电子技术课件第三章

合集下载

第3章电子技术基础_模拟部分

第3章电子技术基础_模拟部分

•3.1.5 温度对BJT参数及特性的影响
•1. 温度对BJT参数的影响
•(1) 温度对ICBO的影响 •温度每升高10℃,ICBO约增加一倍。
•(2) 温度对 的影响 •温度每升高1℃, 值约增大0.5%~1%。
•(3) 温度对反向击穿电压V(BR)CBO、V(BR)CEO的影响 •温度升高时,V(BR)CBO和V(BR)CEO都会有所提高。
•iB=f(vBE) vCE=const •iC=f(vCE) iB=const •可以写成:
•在小信号情况下,对上两式取全微分得
•BJT双口b+ hrevce
PPT文档演模板
•ic= hfeib+ hoevce 第3章电子技术基础_模拟部分
•1. BJT的H参数及小信号模型
部载流子传输体现出来的。
外部条件:发射结正偏 集电结反偏
• 由于三极管内有两种载流子(自 由电子和空穴)参与导电,故称为双 极型三极管或BJT (Bipolar Junction Transistor)。
1. 内部载流子的传输过程
发射区:发射载流子
集电区:收集载流子
基区:传送和控制载流子
(以NPN为例)
PPT文档演模板
第3章电子技术基础_模拟部分
•3.1.1 BJT的结构简介
•(a) 小功率管 (b) 小功率管 (c) 大功率管 (d) 中功率管
PPT文档演模板
第3章电子技术基础_模拟部分
•3.1.1 BJT的结构简介
半导体三极管的结 构示意图如图所示。 它有两种类型:NPN型 和PNP型。
(a) NPN型管结构示意图 (b) PNP型管结构示意图 (c) NPN管的电路符号 (d) PNP管的电路符号

电力电子技术课件-第3章 整流电路

电力电子技术课件-第3章 整流电路

Rid
2U2 sinwt
(3-2)
b)
图3-3 b) VT处于导通状态
在VT导通时刻,有wt=a,id=0,这是式(3-2)的初 始条件。求解式(3-2)并将初始条件代入可得
id
2U 2
sin(a
R (wta )
)e wL
Z
2U2 sin(wt ) (3-3)
Z
式中,Z
R2
(wL)2,
u
d
变且波形近似为一条水平线。
O i
d
iO
VT 1,4
I
d
wt
☞u2过零变负时,由于电感
I
d
的作用VT1、VT4仍有电流id,并
w t 不关断。
i
O
VT
2,3
I
d
wt
☞wt=p+a时刻,触发VT2和
O i
2
I
d
w t VT3,VT2和VT3导通,VT1和
O
I
u
d
VT 1,4
w t VT4承受反压关断,流过VT1和
二. 阻感负载
3、基本数量关系
√流过晶闸管的电流平均值IdT和有效值IT分别为:
I dT
p a 2p
Id
(3-5)
IT
1
2p
p a
I
2 d
d
(wt
)
p a 2p
Id
(3-6)
√续流二极管的电流平均p 值 aIdDR和有效值IDR分别为
I dDR 2p I d
(3-7)
I DR
1
2p
2p a p
pa R
R
1 sin 2a p a

数字电子技术基础 第三章(1)11-优质课件

数字电子技术基础 第三章(1)11-优质课件

图3.1.2 正逻辑与负逻辑
一些概念
1、片上系统(SoC) 2、双极型TTL电路 3、CMOS
1961年美国TI公司,第一片数字集成电路 (Integrated Circuits, IC)。
VLSI(Very Large Scale Integration)
3.2 半导体二极管门电路
3.2.1 半导体二极管 的开关特性
图3.2.1 二极管开关电路
可近似用PN结方程和下图所 示的伏安特性曲线来描述。
i Is ev/VT 1
其中:i为流过二极管的电流。 v为加到二极管两端的电压。
nkT VT q
图3.2.2 二极管的伏安特性
图3.2.3 二极管伏安特性的几种近似方法
三、电源的动态尖峰电流
图3.5.23 TTL反相器电源电流的计算 (a)vO=VOL 的情况 (b) vO=VOH的情况
图3.5.24 TTL反相器的电源动态尖峰电流
图3.5.25 TTL反相器电源尖峰电流的计算
图3.5.26 电源尖峰电流的近似波形
例3.5.4 计算f=5MHz下电源电流的平均值
图3.3.xx CMOS三态门电路结构之二 (a)用或非门控制 (b)用与非门控制
图3.3.xx CMOS三态门电路结构之三 可连接成总线结构。还能实现数据的双向传输。
3.3.6 CMOS电路的正确使用
一、输入电路的静电防护
1、在存储和运输CMOS器件时最好采用金属屏蔽层 作包装材料,避免产生静电。
tPHL:输出由高电平跳变为低电 平的传输延迟时间。
tPLH:输出由低电平跳变为高电 平的传输延迟时间。
tPD: 经常用平均传输延迟时间tPD
来表示tPHL和tPLH(通常相等)

数字电子技术 第三章 组合逻辑电路

数字电子技术 第三章 组合逻辑电路

2021/6/10
23
3.2.2 二进制编码器
由于每次操作只有一个输入信号,即输入IR、IY、IG 具有互斥性,根据表3.5,将输出变量取值为1对应的输入 变量相加,可得输出Y1、Y0与输入IR、IY、IG之间的逻辑 关系表达式如下。
Y0 = IR + IG Y1 = IY + IG
对Y1、Y0两次取非,得
5. 断开开关S1、S2,观察发光二极管的发光情况,记 录观察到的结果。
2021/6/10
39
3.3.1 任务描述
图3.18所示是开关S1闭合、S2断开时,观察到的现象。
2021/6/10
图3.18 闭合S1、断开S2时观察到的现象
40
3.3.2 二进制译码器
1. 译码器的基本功能 二进制译码真值表如表3.11所示。
2021/6/10
27
3.2.2 二进制编码器
表中的“×”号表示:有优先级高的输入信号输入时, 优先级低的输入信号有输入还是无输入,不影响编码器的 输出。
2021/6/10
28
3.2.2 二进制编码器
3. 集成8线-3线优先编码器 集成8线-3线优先编码器74LS148、74LS348的引脚排 列完全相同,如图3.12(a)所示。
第四步,判断逻辑电路的逻辑功能。其方法是:根据
真值表进行推理判断。在实际应用中,当逻辑电路很复杂
时,一般难以用简明扼要的文字来归纳其逻辑功能,这时
就用真值表来描述其逻辑功能。
2021/6/10
7
3.1.2 组合逻辑电路的分析
2. 分析举例 【例3.1】 试分析图3.1所示电路的逻辑功能。
解:画出图3.1所示电路的逻辑图如图3.4所示。

电工与电子技术第三章 集成运算放大器及其应用

电工与电子技术第三章 集成运算放大器及其应用

各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2

徐淑华电工电子技术ppt第三章

徐淑华电工电子技术ppt第三章

u
Um
wt
u U m sin( w t )
有效值:
与交流热效应相等的直流 定义为交流电的有效值
10
热效应相当
有 效 值 概 念

T 0
i R dt I RT
2
2
交流
直流
I
1 T

T
i dt
2
(方均根值)
0
当 i I m sin
w
t 时, 可得,
I
Im 2
11
w t
i

相量图 相量式
.
I
I

I I
瞬时值 -- 小写 u, i, e; 最大值 --大写+下标m;
有效值 – 大写 U, I, E; 复数、相量 --- 大写 + ―.‖
34
例6
判断下列各式的正误:
u 100 sin w t 10000
瞬时值 复数
U 50 e
复数
j15 °
2. 正弦波的相量表示方法
1) 正弦量的相量表示
在线性正弦交流电路中的电源频率单一时,电路中所有 的电压电流为同频率正弦量,此时,w 可不考虑,主要 研究正弦量的幅度与初相位的变化 可用一个有向线段(矢量)表示正弦量: 其长度表示正弦量的有效值; 其与横轴的夹角表示正弦量的初相位。
描述正弦量的有向线段称为相量 (phasor ):
3.2 单一参数的正弦交流电路
3.2.1. 电阻元件的正弦交流电路
u iR

u
i
R
i 2 I sinw t Im sinw t
R R u i · = 2I · sinw t

电子技术 数字电路 第3章 组合逻辑电路

电子技术 数字电路 第3章 组合逻辑电路

是F,多数赞成时是“1”, 否则是“0”。
0111 1000 1011
2. 根据题意列出真值表。
1101 1111
(3-13)
真值表
ABCF 0000 0010 0100 0111 1000 1011 1101 1111
3. 画出卡诺图,并用卡 诺图化简:
BC A 00
00
BC 01 11 10
010
3.4.1 编码器
所谓编码就是赋予选定的一系列二进制代码以 固定的含义。
一、二进制编码器
二进制编码器的作用:将一系列信号状态编制成 二进制代码。
n个二进制代码(n位二进制数)有2n种 不同的组合,可以表示2n个信号。
(3-17)
例:用与非门组成三位二进制编码器。 ---八线-三线编码器 设八个输入端为I1I8,八种状态,
全加器SN74LS183的管脚图
14 Ucc 2an 2bn2cn-1 2cn
2sn
SN74LS183
1 1an 1bn 1cn-11cn 1sn GND
(3-39)
例:用一片SN74LS183构成两位串行进位全加器。
D2
C
D1
串行进位
sn
cn
全加器
an bn cn-1
sn
cn
全加器
an bn cn-1
1 0 1 1 1 AB
AC
F AB BC CA
(3-14)
4. 根据逻辑表达式画出逻辑图。 (1) 若用与或门实现
F AB BC CA
A
&
B
C
&
1 F
&
(3-15)
(2) 若用与非门实现

数字电子电路技术 第三章 SSI组合逻辑电路的分析与设计 课件

数字电子电路技术 第三章 SSI组合逻辑电路的分析与设计 课件

表3-1 例3-1真值表
第四步:确定电路的逻 辑功能。
由真值表可知,三个变
量输入A,B,C,只有两
个及两个以上变量取值为1 时,输出才为1。可见电路 可实现多数表决逻辑功能。
A BC F 0 00 0 0 01 0 0 10 0 0 11 1 1 00 0 1 01 1
1 10 1
21.10.2020
h
11
2. 组合逻辑电路设计方法举例。
例3-3 一火灾报警系统,设有烟感、温感和 紫外光感三种类型的火灾探测器。为了防止误报警, 只有当其中有两种或两种以上类型的探测器发出火 灾检测信号时,报警系统产生报警控制信号。设计 一个产生报警控制信号的电路。
解:(1)分析设计要求,设输入输出变量并逻辑赋值;
用方法和应用举例。
21.10.2020
h
4
3.1 SSI组合逻辑电路的分析和设计
小规模集成电路是指每片在十个门以下的集成芯片。
3.1.1 组合逻辑电路的分析方法
所谓组合逻辑电路的分析,就是根据给定的逻辑 电路图,求出电路的逻辑功能。
1. 分析的主要步骤如下: (1)由逻辑图写表达式; (2)化简表达式; (3)列真值表; (4)描述逻辑功能。
21.10.2020
h
18
对M个信号编码时,应如何确定位数N?
N位二进制代码可以表示多少个信号?
例:对101键盘编码时,采用几位二进制代码? 编码原则:N位二进制代码可以表示2N个信号, 则对M个信号编码时,应由2N ≥M来确定位数N。
例:对101键盘编码时,采用了7位二进制代码 ASCⅡ码。27=128>101。
0111
1000
1011
1101
1 1 1 1 21.10.2020

电子课件电子技术基础第六版第三章集成运算放大器及其应用

电子课件电子技术基础第六版第三章集成运算放大器及其应用
1. 组成框图 集成运算放大器的组成框图如图所示,通常包括输入级、 中间级、输出级和偏置电路。
集成运算放大器的组成框图
(1)输入级 通常是具有较大输入电阻和一定放大倍数的差动放大电路 ,利用它可以使集成运算放大器获得尽可能高的共模抑制比 。 (2)中间级 中间级的作用是使集成运算放大器具有较强的放大能力, 通常由多级共射极放大器构成。
一、零点漂移
放大直流信号和缓慢变化的信号必须采用直接耦合方式, 但简单的直接耦合放大器,常会发生输入信号为零输出信号 不为零的现象。产生这种现象的原因很多,如温度的变化、 电源电压的波动、电路元件参数的变化等,都会使静态工作 点发生缓慢变化,该变化量被逐级放大,便会使放大器输出 端出现不规则的输出量,这种现象称为“零点漂移”,简称“零 漂”。
三、集成运算放大器的主要参数
为了表征集成运算放大器的性能,生产厂家制定了很多参 数,作为合理选择和正确使用集成运算放大器的依据。下面 介绍几项主要的参数,见表。
集成运算放大器的主要参数
集成运算放大器的主要参数
§3-3 集成运算放大器的基本电路
学习目标
1. 了解理想集成运算放大器的基本概念。 2. 了解集成运算放大器线性工作区和非线性工作区的 特性及工作特点。 3. 理解集成运算放大器“虚短”“虚断”的概念。 4. 了解集成运算放大器电路直流平衡电阻的配置。
2. 消除自激振荡 集成运算放大器是多级放大器,具有极高的电压放大倍数 ,但它极易产生自激振荡,使运算放大器不能正常工作。为 了防止自激振荡的产生,通常按产品手册要求,在补偿端子 上接指定的补偿电容或 RC 移相网络,以便消除自激振荡现 象。
四、集成运算放大器的保护 电路
1. 防止电源极性接反 为了防止电源极性接反而损坏集 成运算放大器,可利用二极管的单向 导电特性来控制,如图所示,二极管 V1、V2 串入集成电路直流电源电路 中,当电源极性接反时,相应的二极 管便截止,从而保护了集成电路。 防止电源极性接反保护电路

电子技术基础——电路与模拟电子(第3章)

电子技术基础——电路与模拟电子(第3章)

du(t ) p(t ) = u (t )i (t ) = Cu(t ) dt
(3―6)
对上式从-∞到 进行积分 可得t时刻电容上的储能为 进行积分, 对上式从 到t进行积分,可得 时刻电容上的储能为 计算过程中认为u(-∞)=0。 。 计算过程中认为
ωC (t ) = ∫
t
−∞
p (ξ )d ξ
(3-7)
1 1 1 = + C C1 C2
或写为
C1C2 C= C1 + C2
(3―18)
上式中C为电容 相串联时的等效电容。由式(3―17)画出 上式中 为电容C1与C2相串联时的等效电容。由式 为电容 画出 其等效电路如图3.6(b)所示。同理可得,若有 个电容 k(k=1,2,…,n) 所示。同理可得,若有n个电容 个电容C 其等效电路如图 所示 相串联, 相串联,其等效电容为
第3章 动态电路分析
电容元件及电容电流波形分别如图3.2( )、 例3-1 电容元件及电容电流波形分别如图 (a)、 (b)所示,已知 )所示,已知u(0)=0,试求 ,试求t=1s、t=2s、t=4s时的电 、 、 时的电 容电压u以及 以及t=2s时电容的储能。 时电容的储能。 容电压 以及 时电容的储能
第3章 动态电路分析
电感串并联: 电感串并联:
是电感L 相串联的电路, 图 3.8(a)是电感 1 与 L2 相串联的电路 , 流过两电感的电流是同一电 是电感 的微分形式和KVL,有 流i。根据电感 。根据电感VAR的微分形式和 的微分形式和 ,
L = L1 + L2
(3―25)
称为电感L1与 L2串联时的等效 称为电感 与 串联时的等效 电感。 由式(3―26)画出相应的等效 电感 。 由式 画出相应的等效 电路如图3.8(b)所示 。 同理 , 若有 所示。 同理, 若有n 电路如图 所示 个 电感 Lk(k=1,2,…,n) 相 串联 , 可 推 导其等效电感为

《数字电子技术》第3章 组合逻辑电路

《数字电子技术》第3章 组合逻辑电路
Y1 I2 I3 I6 I7
Y3 ≥1 I9 I8
Y3
I2I3I6I7
&
Y0 I1 I3 I5 I7 I9
I1I3I5I7I9
I9 I8
逻辑图
Y2
Y1
Y0
≥1
≥1
≥1
I7I6I5I4
I3I2
(a) 由或门构成
Y2
Y1
I1 I0 Y0
&
&
&
I7I6I5I4
I3I2
(b) 由与非门构成
A
消除竞争冒险
B
C
Y AB BC AC
2
& 1
1
3
&
4
&
5
≥1
Y
3.2 编码器
编码
将具有特定含义的信息编 成相应二进制代码的过程。
编码器(即Encoder)
实现编码功能的电路
被编 信号
编 码 器
编码器
二进制编码器 二-十进制编码器
二进制 代码 一般编码器
优先编码器 一般编码器 优先编码器
(1) 二进制编码器
A B F AB AB B
&
&
00
1
01
0
C
&
F &
10 11
0F AABA BC1 AB &
1
AAB BC AB
(4)分析得出逻辑功A能 A B B C AB
A =1
同或逻辑 AB AB B
F
F AB AB A☉B
3.1.3 组合逻辑电路的设计
组合逻辑电路的设计就是根据给出的实际逻 辑问题求出实现这一关系的逻辑电路。

《电工电子技术基础》第3章三相交流电路.ppt

《电工电子技术基础》第3章三相交流电路.ppt
第1章
3.1 三相电源的连接方式 3.2 三相负载的连接方式 3.3 三相电路的功率
第1章
3.1 三相电源的连接方式
1. 对称三相交流电
A
定子 首端: A B C 三绕组在空间
↓↓↓
位置互差120o

N
Z
尾端: X Y Z

转子
转子装有磁极并以 的速度旋。三
个线圈中便产生三个单相电动势。

S
中线的作用在于,使星形连接的不对称负载得到相 等的相电压。为了确保零线在运行中不断开,其上不允 许接保险丝也不允许接刀闸。
第3页
1.负载的Δ形连接:
iA 线电流
A
iAB
Δ接负载的端电压等于电源线电压;
火线上通过的电流称为线电流Il; 负载中通过的电流称为相电流IP;
接时 U l: U p
uAB uCA Z
三个线电压也是对称的,
e C uA
ZX
Y
u AB
u CA
N
且超前与其相对应的相电 压30°电角。
UC
A
-UA
N
-
30 UBN
30
UAB
- 30
UCN
uB
u BC
B C





UABUANUBN UAN(UBN)





UBC UBNUCN UBN(UCN)





UCA UCNUAN UCN(UAN)
由相量图还可看出,在三相对称情况下,线电流是相 电流的1.732倍,相位滞后与其相对应的相电流30°。
第3页

电工与电子技术基础课件第三章正弦交流电

电工与电子技术基础课件第三章正弦交流电

_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui

电子技术第三章集成电路-107页精品文档

电子技术第三章集成电路-107页精品文档

3.1 集成运放的简介
集成电路简介
*集成电路:是把整个电路的各个元件以及相互之间的联接 同时制造在一块半导体芯片上, 组成一个不可分的整体。 *集成运算放大器:是一种具有很高放大倍数的多级直接耦 合放大电路。是发展最早、应用最广泛的一种模拟集成电 路。 *集成电路优点:工作稳定、使用方便、体积小、重量轻、 功耗小,可靠性高、价格低。 *集成电路分类:模拟集成电路、数字集成电路;小、中、 大、超大规模集成电路;
A u d u i1 1 u o u i2 d 2 u u o 1 i1 2 i i b b R R b c / R r b / L e 2 R R b c /r R b / Le
输入和输出方式
1. 双端输入、双端输出:输入输出端没有接地.
(1)差模电压放大倍数 :
Aud1


(Rc
//
RL 2
Rb rbe
)
+ V CC
Rc + uo - Rc
(2)共模电压放大倍数
Rb T1
+
u-o 1
RL
+
u-o 2
T2 Rb
Auc 0
+
(3)差模输入电阻
u i1
R i d 2R brbe
3.3 差动放大电路
典型结构与原理
*原理分析要点:(1)差分放大电路的静态和动态计算方法与
基本放大电路基本相同。为了使差分放大电路在静态时,其
输入端基本上是零电位,将Re从接地改为接负电源-VEE。 (2)分析方法要注意2个等效关系:①对每个三极管Re等效2
倍Re,②差模输入的虚地问题.
+ V CC

第三章负反馈--《模拟电子技术》

第三章负反馈--《模拟电子技术》

电子技术模拟电路部分第三章放大电路中的负反馈第三章放大电路中的负反馈§3.1 负反馈的概念§3.2 负反馈的类型及分析方法§3.3 负反馈对放大电路的影响§3.1 负反馈的概念凡是将放大电路输出端的信号(电压或电流)的一部分或全部引回到输入端,与输入信号迭加,就称为反馈。

若引回的信号削弱了输入信号,就称为负反馈。

若引回的信号增强了输入信号,就称为正反馈。

这里所说的信号一般是指交流信号,所以判断正负反馈,就要判断反馈信号与输入信号的相位关系,同相是正反馈,反相是负反馈。

放大器输出输入取+ 加强输入信号正反馈用于振荡器取-削弱输入信号负反馈用于放大器开环闭环负反馈的作用:稳定静态工作点;稳定放大倍数;提高输入电阻;降低输出电阻;扩展通频带。

反馈网络±叠加反馈信号实际被放大信号反馈框图:反馈电路的三个环节:放大:d oo X X A =反馈:ofX X F =叠加:fi d X X X -=负反馈框图:基本放大电路A o d X oX 反馈回路FfX ⨯i X +–输出信号输入信号反馈信号差值信号基本放大电路A od X oX 反馈回路FfX ⨯i X +–d oo X X A =——开环放大倍数ioF X X A =——闭环放大倍数ofX X F =——反馈系数负反馈放大器的一般关系:基本放大电路A o d X oX 反馈回路FfX ⨯i X +–oo d o f d f o i o F A F X X X X X X X X X A 111+=+=+== FA A o o +=1F A +1反馈深度定义:负反馈放大器的闭环放大倍数当∣A o F ∣>>1时,结论:当∣A o F ∣>>1很大时,负反馈放大器的闭环放大倍数与晶体管无关,只与反馈网络有关。

即负反馈可以稳定放大倍数。

FA A A o o F +=1FA F 1=u f u d 例:R f 、R E 1组成反馈网络,反馈系数:fE E o fR R R U U F +≈=11+–C 1R B 1R C 1R B 21R B 22R C 2R E 2R E 1C EC 3C2+E Cu ou i +–T 1T 2R f§3.2 负反馈的类型及分析方法§3.2.1 负反馈的类型一、电压反馈和电流反馈根据反馈所采样的信号不同,可以分为电压反馈和电流反馈。

电子技术基础课件第3章 集成运算放大器及正弦波振荡电路

电子技术基础课件第3章  集成运算放大器及正弦波振荡电路

图中VT3组成分压式工作点稳定电路,该电路当温度发生变 化时,Ie3基本不变,且
从而阻止了Ic1、Ic2随温度升高而增大,起到抑制零漂的作用。
*3.1.4 差动放大电路的4种接法
1.单端输入、双端输出式 单端输入、双端输出式差动放大电路如图3.3所示。
2.双端输入、单端输出式 双端输入、单端输出式差动放大电路如图3.4所示。
② 中间级。其作用是提供较高的电压放大倍数,一般由共发射 极放大电路组成。
③ 输出级。输出级的作用是提供一定的电压变化,通常采用互 补对称放大电路。
④ 辅助环节。使各级放大电路有稳定的直流偏置。
2.集成运放符号
集成运放是高电压放大倍数、高输入电阻、低输出电阻的直 接耦合放大电路,由于直接耦合放大电路存在零点漂移问题,所 以对零漂影响最大的第一级电路往往采用差动放大器。
(a)新符号
(b)旧符号
图3.9 集成运放的图形符号
3.主要参数 集成运放的性能可以用各种参数来反映,为了合理正确地
选择和使用集成运放,下面介绍集成运放的主要性能指标。 ① 开环电压放大倍数Auo:指无反馈时集成运放的差模电压放大 倍数。 ② 差模输入电阻rid:指差模输入时运放无外加反馈回路时的输 入电阻。
集成电路按电路功能可分为模拟集成电路和数字集成电路, 模拟集成电路主要有集成功率放大器、集成运算放大器、集成 稳压器等。由于集成电路体积小、稳定性好,因而在各种电子 设备及仪器中得到了广泛的应用。
3.2.1 集成电路的特点
与分立元件电路相比,集成电路具有以下突出特点。 1.可靠性高、寿命长 2.体积小、重量轻 3.速度高、功耗低 4.成本低
3.抑制零点漂移的措施 ① 选用稳定性能好的高质量的硅管。
② 采用高稳定度的稳压电源可以抑制电源电压波动引起的零漂。

电力电子技术课件 第三章 直流调压电路

电力电子技术课件 第三章 直流调压电路

③逆变系统:
17
3.1.4 绝缘栅双极型晶体管(IGBT)
绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor)简称IGBT, 既具有输入阻抗高、速度快,热稳定性好和驱动电路简单的特点,又具有 通态电压低、耐压高和承受电流大等优点,因此发展迅速,备受青睐。由 于它的等效结构具有晶体管模式,所以称为绝缘栅双极型晶体管。IGBT 于1982年开始研制,1986年投产,是发展最快,使用最广泛的一种混合型 器件。
14
GTR桥臂互锁保护法
若一个桥臂上的两个GTR控制信号重叠或开关器件本身延时过长,则会 造成桥臂短路。为了避免桥臂短路,可采用互锁保护法,即一个GTR关断后, 另一个才导通。采用桥臂的互锁保护,不但能提高可靠性,而且可以改进系 统的动态性能,提高系统的工作频率。
15
3.GTR的应用
①直流传动:
20
③专用集成驱动电路
EXB系列IGBT专用集成驱动模块是日本富士公司出品的,它们性 能好、可靠性高、体积小,得到广泛应用。EXB850、EXB851是标准型, EXB840、EXB841是高速型,它们的内部框图如图所示。
21
集成驱动器的应用电路,它能 驱动150A/600V、75A/1200V、 400A/600V和300A/1200V的IGBT模 块。EXB850和EXB851的驱动延迟 ≤4μs,因此适用于频率高达10kHz的 开关操作。EXB840和EXB841的驱 动信号延迟≤1μs,适用于高达40kHz 的开关操作。使用中IGBT的栅极都 接有栅极电阻RG,表3.4和3.5分别列 出了EXB850和EXB840驱动电路中 IGBT的栅极串联电阻RG的推荐值和 电流损耗。
26
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t=0时的相位;确定正弦量初始值的电角度。 初相位与计时起点有关
i
i ωt O ψ ωt O ωt i
ψ O
ψ >0 太原理工大学
ψ <0
ψ =0
目录
③相位差(

电路与电子技术
两个同频率正弦量的相位之差
i2 Im2 sin t 2 3 2 sin( t 30o )A 314
电路与电子技术
解析式:
正弦曲线: i
i I m si n( t )
幅值
角频率
Im
ψ O
ωt t
初相位
T
3.1.2 正弦交流电的三要素
1.周期、频率和角频率 反映正弦量变化快慢的物理量 ①周期 T 正弦量变化一周所需的时间
时间 T 周数
太原理工大学
单位:[T]=秒(s)
1s 10 ms 10 μs
I 5 2 60o A Im m i
I 5 60o A I i
太原理工大学
目录
电路与电子技术
(2)复数的运算 ① 加 、减运算
A A1 A2 (a1 jb1 ) (a2 jb2 ) (a1 a2 ) j(b1 b2 )
太原理工大学
目录
i1 3 2 sin314 t (A) 试求: i1 i 例 已知: i2 4 2 sin ( 14 t 90o )A 3 解:相量法(复数法)
电路与电子技术
i2
I 1 3 0 A 3A I 2 4 90 o A j4A I I 1 I 2 ( 3 j4)A
如下图所示,复数的加减运算也可以用平行四 边形法则在复平面上用作图法进行。
+j
A A1 A2
A
A2

+j
A A1 A2
A1

A1
+1
+1
O
O
-A2
A
目录
太原理工大学
电路与电子技术 ② 乘法运算
A A1 A2 r1 1 r2 2 r1 r2 ( 1 2 ) r
有效值U和 初相位ψ 变化 角频率ω不变
2U 2 si nt 2
结论: 因角频率不变,所以正弦交流电路分 析计算时,主要关心有效值与初相位。
太原理工大学
目录

解:
t 已知: i sin 1000 30 A
I 幅值: m 1A
电路与电子技术
试求:幅值、有效值、频率及初相位。
3 6
目录
②频率 f
电路与电子技术 正弦量单位时间内变化的周数
单位:[f]= 周/秒 = 赫[兹](Hz)
周数 f 时间
③角频率ω
1kHz 103 Hz; 1MHz 106 Hz
正弦量单位时间内经历的电角度 单位:[ω]= 弧度/秒 (rad/s)


t
三者之间的关系:
1 f T
问题讨论: 某电容器的耐压为 200V ,能否接入 电源为 200V 的交流电路中? 否
200 2V 282.8V 200V
目录
太原理工大学
电路与电子技术 3. 相位、初相位及相位差 反映正弦量变化进程的物理量 ①相位(ω t+ψ ) 确定正弦量瞬时值的电角度,与时间t有关。 ②初相位(ψ)
③指数式
+1
A re
④极坐标式
A r
用于电工学中表示正弦量 r — 表示正弦量的有效值或幅值 ψ — 表示正弦量的初相位
正弦量用复数表示称为相量。如:
I I i U U u 正弦量的有效值相量 正弦量的幅值相量 I I U U m m u m m i
目录
电路与电子技术
2.正弦量的相量法 由于同频率正弦量的加减、微积分运算后,依 然为同频正弦量。因此,同频正弦电路的计算只需 考虑有效值或幅值(模)和初相位(辐角)两个要 素。用复数表示正弦量后,可以使得交流电路的计 算大为简化。用复数表示正弦量的方法称为相量法。 为了区别一般的复数,表示正弦量的复数称为 相量,并在表示相量的大写字母上方加“ ”符号。 若 uU
太原理工大学
目录
电路与电子技术
第3章 交流电路分析
本章要求:
1. 理解正弦量的特征及其各种表示方法。 2. 熟练掌握计算正弦交流电路的相量分析法。 3. 掌握有功功率和功率因数的计算,了解无功功率 和视在功率的概念;了解提高功率因数的意义和 方法。 4.了解频率特性及谐振的条件及特征。 5.搞清对称三相负载Y形和Δ形联结时相线电压、 相线电流关系。掌握三相负载的正确连接方法, 理解中性线的作用。掌握对称三相电路电压、电 流及功率的计算。
目录
电路与电子技术
④超前、滞后的概念 从波形看先出现正的最大值为超前,后者为滞后。 如: i1超前i2 60°,或说i2滞后i1 60° i1 i1 i2 t i2 O 同相ψ 1=ψ 2 , 0 i1
π 2
t
O
π 正交 1 2 2
反相
i2
t
O 太原理工大学

a
+1
a——实部;b ——虚部; j 1 ——虚单位。 ②三角式 A r (cos j sin ) 模: a 2 b2 r
b 辐角: arctan a
目录
太原理工大学
电路与电子技术
+j jb r O 复平面
A
欧拉公式:cos

aห้องสมุดไป่ตู้
jsin e
j
j
太原理工大学
目录
电路与电子技术
3.1 正弦交流电的基本概念
3.1.1 正弦交流电的基本表示
正弦量:正弦电流、电压、电动势的统称 正弦量的参考方向:正半周的方向
i i + u R
i I m sint
t
O
正半周时:i>0,实际方向与正方向一致
负半周时:i<0,实际方向和正方向相反
太原理工大学
目录
1 T

T
0
i dt
2
有效值公式: 若 i
I m sin (t )
Um U 2
Em E 2
目录
Im 则 I 2
太原理工大学
电路与电子技术 注意: 交流电压表、电流表测出的为有效值 交流电器的额定电压、额定电流为有效值 交流电路分析计算用有效值
交流电器的耐压要用最大值
U 220V,U m 220 2 311V U 380V,U m 380 2 537V
2 sin( t u )
i I 2 sin(t i )
太原理工大学
目录
电路与电子技术
若 u
2U sin( t u ) 2 I sin(t i )
i
其正弦量的有效值相量写作:
I I i
U U u
其正弦量的幅值相量写作:
I m 2 I i U m 2U u
π
1 2 π
目录
电路与电子技术 注意:同频率正弦量叠加后,仍为同频率正弦量
如:
u1 u2
2U 1 si nt 1
u u1 u2 2U 1 sin t 1 2U 2 sin t 2 2U sin t
太原理工大学
目录
电路与电子技术
三角函数法和波形图法是正弦量的基本表示法, 但是用于正弦量的运算时,比较麻烦、不方便。通 常正弦交流电路分析计算采用相量法和相量图法。
3.2.1正弦交流电的相量表示
1.复数表示形式及其运算 (1)复数的表示形式 ①代数式
+j jb r O 复平面
A
A a jb
o o
U
e cos(90 ) jsin( 90 ) j 解: jU U逆时针转90o jU

U顺时针转90o jU
j U U U转180o
2
U
jU
±j为旋转90°的旋转因子 -1为旋转180°的旋转因子
太原理工大学
(t 1 ) (t 2 )
2 1
(即同频率下的初相位差)
o o o
i1 Im1 sin t 1 5 2 sin( t 90 )A 314
o
如: 1 2 90 30 60
太原理工大学
目录
电路与电子技术 注意:相位差与计时起点无关 i1 5 2 sin( 314 t 90o )A i2 3 2 sin( 314 t 30o )A
t

ψ
ψ2 O
1
1 2 90 30 60
o o
o
5 2 sin( 314 t 60o )A i1 i2 3 2 sin( 314 t )A
O´ ψ ´2=0 ψ ´1 太原理工大学
t
1 2 60o 0o 60o
o
I I 2
53.1o

3 4 arctan A
太原理工大学
目录
电路与电子技术
u 220 2 sin( 314 t 30o ) V 例 已知: i 5 2 sin( 314t 60 ) A
o
试写出相应的相量式(复数式)。 解:
U m U m u 220 2 30 V
o
U 220 30o V U u
电路与电子技术
第3章 交流电路分析
相关文档
最新文档