x x x =-+<,则A B =( )A .{}12x x <<B .{}12x x <≤C .{}24x x <<D .{}24x x <≤12.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<13.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .214.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则MN =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,215.设集合{}2430A x x x =-+≥,{}3log 1B x N x =∈≤,则集合A B =( )A .(0,1][3,)⋃+∞B .(0,1]C .{1,2}D .{1,3}二、填空题16.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.17.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.18.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.19.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.20.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______.21.已知集合{}02A x x =<≤,集合{}12B x x =-<<,则A B ⋃=__________.22.若{}231,13a a ∈--,则=a ______.23.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.24.设P ,Q 为两个非空实数集合,P 中含有0,2两个元素,Q 中含有1,6两个元素,定义集合P+Q 中的元素是a+b ,其中a P ,b Q ,则P Q +中元素的个数是_________.25.已知集合2{|2}30A x x x =--<,{|0}B x x a =-<,且B A ⊆,则a 的取值范围为________.三、解答题26.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ; (2)若A C ⋂≠∅,求a 的取值范围.27.在①A B A ⋃=;②RB A ⊆;③()R A B =∅这三个条件中任选一个,补充在下面的问题中.若问题中实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合{}14A x x =≤≤,{}11B x a x a =-≤≤+,是否存在实数a ,使得________?28.已知集合2111x A xx +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合{}3A x x =<,{}2560B x x x =-+>.(1)求A B ,()RAB ;(2)若{}1C x m x m =<<+,且B C ≠∅,求实数m 的取值范围.30.已知集合{}A x x =是平行四边形,{}B x x =是矩形,{}C x x =是正方形,{}D x x =是菱形,求集合A ,B ,C ,D 之间的关系.【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 3.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 4.C 【解析】 【分析】根据指数函数、对数函数的性质求出集合A 、B ,再根据交集的定义计算可得; 【详解】解:由240x ->,即2242x >=,所以2x >,所以{}{}2402xA x x x =->=;由lg 10x -<,即lg 1x <,解得010x <<,所以{}{}lg 10|010B x x x x =-<=<<; 所以{}|210A B x x =<< 故选:C5.D 【解析】 【分析】先化简集合A 、B ,再去求A B 【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃ 故选:D 6.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由()()130x x +-≤,解得13x -≤≤, 所以()(){}{}|130|13B x x x x x =+-≤=-≤≤, 又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<. 故选:A 7.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 8.B 【解析】 【分析】根据集合的包含关系,列不等关系,解不等式即可. 【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-. 故选:B 9.C 【解析】 【分析】由A B A ⋃=得到B A ⊆,直接求解即可. 【详解】因为A B A ⋃=,所以B A ⊆.由题可知,1a =或3. 故选:C. 10.B 【解析】 【分析】先求出集合B ,进而求出集合B 的补集,根据集合的交集运算,即可求出A B ⋂R.【详解】因为{}()(){}{}2310052025x x x x x B x x x ===--≤-+≤-≤≤,所以{5B x x =>R 或}2x <-, 所以{}8A B =R故选:B. 11.C 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得结果. 【详解】由题知:(){}{}{}lg 2202A x y x x x x x ==-=->=>,{}{}254014B x x x x x =-+<=<<,所以,{}24A B x x ⋂=<<.故选:C . 12.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 13.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B . 14.D 【解析】 【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可. 【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>, 又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<. 故选:D. 15.D 【解析】 【分析】分别求出集合A 、B ,即可求出A B . 【详解】集合{}{24303A x x x x x =-+≥=≥或}1x ≤,{}{}3log 11,2,3B x N x =∈≤=,所以A B ={1,3}.故选:D二、填空题 16.5【解析】 【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果. 【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =, 所以同时参加数学和化学小组有5人. 故答案为:5.17.4a >【解析】 【分析】结合数轴图与集合包含关系,观察即可得到参数的范围. 【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.18.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.19.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1. 20.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7.21.{|12}x x -<≤##(-1,2] 【解析】 【分析】根据两集合的并集的含义,即可得答案. 【详解】因为集合{}02A x x =<≤,集合{}12B x x =-<<, 所以1|}2{A B x x =-<≤ , 故答案为:{|12}x x -<≤22.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-.23.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素 同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅. 故答案为:∅. 24.4 【解析】 【分析】求得P Q +的元素,由此确定正确答案. 【详解】依题意,011,066,213,268+=+=+=+=, 所以P Q +共有4个元素. 故答案为:425.1a ≤【解析】 【分析】解一元二次不等式得集合A ,化简集合B ,再借助集合的包含关系即可求解作答. 【详解】解2320x x --<,即2320x x -+>,解得1x <或2x >,则{|1A x x =<或2}x >,{|}B x x a =<,而B A ⊆,于是得1a ≤, 所以a 的取值范围是:1a ≤. 故答案为:1a ≤三、解答题26.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】(1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.27.选①:(],0-∞;选②:(),0∞-;选③:(],0-∞.【解析】【分析】假设存在实数a ,选择条件后可得集合,A B 关系,分别在B =∅和B ≠∅的情况下构造不等式组求解即可.【详解】假设存在实数a ,满足条件.若选①:A B A =,B A ∴⊆.当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⊆可得:111114a a a a -≤+⎧⎪-≥⎨⎪+≤⎩,解得:0a =; 综上所述:a 的取值范围为(],0-∞;若选②:R B A ⊆,B A ∴=∅.当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⋂=∅得:1111a a a -≤+⎧⎨+<⎩或1114a a a -≤+⎧⎨->⎩,不等式组无解; 综上所述:a 的取值范围为(),0∞-;若选③:()R A B =∅,B A ∴⊆;当B =∅时,11a a ->+,解得:0a <,满足题意;当B ≠∅时,结合B A ⊆可得:111114a a a a -≤+⎧⎪-≥⎨⎪+≤⎩,解得:0a =;综上所述:a 的取值范围为(],0-∞.28.(1){21}x x -<<;(2)[2,4]∈-m .【解析】【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答.(1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭, 所以{21}A B x x ⋃=-<<.(2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2m B x x =<<-,B A ⊄,不符合题意, 当12m -=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤, 综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(1){}3A B x x ⋃=≠,(){}23R A B x x ⋂=≤<(2){}2m m ≠【解析】【分析】(1)解出集合B ,利用并集、补集以及交集的定义可求得结果;(2)由已知条件可得出关于m 的不等式,即可解得实数m 的取值范围.(1) 解:因为{}3A x x =<,{}{25602B x x x x x =-+>=<或}3x >, 所以{}3A B x x ⋃=≠,{}23R B x x =≤≤,(){}23R A B x x ⋂=≤<.(2)解:因为B C ≠∅,所以2m <或13m +>,解得2m <或2m >,所以m 的取值范围为{}2m m ≠.30.答案见解析【解析】【分析】直接利用四边形的关系,判断即可.【详解】解:因为矩形、正方形、菱形都是特殊的平行四边形,所以B A,C A,D A;又正方形是特殊的矩形、特殊的菱形,所以C B,C D;。

高一数学试卷第一单元及高一数学试卷及答案(人教版)

高一数学试卷第一单元及高一数学试卷及答案(人教版)

必修一第一章 集合与函数概念一、选择题1.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x , P ={(x ,y )| y ≠x +1},那么C U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}2.若A ={a ,b },B ⊆A ,则集合B 中元素的个数是( ). A .0B .1C .2D .0或1或23.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1B .0C .0或1D .1或24.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ). A .2x +1B .2x -1C .2x -3D .2x +75. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( ).A .b ∈(-∞,0)B .b ∈(0,1)C .b ∈(1,2)D .b ∈(2,+∞)6.设函数f (x )=⎩⎨⎧00++2x c x c bx x ,,≤, 若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ).A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},下列从A 到B 的对应法则f 不是映射的是( ).A .f :x →y =21xB .f :x →y =31xC .f :x →y =41x D .f :x →y =61x 8.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;(第5题)>④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).其中正确命题的个数是( ).A.1 B.2 C.3 D.49.函数y=x2-6x+10在区间(2,4)上是( ).A.递减函数B.递增函数C.先递减再递增D.先递增再递减10.二次函数y=x2+bx+c的图象的对称轴是x=2,则有( ).A.f(1)<f(2)<f(4) B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1) D.f(4)<f(2)<f(1)二、填空题11.集合{3,x,x2-2x}中,x应满足的条件是.12.若集合A={x | x2+(a-1)x+b=0}中,仅有一个元素a,则a=___,b=___.13.建造一个容积为8 m3,深为2 m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为元.14.已知f(x+1)=x2-2x,则f(x)=;f(x-2)=.15.y=(2a-1)x+5是减函数,求a的取值范围.16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=.三、解答题17.已知集合A={x∈R| ax2-3x+2=0},其中a为常数,且a∈R.①若A是空集,求a的范围;②若A中只有一个元素,求a的值;③若A中至多只有一个元素,求a的范围.18.已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求a ,b 的值.19.证明f (x )=x 3在R 上是增函数.20.判断下列函数的奇偶性: (1)f (x )=3x 4+21x ;(2)f (x )=(x -1)xx-+11; (3)f (x )=1-x +x -1;(4)f (x )=12-x +21x -.第一章 集合与函数概念参考答案一、选择题 1.B解析:集合M 是由直线y =x +1上除去点(2,3)之后,其余点组成的集合.集合P 是坐标平面上不在直线y =x +1上的点组成的集合,那么M P 就是坐标平面上不含点(2,3)的所有点组成的集合.因此C U (M P )就是点(2,3)的集合.C U (M P )={(2,3)}.故选B .2.D解析:∵A 的子集有∅,{a },{b },{a ,b }.∴集合B 可能是∅,{a },{b },{a ,b }中的某一个,∴选D .3.C解析:由函数的定义知,函数y =f (x )的图象与直线x =1是有可能没有交点的,如果有交点,那么对于x =1仅有一个函数值.4.B解析:∵g (x +2)=2x +3=2(x +2)-1,∴g (x )=2x -1. 5.A解析:要善于从函数的图象中分析出函数的特点. 解法1:设f (x )=ax (x -1)(x -2)=ax 3-3ax 2+2ax ,比较系数得b =-3a ,c =2a ,d =0.由f (x )的图象可以知道f (3)>0,所以f (3)=3a (3-1)(3-2)=6a >0,即a >0,所以b <0.所以正确答案为A .解法2:分别将x =0,x =1,x =2代入f (x )=ax 3+bx 2+cx +d 中,求得d =0,a =-31b ,c =-32b . ∴f (x )=b (-31x 3+x 2-32x )=-3bx [(x -23)2-41].由函数图象可知,当x ∈(-∞,0)时,f (x )<0,又[(x -23)2-41]>0,∴b <0. x ∈(0,1)时,f (x )>0,又[(x -23)2-41]>0,∴b <0.(第5题)x ∈(1,2)时,f (x )<0,又[(x -23)2-41]<0,∴b <0.x ∈(2,+∞)时,f (x )>0,又[(x -23)2-41]>0,∴b <0.故b ∈(-∞,0). 6.C解:由f (-4)=f (0),f (-2)=-2,得22422b b c ⎧-=-⎪⎨⎪-+=-⎩,∴42b c =⎧⎨=⎩ . ∴f (x )=⎩⎨⎧)0 ( 2)0 (2+4+2x ,x ,x x由⎩⎨⎧ 得x =-1或x =-2;由 得x =2.综上,方程f (x )=x 的解的个数是3个. 7.A解:在集合A 中取元素6,在f :x →y =21x 作用下应得象3,但3不在集合B = {y |0≤y ≤2}中,所以答案选A .8.A提示:①不对;②不对,因为偶函数或奇函数的定义域可能不包含0;③正确;④不对,既是奇函数又是偶函数的函数还可以为f (x )=0,x ∈(-a ,a ).所以答案选A .9.C解析:本题可以作出函数y =x 2-6x +10的图象,根据图象可知函数在(2,4)上是先递减再递增.答案选C .10.B解析:∵对称轴 x =2,∴f (1)=f (3). ∵y 在〔2,+∞〕上单调递增, ∴f (4)>f (3)>f (2),于是 f (2)<f (1)<f (4). ∴答案选B . 二、填空题11.x ≠3且x ≠0且x ≠-1.解析:根据构成集合的元素的互异性,x 满足⎪⎩⎪⎨⎧ 解得x ≠3且x ≠0且x ≠-1.x >0 x =2 ≤ > x ≤0x 2+4x +2=x x ≠3, x 2-2x ≠3, x 2-2x ≠x .12.a =31,b =91.解析:由题意知,方程x 2+(a -1)x +b =0的两根相等且x =a ,则△=(a -1)2-4b =0①,将x =a 代入原方程得a 2+(a -1)a +b =0 ②,由①②解得a =31,b =91.13.1 760元.解析:设水池底面的长为x m ,水池的总造价为y 元,由已知得水池底面面积为4 m 2.,水池底面的宽为x4m . 池底的造价 y 1=120×4=480. 池壁的造价 y 2=(2×2x +2×2×x 4)×80=(4x +x16)×80. 水池的总造价为 y =y 1+y 2=480+(4x +x16)×80, 即 y =480+320(x +x4) =480+320⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛4+22x -x . 当 x =x2, 即x =2时,y 有最小值为 480+320×4=1 760元.14.f (x )=x 2-4x +3,f (x -2)=x 2-8x +15.解析:令x +1=t ,则x =t -1,因此f (t )=(t -1)2-2(t -1)=t 2-4t +3,即f (x )=x 2-4x +3.∴f (x -2)=(x -2)2-4(x -2)+3=x 2-8x +15.15.(-∞,21). 解析:由y =(2a -1)x +5是减函数,知2a -1<0,a <21. 16.x (1-x 3).解析:任取x ∈(-∞,0], 有-x ∈[0,+∞), ∴f (-x )=-x [1+(-x )3]=-x (1-x 3),∵f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3), 即当x ∈(-∞,0]时,f (x )的表达式为x (1-x 3).三、解答题17.解:①∵A 是空集, ∴方程ax 2-3x +2=0无实数根.∴⎩⎨⎧∆,a a 08-9=,0 解得a >89.②∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根x =32; 当a ≠0时,令Δ=9-8a =0,得a =89,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或a =89时,A 中只有一个元素. ③若A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥89. 18.解:根据集合中元素的互异性,有⎩⎨⎧==⎩⎨⎧==ab b a b b a a 2222或解得 或或再根据集合中元素的互异性,得或19.证明:设x 1,x 2∈R 且x 1<x 2,则f (x 1)-f (x 2)=31x -32x =(x 1-x 2)(21x +x 1x 2+22x ).又21x +x 1x 2+22x =(x 1+21x 2)2+4322x . 由x 1<x 2得x 1-x 2<0,且x 1+21x 2与x 2不会同时为0, 否则x 1=x 2=0与x 1<x 2矛盾,所以 21x +x 1x 2+22x >0.因此f (x 1)- f (x 2)<0,即f (x 1)<f (x 2),f (x )=x 3 在 R 上是增函数.20.解:(1)∵ 函数定义域为{x | x ∈R ,且x ≠0},a =0b =1 a =0b =0a =4121a =0b =1a =4121≠ <f (-x )=3(-x )4+21)(-x =3x 4+21x =f (x ),∴f (x )=3x 4+21x 是偶函数. (2)由x x -+11≥0⇔⎩⎨⎧≠01--1+1x x x ))(( 解得-1≤x <1. ∴ 函数定义域为x ∈[-1,1),不关于原点对称,∴f (x )=(x -1)xx-11+为非奇非偶函数.(3)f (x )=1-x +x -1定义域为x =1,∴ 函数为f (x )=0(x =1),定义域不关于原点对称, ∴f (x )=1-x +x -1为非奇非偶函数. (4)f (x )=1-2x +2-1x 定义域为≥ -10≥1-22x x ⇒ x ∈{±1},∴函数变形为f (x )=0 (x =±1),∴f (x )=1-2x +2-1x 既是奇函数又是偶函数.高一数学试卷(人教版)一、填空题1.已知b a ==7log ,3log 32,用含b a ,的式子表示=14log 2 。

高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库一、单选题1.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5] B .(3,5]C .{4,5}D .{2,3,4,5}2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则M N =( )A .(),2-∞B .(),1-∞C .()0,1D .()1,2 3.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =() A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( )A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,5.已知集合{|04,}P x x x Z =<<∈,且M P ⊆,则M 可以是( )A .{1,2}B .{2,4}C .{0,2}D .{3,4} 6.设集合{}1A x x =>,{}2B x x =≤,则A B =( )A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R7.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,2 8.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<9.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,310.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( )A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1) 11.已知{}1,2,3,4,5,7,8U =,{}1,2,3,5,8A =,则U A 的子集个数为( ) A .2 B .3 C .4 D .512.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,513.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( )A .AB = B .A B ⊆C .B A ⊆D .A B =∅ 14.已知集合{}31,A a a n n ==-∈Z ,{}31,B b b n n ==+∈Z ,全集U =Z ,则()U A B ⋂=( )A .AB .BC .∅D .Z 15.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x << 二、填空题16.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.17.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 18.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.19.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).20.设函数()1ln12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______. 21.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.22.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.23.给出下列关系:①1R 2;Q ;③3N ∈;④0Z ∈.其中正确的序号是______.24.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________25.若集合{}2A x x =<,101B x x ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合{}21,3,A a =,()(){}|120B x x x a =---=,是否存在实数a ,使得A B A ⋃=若存在,求出a 的值;若不存在,说明理由.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈.(1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围.29.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.30.(1)集合{a, b, c, d }的所有子集的个数是多少?(2)集合{a 1, a 2, …, an }的所有子集的个数是多少?【参考答案】一、单选题1.C【解析】【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案.【详解】 因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =,所以{4,5}A B =,故选:C2.C【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.D【解析】【分析】先化简集合A 、B ,再去求A B【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥ 则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃故选:D5.A【解析】【分析】化简集合P ,根据集合的包含关系确定M .【详解】因为{|04,}={1,2,3}P x x x Z =<<∈,又M P ⊆,所以任取x M ∈,则{1,2,3}x ∈, 所以M 可能为{2,3},A 对,又 0M ∉,4M ∉,∴ M 不可能为{2,4},{0,2},{3,4},B ,C ,D 错,故选:A.6.B【解析】【分析】根据交集的定义计算可得;【详解】 解:因为{}1A x x =>,{}2B x x =≤, 所以{}12A B x x ⋂=<≤;故选:B7.B【解析】【分析】 由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可.【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<,解不等式21x <得11x -<<,故{}11B x x =-<<,所以A B ={}11x x B -<<=.故选:B8.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.9.A 【解析】【分析】 根据集合交集的概念及运算,即可求解.【详解】由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.10.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A11.C【解析】【分析】求出补集,再由子集的定义求解.【详解】由已知{4,7}U A =,子集有4个. 故选:C . 12.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=. 故选:D.13.C【解析】【分析】由子集的定义即可求解.【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,,所以根据子集的定义可知B A ⊆,故选:C.14.A【解析】【分析】根据集合的描述判断集合,A B 的关系,进而判断,U A B 的包含关系,即可得答案.【详解】由题设,{...,4,1,2,5,8,...}A =--,{...,5,2,1,4,7,...}B =--,所以A B =∅,而{...,4,3,1,0,2,3,5,6,8,...}U B =---,则U A B ≠⊂, 所以()U A B A =.故选:A15.B【解析】【分析】化简集合B ,再求集合A,B 的交集即可.【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=,∴A B ={|12}x x <<.故选:B.二、填空题16.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =. 故答案为:{}2,4,617.±1【解析】【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可.【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集, 所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意; 当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1.故答案为:±1.18.(,3][6,)-∞-⋃+∞【解析】【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.19.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.20.10,2⎛⎤⎥⎝⎦【解析】【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解.【详解】 解:因为函数1()ln 12mx f x x +=-是定义在区间(,)n n -上的奇函数(0,0)m n >>,所以()()f x f x -=-,即1112lnln ln 12121mx mx x x x mx -+-=-=+-+, 所以112121mx x x mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >,所以2m =,此时,21()ln12x f x x +=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦. 故答案为:10,2⎛⎤ ⎥⎝⎦. 21.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-22.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 23.①③④【解析】【分析】根据数的分类直接判断.【详解】由题可得1R 2Q ,3N ∈,0Z ∈,故①③④正确. 故答案为:①③④.24.5,6##{}6,5【解析】【分析】先求出A B ,再进行补集运算及即可求解.【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=, 故答案为:5,6.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.存在,2【解析】【分析】先得到B A ⊆,分别讨论1a =-和1a ≠-两种情况即可.【详解】由A B A ⋃=,得B A ⊆,当21a +=,即1a =-时,{1}B =,此时21a =不合题意,故1a ≠- 当1a ≠-时,{}1,2B a =+,因为B A ⊆,所以2a A +∈ 所以23a +=或22a a +=,解得1a =或2a =, 当1a =时,21a =不合题意;当2a =时,{}1,3,4A =,{}1,4B =,符合题意, 综上所述,存在实数2a =,使得A B A ⋃=成立.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){|12}x x <<; (2)20,3⎛⎤ ⎥⎝⎦. 【解析】【分析】(1)解一元二次不等式求集合A 、B ,应用集合的交运算求交集即可.(2)根据必要不充分关系有B A ≠⊂,即可求a 的范围. (1)由题设,{|12}A x x =-<<,当1a =时{|13}B x x =<<,所以{|12}A B x x =<<;(2)由题设,{|3}B x a x a =<<,且{|12}A x x =-<<,若p 是q 的必要不充分条件,则B A ≠⊂,又a 为正实数,即320a a ≤⎧⎨>⎩,解得203a <≤, 故a 的取值范围为20,3⎛⎤ ⎥⎝⎦. 29.(1){12}A B xx ⋂=<≤∣(2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦. 30.(1)16;(2)2n【解析】【分析】设集合A 为集合的子集,利用分步计数原理分析每个元素出现的情况,即得解【详解】(1)由题意,若A 为集合{a, b, c, d }的子集则集合A 中的元素只能从a, b, c, d 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有222216⨯⨯⨯=种情况故集合{a, b, c, d }的所有子集的个数是16(2)由题意,若A 为集合{a 1, a 2, …, an }的子集则集合A 中的元素只能从a 1, a 2, …, an 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有22...22n ⨯⨯⨯=种情况故集合{a 1, a 2, …, an }的所有子集的个数是2n。

(好题)高中数学必修一第一单元《集合》测试卷(答案解析)(2)

(好题)高中数学必修一第一单元《集合》测试卷(答案解析)(2)

一、选择题1.由实数x ,﹣x ,|x |,2x ,33x -组成的集合中,元素最多有( ) A .2个 B .3个C .4个D .5个2.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或23.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂4.对任意x M ∈,总有2x M ∉x M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .165.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( ) A .77n =B .49n ≤C .64n =D .81n ≥6.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭7.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<8.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈9.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]210.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .11.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦12.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题13.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________14.若集合1A ,2A 满足12A A A ⋃=,则称()12,A A 为集合A 的一种分拆,并规定:当且仅当12A A =时,()12,A A 与()21,A A 为集合A 的同一种分拆,则集合{}123,,A a a a =的不同分拆种数是______ .15.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.16.设A 是集合{}123456S =,,,,,的非空子集,称A 中的元素之和为A 的“容量”,则S 的所有非空子集的“容量”之和是_______17.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________18.已知全集U =R 集合1|1A x x ⎧⎫=≤⎨⎬⎩⎭,则UA_______.19.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<. (1)当1a =时,求AB ;(2)若A B A ⋃=,求实数a 的取值范围. 23.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.24.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围. 25.已知不等式()210x a x a -++≤的解集为A .(1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围. 26.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围. (2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.4.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.5.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个, 故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.6.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.7.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++,举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.10.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.11.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<;∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式14.【分析】考虑集合为空集有-个元素2个元素和集合A 相等四种情况由题中规定的新定义分别求出各自的分析种数然后把各自的分析种数相加即可得到结果【详解】当时必须分析种数为1;当有一个元素时分析种数为;当有2解析:【分析】考虑集合1A 为空集,有-个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可得到结果.【详解】 当1A =时必须2A A =,分析种数为1;当1A 有一个元素时,分析种数为132C ⋅;当1A 有2个元素时,分析总数为2232C ⋅;当1A A =时,分析种数为3332C ⋅.所以总的不同分析种数为11223333331222(12)27C C C +⋅+⋅+⋅=+=.故答案为:27. 【点睛】(1)解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.(2)以集合为载体的新定义问题,是创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托,考查的是考生创造性解决问题的能力.15.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2-【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-, ∵1{}2A =-,, ∴11m-<- 解得01m <<, 当0m <时,1{|}B x x m=<-, ∵1{}2A =-,,∴12m -> 解得102m -<<,当0m =时也有A B ⊆. 综上,实数m 的取值范围是1(,1)2- 故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题16.672【分析】在所有的子集中每个元素出现的次数都是个由此能求出结果【详解】在所有的子集中每个元素出现的次数都是个的所有非空子集的容量之和为故答案为:672【点睛】本题主要考查学生的对新定义的分析和解解析:672 【分析】在S 所有的子集中,每个元素出现的次数都是52个,由此能求出结果. 【详解】在S 所有的子集中,每个元素出现的次数都是52个,S ∴的所有非空子集的“容量”之和为5(123456)672+++++=2故答案为:672 【点睛】本题主要考查学生的对新定义的分析和解决的能力,主要考查了转化与划归的思想.17.【分析】解一元二次不等式求得集合根据列不等式组解不等式求得的取值范围【详解】由解得或由解得由于所以或即或故答案为:【点睛】本小题主要考查一元二次不等式的解法考查根据集合交集的结果求参数的取值范围属于解析:(][)35-∞-⋃+∞,, 【分析】解一元二次不等式求得集合,M N ,根据M N N =列不等式组,解不等式求得a 的取值范围. 【详解】由()()250x x +->解得2x <-或5x >.由()()10x a x a ---<解得1a x a <<+.由于M N N =,所以12a +≤-或5a ≥,即3a ≤-或5a ≥.故答案为:(][)35-∞-⋃+∞,, 【点睛】本小题主要考查一元二次不等式的解法,考查根据集合交集的结果求参数的取值范围,属于基础题.18.【分析】先解分式不等式确定集合A 再求补集即可【详解】则故答案为:【点睛】本题考查补集运算准确求得集合A 是关键是基础题解析:[0,1)【分析】先解分式不等式确定集合A,再求补集即可【详解】()1|1=,0[1,)A x x ⎧⎫=≤-∞⋃+∞⎨⎬⎩⎭,则[0,1)U A故答案为:[0,1)【点睛】 本题考查补集运算,准确求得集合A 是关键,是基础题19.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数.【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()M N M N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个.故答案为:8【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可;(2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在.【详解】 {}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆ 42432a a -<<⎧∴⎨-<<⎩ 4233a ⇒-<<, 即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件,则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅.【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 22.(1)(2,4]A B ⋂=;(2)(,2]-∞-.【分析】(1)当1a =时确定集合A ,根据交集的定义求解.(2)由A B A ⋃=得B A ⊆,得出a 的取值范围.【详解】(1)当1a =时,由lg(1)0x ->得11x ->,解得2x >,所以(2,)A =+∞, 由{}2340B x x x =--<解得[]1,4B =-,所以(2,4]A B ⋂=.(2){}{}lg()01A x x a x x a =->=+, {}2340B x x x =--<得{}|14B x x =-<<,由A B A ⋃=得B A ⊆,所以(1,4)(1,)a -⊆++∞,所以11a ≤-+,解得2a ≤-,所以实数a 的取值范围是(,2]-∞-.【点睛】关键点点睛:该题考查的是有关集合的问题,在解题的过程中,注意正确求解集合,再者就是能正确判断集合之间的关系.23.(1)423a ≤≤;(2)23a ≤或4a ≥ 【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解.【详解】 (1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤; (2)A B =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥. 综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 24.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}.(2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4; 若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤, 当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.26.(1)[] 3,5-;(2)5 3,?2⎡⎫-⎪⎢⎣⎭.【分析】(1)对参数k 进行分类讨论,求得对应情况下不等式的解集,再根据集合之间的关系,求得k 的范围;(2)根据(1)中集合A 的解集,集合{}2A B Z ⋂⋂=-,对参数k 进行分类讨论,即可求得k 的范围.【详解】(1)对集合A : 当52k =时,不等式的解集为空集,即A =∅,满足()53A ⊆-,; 当52k <时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需3k -≤,解得3k ≥-,又52k <,故53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需5k -≥-,解得5k ≤,又52k >,故5,52k ⎛⎤∈ ⎥⎝⎦ 综上所述若满足题意,则[]3,5k ∈-. (2)对集合B :220x x -->,解得()(),12,B =-∞-⋃+∞此时B Z ⋂是小于等于2-的整数和大于等于3的整数的集合.对集合A :由(1)知: 当52k =时,A =∅,不满足{}2A B Z ⋂⋂=-,故舍去; 当52k <时,5,2A k ⎛⎫=-- ⎪⎝⎭,若满足{}2A B Z ⋂⋂=-, 只需3k -≤,解得3k ≥-,又52k <,故可得53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,5,2A k ⎛⎫=-- ⎪⎝⎭,显然不满足{}2A B Z ⋂⋂=-,故舍去.综上所述,若满足题意,则53,?2 k⎡⎫∈-⎪⎢⎣⎭.【点睛】本题考查由集合之间的关系,求参数的范围,属中档题;本题中需要注意对参数的分类讨论,要做到不重不漏.。

2021-2022学年湖南省郴州市安仁县第三中学高一数学文模拟试题含解析

2021-2022学年湖南省郴州市安仁县第三中学高一数学文模拟试题含解析

2021-2022学年湖南省郴州市安仁县第三中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在平面直角坐标系xOy中,已知点A,B分别为x轴,y轴上一点,且,若点,则的取值范围是()A.[5,6] B.[6,7] C.[6,9] D.[5,7]参考答案:D设,则,所以,所以,所以,令,则,当时,的取得最大值;当时,的取得最小大值,故选D.2. 若方程在内有解,则的图象是参考答案:D略3. 已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)参考答案:D【考点】其他不等式的解法.【分析】可先设g(x)=2016x+log2016(+x)﹣2016﹣x,根据要求的不等式,可以想着判断g (x)的奇偶性及其单调性:容易求出g(﹣x)=﹣g(x),通过求g′(x),并判断其符号可判断其单调性,从而原不等式可变成,g(3x+1)>g(﹣x),而根据g(x)的单调性即可得到关于x的一元一次不等式,解该不等式即得原不等式的解.【解答】解:设g(x)=2016x+log2016(+x)﹣2016﹣x,g(﹣x)=2016﹣x+log2016(+x)﹣2016x+=﹣g(x);g′(x)=2016x ln2016++2016﹣x ln2016>0;∴g(x)在R上单调递增;∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;∴g(3x+1)>g(﹣x);∴3x+1>﹣x;解得x>﹣;∴原不等式的解集为(﹣,+∞).故选:D.4. 设角的终边上一点P的坐标是,则等于()A. B.C. D.参考答案:D5. 函数在区间(,)内的图象是( )参考答案:D略6. 已知y=log a(2﹣ax)是[0,1]上的减函数,则a的取值范围为()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)参考答案:B【考点】对数函数的单调区间.【分析】本题必须保证:①使log a(2﹣ax)有意义,即a>0且a≠1,2﹣ax>0.②使log a(2﹣ax)在[0,1]上是x的减函数.由于所给函数可分解为y=log a u,u=2﹣ax,其中u=2﹣ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=log a(2﹣ax)定义域的子集.【解答】解:∵f(x)=log a(2﹣ax)在[0,1]上是x的减函数,∴f(0)>f(1),即log a2>log a(2﹣a).∴,∴1<a<2.故答案为:B.7. 非空集合,使得成立的所有的集合是()A. B. C. D.参考答案:A略8. 若,那么的取值范围是( ).A.(,+∞)B.(,1)C.(0,)∪(1,+∞)D.(0, )∪(,+∞)参考答案:C9. 在△ABC中,,,∠A=30°,则△ABC面积为()A. B. C.或 D.或参考答案:B10. 设,则使函数为奇函数的所有α值为( )A 1,3B -1,1C -1,3D -1,1,3参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 某学生对自家所开小卖部就“气温对热饮料销售的影响”进行调查,根据调查数据,该生运用所学知识得到平均气温(℃)与当天销售量(杯)之间的线性回归方程为。

2021-2022学年湖南省郴州市安仁县第三中学高一数学文月考试题含解析

2021-2022学年湖南省郴州市安仁县第三中学高一数学文月考试题含解析

2021-2022学年湖南省郴州市安仁县第三中学高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在等差数列中,已知则等于()A.40 B.42 C.43 D.45参考答案:B略2. 已知函数,那么的值为( )A. 27 B.C.D.参考答案:D略3. 在中,实数的取值范围是()A.B.C.D.参考答案:B略4. 如图,若长方体ABCD-A1B1C1D1的六个面中存在三个面的面积分别是2,3,6,则该长方体中线段BD1的长是()A. B. C. 28 D.参考答案:A【分析】由长方体的三个面对面积先求出同一点出发的三条棱长,即可求出结果.【详解】设长方体从一个顶点出发的三条棱的长分别为,且,,,则,,,所以长方体中线段的长等于.【点睛】本题主要考查简单几何体的结构特征,属于基础题型.5. 在全校学科大阅读活动中,《写给全人类的数学魔法书》40页“宝库笔记”中详细阐述了笔记的记录方法,下列选项中你认为没有必要的是()A.写下对定理或公式的验证方法B.把解题方法当中涉及到的想法和思路都记下来C.用自己的语言来表述,不能照抄书上的D.把所有的习题都记在这本“宝库笔记”上参考答案:D【考点】V3:中国古代数学瑰宝.【分析】利用笔记的记录方法直接求解.【解答】解:笔记的记录方法要写下对定理和公式的验证方法,故A正确;要把解题方法当中涉及到的想法和思路都记下来,故B正确;用自己的语言来表述,不能照抄书上的,故B正确;没有必要把所有的习题都记在这本“宝库笔记”上,故D错误.故选:D.6. 已知平面向量,则向量等于()A. (-2,6)B. (-2,-6)C. (2,6)D. (2,-6)参考答案:A【分析】直接根据平面向量的坐标运算法则求解即可.【详解】因为所以,又因为,所以,故选A.7. 函数,A. B. C.2 D. 8参考答案:B8. △ABC中,已知tanA=,tanB=,则∠C等于()A.30°B.45°C.60°D.135°参考答案:D9. 函数的定义域是()A.[-2,2)B.[-2,2)∪(2,+∞)C. [-2,+∞)D. (2,+∞)参考答案:B应满足:,即,且∴函数的定义域是故选:B10. 下列判断正确的是()A.函数是奇函数; B.函数是偶函数C.函数是非奇非偶函数 D.函数既是奇函数又是偶函数参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 在等差数列{a n}中,a2=6,a5=15,则a2+a4+a6+a8+a10= .参考答案:90考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知条件,利用等差数列的前n项和公式求出首项和公差,由此能求出结果.解答:解:∵在等差数列{a n}中,a2=6,a5=15,∴,解得a1=3,d=3,∴a2+a4+a6+a8+a10=5a1+25d=90.故答案为:90.点评:本题考查数列的若干项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.12. 如果函数f (x )=x 2+2(a ﹣1)x+2在区间(﹣∞,4]上是减函数,那么实数a 的取值范围是__________.参考答案:a≤﹣3考点:函数单调性的性质. 专题:计算题;数形结合.分析:求出函数f (x )=x 2+2(a ﹣1)x+2的对称轴x=1﹣a ,令1﹣a≥4,即可解出a 的取值范围. 解答:解:函数f (x )=x 2+2(a ﹣1)x+2的对称轴x=﹣=1﹣a ,又函数在区间(﹣∞,4]上是减函数,可得1﹣a≥4,得a≤﹣3. 故答案为a≤﹣3点评:考查二次函数图象的性质,二次项系数为正时,对称轴左边为减函数,右边为增函数,本题主要是训练二次函数的性质. 13. 若函数(ω>0)在区间上单调递增,在区间上单调递减,则ω_________.参考答案:略14. 已知非零向量满足:,且,则与的夹角为 ;参考答案:60°由,,则:,所以与的夹角为15. 设,若,则__________.参考答案:16. 在数列{a n }中,已知a 1=1,a n+1﹣a n =sin,记S n 为数列{a n }的前n 项和,则S 2018= .参考答案:1010【考点】数列的求和.【分析】由a 1=1,a n+1=a n +sin,可得a 2=a 1+sinπ=1,同理可得a 3=1﹣1=0,a 4=0+0=0,a 5=0+1=1,可得a 5=a 1,以此类推可得a n+4=a n .利用数列的周期性即可得出. 【解答】解:由a 1=1,a n+1=a n +sin,∴a 2=a 1+sinπ=1,同理可得a 3=1﹣1=0,a 4=0+0=0,a 5=0+1=1, ∴a 5=a 1, 可以判断:a n+4=a n数列{a n }是一个以4为周期的数列,2018=4×504+2∴S 2018=504×(a 1+a 2+a 3+a 4)+a 1+a 2=504×(1+1+0+0)+1+1=1010,故答案为:1010.17. 执行右边的程序框图,若, 则输出的.参考答案:略三、解答题:本大题共5小题,共72分。

高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库一、单选题1.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π2.若集合{|ln(2)1}A x Z x =∈-≤,则集合A 的子集个数为( ) A .3B .4C .7D .83.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9 B .[)4,9 C .[]4,6 D .[]0,9 4.已知集合2{|4120}A x x x =+-<,{|13}B x x =<≤,则A B =( )A .()1,2-B .()1,2C .(]1,3-D .(]1,35.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,46.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( ) A .{}1,0,1-B .{}1,1,2-C .{}0,1D .{}1,27.已知集合{}2cos ,A y y x x R ==∈,满足BA 的集合B 可以是( )A .[]22-,B .[]2,3-C .[]1,1-D .R8.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅9.()Z M 表示集合M 中整数元素的个数,设{}24A x x =-<<,{}723B x x =-<<,则()Z A B =( )A .5B .4C .3D .210.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤11.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)-B .(2,)-+∞C .(2,1)--D .(,2)-∞-12.已知集合21|01x M x x -⎧⎫=>⎨⎬+⎩⎭,集合{}2|40N x x x =-<,则集合M N =( )A .{}|0x x >B .{}|14x x <<C .{|0x x <或}1x >D .{|0x x <或}4x >13.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .414.已知集合{}{}|14,|04U x x A x x =-<≤=≤≤,则UA =( )A .[-1,0)B .[-1,0]C .(-1,0)D .(-1,0]15.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,1二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个. 17.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0}; ④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.18.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合{}1A x x =>,{}2B x x =<,则集合A B = ________. 21.已知集合{}1,3,5,6,8A =,{}2,3,4,6B =,则下图中阴影部分表示的集合为___________.22.若{}231,13a a ∈--,则=a ______.23.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.24.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________ 25.以下各组对象不能组成集合的是______(用题号填空). ①中国古代四大发明 ②地球上的小河流 ③方程210x -=的实数解 ④周长为10cm 的三角形 ⑤接近于0的数三、解答题26.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由;①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.27.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R . (1)当3a =时,求A B ,()U A B ⋃; (2)若A B =∅,求实数a 的取值范围.28.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥.(1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.29.已知集合1284xA x ⎧⎫=<<⎨⎬⎩⎭,集合{}()00B x x a a =<<>.(1)当5a =时,求A B ;(2)若A B B =,求实数a 的取值范围.30.已知集合11284x A x -⎧⎫=≤≤⎨⎬⎩⎭,21log ,,164B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭.(1)求集合A 、B ;(2)若{}121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围.【参考答案】一、单选题 1.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 2.B 【解析】 【分析】根据对数的运算性质,求得集合{3,4}A =,进而求得集合A 的子集个数,得到答案. 【详解】由ln(2)1x -≤,可得202x x e->⎧⎨-≤⎩,解得22x e <≤+,所以集合{|22}{3,4}A x Z x e =∈<≤+=,所以集合A 的子集个数为224=. 故选:B. 3.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 4.B 【解析】 【分析】求出集合A 的解集,即可求出A B 的结果. 【详解】因为{}()()2|4120{|620}{|62}A x x x x x x x x =+-<=+-<=-<<,{|13}B x x =<≤,所以{|12}A B x x =<<,故选:B. 5.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 6.C 【解析】 【分析】由交集定义可直接得到结果. 【详解】由交集定义可得:{}0,1A B =. 故选:C. 7.C 【解析】 【分析】先求出集合A ,再根据B A 求解即可.【详解】由题意知:{}22A y y =-≤≤,要满足B A 即[]22B-,,结合选项可知:[]1,1B =-.故选:C. 8.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 9.C 【解析】 【分析】首先求出集合B ,再根据交集的定义求出A B ,即可得解; 【详解】解:因为{}7372322B x x x x ⎧⎫=-<<=-<<⎨⎬⎩⎭,{}24A x x =-<<,所以3|22A B x x ⎧⎫=-<<⎨⎬⎩⎭,则()1A B -∈,()0A B ∈,()1A B ∈,所以()3Z A B =; 故选:C 10.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 11.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 12.B 【解析】 【分析】分别化简集合M ,N 再求交集即可 【详解】2101011x x x x ->⇒->⇒>+ ()2404004x x x x x -<⇒-<⇒<< 则{}|1M x x =>,{}04|N x x =<<,所以{}|14M N x x ⋂=<< 故选:B 13.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩或2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 14.C 【解析】 【分析】根据已知集合,应用集合的补运算求UA 即可.【详解】因为{}{}|14,|04U x x A x x =-<≤=≤≤, 所以{|10.} UA x x =-<<故选:C 15.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B.二、填空题16.4 【解析】 【分析】根据并集的定义,列举集合A . 【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个.故答案为:4 17.①③⑥ 【解析】 【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解. 【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确; 对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确; 对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确. 故答案为:①③⑥.18.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)} 19.3或-1##-1或3 【解析】 【分析】根据集合相等得到223m m -=,解出m 即可得到答案. 【详解】由题意,2233m m m -=⇒=或m =-1. 故答案为:3或-1.20.{}12x x <<【解析】 【分析】根据集合的交集运算,即可求出结果. 【详解】因为集合{}1A x x =>,{}2B x x =<,所以{}{}{}1212x x x x x x A B ><=<<=.故答案为:{}12x x <<.21.{}1,5,8【解析】 【分析】分析可知,阴影部分所表示的集合为{x x A ∈且}x B ∉,即可得解. 【详解】由图可知,阴影部分所表示的集合为{x x A ∈且}{}1,5,8x B ∉=. 故答案为:{}1,5,8.22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23.{}|23x x <<##()2,3 【解析】 【分析】由交集运算可直接求解. 【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<. 故答案为:{}|23x x << 24.5,6##{}6,5 【解析】 【分析】先求出A B ,再进行补集运算及即可求解. 【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=, 故答案为:5,6. 25.②⑤ 【解析】【分析】利用集合元素的基本特征判断. 【详解】①中国古代四大发明是造纸术,指南针,火药和印刷术,是确定的,能构成集合; ②地球上的小河流,不确定,不能构成集合;③方程210x -=的实数解是1或-1,是确定的,能构成集合; ④周长为10cm 的三角形,是确定的,能构成集合; ⑤接近于0的数,不确定,不能构成集合. 故答案为:②⑤三、解答题26.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析 (2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n ia i m m +=+≤≤ 【解析】 【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证. (1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集. (2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12. (3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥, 否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤.所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥.于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 27.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【解析】【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1) 将3a =代入集合A 中的不等式得:{}15A x x =-≤≤,∵{|1B x x =≤或4}x ≥,∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<,则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅, 当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞28.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ;(2)(0,1).【解析】【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ;(2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围.(1)2{|40}{|0B x x x x x =-=或4}x ,当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=,{|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,0a ∴>,R A B 是的真子集,{|04}R B x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).29.(1){}03A B x x ⋂=<<(2)03a <≤【解析】【分析】(1)求出集合A ,利用交集的定义可求得结果;(2)由题意可得B A ⊆,即可得出实数a 的可能取值.(1)解:当5a =时,{}05B x x =<<, 因为{}128234x A x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,因此,{}03A B x x ⋂=<<. (2)解:因为A B B =,则B A ⊆,所以,03a <≤.30.(1)[]1,4A =-,[]2,4B =- (2)5,2⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用指数函数和对数函数的单调性可分别求得集合A 、B ;(2)求出集合A B ,分C =∅、C ≠∅两种情况讨论,结合已知条件可得出关于m 的不等式(组),综合可求得实数m 的取值范围.(1) 解:{}[]11282131,44x A x x x -⎧⎫=≤≤=-≤-≤=-⎨⎬⎩⎭, 因为对数函数2log y x =在1,164⎡⎤⎢⎥⎣⎦上为增函数,则当1,164x ⎡⎤∈⎢⎥⎣⎦时,[]2log 2,4y x =∈-, 所以,[]2,4B =-.(2)解:因为[]1,4A B =-,且()C A B ⊆⋂.当121m m +>-时,即当2m <时,()C A B =∅⊆,合乎题意; 当121m m +≤-时,即当2m ≥时,C ≠∅,由题意可得11214m m +≥-⎧⎨-≤⎩,解得522m -≤≤,此时522m ≤≤. 综上所述,实数m 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.。

长沙市必修一第一单元《集合》测试题(含答案解析)

长沙市必修一第一单元《集合》测试题(含答案解析)

一、选择题1.由实数x ,﹣x ,|x |,2x ,33x -组成的集合中,元素最多有( ) A .2个B .3个C .4个D .5个2.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2803.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,34.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5115.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈6.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .7.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .18.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈9.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦10.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,111.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .212.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则A B 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________.14.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.15.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________16.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法;④{|,}G x x a a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________17.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________18.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.19.已知{}2|340,{|10}A x x x B x ax a =+-==-+=,且B A ⊆,则所有a 的值所构成的集合M =_________.20.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.三、解答题21.已知集合{}02A x x =<<,{}1B x x a =<<-(1)若3a =-,求()R A B ⋃;(2)若AB B =,求a 的取值范围.22.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}16B x x x =->. (1)求AB ;(2)若{}11C x m x m =-<<+,()()R C AC B ⊆,求实数m 的取值范围.23.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.24.已知集合{|12},{|11}A x ax B x x =<<=-<<,求满足A B ⊆的实数a 的取值范围. 25.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}|16B x x x =->.(1)求AB ;(2)若{}|11C x m x m =-<<+,()()RC AB ⊆,求实数m 的取值范围.26.设集合2{|320}A x x x =-+≥,{|B x y ==,全集U =R ,求()U A C B ⋂.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.B解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.3.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=.故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.4.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.5.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.7.B解析:B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.8.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.9.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.10.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.11.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可.【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.①③【分析】根据题意可得①③正确通过举反例可得②④错误【详解】对于结论①若则中最小的元素相同故①正确;对于结论②取集合满足但故②错误;对于结论③若则中存在相同的元素则交集非空故③正确;对于结论④取集解析:①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误. 【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误;对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =,则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.14.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.15.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣解析:12 (,]23【分析】由f(x)=x2﹣(a+2)x+2﹣a<0可得x2﹣2x+1<a(x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.【详解】f(x)=x2﹣(a+2)x+2﹣a<0,即x2﹣2x+1<a(x+1)﹣1,分别令y=x2﹣2x+1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120311aaa-≤--≤<,解得12<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题16.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力17.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式18.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解.【详解】由题:集合{}24,,3A m m m =+, 则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩,解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞,即()()()()()(),44,22,00,11,44,M =-∞----+∞,所以{}4,2,0,1,4R C M =--.故答案为:{}4,2,0,1,4--【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.19.【分析】计算根据得到四种情况分别计算得到答案【详解】当时:此时;当时:解得;当时:解得;当时:无解;综上所述:故答案为:【点睛】本题考查了根据集合关系求参数忽略掉空集是容易发生的错误 解析:110,,23⎧⎫-⎨⎬⎩⎭【分析】计算{}1,4A =-,根据B A ⊆得到B =∅,{}1B =,{}4B =-,{}1,4B =-四种情况,分别计算得到答案.【详解】{}{}2|3401,4A x x x =+-==-,B A ⊆当B =∅时:{|10}B x ax a =-+==∅,此时0a =;当{}1B =时:{}{|10}1B x ax a =-+==,解得12a =; 当{}4B =-时:{}{|10}4B x ax a =-+==-,解得13a =-;当{}1,4B =-时:{}{|10}1,4B x ax a =-+==-,无解; 综上所述:110,,23a ⎧⎫∈-⎨⎬⎩⎭故答案为:110,,23⎧⎫-⎨⎬⎩⎭【点睛】本题考查了根据集合关系求参数,忽略掉空集是容易发生的错误.20.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当 解析:2a ≥或1a =【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可.【详解】由题意可得,集合A 为φ或有且仅有一个元素,当A φ=时,方程()21210a x x -++=无实数根, 所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根, 当10a -=,即1a =时,方程有一根12x =-符合题意; 当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=, 解得2a =;综上可知a 的取值范围为:2a ≥或1a =.故答案为:2a ≥或1a =【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.三、解答题21.(1){2x x <或3x ≥};(2)[)2-+∞,. 【分析】(1)3a =-时,先计算B R ,再进行并集运算即可; (2)先利用交集结果判断B A ⊆,再讨论B 是否空集使其满足子集关系,列式计算即得结果.【详解】(1)因为3a =-,所以{}13B x x =<<,=B R {1x x ≤或3x ≥}, 故()=⋃R A B {2x x <或3x ≥};(2)因为AB B =,所以B A ⊆. 若B =∅,则1a -≤,解得1a ≥-;若B ≠∅,则12a a ->⎧⎨-≤⎩,解得21a -≤<-. 综上所述,a 的取值范围为[)2-+∞,. 【点睛】易错点睛:已知B A ⊆求参数范围时,需讨论集合B 是否是空集,因为空集是任意集合的子集,直接满足B A ⊆.22.(1){|1x x <或3}x >;(2)[]1,0-.【分析】(1)化简集合A ,B ,根据并集运算即可.(2)计算()R AC B ,根据()()R C A C B ⊆,建立不等式求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}1A x x =< 260x x -->,即()()320x x -+>, 解得{}32B x x x =><-或 A B ∴={|1x x <或3}x >,(2){}23R C B x x =-≤≤, (){}21R A C B x x ∴⋂=-≤<{}21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题主要考查了集合的并集运算,补集、交集的运算,子集的概念,属于中档题. 23.(1){}|25x x <<;(2)()1,+∞.【解析】试题分析:(1)根据题意和并集的运算求出A B ,再由补集的运算求出()U C A B ;(2)由(1)得集合D ,由CD C =得C D ⊆,根据子集的定义对C 分类讨论,分别列出不等式求出a 的范围.试题 (1)由题意知,A =x |x ≤-2或x ≥5},B =x |x ≤2},则A ∪B =x |x ≤2或x ≥5},又全集U =R ,∁U (A ∪B )=x |2<x <5}.(2)由(1)得D =x |2<x <5},由C ∩D =C 得C ⊆D ,①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有232325a a a a -≤-⎧⎪->⎨⎪-<⎩,解得a ∈∅. 综上,a 的取值范围为(1,+∞).24.{}(,2]0[2,)-∞-+∞.【分析】根据题意,分0a =,0a >和0a <三种情况分类讨论,结合A B ⊆,列出相应的不等式组,即可求解.【详解】由题意,集合{|12},{|11}A x ax B x x =<<=-<<,①当0a =时,集合A φ=,满足A B ⊆; ② 当0a >时,集合12{|}A x x a a =<<,因为A B ⊆,则1121a a⎧≥-⎪⎪⎨⎪≤⎪⎩,解得2a ≥; ③ 当0a <时,集合21{|}A x x a a =<<,因为A B ⊆,则2111a a⎧≥-⎪⎪⎨⎪≤⎪⎩,解得2a ≤-. 综上所述,所求实数a 的取值范围为{}(,2]0[2,)-∞-+∞. 故答案为:{}(,2]0[2,)-∞-+∞. 【点睛】本题主要考查了根据集合的包含关系求解参数问题,其中解答中熟练应用集合的包含关系,合理分类讨论求解是解答的关键,着重考查分类讨论思想,以及推理与运算能力. 25.(1){}|13AB x x x =<>或(2)[]1,0- 【分析】(1)解不等式得到集合A ,B ,利用并集定义求解A B ; (2)先求解,R B 再求解()R A B ,利用()()R C A B ⊆,列出不等关系,求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}|1A x x =<, 260x x -->,()()320x x -+>,得{}|32B x x x =><-或, ∴{}|13AB x x x =<>或. (2){}|23R B x x =-≤≤,∴(){}|21R A B x x =-≤<,{}|21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题考查了集合运算综合,考查了学生综合分析,数学运算能力,属于中档题. 26.{|1x x ≤或}23x ≤<【分析】先化简集合A ,B 中元素的性质,再求得U B ,进而由交集的定义求解即可. 【详解】由题,因为2320x x -+≥,解得2x ≥或1x ≤,所以{|2A x x =≥或}1x ≤, 因为30x -≥,解得3x ≥,所以{}|3B x x =≥,所以{}U |3B x x =<,则(){U |1A B x x ⋂=≤或}23x ≤<【点睛】本题考查集合的交集、补集运算,考查解一元二次不等式,考查具体函数的定义域.。

(压轴题)高中数学必修一第一单元《集合》测试题(包含答案解析)(2)

(压轴题)高中数学必修一第一单元《集合》测试题(包含答案解析)(2)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞3.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,05.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,36.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞7.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =8.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .19.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.已知集合{}1A x x =>,{}1B x x =≥,则( )A .A ⊆B B .B ⊆AC .A∩B=φD .A ∪B=R11.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤12.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<二、填空题13.全集{U x x =是不大于20的素数},若{}3,5A B ⋂=,{}7,19A B ⋂=,{}2,17A B ⋃=,则集合A =___________.14.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 15.若集合1A ,2A 满足12A A A ⋃=,则称()12,A A 为集合A 的一种分拆,并规定:当且仅当12A A =时,()12,A A 与()21,A A 为集合A 的同一种分拆,则集合{}123,,A a a a =的不同分拆种数是______ .16.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.17.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号) 18.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =.19.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.22.已知全集U =R ,集合{4A x x =<-或1}x >,{|312}B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{|211}M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 23.若全集U =R ,集合{23},{27},{(4)(3)0}A x a x a B x x C x x x =-≤≤+=≤≤=-+≥.(1)当3a =时,求,()U A B A C B ;(2)若AC A =,求实数a 的取值范围.24.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.25.已知全集为实数集R ,集合2{|},{|log 1}A x y y R B x x =∈=>.(1)求AB ;(2)设1a >,集合{|1},()R C x x a D C B A =<<=,若C D ⊆,求a 的取值范围.26.已知集合|1|{|28}x A x -=<,2{|log (51)2}B x x =->,求AB .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0, 即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭.故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.3.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-;当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.4.A解析:A 【解析】 【分析】先化简集合M ,N ,再计算M ∩N 即可. 【详解】由已知易得M =R ,N ={y ∈R|y >0},∴M ∩N =(0,+∞). 故选A . 【点睛】本题主要考查了集合的交运算,化简计算即可,比较简单.5.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.6.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.7.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 8.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.11.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,AB =∅,符合题意.当0a >时,由于A B =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.12.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.二、填空题13.【分析】本题首先可根据素数的定义得出然后根据题意绘出韦恩图最后根据韦恩图即可得出结果【详解】因为全集是不大于的素数所以因为所以因为所以可绘出韦恩图如图所示:由韦恩图可知故答案为:【点睛】本题考查根据 解析:{}3,5,11,13【分析】本题首先可根据素数的定义得出{}2,3,5,7,11,13,17,19U =,然后根据题意绘出韦恩图,最后根据韦恩图即可得出结果. 【详解】因为全集{U x x =是不大于20的素数},所以{}2,3,5,7,11,13,17,19U =, 因为{}2,17A B ⋃=,所以{}3,5,7,11,13,19AB =,因为{}3,5A B ⋂=,{}7,19A B ⋂=, 所以可绘出韦恩图,如图所示:由韦恩图可知,{}3,5,11,13A =, 故答案为:{}3,5,11,13. 【点睛】本题考查根据集合运算结果求集合,考查素数的定义,素数是指在大于1的自然数中,只能被1和该数本身整除的数,考查韦恩图的应用,能否根据题意绘出韦恩图是解决本题的关键,考查数形结合思想,是中档题.14.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈,当1a =-时,615(1)=∈--N ,满足题意; 当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.15.【分析】考虑集合为空集有-个元素2个元素和集合A 相等四种情况由题中规定的新定义分别求出各自的分析种数然后把各自的分析种数相加即可得到结果【详解】当时必须分析种数为1;当有一个元素时分析种数为;当有2解析:【分析】考虑集合1A 为空集,有-个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可得到结果. 【详解】 当1A =时必须2A A =,分析种数为1;当1A 有一个元素时,分析种数为132C ⋅;当1A 有2个元素时,分析总数为2232C ⋅;当1A A =时,分析种数为3332C ⋅.所以总的不同分析种数为11223333331222(12)27C C C +⋅+⋅+⋅=+=.故答案为:27. 【点睛】(1)解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.(2)以集合为载体的新定义问题,是创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托,考查的是考生创造性解决问题的能力.16.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2-【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-, ∵1{}2A =-,, ∴11m-<- 解得01m <<, 当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m -> 解得102m -<<,当0m =时也有A B ⊆. 综上,实数m 的取值范围是1(,1)2-故答案为:1(,1)2-. 【点睛】 本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题 17.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案.【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根,由>0∆,可得0t <或4t >,故②错;对于③,不妨设A 中123n a a a a <<<<, 由1212n n n a a a a a a na =+++<得121n a a a n -<, 当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确; 对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =,于是“复活集” A 只有一个,为{}1,2,3,当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾, ∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.18.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取2040a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =; 当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立;②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立; ③当20040a c b c ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-; 由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错; 故答案为:①②③【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型. 19.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数.【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()M N M N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个.故答案为:8【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥. 【分析】(1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围. 【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤() (2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解 综上可得:0m ≥【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.22.(1){|13}A B x x =<≤∩;()(){|13}U U A B x x x ⋃=≤>或;(2)5k <-或1k >.【分析】(1)首先求集合B ,再求U A 和U B ,再求集合的运算;(2)首先讨论集合M 是空集和非空集两种情况,再分别列不等式求解. 【详解】解:(1)因为全集U =R ,集合{4A x x =<-或1}x >,,{|312}B x x =-≤-≤, 所以23{|}B x x =-≤≤{|41}U x x A =-≤≤{2U B x x =<-或3}x >所以{|13}A B x x =<≤∩ ()()(){|1U U U A B A B x x ⋃=⋂=≤或3}x >,(2)因为集合{|211}M x k x k =-≤≤+是集合A 的子集,所以①当M =∅时,211k k ->+,解得2k >;②当M 时,21114k k k -≤+⎧⎨+<-⎩或211211k k k -≤+⎧⎨->⎩解得:5k <-或12k <≤综上所述:实数k 的取值范围是5k <-或1k >.【点睛】易错点睛:(1)已知子集关系求参数时,要记得讨论空集的情况,这是本题的易错点. (2)集合的交并补运算,需审题清楚,注意端点值的开闭,涉及复杂运算时可以参考补集运算的经典结论:()()()U U v A B A B ⋃=⋂,()()()U U v A B A B ⋂=⋃; 23.(1)[2,6],()(,6](7,)U AB AC B ==-∞+∞;(2)(,6][6,)a ∈-∞-+∞. 【分析】(1)由集合的交、并、补的运算即可得解;(2)由集合的包含关系可得:因为AC A =,所以A C ⊆,再列不等式33a +≤-或24a -≥,求解即可. 【详解】解:(1)因为3a =,所以[1,6],A =又因为[2,7],B =所以(,2)(7,)U C B =-∞+∞, 故[2,6]A B =,()(,6](7,)U A C B =-∞+∞;(2)因为A C A =,所以A C ⊆,{}(4)(3)0(,3][4,)C x x x =-+≥=-∞-⋃+∞又又集合{}23[2,3],A x a x a a a =-≤≤+=-+所以33a +≤-或24a -≥,即6a ≤-或6,a ≥故实数a 的取值范围为(,6][6,)-∞-+∞.【点睛】本题考查了集合的交、并、补的运算,重点考查了集合的包含关系,属基础题. 24.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}.(2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4;若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.(1){|23}x x <≤; (2)(1,3].【分析】(1)可求出13{|}A x x =≤≤,{|2}Bx x ,进行交集的运算,即可求解; (2)进行并集、并集的运算求出集合D ,根据C D ⊆,且{|1}C x x a =<<,即可求得实数a 的取值范围.【详解】(1)由1030x x -≥⎧⎨-≥⎩,解得13x ≤≤,即集合13{|}A x x =≤≤, 集合2{|log 1}{|2}B x x x x =>=>,所以{|23}A B x x ⋂=<≤. (2)由(1)可得{|2}R C B x x =≤,所以(){|3}R D C B A x x ==≤, 因为C D ⊆,且{|1},1C x x a a =<<>,所以13a,所以实数a 的取值范围是(1,3]. 【点睛】本题主要考查了集合的标志,对数函数的单调性,以及集合的交集、并集和补集的运算等知识点的综合应用,着重考查推理与运算能力.26.{|14}A B x x ⋂=<<.【分析】根据题意,先求出集合A 与集合B ,再利用交集的定义即可.【详解】 由题意,集合{}{}{}{}113|28|22|13|24x x A x x x x x x --=<=<=-<=-<<, 集合(){}(){}{}{}222|log 512|log 51log 4|514|1B x x x x x x x x =->=->=->=>,所以,{}|14AB x x =<<.【点睛】 本题考查绝对值不等式,对数不等式的解法,考查交集的定义,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省安仁三中高一数学第一单元(集合)测试题
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把
正确答案的代号填在题后的括号内(每小题5分,共40分).
1.方程组2
0{=+=-y x y x 的解构成的集合是 ( )
A .)}1,1{(
B .}1,1{
C .(1,1)
D .}1{
2.下列关系正确的是 ( )
A .},|{32R x x y y ∈+=∈π
B .)},{(b a =)},{(a b
C .}1|),{(22=-y x y
x }1)(|),{(222=-y x y x
D .}02|{2=-∈x R x =φ
3.已知集合 },61|{Z m m x x M ∈+==,},31
2|{Z n n x x N ∈-==,
=P x x |{+=2p
},61
Z p ∈,则P N M ,,的关系 ( )
A .N M
=P B .
M P N = C .
M
N P D .
N
P M
4.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( )
A .
B A U ⋃= B . B A
C U U ⋃=)(
C .)(B C A U U ⋃=
D .)()(B C A C U U U ⋃=
5.已知}5,53,2{2+-=a a M ,}3,106,1{2+-=a a N ,且}3,2{=⋂N M ,则a 的值(
) A .1或2 B .2或4 C .2 D .1
6.下列命题之中,U 为全集时,不正确的是 ( )
A .若
B A ⋂= φ,则U B
C A C U U =⋃)()(
B .若B A ⋂= φ,则A = φ或B = φ
C .若B A ⋃= U ,则=⋂)()(B C A C U U φ
D .若B A ⋃= φ,则==B A φ
7.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为 ( )
A .1
B .—1
C .1或—1
D .1或—1或0
8.表示图形中的阴影部分( )
A .)()(C
B
C A ⋃⋂⋃
B .)()(
C A B A ⋃⋂⋃ C .)()(C B B A ⋃⋂⋃
D .C B A ⋂⋃)( A B
C
二、填空题:请把答案填在题中横线上(每小题5分,共35分).
9.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B .
10.设集合}3|{2x y y M -==,}12|{2-==x y y N ,则=⋂N M .
11.含有三个实数的集合既可表示成}1,,{a b a ,又可表示成}0,,{2b a a +,则
=+20042003b a .
12.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合
=N ,=⋂)(N C M U ,=⋃N M .
13.若集合}3|),{(}04202|),{(b x y y x y x y x y x +=⊂=+-=-+且,则_____=b .
14.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .
15.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B = .
三、解答题:解答应写出文字说明、证明过程或演算步骤(共75分).
16.(12分)数集A 满足条件:若1,≠∈a A a ,则
A a
∈+11.
①若2A ∈,则在A 中还有两个元素是什么; ②若A 为单元集,求出A 和a . 17.(12分)设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .
①B A ⋂=B A ⋃,求a 的值;
②φB A ⋂,且C A ⋂=φ,求a 的值; ③B A ⋂=C A ⋂≠φ,求a 的值;
18.(12分)设集合}32,3,2{2-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.
19.(13分)已知全集}5,4,3,2,1{=U ,若U B A =⋃,=⋂B A }4{,}2,1{)(=⋂B C A U ,
试写出满足条件的A 、B 集合.
20.(13分)在1到100的自然数中有多少个能被2或3整除的数?
21.(13分)已知方程02=++q px x 的两个不相等实根为βα,。

集合},{βα=A ,
=B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?
参考答案
一、ACBCC BDA
二、9.{4,9,16}; 10.{31|≤≤-x x }; 11.-1; 12.03|{≤≤-=x x N 或}32≤≤x ;
}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x 13.2; 14.a =0或89≥
a ; 15.{0,1,2}
三、16. 解:①34和3
1; ②}251{+-=A (此时251+-=a )或}251{--=A (此时2
51--=a )。

17.解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则
B A ⋃为能被2或3整除的数组成的集合,B A ⋂为能被2和3(也即6)整除的数组成的集合.
显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合B A ⋂中元素的个数为16,可得集合B A ⋃中元素的个数为50+33-16=67.
18.解:此时只可能5322=-+a a
,易得2=a 或4-。

当2=a
时,}3,2{=A 符合题意。

当4-=a
时,}3,9{=A 不符合题意,舍去。

故2=a 。

19.解:①此时当且仅当B A
=,有韦达定理可得5=a 和6192=-a 同时成立,即5=a ; ②由于}3,2{=B
,}24{,-=C ,故只可能3A ∈。

此时01032=--a a ,也即5=a 或2=a ,由①可得2=a 。

③此时只可能2A ∈
,有01522=--a a ,也即5=a 或3-=a ,由①可得3-=a 。

20.分析:U B A =⋃且}2,1{)(=⋂B C A U ,所以{1,2}⊆A ,3∈B ,4∈B ,5∈B 且1∉B ,2∉B ;
但≠⋂B A φ,故{1,2}
A ,于是{1,2}A ⊆{1,2,3,4,5}。

21.解:由A ∩C=A 知A ⊆C 。

又},{βα=A ,则C ∈α,C ∈β. 而A ∩
B =φ,故B ∉α,B ∉β。

显然即属于C 又不属于B 的元素只有1和3. 不仿设α=1,β=3. 对于方程02=++q px x
的两根βα,应用韦达定理可得
3,4=-=q p .。

相关文档
最新文档