二年级奥林匹克数学 一笔画问题习题

合集下载

小学二年级数学奥数 第10讲 学习一笔画(1)

小学二年级数学奥数  第10讲 学习一笔画(1)

第10讲学习一笔画【专题简析】一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复。

它是一种有趣的数学游戏。

那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点。

【例题1】一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况。

思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连。

①②③④(1)与一条线段相连的点有:(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点。

1.任意找一个平面图形,数一数图中有几个单数点,几个双数点。

2.下面图形中有哪几个单数点?B3.数一数下面图形中有几个双数点,分别是哪些点?B【例题2】下面的图形能不能一笔画成?如果能,应该怎样画?(1) O(2)B D(3)【思路导航】图(1)中A 、B 、C 、D 、O 五个点都是双数点,所以这个图形可以一笔画成。

画时可以从任意一点出发。

图(2)中A 、C 、D 、F 四个点都是双数点,B 和E 两个点是单数点,所以这个图形也可以一笔画成。

画时要从单数点出发,最后回到另一个单数点。

图(3)中A 、D 是双数点,B 、C 、E 和F 四个点是单数点,单数点的个数超过了两个,这个图形不能一笔画成。

1.下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由(1)(2)2.下列图形能一笔画成吗?为什么?3.观察下列图形,哪个图形可以一笔画成?怎么画?【例题3】下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?C思路导航:题中要求两人必须走遍所有街道,最后到达C.仔细观察,可以发现图中有两个单数点:A 、C 。

小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

小学数学《一笔画》练习题(含答案)精选全文

小学数学《一笔画》练习题(含答案)精选全文

可编辑修改精选全文完整版小学数学《一笔画》练习题(含答案)什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.判断图形能否一笔画的规律:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.(一) 一笔画以及多笔画【例1】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.(f)(e)(d)JIH G F ED C BAJ K IHGFED CB A分析:(a )图:可以一笔画,因为只有两个奇点A 、B ;画法为A →头部→翅膀→尾部→翅膀→嘴. (b )图:不能一笔画,因为此图不是连通图.(c )图:不能一笔画,因图中有四个奇点:A 、B 、C 、D.(d )图:可以一笔画,因为只有两个奇点;画法为:A →C →D →A →B →E →F →G →H →I →J →K →B. (e )图:可以一笔画,因为没有奇点;画法可以是:A →B →C →D →E →F →G →H →I →J →B →D →F →H →J →A.(f )图:不能一笔画出,因为图中有八个奇点.[注意]在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图来说,任一个奇点都可以作为起点,以另一个奇点作为终点;对于没有奇点的图来说,任一个偶点都可以作为起点,最后仍以这点作为终点.[巩固]判断下列图a、图b、图c能否一笔画.E分析:图a是一个连通的图形,图中只有点A和点F两个奇点,所以它能一笔画,其中一种画法如下:A —M—N—A—F—B—C—B—K—C—D—E—D—L—E—F.‘图b是一个不连通的图形,所以不能一笔画.图c是连通图,图中所有点都是偶点,所以能一笔画.其中一种画法如下:A—B—C—D—E—F—D—A—F —C—A.【例2】右图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达 C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?分析:本题要求二人都必须走遍所有的街道最后到达C,而且两人的速度相同.因此,谁走的路程少,谁便可以先到达C.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:A和C.这就是说,此图可以以A、C两点分别作为起点和终点而一笔画成.也就是说,甲可以从A出发,不重复地走遍所有的街道,最后到达C;而从B出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达C.[巩固]在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?分析:许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜.问题变为从B到D与从E到D哪个是一笔画问题.图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜.[数学小游戏] 用一笔画成四条线段把所有的点连起来,怎样画?分析:通过试画,似乎不可以画,但通过仔细观察,对照一笔画的规律,便可发现,若添上两个辅助点,就可画成.如右图:FE DCB ADCBA我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下: 奇点数÷2=笔画数,即2n ÷2=n.【例3】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IH G FED CBA 图aH G I KLJ F EDCBA 图b DC HG EFBA图c分析:图a :原图有四个奇点,所以不能一笔画,在B,D 两点之间加一条线后,图中只有两个奇点,故可以一笔画出,如图d 所示.画法:H →A →B →C →D →E →F →I →D →B →I →H →G →F .图b :原图有四个奇点,所以不能用一笔画.去掉K ,L 两点之间的连线,图中只有两个奇点,故 可以一笔画出,如图e 所示.画法:B →C →D →E →F →→J →H →G →I →A →B →K →I →L →E .图c :原图有四个奇点,所以不能用一笔画.在B ,C 两点之间加一条线后,图中只有两个奇点, 故可以一笔画出,如图f 所示.画法:A →E →D →H →A →B →F →C →G →B →C →D注意:a 、b 、c 三个图都是连通的图形,但由于每个图的奇点个数均超过两个,所以都不能一笔画.图dA BCD EFG H IH GI KLJ F EDCB A 图eDC HG EFBA图f[前铺]观察下面的图,看各至少用几笔画成?分析:(1)图中有8个奇点,因此需用4笔画成. (2)图中有12个奇点,需6笔画成. (3)图是无奇点的连通图,可一笔画成.DC BA(2)(1)FEC DB A分析:图(1)中有6个奇点,因此可添上两条(或3条)边后可改为一笔画;又因为这个图中,把这6个奇点任意分为3对后,最多只有两对奇点间有边相连,因此,可去掉两条边后改为一笔画,举例如图(3)~(6).图(2)中有4个奇点,因此,可添上2条(或1条)边后改为一笔画;又因为把奇点按A 与B ,C 与D (或A 与D ,B 与C )分为两对后,每对间均有边相连,因此,可去掉两条(或1条)边后改为一笔画.举例如图(7)~(8).说明:图(6)运用了两种方法,去掉边BC ,添上边AD 与EF.(二)一笔画的实际应用【例5】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?:这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在. 下面,我们考虑如下两个问题:(1)如果再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由. (2)架设几座桥可以使游人走遍所有的桥回到出发地?而得到一个由四个点和七条线组成的图形(如图b).在图b 中,点A ,B ,C ,D 四个点均为奇点,显然不能一笔画出这个图形.若将其中的两个奇点改成偶点,即在某两个奇点之间连一条线,这样奇点个数由四个变为两个,此时,图形可以一笔画出.如我们可以选择奇点B ,D ,在B ,D 之间连一条线(架一座桥),如图c .在图c 中只有点A 和C 两个奇点,那么我们可以以A 为起点,C 为终点将图形一笔画出.其中一种画法为:A →C →A →B →A →D →B →D →C所以,如果在河岸B 与小岛D 之间架一座桥,游人就可以不重复地走遍所有的桥.(2)在(1)的基础上,再在另外两个奇点A 与C 之间连一条线(即架一座桥),使这两个奇点也变成偶点,如图d .那么A ,B ,C ,D 四个点均为偶点,所以图d 可以一笔画出,并且可以以任意点为起点,最后 仍回到这个点.其中一种画法为:A →C →A →C →D →A →B →D →B →A这表明:在河岸B 与小岛D 之间架一座桥后,再在小岛A 与河岸C 之间架一座桥,共架设两座桥,就可以使游人不重复地走遍所有的桥并回到出发地.[巩固]如图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?分析:用点表示小岛与河岸,用连接两点的线表示连接相应两地的桥,如图,有2个奇点,所以该图可以一笔画,即可以一次不重复地走遍这七座桥.例如右下图的走法.EDCBA【例6】 有一个邮局,负责21个村庄的投递工作,右图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?分析:图中有两个奇点,所以该图可以一笔画,但因为邮局所在点为奇点,所以要一笔画就不可能回到邮局.又图中A,B,C,D,E,F,G,H,I,J十点均有4条线段与之相连,如果我们将上图一笔画的话,就要经过以上十点各两次,这也不满足题目的要求,所以要将这些点相连的线段去掉一些,使得与这些点相连的线段均只有两条,并且将两个奇点也变成只有两条线段与之相连,这样得到的图形即可一笔画,又只经过每个点一次,并且可以回到邮局,一种可行路线如下:邮局I JHGF E D C B A 邮局邮局【例7】 右图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径;若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?分析:我们把展厅A,B,C,D,E 及馆外F 看成某个图中的点,把两个展厅之间的门看作是连接表示这两个展厅的点的线.根据题中条件知,馆外F 与A ,B ,C ,D ,E 各展厅相通,这样将点F 与点A ,B ,C ,D ,E 用线连接;展厅A 与展厅B ,C ,D 相通,将点A 与点B ,C ,D 用线连接;展厅B 除与A 相通外,它还与D ,E 展厅相通,将B 与D ,E 连接;除此之外,展厅C ,D 相通,展厅D ,E 相通,将点C ,D 连接,再将点D ,E 连接(如图a).于是本题要解决的问题就变成了能否将图a 一笔画的问题.可以看出:图a 中共有六个点,其中有四个奇点,它们分别为C ,D ,E ,F ,由一笔画的规律可知,图a 不能一笔画.也就是说,参观者不能够不重复地一次穿过每一扇门.如果允许关闭某一扇门,这相当于在图a 中去掉一条线,那么参观者就有可能不重复地一次穿过每一扇门.我们知道,在图a 中有四个奇点C ,D ,E ,F 为了把图a 改成一笔画图形,我们设法减少奇点个数,使奇点数变为两个.为此,我们可以去掉一条连接两个奇点的线,如去掉E 与F 间的连线,相应的图a 就变成了图b .在图b 中,除了原来的C 和D 是奇点外,其余点全部是偶点,故图b 可以一笔画.其中一种画法为:C →F →D →E →B →F →A →B →D →A →C →D .上面的分析表明,如果关闭连接E 、F 两展厅之间的门,参观者就可以不重复地一次穿过每一扇开着的门. 本题与七桥问题类似,只是将行人过桥换成了参观者穿过每一扇门.我们将这个问题转化为一笔画问题来研究.[前铺]右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走? FFF F E C D BA EB A分析:我们将每个展室看成一个点,室外看成点E ,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到下图.能否不重复地穿过每扇门的问题,变为下图是否一笔画问题.EDC BA图中只有A ,D 两个奇点,是一笔画,所以答案是肯定的,应该从A 或D 展室开始走. 【例8】 已知长方体木块的长是80厘米,宽40厘米,高80厘米(如右图),并且要求蜘蛛在爬行过程中只能前进,不能后退,同一条棱不能爬两次.请问这只蜘蛛最多要爬行多少厘米?分析:图中八个顶点均为奇点,所以不能一笔画,要使其能一笔画,至少要去掉三条棱,使上图只有两个奇点,就可以满足一笔画的条件.长方体的棱长总和一定,(80+80+40)×4=800(厘米),因此去掉的三条棱越短,蜘蛛爬过的距离就越远.所以我们去掉三条棱长为40厘米的棱,于是可知,蜘蛛爬行的最远距离为: 800-40×3=680(厘米).蜘蛛的爬行路径为:G →F →C →D →G →H →A →B →E →H(如右图).[注意]这是一个立体图形,它有八个顶点,我们把长方体的棱看作顶点与顶点之间的连线,蜘蛛只能前进不能后退,并且每一条棱不能爬两次,这实质上是一个一笔画问题.【例9】 右图是某小区的街道分布图,街道长度如图所示(单位:公里),图中各点表示不同楼的代号.一辆垃圾清扫车从垃圾站(垃圾站位于C 楼与D 楼之间的P 处)出发要清扫完所有街道后仍回到垃圾站,问怎样走路线最短,最短路线是多少公里?分析:为了少走冤枉路和节省时间,题目中要求最短路线,根据一笔画原理,我们知道一笔画路线就是最短路线.本题要求清扫车从P点出发,仍回到P 点.通过观察上图可知,图中有六个奇点,根据一笔画规律可知,清扫车想清扫完所有街道而又不走重复的路是不可能的.要使清扫车从P 点出发,最后仍回到P 点,就必须把图中所有的奇点都变成偶点,即在两奇点之间添加一条线.在实际问题中,就是清扫车在哪些街道上重复走的问题,由于每条街道的长度不同,因此需要我们考虑清扫车重复走哪条街道才使总路线最短.为使六个奇点都变成偶点,我们可以有下图中的四种方法表示清扫车所走的重复路线,其中填虚线的地方表示的是重复路线.重复的路程分别为:图a :2×2+3=7;图b :3+4×2=11;图C :3×3=9; 图d :3+6×2=15.显然,重复走的路线最短,总路程就最短.从上述计算中就可找到最短路线图,即下面四个图中的图a .408080H G F ED C BA804080H GFED CBA图b 图a图d图c在图a 中,所有点均为偶点,是一笔画图形.清扫车可按如下路径走:P →D →G →D →E →F →G →H →L →H →C →B →L →M →A →B →C →P ,全程为:(1+2+4+2)×2+3×5+2×2+3=40(公里).【例10】 邮递员李文投送邮件的街道以及街道的长度如右图所示(单位:千米),每天小李要从邮局出发,走遍所有街道后回到邮局.请你帮他设计一条最短路线,并计算出这条路线有多少千米?分析:本题仍可以用一笔画图形的方法来解决.在图a 中共有六个奇点E ,F ,G ,H ,I ,J ,把这些奇点配对,每对之间用虚线连接(如图a),其中要用到D 点,这样图中就没有奇点了,从而可以不重复地走遍所有的街道.由于邮递员李文要重复走一些路段,因此重复走的路越短越好,即添上去的重复线段的总长度越短越好.在图a 中H 与E 之间有重叠,这样势必会增加李文所走路程的长度,应作调整.经调整后,将重叠部分去掉便得图b .在图b 的圈形闭路IHGJI 中,I ,J ,G ,H 各点没有连线时是奇点,连线后变成偶点,增加长度为50×2=100千米.而如果连IJ 和HG ,增加的长度仅为10×2=20,由此可知图b 需继续作调整,改成图c ,这种连接方法是最好的,它使李文行走的路线最短.根据以上分析,为了保证添上去的线段之和最短,应遵循下面的两条原则:(1)连线不能有重叠的线段;(2)在每一个圈形闭路上,连线长度之和不能超过 这个闭路总圈长的一半.经过分析可以知道,图c 的连接方法能使邮递员李文行走路线最短,而且能保证李文从邮局出发又回到邮局.这时他的行走路线为:邮局→A →I →J →I →H →G →H →E →D →F →D →G →J →B →C →D →E →邮局 他行走的全程为: (50+15)×4+20×4+10×6+20×2=440(千米).图a图b图c[小结]本题中采用的方法叫做“奇偶点图上作业法”,用这种方法来确定最短路线比较简便实用.此方法可以用下面的口诀来描述:画出路线图,确定奇偶点;奇点对对连,连线不重叠;闭路添连线.不得过半圈.[巩固]右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A 出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理? 分析:这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K 是中间点,因此必须成为偶点,这样洒水车必须重复走KC 这条边(如下左图).至此,奇点的个数并未减少,仍是6个.容易得出,洒水车必须重复走的路线有:GF 、IJ 、BC.即洒水路线如下右图.全程45+3+6=54(里).1. (例1)判断下列各图能否一笔画.图aG I H F ECD BA图bF ED CBA分析:图a 中九个点全是偶点,因此可以一笔画,其中一种画法为:A →F →B →G →C →H →D →E →H →l →→F →G →l →E →A .图b 中A ,B ,C ,D 四个点均为奇点,故不可以一笔画.图c 中,只有A,C 为奇点,故可一笔画.其中一种画法为:A →D →E →C →H →N →G →M →F →A →B →C .2. (例3)下列各图至少要用几笔画完?分析:(1)4笔;(2)4笔;(3)2笔;(4)1笔;(5)1笔;(6)1笔.3.(例6)右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?分析:把每个展室看作一个结点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有边相连.这样,展厅的平面图就转化成了我们数学中的图,一个实际问题也就转化为这个图(如下图)能否一笔画成的问题了,即能否从A出发,一笔画完此图,最后再回到A.上图(b)中,所有的结点都是偶点,因此,一定可以以A作为起点和终点而一笔画完此图.也即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.下面仅给出一种参观路线:A→E→B→C→E→F→C→D→F→A.4.(例7)一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?分析:清洁车走的路径为: ABCNPBCDEFMNEFGHOLMHOIJKPLJKA. 即:清洁车必须至少重复走4段1公里的街道,如下图.最短路线全程为28公里.5.(例10)一个邮递员的投递范围如右图,图上的数字表示各段街道的长度.请你设计一条最短的投递路线,并求出全程是多少?分析:邮递员的投递路线如下图,即:路线为:ABCDEDOBOMNLKLGLNEFGHIMOJIJA.最短路线的全程为39+9=48.。

小学二年级奥数下册第五讲 一笔画问题习题+答案

小学二年级奥数下册第五讲 一笔画问题习题+答案

第五讲一笔画问题一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图)这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图)经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题:如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢?能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成?先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了.首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等.其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图)(1)两个点,一条线.每个点都只与一条线相连.(2)三个点.两个端点都只与一条线相连,中间点与两条线连.第一组的两个图都能一笔画出来.(但注意第(2)个图必须从一个端点画起)第二组(见下图)(1)五个点,五条线.A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连.(2)六个点,七条线.(“日”字图)A点与B点各与三条线相连,其他点都各与两条线相连.第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点).第三组(见下图)(1)四个点,三条线.三个端点各与一条线相连,中间点与三条线相连.(2)四个点,六条线.每个点都与三条线相连.(3)五个点,八条线.点O与四条线相连,其他四个顶点各与三条线相连.第三组的三个图形都不能一笔画出来.第四组(见下图)(1)这个图通常叫五角星.五个角的顶点各与两条线相连,其他各点都各与四条线相连.(2)由一个圆及一个内接三角形构成.三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线).(3)一个正方形和一个内切圆构成.正方形的四个顶点各与两条线相连,四个交点各与四条线相连.(四条线是两条线段和两条弧线).第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图)(1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连.(2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连.第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来.进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名:把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点.提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查:从此表来看,猜想是对的.下面试提出几点初步结论:①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形.②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点).③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点);④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则:有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成.能够一笔画成的图形,叫做“一笔画”.用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去.看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见:①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.②再看起点和终点,可分为两种情况:如果笔无重复地画完整个图形时最后回到起点,终点和起点就重合了,那么这个重合点必成为偶点,这样一来整个图形的所有点必将都是偶点,或者说有0个奇点;如果笔画完整个图形时最后回不到起点,就是终点和起点不重合,那么起点和终点必定都是奇点,因而该图必有2个奇点,可见有0个或2个奇点的连通图能够一笔画成.习题五1.下面的各个小图形都是由点和线组成的.请你仔细观察后回答:①与一条线相连的有哪些点?②与二条线相连的有哪些点?③与三条线相连的有哪些点?④与四条线或四条以上的线相连的有哪些点?2.若把与奇数条线相连的点叫做奇点,把与偶数条线相连的点叫偶点,那么请你回答:①有0个奇点(即全部是偶点)的图形有哪些?②有2个奇点的图形有哪些?③有4个或4个以上奇点的图形有哪些?④连通图形有哪些?不连通图形有哪些?3.如果笔在纸上连续不断、又不重复地一笔画成的图形叫一笔画,自己动笔实际画画看,然后回答:①哪些图形能够一笔画成?②哪些图形不能一笔画成?4.把以上各向联系起来看,进行归纳,找出规律然后回答:①如果把各部分连结在一起的图形叫做连通图形,那么能一笔画出的图形必定是连通图形;而不是连通图形必定不能一笔画出.这句话说得对吗?②有0个奇点(即全部是偶点)的连通图形一定可以一笔画出来(画时可以以任一点为起点,最后必能回到该点),这句话对吗?③只有两个奇点的连通图形也能一笔画出来,但要注意画时必须以一个奇点为起点,而以另一个奇点为终点,这句话对吗?④奇点个数超过两个的图形不能一笔画出来.这句话对吗?5.从画图过程的角度,进一步理解所发现的一些规律.习题五解答1.解:见下图①与一条线相连的点有:(在图中画成黑点,下同.)②与两条线相连的点有:③与三条线相连的点有:④与四条及四条以上的线相连的点有:2.解:①有0个奇点(即全部是偶点)的图形是:(1)、(5)、(10);②有2个奇点的图形是:(2)、(3)、(6)、(7);③有4个奇点的图形是:(4)、(9)有6个奇点的图形是:(8).④(1)~(10)是连通图形,(11)不是连通图形.3.解:①一笔画有:(1)、(5)、(10)、(2)、(3)、(6)、(7).②不能一笔画出的图形是:(4)、(8)、(9)、(11).4.解:①对;②对;③对;④对.5.解:(略)请看书.。

二年级下册数学试题奥数专题讲练:有趣的一笔画全国通用

二年级下册数学试题奥数专题讲练:有趣的一笔画全国通用

(★★★)
你能试着用一笔把下列图形画出来吗?如果可以,说说你是怎样画的?
(★★★)
下图中,说一说哪些点是偶点,哪些点是奇点,再画一画看看它们能不能一笔画出?
(★★★★)
下列图形能一笔画成吗?为什么?并试着画一画。

(★★★★★)
下图中的每一个图形,最少需要几笔画出?
(★★★★★)
下面的图形,要求画过的线段不能重复画,那么这个图形最少多少笔才能画出。

测试题
1.★★★奥迪车的标志是四个环扣在一起的样子:
这个图形能不能一笔画画出呢?
A.能B.不能
C.不确定D.以上答案都不对
2.★★★下图中有()个奇点?
A.7个B.6个C.5个D.4个
3.★★★★下列图形能一笔画成吗?下面说法正确的是()
A.能一笔画出,因为有偶数个奇点。

B.能一笔画出,因为没有奇点。

C.不能一笔画出,因为有6个奇点。

D.不能一笔画出,因为有4个奇点。

4.★★★★下面这座小屋子能不能一笔画出呢?下面说法正确的是( )
A.可以一笔画,我已经画出来啦!B.不可以一笔画,画不出来
C.不清楚可不可以一笔画D.以上答案都不对
5.★★★★★下图要()笔才能画出?
A.4B.2C.3D.1。

奥数-03一笔画+答案

奥数-03一笔画+答案
解析:图(1)有 8 个奇点,所以要 4 笔画出。图(2)有 12 个奇点,所以要 6 笔画出。图(3)能一笔画出。
【例 8】 如图 A 所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河 岸。问:一个散步者能否一次不重复地走遍这七座桥?
解析:通过画图,把一个实际问题转化为一个几何图形(如图 B),成为一笔画 的问题了,而图 B 中有 2 个奇点,所以能一笔画出。 练习四 1、右边各图至少要用几笔画完?
1
【例 1】 右图中,哪些点是偶点?哪些点是奇点? 解析:我们把一个图形上与偶数条线相连的点叫
做偶点,与奇数条线相连的点叫做奇点。奇点有 J、D、 H,偶点有 A、B、C、E、F、G、I。
【例 2】 下面图形能不能一笔画成?如果能,应该怎样画?
解析:图 1 能一笔画,因为图中只有两个奇点。图 2 也能一笔画,因为图中全 是偶点,图 3 不能一笔画,因为有 4 个奇点。
条线,将其改成成可一笔画的图形。
G
H
A
I
J
F
B
K
L
E
C
图b
D
【例 2】 右图是某展览厅的平面图,它由五个展室组 成,任两展室之间都有门相通,整个展览厅还有一个进 口和一个出口,问游人能否从入口进,从出口出,并且 一次不重复地穿过所有的门?
解析:将图形中的 6 个区域看成 6 个点,每个门看 成连结他们的线段,显然 6 个点都是偶点,所以游人能 一次不重复的走过所有的门。
2
【例 4】 右图中的线段表示小路,请你仔细观 察,认真思考,能够不重复地爬遍小路的是甲蚂 蚁还是乙蚂蚁?该怎样爬?
解析:要想不重复爬遍小路,需要图形能 一笔画出,由于图中有两个奇点,所以应该从 奇点出发才能一笔画出图形,所以甲蚂蚁能够。

二年级奥数知识点:一笔画问题

二年级奥数知识点:一笔画问题

二年级奥数知识点:一笔画问题一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了中、日、田几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,中和日可以一笔写成(没有重复的笔划),但写到田字,试来试去也没有成功.下面是他写的字样.(见下图)这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图)经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题:如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢?能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成?先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的线,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点●表示出来了.首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等.其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图)(1)两个点,一条线.每个点都只与一条线相连.(2)三个点.两个端点都只与一条线相连,中间点与两条线连.第一组的两个图都能一笔画出来.(但注意第(2)个图必须从一个端点画起)第二组(见下图)(1)五个点,五条线.A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连.(2)六个点,七条线.(日字图)A点与B点各与三条线相连,其他点都各与两条线相连.第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点).第三组(见下图)(1)四个点,三条线.三个端点各与一条线相连,中间点与三条线相连.(2)四个点,六条线.每个点都与三条线相连.(3)五个点,八条线.点O与四条线相连,其他四个顶点各与三条线相连.第三组的三个图形都不能一笔画出来.第四组(见下图)(1)这个图通常叫五角星.五个角的顶点各与两条线相连,其他各点都各与四条线相连.(2)由一个圆及一个内接三角形构成.三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线).(3)一个正方形和一个内切圆构成.正方形的四个顶点各与两条线相连,四个交点各与四条线相连.(四条线是两条线段和两条弧线).第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图)(1)这是品字图形,它由三个正方形构成,它们之间没有线相连.(2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连.第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来.进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名:把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点.提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查:从此表来看,猜想是对的.下面试提出几点初步结论:①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形.②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点).③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点);④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则:有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成.能够一笔画成的图形,叫做一笔画.用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去.看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见:①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.。

二年级奥数学习一笔画(1)

二年级奥数学习一笔画(1)

文档仅供参考文档仅供参考第10讲 学习一笔画【专题简析】一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复. 它是一种有趣的数学游戏. 那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?哪些图形可以一笔画成呢?一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点. 【例题1】一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况.思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连.① ② ③ ④(1) 与一条线段相连的点有:(2) 与两条线段相连的点有:(3) 与三条线段相连的点有:(4) 与四条线段相连的点有:归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点. 练习11.任意找一个平面图形,数一数图中有几个单数点,几个双数点.2.下面图形中有哪几个单数点?下面图形中有哪几个单数点?CBA D3.数一数下面图形中有几个双数点,分别是哪些点?分别是哪些点?F E D BA C HG【例题2】下面的图形能不能一笔画成?如果能,应该怎样画?应该怎样画?A C A BC (1) O (2)BD D EF A BCC (3)D EF 【思路导航】图(1)中A 、B 、C 、D 、O 五个点都是双数点,所以这个图形可以一笔画成.画时可以从任意一点出发. 图(2)中A 、C 、D 、F 四个点都是双数点,B 和E 两个点是单数点,所以这个图形也可以一笔画成. 画时要从单数点出发,最后回到另一个单数点. 图(3)中A 、D 是双数点,B 、C 、E 和F 四个点是单数点,单数点的个数超过了两个,这个图形不能一笔画成.练习21.下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由请说明理由(1) (2)2.下列图形能一笔画成吗?为什么?为什么?3.观察下列图形,哪个图形可以一笔画成?怎么画?哪个图形可以一笔画成?怎么画?【例题3】下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?那么两人谁先到达?BC A思路导航:题中要求两人必须走遍所有街道,最后到达C.仔细观察,可以发现图中有两个单数点:A、C. 这就是说:甲可以从A点出发,不重复地走遍所有街道,最后到达C.而B点是双数点,从B点出发的乙则不行. 因此,甲所走的路程正好等于所有街道的总和,而乙所走的路程一定比这个总和多,所以甲最先到达C.解:甲最先到达C.BA CBCA1.下图是某新村小区主干道平面图. 甲、乙两人同时分别从A 、B 出发,以相同的速度走遍所有的主干道,最后到达C.问谁能最先到达C?2. 甲、乙两辆车同时以相同的速度分别从A 、B 出发,哪辆车能最先行驶完所有的路程?哪辆车能最先行驶完所有的路程?A BC3.一只蚂蚁分别从A 点和B 点出发,爬遍所有的小路. 如果每次爬行的速度相同,那么从哪一点出发所用的时间少?出发所用的时间少?【例题4】下图(图1)能否一笔画成,若不能,你能用什么方法把它改成能够一笔画成的图形?你能用什么方法把它改成能够一笔画成的图形?(1) (2)思路导航:此图共有9个点,其中5个点是双数点,4个点是单数点,由于超过两个单数点,因此不能一笔画成. 要想改为一笔画成,关键在于减少单数点数目(把单数点的个数减少到0或2),所以只要在任意两个单数点间连上线,就可以一笔画,有时也可以将多余的两个单数点间的连线去掉,改成一笔画.解:图(1)有4个单数点,不能一笔画成. 要改成一笔画成,如图(2)1.将下图改成一笔画.1.2.3.在一个小区中有一些路,每个圆柱表示邮筒(如下图),邮递员叔叔每次送信时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给小区加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.【例题5】邮递员叔叔要给一个居民小区送信(如图),怎么走才能少走重复路,使每天走的路尽可能短?使每天走的路尽可能短?IAGECH D BF思路导航:图中一共有九个点,其中单数点有2个(点D 和点F ),因此能一次不重复走过所有的路,但必须从这两个单数点中的一个出发,再回到另一个单数点.解:邮递员叔叔只能从点D (或点F )出发,走过所有的路后,再回到点F(或点D) .1.下图是以个小区的中心花园的平面图,你能一次不重复地走完所有的路吗?入口和出口应该设在哪儿呢?设在哪儿呢?2.园林工人在花园里浇花,怎样才能不重复地走遍每条小路?怎样才能不重复地走遍每条小路?3. 下图是“儿童乐园”平面图,出、入口应分别设在哪里才能不重复地走遍每条路?可以怎么走?走?DC A B【拓展提高】【拓展提高】1、下面的图形能不能一笔画成?为什么?如果能,应该怎样画?应该怎样画?3、小明和玲玲玩“过木桥”的游戏(如下图),他们谁能不走重复的路?他们谁能不走重复的路? 小明小明玲玲玲玲4、在王大爷家的花园中有一些路(如下图),王大爷每次给花浇水时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给花园加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.间隔趣谈【专题简析】两根绳子结起来只要打一个结两根绳子结起来只要打一个结,,两根绳子结成一个圆需要打两个结两根绳子结成一个圆需要打两个结,,一根绳子剪4次被剪成了5段等等段等等,,这是日常生活中的比较特殊的问题这是日常生活中的比较特殊的问题. . 想要做好这类题想要做好这类题,,需要我们多动脑筋需要我们多动脑筋,,多动笔画画笔画画,,才能找到正确的答案才能找到正确的答案. . 这一讲是有关绳子打结和剪绳子的问题这一讲是有关绳子打结和剪绳子的问题. . 给绳子打结如果不练成一个圆不练成一个圆,,打结的次数比绳子的根数少1;如果结成1个圆个圆,,打结的次数与绳子的根数同样多样多. . 同样同样,,如果是剪绳子如果是剪绳子,,那么剪成的段数比剪得次数多1. 【例题1】小刚把4根绳子连起来成一条绳子,一共需要打几个结? 思路导航思路导航::解这种题解这种题,,可以画图解答可以画图解答. . 如图:如图:打结打结打结从上图中可以看出从上图中可以看出,4,4根绳子要结起来成一根绳子根绳子要结起来成一根绳子,,只要打3次结就可以了次结就可以了,,可见可见,,打结的次数比绳子的根数少1.解:解:4-1=34-1=34-1=3(个)(个)(个)答:小刚把4根绳子连起来成一条绳子根绳子连起来成一条绳子,,一共需要打3个结个结练习11.小明把5根绳子连起来成一根长绳根绳子连起来成一根长绳,,一共需要打几个结?一共需要打几个结?2.2.把把8根绳子连接起来成一根绳子根绳子连接起来成一根绳子,,一共需要打几个结?一共需要打几个结?【例题2】把几根绳子打7个结就能成一个圆?个结就能成一个圆?思路导航思路导航::根据题意根据题意,,如图所示:打了7个结个结,,就把一些绳子就把一些绳子 结成了一个圆结成了一个圆,,这些绳子应该有7根. 因此因此,,如果把绳子结成圆如果把绳子结成圆 时,绳子的根数与打结的次数相等绳子的根数与打结的次数相等. . 解:把7根绳子打7个结就能成一个圆个结就能成一个圆练习21.丽丽打了8个结就把一些绳子结成一个圆个结就把一些绳子结成一个圆,,你知道丽丽拿了几根绳子吗?你知道丽丽拿了几根绳子吗?2.小红拿10根绳子结成一个圆根绳子结成一个圆,,她打了几个结?她打了几个结?3.把20根绳子连接起来成一根绳子根绳子连接起来成一根绳子,,一共需要打几个结?如果要结成一个圆一共需要打几个结?如果要结成一个圆,,需要结几次?需要结几次?【例题3】一根10米长的绳子剪了4次,平均每段长多少米?平均每段长多少米?思路导航思路导航:10:10米长的绳子剪了4次,应该剪成了5段. 求平均每段长多少米求平均每段长多少米,,也就是要把10平均分成5份,求每份是多少求每份是多少. . 2510=¸(米)(米),,因此平均每段长2米解:解:4+1=54+1=54+1=5(段)(段)(段) 2510=¸(米)(米)答:平均每段长2米 练习31.一根8米长的绳子米长的绳子,,剪了3次,平均每段长多少米?平均每段长多少米?2.一根9分米长的绳子分米长的绳子,,剪了2次,平均每段长多少分米?平均每段长多少分米?3.一根绳子剪了5次后次后,,平均每段长3米,这根绳子原来长多少米?这根绳子原来长多少米?【例题4】一根10米长的绳子米长的绳子,,把它剪成2米长的一段米长的一段,,可以剪多少段?要剪几次?可以剪多少段?要剪几次? 思路导航思路导航::(1)10米长的绳子米长的绳子,,剪成每段2米长米长,,要求可剪多少段要求可剪多少段,,这里求10里面有几个2, 5210=¸(段)(段),,可以剪5段.(2)要求剪几次)要求剪几次,,可以用线段图分析:可以用线段图分析:2米10米从图中可以看出每一段剪一次从图中可以看出每一段剪一次,,剪最后一次还可以有2段,因此剪的次数比剪得段数少1. 即剪得次数即剪得次数==段数段数-1. -1.解:5210=¸(段)(段) 5-1=4 5-1=4(次)(次) 答:可以剪5段,要剪4次. 练习41.1.一根木材长一根木材长8米,把它锯成2米长的小段米长的小段,,可以锯成多少段?要锯几次?2.2.一根一根12米长的铁丝米长的铁丝,,把它剪成3米长的小段米长的小段,,可以剪成多少段?要剪多少次?可以剪成多少段?要剪多少次?3.3.一根一根25米长的电线米长的电线,,剪了4次,可以剪成多少段?平均每段长多少米?可以剪成多少段?平均每段长多少米?【例题5】小兰在桌上摆小棒】小兰在桌上摆小棒,,先摆了1根,然后每隔7厘米放1根,在距离第一根42厘米处厘米处,,共放了几根?共放了几根?思路导航思路导航::每隔7厘米放一根厘米放一根,42,42里有几个7就有几段就有几段,42,42,42÷÷7=6(段)(段),,小棒的根数比段数多1,6+16+1==7(根)(根). . 解 :42÷7+1=77+1=7(根)(根)(根)练习51.小灰灰把贝壳放在桌上.小灰灰把贝壳放在桌上,,先放一个先放一个,,然后每隔4厘米放一个厘米放一个,,从第1个到20厘米处厘米处,,一共可以放多少个?以放多少个?2.2.小红把几枝铅笔放在桌上小红把几枝铅笔放在桌上小红把几枝铅笔放在桌上,,每两枝之间相隔8厘米厘米,,从第一根到最后一根之间相隔64厘米厘米,,你知道放了几枝铅笔吗?你知道放了几枝铅笔吗?3.3.小美在桌上摆了小美在桌上摆了1颗珠子颗珠子,,然后每隔5厘米放1颗,在距第一颗35厘米处放的是第几颗?厘米处放的是第几颗?练习题答案练习题答案练习11.4个2.7个练习21.8根2.10个3.19个 20次 练习31.2米2.3分米分米3.18 3.18米 练习41.81.8÷÷2=4(段)(段)44-1=3(次)(次)2.122.12÷÷3=4(段)(段) 4 4-1=3(次)(次)3.4+13.4+1==5(段)(段) 25 25÷5=5(米)(米) 练习51.201.20÷÷4+14+1==6(个)(个)2.642.64÷÷8+18+1==9(枝)(枝)3.353.35÷÷5+15+1==8(颗)(颗)。

二年级奥数 学习一笔画(1)

二年级奥数 学习一笔画(1)

第10讲学习一笔画【专题简析】一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复. 它是一种有趣的数学游戏. 那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点.【例题1】一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况.思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连.①②③④(1)与一条线段相连的点有:(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点.练习11.任意找一个平面图形,数一数图中有几个单数点,几个双数点.2.下面图形中有哪几个单数点?B3.数一数下面图形中有几个双数点,分别是哪些点?B【例题2】下面的图形能不能一笔画成?如果能,应该怎样画?AC C (1) O (2)B DF (3)D【思路导航】图(1)中A 、B 、C 、D 、O 五个点都是双数点,所以这个图形可以一笔画成.画时可以从任意一点出发. 图(2)中A 、C 、D 、F 四个点都是双数点,B 和E 两个点是单数点,所以这个图形也可以一笔画成. 画时要从单数点出发,最后回到另一个单数点. 图(3)中A 、D 是双数点,B 、C 、E 和F 四个点是单数点,单数点的个数超过了两个,这个图形不能一笔画成.练习21.下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由(1)(2)2.下列图形能一笔画成吗?为什么?3.观察下列图形,哪个图形可以一笔画成?怎么画?【例题3】下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?C思路导航:题中要求两人必须走遍所有街道,最后到达C.仔细观察,可以发现图中有两个单数点:A、C. 这就是说:甲可以从A点出发,不重复地走遍所有街道,最后到达C.而B点是双数点,从B点出发的乙则不行. 因此,甲所走的路程正好等于所有街道的总和,而乙所走的路程一定比这个总和多,所以甲最先到达C.解:甲最先到达C.练习3A1.下图是某新村小区主干道平面图. 甲、乙两人同时分别从A 、B 出发,以相同的速度走遍所有的主干道,最后到达C.问谁能最先到达C?2. 甲、乙两辆车同时以相同的速度分别从A 、B 出发,哪辆车能最先行驶完所有的路程?B3.一只蚂蚁分别从A 点和B 点出发,爬遍所有的小路. 如果每次爬行的速度相同,那么从哪一点出发所用的时间少?【例题4】下图(图1)能否一笔画成,若不能,你能用什么方法把它改成能够一笔画成的图形?(1) (2)思路导航:此图共有9个点,其中5个点是双数点,4个点是单数点,由于超过两个单数点,因此不能一笔画成. 要想改为一笔画成,关键在于减少单数点数目(把单数点的个数减少到0或2),所以只要在任意两个单数点间连上线,就可以一笔画,有时也可以将多余的两个单数点间的连线去掉,改成一笔画.解:图(1)有4个单数点,不能一笔画成. 要改成一笔画成,如图(2) 练习41.将下图改成一笔画.1. 2.3.在一个小区中有一些路,每个圆柱表示邮筒(如下图),邮递员叔叔每次送信时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给小区加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.【例题5】邮递员叔叔要给一个居民小区送信(如图),怎么走才能少走重复路,使每天走的路尽可能短?AGH D BF思路导航:图中一共有九个点,其中单数点有2个(点D 和点F ),因此能一次不重复走过所有的路,但必须从这两个单数点中的一个出发,再回到另一个单数点.解:邮递员叔叔只能从点D (或点F )出发,走过所有的路后,再回到点F(或点D) . 练习51.下图是以个小区的中心花园的平面图,你能一次不重复地走完所有的路吗?入口和出口应该设在哪儿呢?2.园林工人在花园里浇花,怎样才能不重复地走遍每条小路?3. 下图是“儿童乐园”平面图,出、入口应分别设在哪里才能不重复地走遍每条路?可以怎么走?D CAB【拓展提高】1、下面的图形能不能一笔画成?为什么?如果能,应该怎样画?2、给下面的图形添一条线,使它能够一笔画成.3、小明和玲玲玩“过木桥”的游戏(如下图),他们谁能不走重复的路?小明玲玲4、在王大爷家的花园中有一些路(如下图),王大爷每次给花浇水时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给花园加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.间隔趣谈【专题简析】两根绳子结起来只要打一个结,两根绳子结成一个圆需要打两个结,一根绳子剪4次被剪成了5段等等,这是日常生活中的比较特殊的问题. 想要做好这类题,需要我们多动脑筋,多动笔画画,才能找到正确的答案. 这一讲是有关绳子打结和剪绳子的问题. 给绳子打结如果不练成一个圆,打结的次数比绳子的根数少1;如果结成1个圆,打结的次数与绳子的根数同样多. 同样,如果是剪绳子,那么剪成的段数比剪得次数多1.【例题1】小刚把4根绳子连起来成一条绳子,一共需要打几个结?思路导航:解这种题,可以画图解答. 如图:打结打结打结从上图中可以看出,4根绳子要结起来成一根绳子,只要打3次结就可以了,可见,打结的次数比绳子的根数少1.解:4-1=3(个)答:小刚把4根绳子连起来成一条绳子,一共需要打3个结练习11.小明把5根绳子连起来成一根长绳,一共需要打几个结?2.把8根绳子连接起来成一根绳子,一共需要打几个结?【例题2】把几根绳子打7个结就能成一个圆?思路导航:根据题意,如图所示:打了7个结,就把一些绳子结成了一个圆,这些绳子应该有7根. 因此,如果把绳子结成圆时,绳子的根数与打结的次数相等.解:把7根绳子打7个结就能成一个圆练习21.丽丽打了8个结就把一些绳子结成一个圆,你知道丽丽拿了几根绳子吗?2.小红拿10根绳子结成一个圆,她打了几个结?3.把20根绳子连接起来成一根绳子,一共需要打几个结?如果要结成一个圆,需要结几次?【例题3】一根10米长的绳子剪了4次,平均每段长多少米?思路导航:10米长的绳子剪了4次,应该剪成了5段. 求平均每段长多少米,也就是要把10平均分成5份,求每份是多少. 210=÷(米),因此平均每段长2米5解:4+1=5(段)210=÷(米)5答:平均每段长2米练习31.一根8米长的绳子,剪了3次,平均每段长多少米?2.一根9分米长的绳子,剪了2次,平均每段长多少分米?3.一根绳子剪了5次后,平均每段长3米,这根绳子原来长多少米?【例题4】一根10米长的绳子,把它剪成2米长的一段,可以剪多少段?要剪几次?思路导航:(1)10米长的绳子,剪成每段2米长,要求可剪多少段,这里求10里面有几个2, ÷(段),可以剪5段.10=52(2)要求剪几次,可以用线段图分析:2米从图中可以看出每一段剪一次,剪最后一次还可以有2段,因此剪的次数比剪得段数少1.即剪得次数=段数-1.解:5÷(段) 5-1=4(次)10=2答:可以剪5段,要剪4次.练习41.一根木材长8米,把它锯成2米长的小段,可以锯成多少段?要锯几次?2.一根12米长的铁丝,把它剪成3米长的小段,可以剪成多少段?要剪多少次?3.一根25米长的电线,剪了4次,可以剪成多少段?平均每段长多少米?【例题5】小兰在桌上摆小棒,先摆了1根,然后每隔7厘米放1根,在距离第一根42厘米处,共放了几根?思路导航:每隔7厘米放一根,42里有几个7就有几段,42÷7=6(段),小棒的根数比段数多1,6+1=7(根).解 :42÷7+1=7(根)答:共放了7根.练习51.小灰灰把贝壳放在桌上,先放一个,然后每隔4厘米放一个,从第1个到20厘米处,一共可以放多少个?2.小红把几枝铅笔放在桌上,每两枝之间相隔8厘米,从第一根到最后一根之间相隔64厘米,你知道放了几枝铅笔吗?3.小美在桌上摆了1颗珠子,然后每隔5厘米放1颗,在距第一颗35厘米处放的是第几颗?练习题答案练习11.4个2.7个练习21.8根2.10个3.19个 20次练习31.2米2.3分米3.18米练习41.8÷2=4(段)4-1=3(次)2.12÷3=4(段) 4-1=3(次)3.4+1=5(段) 25÷5=5(米)练习51.20÷4+1=6(个)2.64÷8+1=9(枝)3.35÷5+1=8(颗)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二年级一笔画问题习题及答案
1.下面的各个小图形都是由点和线组成的。

请你仔细观察后回答:
①与一条线相连的有哪些点?
②与二条线相连的有哪些点?
③与三条线相连的有哪些点?
④与四条线或四条以上的线相连的有哪些点?
2.若把与奇数条线相连的点叫做奇点,把与偶数条线相连的点叫偶点,那么请你回答:
①有0个奇点(即全部是偶点)的图形有哪些?
②有2个奇点的图形有哪些?
③有4个或4个以上奇点的图形有哪些?
④连通图形有哪些?不连通图形有哪些?
3.如果笔在纸上连续不断、又不重复地一笔画成的图形叫一笔画,自己动笔实际画画看,然后回答:
①哪些图形能够一笔画成?
②哪些图形不能一笔画成?
4.把以上各向联系起来看,进行归纳,找出规律然后回答:
①如果把各部分连结在一起的图形叫做连通图形,那么能一笔画出的图形必定是连通图形;而不是连通图形必定不能一笔画出。

这句话说得对吗?
②有0个奇点(即全部是偶点)的连通图形一定可以一笔画出来(画时可以以任一点为起点,最后必能回到该点),这句话对吗?
③只有两个奇点的连通图形也能一笔画出来,但要注意画时必须以一个奇点为起点,而以另一个奇点为终点,这句话对吗?
④奇点个数超过两个的图形不能一笔画出来。

这句话对吗?
5.从画图过程的角度,进一步理解所发现的一些规律。

解答
1.解:见下图
①与一条线相连的点有:(在图中画成黑点,下同。


②与两条线相连的点有:
③与三条线相连的点有:
④与四条及四条以上的线相连的点有:
2.解:①有0个奇点(即全部是偶点)的图形是:(1)、(5)、(10);
②有2个奇点的图形是:
(2)、(3)、(6)、(7);
③有4个奇点的图形是:(4)、(9)
有6个奇点的图形是:(8)。

④(1)~(10)是连通图形,(11)不是连通图形。

3.解:①一笔画有:
(1)、(5)、(10)、(2)、(3)、(6)、(7)。

②不能一笔画出的图形是:
(4)、(8)、(9)、(11)。

4.解:①对;②对;③对;④对。

5.解:(略)。

相关文档
最新文档