机房热负荷计算
机房热负荷的计算
机房热负荷的计算方法:机房总热负荷包括以下几项:1.通过建筑围护结构传入的热量,包括屋顶、门窗、墙壁楼板等的传热;2.电子计算机或程控交换机本身的发热;3.照明发热;4.操作人员发热:以250~300 w/(1人.h)计算。
通常经过计算可知,以上发热量主要发热量是由计算机和程控交换机本身发出的,人员和其它辅助设备发热量很小。
下面列出程控交换机机房的热负荷匹配选型经验数据。
注:q外围*的取值范围在100 w/m2~150 w/m2之间,北方地区取小值,南方地区取大值。
根据机房的土建特性及主机设备不可知性,我们可以得知机房的热负荷存在如下两种估算方法:方法一:机房面积估算法机房外围特性:1.空调区域面积为100m2左右;2.考虑到计算机房在全年要求室温恒定在22o C 左右,比家用或商用空调都要求严格。
3.机房为全封闭式结构,通过门窗产生的渗入热负荷很小。
综合以上几点,再加上机房处地区位置,我们可以对机房的总热负荷进行如下取值:在外围热负荷的基础上加上一个100 w/m 2设备发热量修正系数。
北方地区(黄河以北):取‘外围制冷密度’q外围 = 100 w/m 2‘总制冷密度’ q总 =q外围 + 100 w/m 2 = 200 w/m 2 ,依此估算出机房的总热负荷值南方地区(黄河以南):取‘外围制冷密度’q外围 = 150 w/m 2‘总制冷密度’q总 = q外围 + 100 w/m 2 = 250 w/m 2,依此估算出机房的总热负荷值故,Q北方= 100 m2 * 200(w/m 2 ) = 20000(w)= 20kw。
Q南方= 100 m2 * 250(w/m 2 ) = 25000(w)= 25kw。
方法二:机房外围结构热负荷与电子设备发热量估算法考虑到机房处地区位置,根据‘方法一’的方法可得出机房外围热负荷的值:南方地区(黄河以南)取q外围 = 150 w/m 2来估算出机房外围热负荷的值北方地区(黄河以北)取q外围 = 100 w/m 2来估算出机房外围热负荷的值故,Q北方-外围= 100 m2 * 100(w/m 2 ) = 10000(w)= 10kw。
机房散热量计算范文
机房散热量计算范文在现代信息技术的高速发展下,机房已成为一个不可或缺的基础设施。
然而,随着设备的不断升级和数据的爆炸性增长,机房中设备的散热问题也变得越来越突出。
散热问题如果不能得到有效解决,将会导致设备过热,进而可能会出现设备故障,甚至损坏的情况。
因此,合理计算机房散热量是一个至关重要的问题。
机房中的设备如服务器、计算机、网络设备等都会产生热量,这部分热量需要通过散热来降温。
散热量的计算公式为:散热量(W)=设备数量×单个设备的功率(W)为了更准确地计算机房的散热量,我们需要了解机房中各个设备的功率和数量。
设备功率可以通过查看设备的技术参数手册或者询问设备供应商来获取。
设备数量则通过实际的机房设备配置情况来确定。
每个设备的功率需要考虑两个方面:静态功率和动态功率。
静态功率是设备在正常运行状态下的功率,动态功率是设备在高负载状态下的功率。
通常,我们采用设备的动态功率进行计算,因为机房中的设备经常处于高负载状态。
除了设备的功率和数量外,机房的散热量还需要考虑外界环境的影响。
机房的散热需要通过空调系统来实现,因此机房的温度和湿度也是计算散热量的重要因素。
计算机房的散热量不仅仅是为了维持设备的正常运行,还需要考虑到机房工作人员的工作环境。
高温和高湿度的环境不仅会对设备造成影响,也会对工作人员的健康产生潜在危害。
因此,在计算机房的散热量时,需要根据相关安全标准和规范来确定机房的温度和湿度。
一般来说,计算机房的温度应保持在20-25摄氏度之间,湿度应控制在40%-60%之间。
过高或过低的温度和湿度都会对设备产生不利影响。
因此,在计算散热量时,需要根据机房的大小、设备的数量和功率来确定机房的空调系统的冷却能力。
机房的散热量计算也需要考虑到机房的设计和规划。
优化机房的布局、机柜的设计、通风设备的配置等都可以减少散热量的产生。
此外,在选择设备时也应考虑设备的能效等因素,选择低功耗和高效的设备。
总之,机房散热量的计算是一个复杂而细致的过程,需要考虑到设备的功率和数量、机房的温度和湿度、机房的设计和规划等多个因素。
实用机房计算表格
机房用电量计算7.048KW
偏高
机房气体消防算法二经验七氟丙烷用量kg 0较为接近厂商值
大致值,需要根据实际情况调整照明和动环等耗电量,暂按机房用电总功率(额定)=UPS设备功率+制冷设备用电功率+机房照明功率+动力维修插座及其他动力配套公式:空调总制冷量=设备热负荷(设备总功率*综合运行系数*热量转换系数)+环境热负荷(0.15KW每㎡)*机房面积
公式:W=K*V*C/S(100-C)C设计浓度
K一般修正系数,一般取1,兰州取海拔1500,系数0.83V机房体积
S七氟丙烷蒸汽比容,S=0.137168m³/kg
公式:W=K2*V
K2=0.65kg/m³,V房间体积
kg_L的转换
标准钢瓶体积有40、70、90、120升,七氟丙烷的最大充装比例为1.15kg/L,并需要在充装时留有余量,一般按照1 kg_L-2
力配套系统功率(按照2KW参考,可按实际情况调整),暂按照照明以及插座等5KW
输入
按需调整
输出
量,一般按照1:1的比例,再减2-3公斤计算。
机房空调热负荷计算方法整理
机房空调热负荷计算方法整理1.传热负荷计算方法:传热负荷是机房空调热负荷计算的核心内容,它包括传导、对流和辐射三种途径的热量传递。
传热负荷可采用以下公式计算:Q=U*A*ΔT其中,Q为传热负荷(单位为瓦特W),U为传热系数(单位为瓦特/平方米/摄氏度W/m²·℃),A为传热面积(单位为平方米m²),ΔT为温度差(单位为摄氏度℃)。
2.人体热负荷计算方法:机房内工作人员也会产生一定的热量。
每个人体的热负荷不同,一般可以采用下面的公式计算:Q=60*P其中,Q为人体热负荷(单位为瓦特W),P为人的数量。
3.设备热负荷计算方法:机房内的设备也会产生热量。
每个设备的热负荷不同,可以通过以下公式计算:Q=(P+PL)*CF其中,Q为设备热负荷(单位为瓦特W),P为设备功率(单位为瓦特W),PL为设备功率余量(单位为瓦特W),CF为修正系数,考虑设备的运行时间和负荷特点。
4.日照热负荷计算方法:机房内的日照热负荷主要来自于阳光直射,可以通过以下公式计算:Q=AC*(N*AF+D*AT)其中,Q为日照热负荷(单位为瓦特W),AC为透光面积(单位为平方米m²),N为正常白天的太阳辐射量(单位为W/m²),AF为透射系数,D为日照时间(单位为小时h),AT为修正系数,考虑日照的角度、方向等因素。
5.其他热负荷计算方法:还可以考虑机房内其他因素产生的热负荷,如墙体导热负荷、天花板导热负荷、地板导热负荷等。
这些热负荷可以通过测量或计算得到。
综上所述,机房空调热负荷计算方法包括传热负荷、人体热负荷、设备热负荷、日照热负荷和其他热负荷等几个方面。
在计算时需要考虑各项因素,并结合实际情况进行调整。
通过正确计算机房空调热负荷,可以为机房提供合适的温度和湿度,提高机房的工作效率和设备的使用寿命。
同时,还可以降低能源消耗,减少对环境的影响。
机房总热负荷的计算及空调配置选型
机房总热负荷的计算及空调配置选型机房主要的热负荷来源于设备的发热量及环境维护结构的热负荷。
因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。
根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房的面积进行测算。
1、已知UPS容量,计算机房精密空调配置:例:UPS容量为100KVA,机房面积80m2,则机房设备热负荷Q1为:100kva(UPS容量)×0.8(功率因数)×0.8(带载率)×0.8(热转换)=51.2KW主机房其他热负荷Q2为:80(面积)×0.1=8KW则主机房总热负荷Q=Q1+Q2=51.2+8 = 59.2KW因此,我们推荐2台艾默生品牌PEX系列PEX60的机房空调,形成1主1备冗余工作,可满足主机房制冷需求。
2、已知负载功率,计算机房精密空调配置:例:负载功率为60KW,机房面积80m2,则机房设备热负荷Q1为:60KW(负载功率)×0.8(热转换)=48KW机房其他热负荷Q2为:80(面积)×0.1=8KW则机房总热负荷Q=Q1+Q2=48+8 = 56KW因此,我们推荐2台艾默生品牌PEX系列PEX60的机房空调,形成1主1备冗余工作,可满足机房制冷需求。
3、UPS室机房精密空调配置:例:UPS容量为400KVA,UPS室面积60m2,则UPS室设备热负荷Q1为:400kva(UPS容量)×0.8(功率因数)×0.08(热损耗)=25.6KWUPS室其他热负荷Q2为:60(面积)×0.1=6KW则机房总热负荷Q=Q1+Q2=25.6+6 = 31.6KW因此,我们推荐2台艾默生品牌PWX系列的PEX35机房精密空调,形成1主1备冗余工作,可满足UPS室制冷需求。
4、电池室机房精密空调配置:铅酸免维护蓄电池一般来说其寿命为3~5年,但是电池的使用环境和使用者对电池的日常维护保养,很大程度上影响到电池使用寿命的延长或缩短。
服务器发热量计算公式
服务器发热量计算公式IDC机房发热量计算方法、散热量计算案例前言:机房散热问题不仅仅应是动力空调专业独自解决的,所有电子设备都会产生热量,为了避免设备温度升高至无法接受的程度,必须使这些热量扩散掉,IDC机房的正常运作需要一个标准的温度,然而在数据中心机房中有很多因素会导致机房温度过高从而影响到机房的正常使用和工作,必须了解封闭空间内设备的发热量以及其他常见热源所产生的热量。
高热密度问题的出现与电子计算机本身以及集成化程度的发展变化密切相关,对机房精密空调也提出了更高的技术要求,动力和冷却间颧是数据中心最普遍的问题,全世界很多数据中心因为低效的动力供给和冷却能力不能达到高密度设备的要求而过时,因此,在新建IDC机房时,将机房定位在高密度机房,将更有利于延长整体机房的使用寿命,计算设备或其他IT设备通过数据线传输的能量可以忽略不计,因此,交流电源干线所消耗的能量基本上都会转换为热量,这样一来,IT设备的发热量就可以简单地等同于该设备的电力消耗量(均以瓦特为单位)。
IDC机房设备的发热量估算1、发热的根源:建筑围护结构的传热、从玻璃投入的太阳辐射热、人体散热、散湿、照明装置的散热、机房加湿产生的热负荷、新风负荷。
一个系统的总发热量等于它所有组件的发热量之和。
整个系统应包括IT设备及其他项,例如UPS、配电系统、精密空调、照明设施和人员等。
不过,可以根据简单的标准规则确定各项的发热量。
2、IT设备热负荷:(1)IT设备机箱可以分成三种类型:塔式、机架式和刀片式。
其中机架式和刀片式可以直接安装到标准19英寸的机架中。
目前数据中心的IT设备都采用这种方式。
(2)所以在计算IT设备热负荷时要考虑以下因素:IT设备的总功耗,就是将IT设备中的各个部件的功耗叠加,设备资料提供的是该设备的额定功率,额定功率功耗通常大于实际功耗,在实际运行中,设备功耗会根据工作状况发生一定的变化,但一般变动幅度不大。
(3)除了IT设备热负荷外,还有在工作中使用的测试仪器、线缆等其他组成了其他的热负荷,由于这些发热量较小,一般可以忽略不计;UPS和配电系统的发热量由固定损耗和与运行功率成正比例的损耗三部分组成。
计算机机房热负荷计算
计算机机房热负荷计算计算机机房热负荷计算是指对计算机机房内产生的热量进行测算和评估,以确定机房所需的制冷和空调系统的能力。
这对于确保机房内部的温度和湿度控制是非常重要的,因为高温和湿度可能会对计算机和其他设备的正常运行产生负面影响。
1.确定机房内部设备的热负荷:首先需要确定机房中所有设备(如服务器、交换机、存储设备等)产生的热负荷。
通常这些设备的热负荷数据可以在设备的技术规格书或制造商提供的信息中找到。
2.确定机房的热传导热负荷:除了设备本身产生的热负荷外,机房的墙壁、天花板、地板等也会对机房的热负荷产生影响。
这些是机房内部和外部环境之间热传导的结果。
3.确定机房的室外热负荷:机房的室外热负荷来自于周围环境的热传导、太阳辐射等因素。
这个因素通常是根据机房所在地的气候条件、季节和周围环境确定的。
4.确定人员活动热负荷:机房内的人员活动也会产生热量,并且对机房的热负荷产生影响。
因此,需要考虑机房内的人员数量以及他们的活动级别,如站立、行走等。
5.计算总热负荷:将以上各项热负荷进行综合计算,得出机房总的热负荷数据。
通常以单位时间(例如每小时)的热负荷进行计算。
计算机机房热负荷计算通常使用热负荷计算软件进行,该软件通常基于热平衡原理和传热学等相关原理进行计算,并可以根据实际情况进行各种参数的调整。
在进行计算时,需要准确的输入各项数据,并且通常需要考虑到机房的特定要求,如温度控制范围、湿度要求等。
除了计算机机房的热负荷,还需要根据计算结果来选择合适的制冷和空调设备,并进行适当的安装和维护。
根据机房的规模和需求,可能需要考虑到多个制冷系统以及备用系统。
在计算机机房建设和管理过程中,合理地计算和评估机房的热负荷对于维持机房的稳定运行和保障设备的寿命是非常重要的。
只有在掌握机房热负荷数据的基础上,才能选择合适的制冷系统,确保机房在适当的温度和湿度条件下正常运行。
因此,在计算机机房设计和运营中,对机房热负荷的计算和评估是不可忽视的重要环节之一。
信息机房空调配置的计算
信息机房空调配置的计
算
The manuscript was revised on the evening of 2021
信息机房空调配置的计算
计算方法有2种:
方法1:功率及面积法:
Qt=Q1+Q2
Qt=总制冷量(KW)
Q1=室内设备负荷(设备功率*)
Q2=环境热负荷(~㎡*机房面积)
方法2:面积法:(当只知道面积时)
Qt=S*P
Qt=总制冷量
S =机房面积(㎡)
P =冷量估算指标(根据不同用途机房的估算指标选取)
※精密空调场所的冷负荷估算指标
1、电信交换机房、移动基站(300W/㎡左右)
2、数据中心(600w/㎡左右)
3、计算机房、计费中心、控制中心、培训中心(300W/㎡左右)
4、电子产品及仪表车间、精密加工车间(300W/㎡左右)
5、标准检测室、校准中心(250W/㎡左右)
6、UPS和电池室、动力机房(300W/㎡左右)
7、医院和检测室、生化培养室、洁净室、实验室(200W/㎡左右)
8、仓储室(博物馆、图书馆、档案馆、烟草、食品)(200W/㎡左右)※在机房行业中的经验算法:
每平方米需求能量350—500大卡/换算公式1KW=860大卡
按100平方米机房计算。
选择400大卡/平方米
100*400/860=就是说最基本需要50KW的空调
在机房中一般还需要 1+1原则。
那么100平方米机房配2台50KW空调。
机房设备的散热量计算公式
机房设备的散热量计算公式在现代社会中,机房设备已经成为各种企业和机构运行的重要基础设施。
然而,随着机房设备的不断更新和扩展,散热问题也变得越来越重要。
机房设备的散热量不仅影响着设备的稳定运行,还直接关系到机房的能耗和运行成本。
因此,了解机房设备的散热量计算公式成为了非常重要的一项技术。
散热量是指物体由于温度差而向外界传递热量的过程。
在机房中,设备的散热量主要来自于设备内部的电子元件和电路板的工作产生的热量。
一般来说,机房设备的散热量可以通过以下公式进行计算:Q = m c ΔT。
其中,Q为散热量,单位为焦耳(J);m为物体的质量,单位为千克(kg);c为物体的比热容,单位为焦耳/千克·摄氏度(J/kg·℃);ΔT为物体的温度变化,单位为摄氏度(℃)。
在机房中,设备的散热量通常是以功率的形式给出,即单位时间内散热的能量。
因此,可以将上述公式进行改写,得到如下形式:P = Q / t。
其中,P为单位时间内的散热功率,单位为瓦特(W);t为时间,单位为秒(s)。
通过上述公式,我们可以看到,机房设备的散热量与设备的质量、比热容以及温度变化有关。
在实际应用中,我们通常会根据具体的设备参数和工作环境来进行计算。
首先,我们需要了解设备的质量。
设备的质量通常可以通过设备的规格参数来获取,例如设备的重量等。
在进行计算时,我们需要将设备的质量转换为标准单位,即千克。
其次,我们需要了解设备的比热容。
设备的比热容通常可以通过设备的材质和结构来确定。
一般来说,常见的设备材质如金属、塑料等都有相应的比热容数值。
在进行计算时,我们需要根据设备的具体材质来确定比热容的数值。
最后,我们需要了解设备的温度变化。
设备的温度变化通常可以通过设备的工作状态和环境温度来确定。
在进行计算时,我们需要根据设备的实际工作情况和环境温度来确定温度变化的数值。
通过上述步骤,我们可以得到设备单位时间内的散热功率。
在实际应用中,我们通常会根据设备的功率来确定散热量的大小,并进一步进行散热设计和设备布局。
机房空调功率计算
机房空调功率计算机房的空调功率计算是机房设计中非常重要的一项工作。
机房是一个密闭的环境,通常内部有大量的电子设备运行,产生大量的热量。
为了确保机房内的温度和湿度在合适的范围内,需配置适当的空调设备。
首先,我们需要了解机房的热负荷。
机房的热负荷主要包括两部分:一是设备本身的热负荷,即设备运行时产生的热量;二是机房的人员和照明所产生的热负荷。
设备本身的热负荷可以通过以下公式计算:Q1=∑(P×η)其中,Q1为设备本身热负荷(单位:W),P为各设备的额定功率(单位:W),η为设备的功率系数(通常取0.9)。
机房的人员和照明的热负荷可以通过以下公式计算:Q2=n×q其中,Q2为机房的人员和照明的热负荷(单位:W),n为机房内的人数,q为单个人员和照明的热负荷(通常取100-150W/m²)。
得到设备本身的热负荷和机房的人员和照明的热负荷后,两者相加即得到机房的总热负荷:Q=Q1+Q2机房冷却功率的计算公式如下:P=Q/COP其中,P为机房空调的功率(单位:W),COP为机房空调的性能系数(通常取2.5-3.5)。
在实际工程设计中,我们还需要考虑一些额外的因素,如机房的综合能效、冷却系统的效率等。
因此,以上计算只是初步的估算,具体的功率计算还需要结合实际情况进行。
在确定机房空调功率后,我们还需要选择合适的空调设备。
一般来说,机房空调设备应具备以下几个特点:1.能够提供足够的冷却能力,使机房内的温度保持在合适的范围内。
2.具备稳定可靠的性能,能长时间运行并保持稳定的温度。
3.具备高效节能的性能,能够尽可能地降低能耗并减少对环境的影响。
4.具备智能控制的功能,能够根据机房内的热负荷实时调节温度。
在选择空调设备时,我们还需要考虑机房的布局和空调的安装位置,以确保空调设备的冷风能够均匀地分布到机房各个角落。
总结起来,机房空调功率计算是机房设计中非常重要的环节。
通过合理计算机房的热负荷,并选择合适的空调设备,可以确保机房内的温度和湿度在合适的范围内,提供一个良好的工作环境。
冷热负荷计算模板
附:一、冬季卫生热水负荷计算书1. ....................................................................................................................... 淋浴用热1.1 宾馆淋浴卫生热水按340 个标间,每个标间2 人,每人每天卫生热水量150L 计算,则卫生热水量V i =Ki • m-q r/T=4.58 X340X2X0.150/24=15.57 m 3/h1.2 泡池淋浴按35个淋浴喷头, 每个喷头250L/h 计算, 同时使用系数取0.8,则卫生热水量V2=q h •N o • b • (t h-t J/(t r-t i)=0.8 X 35X0.25 X(4O -5)/(60-5)=4.5 m 3/h故:淋浴卫生热水量刀V r=V r1 +V r2=15.57+4.5=20.07 m 3/h淋浴用热Q=Cm\ t =4.187 X20.07 X 10 3X (60 -5)/3600=1307 kW2. ....................................................................... 泳池用热泳池容积按100用(面积)X2m深) = 200 m3计算2.1 表面蒸发热损失Q S=(1/ B ) • P・Y • (0.0174V " +0.0229)(P b-P q) • A s • (B/B ')=(1/133.32) X1X240.6X(0.0174X0.40+0.0229)(7381.1 -2064) X100X(1.01325X10 5/1.01200X105)=97560 kJ/h (27.1 kW)其中:B ——压力换算系数,取133.32 Pa;P 水密度,kg/L;Y -------- 池温下饱和蒸汽气化潜热,kJ/h;J——池表面风速,取0.2〜0.5m/s;P b ——池温下饱和空气水蒸气分压力,Pa;P q ——环境温度下空气水蒸气分压力,Pa;A s ——池表面面积m;B ——标准大气压力, Pa;B'――当地大气压力,Pa。
如何配置计算机房空调制冷量
如何配置计算机房空调制冷量计算机房空调制冷量的配置是非常重要的,它直接关系到计算机房内温度的控制、设备的稳定运行和能源的消耗。
本文将详细介绍如何配置计算机房空调制冷量。
一、计算机房空调制冷量概述计算机房空调制冷量是指空调系统需要提供的冷量,以保持计算机房内合适的温度。
计算机房空调制冷量的计算需要考虑到计算机设备产生的热量和房间的热负荷。
计算机设备的热量主要来自于计算机主机、服务器和其他外围设备的功耗产生的热量。
计算机房内的热负荷可以分为两种类型:人员带来的热负荷和设备带来的热负荷。
人员带来的热负荷通常可以按每人100-150W来计算,设备带来的热负荷需要根据设备的功耗来计算。
二、计算机设备的热量计算计算机设备的热量主要来自于设备的功耗。
假设计算机设备的功耗为P,每台设备的热功率为Q=P×f,其中f为设备功耗的热功率系数,通常取值在0.8-0.9之间。
计算机房内的设备数量为N,计算机设备的总热负荷为QT=ΣQ。
三、空气质量的要求计算机房对空气质量的要求比较高,一般要求温度在20-25℃之间,湿度在40%-60%之间。
温度过高会增加设备故障的风险,湿度过高会导致设备腐蚀和电气故障的可能性增加。
四、计算机房空调制冷量的计算计算机房空调制冷量的计算可以采用经验公式,也可以采用热负荷计算法。
1.经验公式法经验公式法是一种简化的计算方法,根据计算机设备的总功耗来估计空调制冷量。
根据经验公式法,计算机房空调制冷量Qc=QT×C,其中C为经验公式系数,通常范围在2-3.5之间。
这种方法的优点是简单易懂,但不够准确,适用于较小规模的计算机房。
2.热负荷计算法热负荷计算法是一种较为精确的计算方法,需要综合考虑计算机设备的功耗、人员带来的热负荷、外界温度等因素。
热负荷计算法的计算过程较为复杂,需要考虑的因素较多,但计算结果相对准确,适用于大规模的计算机房。
3.软件辅助计算现代科技的发展使得计算机软件可以提供有效的辅助计算。
计算机机房热负荷计算
计算机机房热负荷计算摘要:在实际工作中,计算机机房热负荷的计算一般采取概略估算和简易热负荷计算两种方式一、概略计算(也称为估算)根据国内外机房热指标情况:美国:计算机设备:230-280 (Kcal/仃h)人工照明:(Kcal/ m2h)工作人员:(Kcal/ m2h)围护结构:(Kcal/ m2h)合计:300-350 (Kcal/ 仃h)设备产热量占热量的百分数77-80%换气系数51-109次英国:计算机设备:216 (Kcal/ m2 h)人工照明:(Kcal/ m2h)工作人员:(Kcal/ m2h)围护结构:(Kcal/ m2h)合计:354 (Kcal/ m2 h)设备产热量占热量的百分数61%换气系数:51-80次日本:计算机设备:300 (Kcal/仃h)人工照明:20-30 (Kcal/仃h)工作人员:2 (Kcal/仃h)围护结构:30 (Kcal/仃h)合计:350-450 (Kcal/ 仃h)换气系数:40次根据以上国外资料,计算机房负荷按月300 (Kcal/ m2h)计算。
按照1KW(千瓦)=860 Kcal/h (千卡/时),计算机房热负荷按月m?计算。
但对于小型机机房需要进行单独计算。
二、简易热负荷计算计算机房空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明、传导热、辐射热等。
这几项计算方法一般空调房间负荷计算相同。
计算机制造商,一般能提供设备发热量的具体数值,而这些计算机制造商,不能提出这方面数据,因此,只要能根据计算机的耗电量计算其发热量。
A、外部设备发热量计算Q=860N (kcal/h)式中,N:用电量C:同时使用系数()860:功的热当量,即1KW电能全部转化为热能所产生的热量B 主机发热量计算Q=860P*h1*h2*h3式中,P:使用总功率hi:同时使用系数h2:利用系数h3:负荷工作均匀系数机房内各种设备的总功率,应以机房内设备的最大功耗为准,但这些并未全部转换成热量,因此,必须用以上三种系数来修正,这些系数又与计算机的系统结构、功能、用途、工作状态及所用电子元件有关,总系数一般取之间为好。
冷热负荷计算范文
冷热负荷计算范文冷热负荷的计算过程包括几个关键的步骤:1.确定建筑物的设计条件:这包括建筑物的朝向、外墙和屋顶的热传导系数、窗户的传热系数、建筑物的外部光照和气候条件等。
这些条件影响着建筑物的散热和吸热能力,必须在计算中考虑进去。
2.确定建筑物的用途和活动强度:这包括建筑物的使用类型(例如住宅、商业、办公等)、使用面积、人员密度、设备负荷等。
不同的建筑物用途和活动强度对于制冷和供暖的需求是不同的,必须根据实际情况进行综合考虑。
3.计算建筑物的传热负荷:这是冷热负荷计算的核心步骤。
传热负荷包括传导热、对流热和辐射热三个部分。
传导热是指通过建筑物的墙壁、屋顶、楼板等传导进入室内的热量;对流热是指室内和室外通过空气对流传递的热量;辐射热是指室内和室外通过辐射传递的热量。
计算传热负荷需要考虑建筑物的表面积、传热系数、室内外温度差、风速、光照强度等因素。
4.确定制冷和供暖设备的容量:根据传热负荷的计算结果,可以确定建筑物所需的制冷和供暖设备的容量。
制冷设备的容量一般以冷量(单位为千瓦)来表示,供暖设备的容量一般以热量(单位为千瓦)来表示。
确定设备容量的时候需要考虑制冷和供暖系统的效率,以及冷气和暖气的分布情况,以确保设备能够满足建筑物的需求。
冷热负荷计算是一个复杂的过程,需要考虑很多因素和参数。
近年来,随着计算机技术的发展,冷热负荷计算也已经可以通过计算机软件进行。
计算机软件可以更加准确地模拟和计算建筑物的传热过程,提高计算的精度和效率。
但是,仍然需要经验丰富的工程师进行参数的选择和结果的验证。
冷热负荷计算对于建筑物的设计和管理非常重要。
正确的负荷计算能够确保建筑物的舒适性和能源效率,从而提高建筑物的使用价值和减少运营成本。
同时,也有助于保护环境,减少能源的消耗和排放。
因此,冷热负荷计算已经成为建筑工程领域中的一个重要研究课题,值得深入探讨和研究。
主机房活荷载标准值
主机房活荷载标准值主机房是现代企业信息技术系统的核心设施,承载着众多服务器、网络设备和存储设备等重要设备,为企业的信息系统提供了稳定可靠的运行环境。
在主机房的日常运维管理中,活荷载标准值是一个非常重要的指标。
活荷载标准值是指主机房设备运行时的最大工作负荷。
主机房设备在运行过程中会消耗大量的电能,并产生大量的热量。
因此,为了保证设备的正常运行和延长设备的使用寿命,主机房的活荷载需要进行合理的控制。
活荷载标准值的计算方法主要有两种:按功率计算和按热负荷计算。
按功率计算的方法是根据设备的额定功率进行计算。
主机房设备的功率主要包括服务器的功率、网络设备的功率、存储设备的功率以及其他附属设备的功率等。
根据设备的功率和数量,可以计算出主机房的总功率。
在确定活荷载标准值时,一般会将主机房的功率负荷控制在总功率的60%~80%之间,以保证设备的正常运行和安全性。
按热负荷计算的方法是根据设备产生的热量进行计算。
主机房设备在工作过程中会产生大量的热量,如果不能及时散热,会导致设备过热,影响设备的正常运行,甚至引发火灾等安全事故。
因此,主机房的活荷载标准值也需要根据热负荷进行合理的控制。
一般来说,主机房的活荷载标准值应该控制在热负荷容量的60%~80%之间,以保证设备的散热效果和安全性。
为了确定主机房的活荷载标准值,首先需要进行主机房设备的全面调查和评估。
调查和评估内容包括主机房的面积、设备的数量和类型、设备的功率和热负荷等。
在评估的过程中,可以参考相关的行业标准和规范,根据企业的具体需求进行合理的评估和判断。
同时,还需要考虑到主机房的可扩展性。
随着企业的业务发展和信息技术需求的增加,主机房的设备数量和功率负荷都会发生变化。
因此,在确定活荷载标准值的同时,还需要考虑到主机房的未来可扩展性,以便在需要增加设备时能够灵活调整活荷载标准值。
总之,主机房的活荷载标准值是保证设备正常运行和安全性的重要指标。
通过合理评估和控制活荷载标准值,可以保证主机房设备的正常运行和延长设备的使用寿命,为企业的信息系统提供稳定可靠的运行环境。
最详细的冷热负荷计算依据、公式与取值
最详细的冷热负荷计算依据、公式与取值负荷的正确估算与取值注:1 负荷估算时,有两面外墙或三面外墙的空调房间的负荷应适当加大。
2 西向、东向房间的负荷应适当加大(特别是玻璃窗的面积较大时)。
建筑物的热负荷民用建筑供暖设计热负荷一. 房间热负荷的组成:a.围护结构的耗热量b.加热由门、孔洞侵入的冷空气的耗热量c.加热由门窗缝隙渗入室内空气的耗热量围护结构的温差传热量Q j=K f(t n-t w)aQ j---通过供暖房间某一面围护结构的温差传热,WK---该面围护结构的传热系数,W/m2.℃F---该面维护结构的散热面积,m2t n--室内空气计算温度,℃t w--室外采暖计算温度,℃a---温差修正系数附加耗热量附加耗热量是按基本耗热量的百分比计算,考虑各项附加后的耗热量Q1=Q j(1+βch+βf+ βli+ βm)(1+ βf.g)(1+ βj)βch–朝向修正;βf–风力修正;βli–两面外墙修正;βm –窗墙面积比过大修正;βf.g–房高附加修正;βj –间歇附加修正;通过门窗缝隙的冷风渗透耗热量V=∑( l L m)l---房间某朝向上的门窗缝隙长度,mL---每米门窗缝隙的基准渗风量,m3/h·mm---门窗缝隙的渗风量综合修正系数外门开启冲入的冷风耗热量可按照建筑的形式查表计算工业厂房及辅助房间供暖设计热负荷1.基本耗热量及附加耗热量a. 室内空气温度的确定1)工作地带的设计温度 t g2)室内空气的计算温度 t n当车间高度≤4m时,t n=t g;当车间高度>4m时,对地面 tn=tg,对外墙、外窗和外门 t n=(t n+t d)/2;对屋顶 t n=t d=t g+Δt(H-2)Δt = 0.3~1.5℃/m (温度梯度)b .当tn分别按照地面、外墙及屋顶取不同值时,房高附加修正率βf .g=0 ,两面外墙修正βli =0 ;窗墙面积比过大修正βm =02.厂房的门窗缝隙冷风渗透耗热量3.厂房的大门开启冲入的冷风耗热量a.每班开启时间≤15min的大门,附加率为200~500%;b.每班开启时间>15min的外门,按照下列经验公式计算:G=A +(a +Nνw ) FG--冲入的冷风量,kg/s; N—常数,0.15~0.25a, A—系数,查表 ;Vw---冬季室外平均风速,m /sF--车间上部可能开启的排气窗或排气孔的面积,m2建筑物热负荷可按建筑体积估算Q N =a q N.V V (t n .p- t w)Q f=a q f. V V (t n .p- t w. f)建筑物热负荷可按建筑面积估算(方案设计)Q N= q N.S S建筑物的冷负荷一. 房间得热量的组成:a.通过围护结构传入室内的热量b.通过外窗进入的辐射热量c.人体散热量d.照明散热量e.设备、器具、管道及其他热源的散热量f.食物或物料散热量g.各种散湿过程产生的潜热量h.渗透空气带入室内得热量二.空调房间的冷负荷建筑围护结构传入室内得热量形成的冷负荷(太阳辐射进入室内的热量和室内外空气温差经围护结构传入的热量)人体散热形成的冷负荷灯光照明散热形成的冷负荷其他设备散热形成的冷负荷三.空调房间的湿负荷房间湿负荷的组成:a.人体的散湿量b.空气渗入带入的湿量c.化学反应过程的散湿量d.潮湿的表面、液面的散湿量e.食品及其他物料的散湿量f.其他设备的散湿量建筑围护结构传入室内得热量形成的冷负荷a.对流形式的得热量立即变成室内冷负荷b.太阳辐射得热量经过围护结构吸热-放热后,有时间的延迟和数量上的衰减所以计算这部分得热量时,应该逐时计算(这与计算热负荷时不同)热负荷计算---稳定传热冷负荷计算---不稳定传热1.围护结构的冷负荷a.外墙、屋面的传热冷负荷计算Qτ=K F tτ-ξτ—计算时刻,点钟τ-ξ—温度波的作用时刻,点钟tτ-ξ—作用时刻下,冷负荷的计算温差℃例:延迟时间为5小时的外墙,在确定16时房间的热负荷时,应取时刻τ=16,ξ=5,作用时刻为τ-ξ=16-5=11时,16时外墙内表面。
ffu数量计算方法
ffu数量计算方法(原创实用版3篇)篇1 目录1.计算 FFU 数量的必要性2.FFU 数量计算的方法3.FFU 数量计算的实际应用4.FFU 数量计算的注意事项篇1正文一、计算 FFU 数量的必要性在数据中心、计算机房等场景中,FFU(Fan Filter Unit,风机过滤单元)被广泛应用。
它主要用于提供洁净空气,以保持设备的稳定运行。
因此,计算 FFU 数量对于确保空气质量和设备运行稳定性至关重要。
二、FFU 数量计算的方法1.根据面积计算首先,需要确定数据中心的总面积。
然后,将总面积除以 FFU 的覆盖面积,即可得到所需的 FFU 数量。
覆盖面积通常由厂家提供,一般为1.2m/台。
2.根据热负荷计算热负荷是数据中心中设备产生的热量。
可以根据设备的功率和数量,计算出总的热负荷。
然后,根据 FFU 的制冷能力,计算所需的 FFU 数量。
3.根据空气流通次数计算空气流通次数是指空气在数据中心内的循环次数。
一般来说,空气流通次数越多,空气质量越好。
可以根据数据中心的实际情况,设定一个合适的空气流通次数,然后根据 FFU 的空气流通能力,计算所需的 FFU 数量。
三、FFU 数量计算的实际应用在数据中心建设或改造过程中,可以根据以上方法计算出所需的 FFU 数量,确保数据中心的空气质量和设备运行稳定性。
四、FFU 数量计算的注意事项1.考虑设备布局:在计算 FFU 数量时,需要充分考虑设备布局,以确保空气流通的均匀性。
2.考虑设备升级:在计算 FFU 数量时,要考虑到未来设备升级的可能性,预留一定的空间。
3.考虑维护便利性:在计算 FFU 数量时,要考虑到维护的便利性,避免 FFU 过多导致维护困难。
综上所述,计算 FFU 数量是一项重要的工作。
通过合理的 FFU 布局,可以确保数据中心的空气质量和设备运行稳定性。
篇2 目录1.引言2.FFU 数量计算方法的背景和重要性3.FFU 数量计算的具体方法4.FFU 数量计算方法的实际应用5.总结篇2正文1.引言在现代工业生产和工程设计中,FFU(Fan Filter Unit,风机过滤单元)被广泛应用于洁净室等高洁净度环境的空气处理系统中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机机房热负荷计算
为了确定空调机的容量,以满足机房温度、湿度、洁净度和送风速度的要求(简称四度要求)。
必须首先计算机房的热负荷。
机房的热负荷主要来自两个方面,其一是机房内部产生的热量,它包括:
1.室内计算机及外部设备的发热量,机房辅助设施和机房设备的发热量(电热、蒸气水
温及其它发热体)。
这些发热量显热大、潜热小;
2.照明发热(显热);
3.工作人员的发热(显热小、潜热大);
4.由于水分蒸发、凝结产生的热量(潜热)。
其二是机房外部产生的热量,它包括:
1.传导热。
通过建筑物本体侵入的热量,如从墙壁、屋顶、隔断和地面传入机房的热
量(显热);
2.放射热(也称辐射热)。
由于太阳照射从玻璃窗直接进入房间的热量(显热);
3.对流产生的热量。
从门窗等缝隙侵入的高温室外空气(也包含水蒸气)所产生的热量
(显热、潜热);
4.为了使室内工作人员减少疲劳和有利于人体健康而引入的新鲜空气所产生的热量(包
括显热和潜热)。
总之,人体放出的热量、缝隙风侵入的热量和换气带进的热量,不仅使室温升高,也会增加室内的含湿量,因此需要除湿。
这部分热负荷称为潜热负荷,而机房内所有设备散发的热量只是室内的温度升高,这种热负荷称为显热负荷。
与一般宾馆、办公室、会议室等潜热占有相当大比例所不同的是,计算机、程控机机房内的热负荷是以显热负荷为主。
因此对于热负荷状况不同的场合应选用不同类型的空调机。
通常用显热比(SFH)作为空调机的重要指标。
概略计算(也称为估算)
在机房初始设计阶段,为了较快的选定空调机的容量,可采用此方法,即以单位面积所需冷量进行估算。
计算机房(包括程控交换机房):楼层较高时,250~300kcal/m2h
楼层较低时,150~250kcal/m2h
(根据设备的密度作适当的增减)办公室(值班室):90kcal/m2h
简易热负荷计算
计算机房空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明热、传导热、辐射热等,这几项计算方法与一般空调房间负荷计算相同。
计算机制造商,一般能提供设备发热量的具体数值。
而有些计算机制造商,不能提出这方面的数据,因此,只能根据计算机的耗电量计算其发热量。
a. 外部设备发热量计算
Q=860N¢(kcal/h)
式中:N:用电量(kW);¢:同时使用系数(0.2~0.5);860:功的热当量,即l kW电能全部转化为热能所产生的热量。
b. 主机发热量计算Q=860 P*′h 1′h 2′h 3
式中,P:总功率(kW);
h 1:同时使用系数;
h 2:利用系数;
h 3:负荷工作均匀系数。
机房内各种设备的总功率,应以机房内设备的最大功耗为准,但这些功耗并未全部转换成热量,因此,必须用以上三种系数来修正,这些系数又与计算机的系统结构、功能、用途、工作状态及所用电子元件有关。
总系数一般取0.6~0.8之间为好
c. 照明设备热负荷计算
机房照明设备的耗电量,一部分变成光,一部分变成热。
变成光的部分也因被建筑物和设备等所吸收而变成热。
照明设备的热负荷计算如下:
Q=CP kcal/h
式中,P:照明设备的标称额定输出功率(W);
C:每输出l W的热量(kcal/h W),通常自炽灯为0.86,日光灯为1.0。
d. 人体发热量
人体内的热是通过皮肤和呼吸器官放出来的,这种热因含有水蒸汽,其热负荷应是显热和潜热负荷之和。
人体发出的热随工作状态而异。
机房中工作人员可按轻体力工作处理。
当室温为24℃时,其显热负荷为56cal,潜热负荷为46cal;当室温为21℃时,其显热负荷为65cal,潜热负荷为37ca1。
在两种情况下,其总热负荷均为102cal。
e. 围护结构的传导热
通过机房屋顶、墙壁、隔断等围护结构进入机房的传导热是一个与季节、时间、地理位置和太阳的照射角度等有关的量。
因此,要准确地求出这样的量是很复杂的问题。
当室内外空气温度保持一定的稳定状态时,由平面形状墙壁传入机房的热量可按下式计算:Q=KF(t1-t2) kcal/h
式中,K:围护结构的导热系数(kcal/m2h℃);
F:围护结构面积(m2);
t1:机房内温度(℃);
t2:机房外的计算温度(℃)。
当计算不与室外空气直接接触的围护结构如隔断等时,室内外计算温度差应乘以修正系数,其值通常取0.4~0.7。
常用材料导热系数如下表所示:
f. 从玻璃透入的太阳辐射热
当玻璃受阳光照射时,一部分被反射、一部分被玻璃吸收,剩下透过玻璃射入机房转化为热。
被玻璃吸收的热使玻璃温度升高,其中一部分通过对流进入机房也成为热负荷。
透过玻璃进入室内的热量可按下式计算:
Q=KFq (kcal/h )
式中,K:太阳辐射热的透入系数;
F:玻璃窗的面积(m2);
q:透过玻璃窗进入的太阳辐射热强度(kcal/m2h)。
透入系数K值取决于窗户的种类,通常取0.36~0.4。
太阳辐射热强度q随纬度、季节和时间而不同,又随太阳照射角度而变化。
具体数值请参考当地气象资料。
g. 换气及室外侵入的热负荷
为了给在计算机房内工作人员不断补充新鲜空气,以及用换气来维持机房的正压,需要通过空调设备的新风口向机房送入室外的新鲜空气,这些新鲜空气也将成为热负荷。
通过门、窗缝隙和开关而侵入的室外空气量,随机房的密封程度,人的出入次数和室外的风速而改变。
这种热负荷通常都很小,如需要,可将其拆算为房间的换气量来确定热负荷。
h. 其它热负荷
在机房中,除上述热负荷外,在工作中使用示被器、电烙铁、吸尘器等都将成为热负荷。
由于这些设备的功耗一般都较小,可粗略按其额定输入功率与功的热当量之积来计算。
此外,机房内使用大量的传输电缆,也是发热体。
其计算如下:
Q=860 Pl (kcal/h)
式中,860:功的热当量(kca1/h);
P:每米电缆的功耗(W);l:电缆的长度(m)。
总之,机房热负荷应由上述各项热负荷之和来确定。