初二数学下期期未试题7.doc
八年级数学下期末考试卷附答案
八年级数学下期末考试卷附答案一、选择题每小题3分,共24分1.下列关于的方程:① ;② ;③ ;④ ;⑤ = -1,其中一元二次方程的个数是A.1B.2C.3D.42.已知α为锐角,且sinα-10°=22,则α等于A.45°B.55°C.60°D.65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变4.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有两个不相等的实数根,则整数m的最小值为A.﹣3B.﹣2C.﹣1D.2第4题图第5题图第6题图5.如图,点A,B,C,D的坐标分别是1,7,1,1,4,1,6,1,以点C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.6,0B.6,3C.6,5D.4,26.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线虚线剪下如图1,再打开,得到如图2所示的小菱形的面积为A. B. C. D.7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为A.2B.﹣2C.3D.﹣38.观察二次函数y=ax2+bx+ca≠0的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④nan+b﹣b正确结论的个数是A. 4个B. 3个C. 2个D. 1个第7题图第8题图第12题图第13题图二、填空题每小题3分,共21分9.计算:﹣14+ ﹣4cos30°=.10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数的图象无公共点,则这个反比例函数的表达式是只写出符合条件的一个即可.11.若关于x的一元二次方程m-2x²+2x-1=0有实数根,求m的取值范围。
初二数学期未试卷及答案
一、选择题(每题5分,共25分)1. 下列数中,是负数的是()A. -3B. 0C. 3D. -3.52. 下列各数中,绝对值最小的是()A. -1B. 0C. 1D. -23. 下列方程中,解为x=2的是()A. 2x - 1 = 3B. 2x + 1 = 3C. 2x - 1 = 1D. 2x + 1 = 14. 下列图形中,是轴对称图形的是()A. 长方形B. 等腰三角形C. 正方形D. 平行四边形5. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)二、填空题(每题5分,共25分)6. 有理数-5的相反数是______。
7. 计算:-3 + 4 - 2 = ______。
8. 如果a = -1,那么|a|的值是______。
9. 直线y = 2x + 1的斜率是______。
10. 在三角形ABC中,∠A = 90°,AB = 6cm,AC = 8cm,那么BC的长度是______cm。
三、解答题(共50分)11. (10分)解方程:3x - 5 = 2x + 1。
12. (10分)计算下列各式的值:(1)(a - b)² + 2ab - (a + b)²(2)(x + 2)(x - 3)13. (10分)已知长方形的长是8cm,宽是5cm,求这个长方形的面积。
14. (10分)已知等腰三角形的底边长为10cm,腰长为12cm,求这个等腰三角形的高。
15. (10分)在直角坐标系中,点P(-3,4)到点Q(2,-1)的距离是多少?四、应用题(共15分)16. (10分)某商店举行促销活动,原价为200元的商品,打八折出售,问现价是多少?17. (5分)一个长方体的长、宽、高分别为4dm、3dm、2dm,求这个长方体的体积。
答案一、选择题1. A2. B3. A4. C5. C二、填空题6. 57. 08. 19. 210. 10三、解答题11. 3x - 5 = 2x + 13x - 2x = 1 + 5x = 612. (1)(a - b)² + 2ab - (a + b)²= a² - 2ab + b² + 2ab - a² - b² = 0(2)(x + 2)(x - 3)= x² - 3x + 2x - 6= x² - x - 613. 长方形的面积 = 长× 宽= 8cm × 5cm= 40cm²14. 等腰三角形的高 = (底边长× 2) / 腰长= (10c m × 2) / 12cm= 5cm15. 点P到点Q的距离= √[(x₂ - x₁)² + (y₂ - y₁)²]= √[(2 - (-3))² + (-1 - 4)²]= √[5² + (-5)²]= √(25 + 25)= √50= 5√2四、应用题16. 现价 = 原价× 折扣= 200元× 0.8= 160元17. 长方体的体积 = 长× 宽× 高= 4dm × 3dm × 2dm= 24dm³。
初二数学下期末试卷(附答案)
初二数学下期末试卷(附答案) 初二数学下期末试卷(附答案)一、选择题1.直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是()A。
a^2+b^2=2h^2B。
ab=h^2C。
1/2ab=hD。
2ab=h2.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为()A。
7B。
6C。
5D。
43.已知函数y=(x+1)/(x-1),则自变量x的取值范围是()A。
-1<x<1B。
x≥-1且x≠1C。
x≥-1D。
x≠14.对于函数y=2x+1下列结论不正确是()A。
它的图象必过点(1,3)B。
它的图象经过一、二、三象限C。
当x>1时,y>2D。
y值随x值的增大而增大5.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同。
若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A。
众数B。
平均数C。
中位数D。
方差6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲。
如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形。
设直角三角形较长直角边长为a,较短直角边长为b。
若ab=8,大正方形的面积为25,则小正方形的边长为()A。
9B。
6C。
4D。
37.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A。
-2B。
-1+2C。
-1-2D。
1-28.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A。
6B。
12C。
24D。
不能确定9.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色 | 黄色 | 绿色 | 白色 | 紫色 | 红色 |数量(件) | 120 | 150 | 230 | 75 | 430 |经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A。
八年级下学期期末数学试卷(含答案)
八 年 級 数 学 试 卷(时量:90分钟,满分:100分)亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,仔细、仔细、再仔细!祝你成功! 一、填空题(每小题3分,共24分) 1.(-6)2的平方根是 . 2.若x 2=1,则=3x .3.已知一次函数2+=kx y ,请你补充一个条件: .使y 随x 的增在而减小.4.正比例函数kx y -=的图象经过原点和第一、三象限,则直线3+=kx y 不经过 象限.5. 如图,AB =DC ,AD =BC ,E 、F 是DB 上两点且BE =DF ,若∠AEB =100°,∠ADB =30°,则∠BCF = .6.已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,这时甲、乙两人相距 .7. 有人做过掷硬币的实验,掷一枚一元硬币4040次,结果正面(有国徽的一面)向上的次数为2048次,则正面向上的频率是 . (保留两位有效数字)8.如图,在直角坐标系中,点A 的坐标为(1,3),线段OA 绕O 点逆时钟旋转90°到达OB ,这时B 点的坐标是 . 二、选择题(每小题3B第5题图第8题图x 第11题图A B C D第12题图分,共24分.每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项代号填在相应的位置)9.在下列各数0,53,3.14,π,0.021021012…,34.120120012…,3中无理数的个数有( )A. 1个B. 2个C. 3个D. 4个10.已知a<0,则223aa-等于()A. -2aB. 2aC. 4aD. -4a11.已知矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(-2,3),则矩形的面积是( )A. -6平方单位B. 3平方单位C. -3平方单位D. 6平方单位12.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点.用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )13.若函数22(4)ymx m=---的图象经过原点,且y随x的增大而增大,则( )A. m=2B. m=-2C. m=±2D. 以上答案都不对14.图中,不能由旋转得到的图形是( )A B C D第14题图15.下列条件中,不能判定△ABC≌△A′B′C′的是( )A. AB=A′B′,∠A=∠A′,AC=A′C′B. AB=A′B′,∠A=∠A′,∠B=∠B′C. AB=A′B′,∠A=∠A′,∠C=∠C′D. AB=A′B′,∠B=∠B′,AC=A′C′16.直角三角形中斜边上的中线长为2.5cm,周长为12cm,则三角形的面积为 ( )A. 3cm2B. 6cm2C. 12cm2D. 24cm2三、解答题(本大题8个小题,共52分)17.(5分)如图,作出△ABC关于点O旋转180°的图形.(不写作法,保留作图痕迹)B第17题图18.(5分)欢欢家装修客厅,铺地面砖32.4平方米,用去正方形的地面砖90块,请你算出所用地面砖的边长.9.(6分)如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.第19题图20.(6分)新邵佳惠超市采购部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).(1)求所获销售利润y(元)与x(箱)之间的函数关系式;(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?21.(6分)如图,要在资江赛双清公园内湖的两岸A、B两间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离,请你用学过的数学知识按以下要求设计一种测量方案.(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示).第21题图22.(6分)某中学在一次科技知识测试中,抽取部分学生成绩(分数为整数,满分100分)将所得得数据整理后,画出频率分布直方图,已知图中从左到右的三个小组的频率分别为0.04,0.06,0.82,第二小组的频数为3.(1)本次测试中抽取的学生有多少人?(2)分数在89.5~100.5这一组的频率是多少?有多少人?(3)若这次成绩在80分以上(含80分)为优秀,则优秀率不低于多少?23.(8分)一次函数y=kx+b的图象过A(6,-4),B(3,0).(1)求解析式;(2)求图象与x轴,y轴的交点坐标,并画出图象;(3)求图象与坐标轴两交点B、C之间的距离.24.(10分)如图1,正方形ABCD中,E是BC的中点,EF⊥AE交∠DCE外角的平分线于F.(1)求证:AE=EF;(2)如图2,当E是BC上任意一点,而其它条件不变,AE=EF是否仍然成立,若成立,请证明,若不成立,请说明理由.B CE-1第24题图B CE第24题图-2B CE第24题图-1二00九年下学期期末考试八年级数学试卷参考答案及评分标准一、(本题8个小题,每个小题3分,满分24分)二、(本题共8个小题,每个小题3分,满分24分)三、(本题有8个小题, 共52分) 17.略18. 0.6 (5分)19. 12 (6分) 20.(1)求出y = =-0.8x +2500 (2分) (2) 因为16×20%<20×25%,即乙种酸奶每箱的销售利润大于甲种酸奶的销售利润,因此最大限度的购进乙种酸奶时所获销售利润最大,即购进乙种酸奶300箱,(4分) 则250163002010000=⨯-=x (箱)∴当x =250时,y 值最大,此时y =-0.8×250+2500=2300(元). (5分) 答:略 (6分) 21.(1)、(2)、(3) 每小题各2分,共6分 22. (1)50人,(2)0.08,4人, (3)90%,每小题各2分,共6分.23.(1)由⎩⎨⎧+=+=-b k b k 3064解得⎪⎩⎪⎨⎧=-=434b k因此434+-=x y (2分)(2) B (3,0),C (0,4) (4分) 图象:略 (6分) (3) 5 (8分) 24.(1)取AB 的中点H ,连结EH ;(2分) ∵ABCD 是正方形, AE ⊥EF ; ∴∠1+∠AEB =90°, ∠2+∠AEB =90° ∴∠1=∠2 (3分) ∵BH =BE ,∠BHE =45°,且∠FCG =45°,∴∠AHE =∠ECF =135°,AH =CE (4分)∴△AHE≌△ECF∴AE=EF (6分) (2)成立 (7分) 提示:在AB上取BH=BE,连结EH,仿(1)可证出AE=EF. (10分)。
八年级下学期数学期末试卷【含答案】
八年级下学期数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()。
A. a√2B. a/2C. a√3D. 2a2. 下列函数中,哪一个不是二次函数?()A. y = 2x^2 + 3x + 1B. y = x^2 4x + 4C. y = 3/xD. y = x^2 2x + 13. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()。
A. 60cm^2B. 78cm^2C. 40cm^2D. 65cm^24. 在直角坐标系中,点(3, 4)关于原点的对称点是()。
A. (-3, -4)B. (3, -4)C. (-3, 4)D. (4, 3)5. 下列哪一个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)1. 若两个角是对顶角,则这两个角相等。
()2. 任何两个等边三角形的面积相等。
()3. 一元二次方程的解可能是两个相等的实数根。
()4. 两个平行线的斜率一定相等。
()5. 若一个四边形的对角线互相平分,则这个四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为2,公差为3,则第10项是______。
2. 若sinA = 1/2,则角A的度数是______度。
3. 两个平行线的距离是______。
4. 若一个圆的半径为r,则这个圆的周长是______。
5. 两个互质的数的最小公倍数是______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述一元二次方程的解的判别式。
3. 请简述勾股定理的内容。
4. 请简述相似三角形的性质。
5. 请简述圆的标准方程。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是6cm,求这个长方形的面积。
2. 已知sinA = 3/5,求cosA的值。
3. 一个等差数列的前5项和为35,第5项为17,求这个等差数列的首项和公差。
八年级数学下册期末试卷(带答案)
八年级数学下册期末试卷(带答案)每个学期快结束时,学校往往以试卷的形式对各门学科进行该学期知识掌握的检测,这便是期末考试。
接下来小编为大家精心准备了八年级数学下册期末试卷,希望大家喜欢!一、选择题(本大题共10小题,每题3分,共30分)1.下列根式中不是最简二次根式的是( )A. B. C. D.2.下列各组数中,能构成直角三角形的三边的长度是( )A.3,5,7B.C. 0.3,0.5,0.4D.5,22,233. 正方形具有而矩形没有的性质是( )A. 对角线互相平分B. 每条对角线平分一组对角C. 对角线相等D. 对边相等4.一次函数的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.AC,BD是□ABCD的两条对角线,如果添加一个条件,使□ABCD为矩形,那么这个条件可以是( )A. AB=BCB. AC=BDC. AC⊥BDD. AB⊥BD6.一次函数,若,则它的图象必经过点( )A. (1,1)B. (—1,1)C. (1,—1)D. (—1,—1)7.比较,,的大小,正确的是( )A. S2 ,则S3 >S1 ③若S3=2S1,则S4=2S2④若S1-S2=S3-S4,则P点一定在对角线BD上.其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).三、解答题(本大题共46分)19. 化简求值(每小题3分,共6分)(1) - × + (2)20.(本题5分)已知y与成正比例,且时, .(1)求y与x之间的函数关系式;(2)设点( ,-2)在(1)中函数的图象上,求的值.21.(本题7分)如图,正方形纸片ABCD的边长为3,点E、F 分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,求EF的长.22.(本题8分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:(1)这辆汽车往、返的速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.23.(本题10分)某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班 10 10 6 10 7乙班 10 8 8 9 8丙班 9 10 9 6 9根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:班级平均分众数中位数甲班 8.6 10乙班 8.6 8丙班 9 9(2)参照上表中的数据,你推荐哪个班为区级先进班集体?并说明理由.(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为区级先进班集体?解:(1)补全统计表;(3)补全统计图,并将数据标在图上.24.(本题10分)已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由;(3)在(2)的条件下,若∠BAC=30°,∠ACD=45°,求四边形BNDM的各内角的度数.八年级数学试卷参考答案及评分标准一、选择题:(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C C B B B D A C A D二、填空题:(每小题3分,共24分)题号 11 12 13 14 15 16 17 18答案≥23 -7 10 12 >1注:第12题写不扣分.三、解答题(46分)19、(1) …………3分(2)16-6 …………3分20、解:(1) 设y=k(x+2)(1+2)k=-6k=-2 …………3分(2) 当y=-2时-2a-4=-2a=-1 ………………5分21、解∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3. 根据折叠的性质得:EG=BE=1,GF=DF. ……………1分设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2. 在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:. ………………6分∴DF= ,EF=1+ ……………7分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,往、返速度不同.…………………2分(2)设返程中与之间的表达式为,则解得…………………5分.( )(评卷时,自变量的取值范围不作要求) 6分(3)当时,汽车在返程中,这辆汽车从甲地出发4h时与甲地的距离为48km. ……………8分班级平均分众数中位数甲班 10乙班 8丙班 8.623、解:(1)……………3分(2)以众数为标准,推选甲班为区级先进班集体.阅卷标准:回答以中位数为标准,推选甲班为区级先进班集体,同样得分.……………5分)(3) (分)补图略……………(9分)推荐丙班为区级先进班集体……………(10分)24、(1)∵M0=N0,OB=OD∴四边形BNDM是平行四边形…………………3分(2) 在Rt△ABC中,M为AC中点∴BM= AC同理:DM= AC∴BM=DM∴平行四边行BNDM是菱形…………………7分(3) ∵BM=AM∴∠ABM=∠BAC=30°∴∠BMC=∠ABM+∠BAC =60°同理:∠DMC=2∠DAC=90°∴∠BMD=∠BMC+∠DMC=90°+60°=150°∴∠MBN=30°∴四边形BNDM的各内角的度数是150°,30°,150°,30°.……………10分。
苏科初二数学期末下学期考试试卷及答案
苏科初二数学期末下学期考试试卷及答案一、解答题1.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组 49.5~59.5 59.5~69.569.5~79.5 79.5~89.5 89.5~100.5 合计 频数 2a2016450频率0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a = ,b = ; (2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少. 2.解下列方程:(1)9633x x =+- ; (2)241111x x x -+=-+ . 3.已知:如图,在 ABCD 中,点E 、F 分别在AD 、BC 上,且∠ABE =∠CDF . 求证:四边形BFDE 是平行四边形.4.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.5.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.6.如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.7.解方程:224124x x x +-=-- 8.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形9.某中学八年级共有10个班,每班40名学生,学校对该年级学生数学学科某次学情调研测试成绩进行了抽样分析,请按要求回答下列问题:(1)若要从全年级学生中抽取40人进行调查,你认为以下抽样方法中最合理的是 . ①随机抽取一个班级的40名学生的成绩; ②在八年级学生中随机抽取40名女学生的成绩; ③在八年级10个班中每班各随机抽取4名学生的成绩.(2)将抽取的40名学生的成绩进行分组,绘制如下成绩频数分布表: ①m = ,n = ;②根据表格中的数据,请用扇形统计图表示学生成绩分布情况.10.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x (单位:小时)分成了4组,A :0≤x <2;B :2≤x <4;C :4≤x <6;D :6≤x <8,试结合图中所给信息解答下列问题:(1)这次随机抽取了 名学生进行调查;扇形统计图中,扇形B 的圆心角的度数为 .(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名? 11.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?12.已知关于x 的一元二次方程x 2+(2m ﹣1)x+m 2=0有两个实数根x 1和x 2. (1)求实数m 的取值范围; (2)当x 12﹣x 22=0时,求m 的值.13.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =; (2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长. 14.如图1,△ABC 中,CD ⊥AB 于D ,且BD:AD:CD=2:3:4, (1)试说明△ABC 是等腰三角形; (2)已知ABCS=160cm²,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止,设点M 运动的时间为t(秒), ①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.15.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =; (2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)a =8,b =0.08;(2)作图见解析;(3)14. 【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可; (2)直接根据(1)中的结果补全频数分布直方图即可; (3)根据89.5~100.5这一组的人数及概率公式求解即可. 【详解】解:(1)由题意得a =50-2-20-16-4=8,b =1-0.04-0.16-0.40-0.32=0.08; (2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.2.(1)35x ;(2)原方程无解【分析】(1)分式方程两边同乘以(3+x)(3﹣x)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即得结果.【详解】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=35,检验:当x=35时,(3+x)(3﹣x)≠0,∴x=35是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴x=﹣1是增根,原方程无解.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键.3.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.4.(1)50;(2)8,5;(3)108°;(4)240人.【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【详解】(1)12÷24%=50人故答案为50.(2)a=50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×1550=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.5.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.6.(1)见解析;(2)当∠A=90°时,FG⊥FH.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.【详解】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=12BD,FH=12CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG 是△EDB 的中位线,FH 是△BCE 的中位线, ∴FH ∥AC ,FN ∥AB , ∵FG ⊥FH , ∴∠A =90°,∴当∠A =90°时,FG ⊥FH . 【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键. 7.-1 【解析】 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】去分母得:(x+2)2-4=x 2-4, 解得:x=-1,经检验x=-1是分式方程的解. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 8.(1)见解析;(2)见解析 【解析】 【分析】(1)证出△ABE ≌△CDF 即可求解; (2)证出AE 平行CF ,AE CF =即可/ 【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD ∵平行四边形ABCD ∴∠ABE=∠CDF,AB=CD ∴△ABE ≌△CDF ∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键. 9.(1)③;(2)①16,0.2;②见解析【分析】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,所以可得出答案;(2)①用40减去A类,C类和D类的频数,即可得到m值,用C类的频数除以40即可得到n值;②根据频数分布表画出扇形统计图即可.【详解】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,故答案为:③;(2)①m=40-12-8-4=16,n=840=0.2;②扇形统计图如下:.【点睛】本题考查了数据的整理和应用,由图表获取数据是解题关键.10.(1)200;72° (2)见解析(3)1300名【分析】(1)由D组人数及其所占百分比可得总人数;用360°乘以B所占的百分比即可求出扇形B的圆心角的度数;(2)根据各组人数之和等于总人数求出A组人数,从而补全统计图;(3)用该校的总人数乘以每周阅读时间不少于4小时的学生所占的百分比即可.【详解】解:(1)本次随机抽查的学生人数为:60÷30%=200(名),扇形B的圆心角的度数为:360°×40200=72°;故答案为:200,72°;(2)A组人数为:200﹣(40+70+60)=30(人),补全图形如下:(3)根据题意得:2000×7060200+=1300(名),答:估计每周阅读时间不少于4小时的学生共有.【点睛】本题考查了频数分布直方图,扇形图,用样本估计总体等知识,总体难度不大,根据直方图和扇形图提供的公共信息D组信息得到样本容量是解题关键.11.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x千克,则第二次购进这种商品(x+5)千克,由题意,得5007505x x=+,解得x=10.经检验:x=10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.12.(1)m≤14;(2)m=14.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围;(2)由x 12-x 22=0得x 1+x 2=0或x 1-x 2=0;当x 1+x 2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m 的值.【详解】解:(1)由题意有△=(2m-1)2-4m 2≥0,解得m≤14, 即实数m 的取值范围是m≤14; (2)由两根关系,得根x 1+x 2=-(2m-1),x 1•x 2=m 2,由x 12-x 22=0得(x 1+x 2)(x 1-x 2)=0,若x 1+x 2=0,即-(2m-1)=0,解得m =12, ∵12>14, ∴m =12不合题意,舍去, 若x 1-x 2=0,即x 1=x 2 ∴△=0,由(1)知m =14, 故当x 12-x 22=0时,m =14. 【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟练掌握公式正确计算是本题的解题关键.13.(1)详见解析;(2)详见解析;(3)20【分析】(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;(2)由邻边相等可判断四边形BGFD 是菱形;(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值.【详解】(1)证明:90ABC ∠=︒,BD 为AC 的中线,12BD AC ∴= //AG BD ,BD FG =,∴四边形BDFG 是平行四边形,CF BD ⊥CF AG ∴⊥ 又点D 是AC 的中点12DF AC ∴= BD DF ∴=.(2)证明:由(1)知四边形BDFG 是平行四边形又BD DF =BDFG ∴是菱形(3)解:设GF x =则13AF x =-,2AC x =,6CF =,在Rt ACF ∆中,222CF AF AC +=2226(13)(2)x x ∴+-=解得5x =4520BDFG C ∴=⨯=菱形.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.14.(1)证明见详解;(2)①5或6;②9或10或496. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即4<t≤10时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC=12×5x×4x=160cm 2,而x >0, ∴x=4cm ,则BD=8cm ,AD=12cm ,CD=16cm ,AB=AC=20cm .由运动知,AM=20-2t ,AN=2t ,①当MN∥BC时,AM=AN,即20-2t=2t,∴t=5;当DN∥BC时,AD=AN,∴12=2t,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②存在,理由:Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10当DE=DM,则2t-8=10,∴t=9;当ED=EM,则点M运动到点A,∴t=10;当MD=ME=2t-8,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=6,在Rt△AEF中,EF=8;∵BM=2t,BF=BD+DF=8+6=14,∴FM=2t-14在Rt△EFM中,(2t-8)2-(2t-14)2=82,∴t=496.综上所述,符合要求的t值为9或10或496.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.15.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.【分析】(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.【详解】解:(1)证明:∵CBP ∆和APQ ∆为等边三角形,∴AP=PQ ,CP=BP ,∠CPN=∠APQ=60°,∴∠CPA=∠BPQ ,∴△ACP ≌△QBP (SAS )∴AC=BQ ;(2)∵△ACP ≌△QBP ,∴3BQ AC ==,CAP BQP ,AP AQ =, ∵APQ ∆为等边三角形,∴60PAQ AQP , ∵30CAB ∠=︒ ∴BAQ AQBCAQ CAB AQP BQP 603060CAP BQP 90=︒∴90ABQ ∠=︒, ∴2222435APAQ AB BQ ; (3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大值,由(1)得△ACP≌△QBP,∴BQ=CA=3,∠CAP=∠Q,∵△APQ为等边三角形,∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.∴∠CAB=120°,AP=,此时∠CAB=120°.故AP最大值时,7【点睛】本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ是解题关键;(2)中能求得∠=︒是解题关键;(3)中能想到AQ有最大值,即AP有最大值是解题关键.ABQ90。
初二年级下学期期末考试数学试题附答案
八年级第二学期期末数学检测卷一、选择题(每题 4分,共40分) 1 .下列命题中,是真命题的是()A .若 a<b ,则—3a<— 3b C .位似图形一定是相似图形,相似图形不一定是位似图形D .三角形的外角大于任何一个内角a 2— 4ab+4b 2= (a — 2b ) 2拼成一个矩形,通过计算两个图形的阴影部分面积,验证了一个等式,A . (a+b ) 2=a 2+2ab+b 2 22BatchDoc Word 文档批量处理工具B . (a — b ) 2=a 2 — 2ab+b 22. F 列变形是因式分解的是(3.4. C . (x+2 ) 已知方程组A . a>3 不等式组 2(x+1) =X 2+3X +2 x 2— 9— 6x= ( x+3)(x — 3) — 6x23,4 80.5x 10.3x 果为 ()5x 1A .3x 2如图 1,在边长为 不改变分式 6 . 九的解满足x>2y ,那么aa 的取值范围是(B . a> —3a<3a< — 3的最小整数解为( 2x,的值,把它的分子和分母中各项的系数都化为整数,则所得的结25x 10 B .3x 202x 1 C.-3x 2x 2 D .3x 20a 的正方形中挖掉一个边长为b 的小正方形(a>b ),把余下的部分剪B .若上=0,则x=22A . 6x 2y 2=3xy 2xy?则这个等式是D . (a+2b) (a—2b) =a2+ab —2b2CD?的长为()2 2a 2b B .ab10 .对于两组数据 A , B ,如果S A 2>S B 2,且X A =X B ,则()A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些二、填空题(每题 4分,共32分)11.分解因式:X 2- 2xy+y 2— 16= _____________X12 .如果3x=4y ,那么一= _______y14 .如图 3, / ABC= / D=90° , AC=9cm , BC=6cm ,则当 BD= ____ 时,△ ABC? CDB .7.图1如图2所示,在△ ABC 中, D 为AC 边上一点,/DBC= / A , BC=6 , AC=3,贝U两个相似菱形边长的比是那么它们的面积比是9. 化简1: 2a 2b 2ab1:C . 1: 816ab b 2竺爲的最后结果是ab aC . a 2D . a - 2b13 .使分式方程X 2 9产生增根的k 的值为BatchDoc Word 文档批量处理工具15. 顺次连接△ ABC 各边中点 D , E , F ,贝U S A DEF : S SBC =位似图形吗? _______ .(填 是”、不是”或 不确定”16. 如图4,为了测量某建筑物的高 AB ,在距离B 点35米的D 处安置测角仪,?测得A 点的仰角 为45°若仪器CD 高为1.4米,则AB 的长为 ______________ 米.17. 如图 5,已知/ A=80° / BOC=150° ,且/ ABO= / CBE , / ACO=? / BCD , ?则/ CDE的度数是 ______ .18•小明拿出4元钱去买本子和铅笔,他买了价格为0. 5元的本子5本后,最后还可以买4支铅笔,则铅笔的价格最多可能是 ___________ 元. 三、解答题(23〜25题每题8分,其余每题6分,共48分)图5;△ DEF 与厶ABC 是19•解不等式组3 2x 0, x 2(x 1),在数轴上表示解得并写出它的整数解.0,20.化简X 2 1 X 2 1 L 山,并用你喜欢的一个x 12 X 的值求代数式的值.22. 如图,已知AC // ED, EB 平分/ AED,/ 1 = / 2,求证:AE // BD .23. 如图,已知在矩形ABCD中,AB : BC=1 : 2,点E在边AD上,且3AE=ED .求证:△ ABC EAB .24. 某中学射击队要从甲,乙,丙三位选手中选拨一名参加某项比赛,选拔时在相同的条21.解方程:3x 4=1.4 3x件下各射击10次,各人命中的环数如下:甲:10 10 9 10 9 9 9 9 9 9乙:10 10 10 9 10 8 8 10 8 8丙:10 9 8 10 8 9 10 9 9 9求他们三人射击成绩的平均数及方差,并判断谁的成绩稳定. (?平均数精确到整数)25. 某班同学参加公民道德知识竞赛,将竞赛所得成绩(得分取整数)进行整理后分成五组,并绘制成频数分布直方图,如图所示,请结合直方图提供的信息,?解决下列问题:(1 )该班共有多少名学生?(2) 60.5〜70.5这一分数段的频数,频率分别是多少?(3 )这次竞赛成绩的中位数落在哪个分数段内?(4)根据统计图,提出一个问题,并回答你所提出的问题.参考答案1 . C2. B3. C 4. B5. B 6. C7. D 8. D9. A 10. B4411. (X—y+4) (x —y—4) 12.—;13. 14. 4cm3715. 1:4 ;是16. 36. 417. 70°18. 0.375、19.解:解不等式组得一2<x<1.5整数解为一2, — 1 , 0, 1,在数轴上表示如图.-3 4 70 1 152 3on 命足.宵古 - X21x 2 x c ___ x21X2U.解:原式-'(X 1)(X 1)gx 1 x 2(X 1)(x1)X 12 “2“ 2X 1x(x 1)X 1 X X 1 X1 (X1)(X1) (x1)(x 1)(X1)(x1)(x 1)(X 1)X 1当X=5时, 原式 111X 1 5 16X521.解:原万程可化为=1,3x 43x 4方程两边同乘以3x —4,得x —5=3x—4, —2x=1 ,x=—121 1经检验x= 一丄是原方程的解,所以原方程的解为x=—丄.2 222 .证明:因为AC // ED,所以/ 仁/4 .因为/ 1= / 2,所以/ 2= / 4,又因为EB?平分/ AED,所以/ 3= / 4,所以/ 2=7 3 .所以AE // BD . 23.证明:在矩形ABCD 中,有/ EAB= 7 ABC=90°, BC=AD .又因为AB : BC=1 : ?2, ?3AE=ED,所以AE : AB=1 : 2.所以△ ABC EAB .1 1 124 .解:因为X甲= X 93驾9 X乙= X 91驾9 X丙= X 91驾910 10 101所以s甲2= X (1+1+1) =0.3,1021S 乙2= X (1+1+1+1+1+1+1+1+1 ) =0.9,10S 丙2= X (1+1+1 + 1 + 1 ) =0.5 .10所以s甲2<s丙2<s乙2,所以甲的成绩稳定.25.解:(1) 3+12+18+9+6=48 (名).12(2)60.5-70.5这一分数段的频数为12,频率为=0.25 .48(3)由于共有48个数据,所以中位数为24, 25两个数据的平均数,而前两组的频数和为15,前三组的频数和为33,所以中位数落在70.5-80.5这一分数段内.(4)你能求出该班的及格率吗?60分以上为及格,12 18 9 6 及格率= X00%=93.75% .48资料来源:回澜阁教育免费下载天天更新。
初二数学下期末试题含答案
一、选择题1.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分 B .中位数 C .极差 D .平均数 2.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年 3.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( ) A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n 4.某公司全体职工的月工资如下:月工资(元)18000 12000 8000 6000 4000 2500 2000 1500 1200 人数 1(总经理) 2(副总经理) 3 4 10 20 22 12 6 的普通员工最关注的数据是( )A .中位数和众数B .平均数和众数C .平均数和中位数D .平均数和极差5.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .6.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t << 7.关于函数(3)y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A .①②③B .①③④C .②③④D .①②③④ 8.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-59.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .410.下列计算正确的是( )A .35﹣5=3B .515122+-+=25C .()()52523+-=D .15÷5=311.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( )A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=24512.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25二、填空题13.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.14.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.15.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______. 16.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.17.如图,在平面直角坐标系xOy 中,点A 的坐标为(10,8),过点A 作AB x ⊥轴于点B ,AC y ⊥轴于点C ,点D 在AB 上.将△CAD 沿直线CD 翻折,点A 恰好落在x 轴上的点E 处,则点D 的坐标为_______.18.化简题中,有四个同学的解法如下: ①3(52)5252(52)(52)-==-++- ②(52)(52)525252+-==-++ ③()()()()a b a b a b a b a b a b --==-++- ④()()a b a b a b a b a b+-==-++ 他们的解法,正确的是___________.(填序号) 19.如图,矩形ABCD 中,2AB =,4=AD ,点E 是边AD 上的一个动点;把BAE △沿BE 折叠,点A 落在A '处,如果A '恰在矩形的对称轴上,则AE 的长为______.20.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDF MEF S S =,则CF 的长为________.三、解答题21.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目(每个项目按百分制计分).若按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李颖和张明两位同学的各项成绩如表所示:项 目选 手形 象 知识面 普通话 李 颖70 80 88 张 明 80 75 x(2)若张明同学要在总成绩上超过李颖同学,求x 的范围.22.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________; (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.24.如图,在正方形ABCD 中,10cm AB BC CD AD ====,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4cm AE =,如果点P 在线段BC 上以2cm/秒的速度B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动,设运动时间为t 秒.(1)若点Q 与点P 的运动速度相等,经过2秒后,BPE 与CQP 是否全等?请说明理由;(2)若点Q 与点P 的运动速度不相等,则当t 为何值时,BPE 与CQP 全等?此时点Q 的运动速度为多少?25.计算:(1)122775-+ (2)()()737316+-- (3)326273⨯- 26.细心观察图形,认真分析各式,然后回答问题:OA 12=1;222(1)OA =+1=2;223(2)OA =+1=3224(3)OA =+1=4;… S 1=12;S 2=22;S 3=32;… 1010(2)直接用含n (n 为正整数)的式子表示OA n 的长和S n 的值;(3)求S 12+S 22+S 32+…+S 102的值.【参考答案】***试卷处理标记,请不要删除1.B解析:B【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.2.C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.3.C解析:C【分析】根据平均数、极差和方差的变化规律即可得出答案.【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.4.A解析:A【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选A .【点睛】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大. 5.A解析:A【分析】根据正比例函数的增减性,确定k 的正负,再依据一次函数图象与系数的关系判断即可.【详解】解:∵函数(0)y kx k =≠中y 随x 的增大而减小,∴k<0,∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限,故选:A .【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限. 6.C解析:C【分析】分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围.【详解】解:当直线y=-x+b 过点M (3,4)时,得4=-3+b ,解得:b=7,则7=1+t ,解得t=6.当直线y=-x+b 过点N (5,6)时,得6=-5+b ,解得:b=11,则11=1+t ,解得t=10.故若点M ,N 位于l 的异侧,t 的取值范围是:6<t <10.故选:C .【点睛】本题考查了坐标平面内一次函数的图象与性质,得出直线l 经过点M 、点N 时的t 值是解题关键.7.D解析:D【分析】①根据一次函数定义即可求解;②根据(3)(1)3y k x k k x x =-+=+-即可求解;③图象经过二、三、四象限,则30k -<,0k <,即可求解;④函数图象与x 轴的交点始终在正半轴,则03k x k=>-,即可求解; 【详解】①根据一次函数定义:0k ≠函数为一次函数,故正确;②(3)(1)3y k x k k x x =-+=+-,故函数过(-1,3),故正确;③图象经过二、三、四象限,则30k -<,0k <,解得:0k <,故正确;④函数图象与x 轴的交点始终在正半轴,则03k x k =>-,解得:03k <<,故正确. 故选:D .【点睛】本题考查了一次函数图象上的点的坐标特征,解答此题的关键是熟知一次函数图象上点的坐标特点,确定函数与系数之间的关系,进而求解; 8.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩ ∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.9.C解析:C【分析】首先根据AD AC =可得△ACD 为等腰三角形,再由AE CD ⊥结合“三线合一”性质可得E 为CD 的中点,从而得到EF 为△CBD 的中位线,最终根据中位线定理求解即可. 【详解】∵AD AC =,∴△ACD 为等腰三角形,∵AE CD ⊥,∴E 为CD 的中点,(三线合一)又∵点F 是BC 的中点,∴EF 为△CBD 的中位线, ∴152EF BD ==, 故选:C .【点睛】 本题考查等腰三角形三线合一的性质以及中位线的性质,准确判断出中位线是解题关键. 10.C解析:C【分析】根据二次根式的加减法对A 、B 进行判断;根据平方差公式对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、原式=A 选项的计算错误;B B 选项的计算错误;C 、原式=5﹣2=3,所以C 选项的计算正确;D D 选项的计算错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,是解题的关键.11.D解析:D【分析】四个选项,A、C选项CP为顶角的平分线, B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【详解】解:∵∠C=90°,点P在边AB上.BC=6,AC=8,∴22228610AB AC BC+=+=,当CP为AB的中线时,152CP AB==,若∠ACP=45°,如图1,则CP为直角∠ACB的平分线,∵BC≠AC,∴CP与中线、高线不重合,不等于5,故A选项错误;若∠ACP=∠B,如图2∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACP =90°,∴∠APC=90°,即CP为AB的高线,∵BC≠AC,∴CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC ⨯⨯=⨯⋅,解得245PC =, 故D 选项正确,C 选项错误.故选:D .【点睛】 本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.12.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =,22BC CE BE +=2, 2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.二、填空题13.42【分析】根据所有数据均减去40后平均数也减去40从而得出答案【详解】解:一组数据中的每一个数减去40后的平均数是2则原数据的平均数是42;故答案为:42【点睛】本题考查了算术平均数解决本题的关键解析:42【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【详解】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42; 故答案为:42.【点睛】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.14.67【分析】首先根据题意求出销售额为5千元的人数由此进一步求出该柜台的人均销售额即可【详解】由题意得:销售额为5千元的人数为:(人)∴该柜台的人均销售额为:(千元)故答案为:【点睛】本题主要考查了平 解析:6.7【分析】首先根据题意求出销售额为5千元的人数,由此进一步求出该柜台的人均销售额即可.【详解】由题意得:销售额为5千元的人数为:1012214----=(人),∴该柜台的人均销售额为:()1324452812010 6.7⨯+⨯+⨯+⨯+⨯÷=(千元), 故答案为:6.7.【点睛】本题主要考查了平均数的计算,熟练掌握相关概念是解题关键.15.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键. 16.【分析】由mx <kx+b 可得函数图像上的点在函数的图像上的点的上方由kx+b <0函数图像上的点在轴的下方再结合与函数图像可得答案【详解】解:mx <kx+b 函数图像上的点在函数的图像上的点的上方结合图解析:4 2.x -<<-【分析】由mx <kx +b ,可得函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,由 kx+b <0,函数y kx b =+图像上的点在x 轴的下方,再结合()()2,4,4,0A B ---与函数图像可得答案.【详解】 解: mx <kx +b ,∴ 函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,()24A --,,∴ 结合图像可得:x <2,-kx+b <0,∴ 函数y kx b =+图像上的点在x 轴的下方,()40B -,,∴ 结合函数图像可得:x >4,-从而可得关于x 不等式mx <kx +b <0的解集为4 2.x -<<-故答案为:4 2.x -<<-【点睛】本题考查的是一次函数的图像与不等式组的联系,掌握利用图像法求不等式组的解集是解题的关键.17.【分析】如详解中图先作出△CDE ;再由折叠性质得到CE=CA=10DE=DA=8-m 利用勾股定理计算出OE=6则EB=4在Rt △DBE 中利用勾股定理得到(8-m )2=m2+42然后解方程求出m 即可得解析:(10,3)【分析】如详解中图,先作出△CDE ;再由折叠性质得到CE=CA=10,DE=DA=8-m ,利用勾股定理计算出OE=6,则EB=4.在Rt △DBE 中利用勾股定理得到(8-m )2=m 2+42.然后解方程求出m 即可得到点D 的坐标.【详解】解:如图,作△CDE .设DB=m .由题意可得,OB=CA=10,OC=AB=8,∵△CED与△CAD关于直线CD对称,∴CE=CA=10,DE=DA=8-m,在Rt△COE中,,∴EB=10-6=4.在Rt△DBE中,∠DBE=90°,∴DE2=DB2+EB2.即(8-m)2=m2+42.解得m=3,∴点D的坐标是(10,3).故答案为(10,3).【点睛】本题考查了作图以及利用折叠的性质和勾股定理解直角三角形,掌握相关性质是解答此题的关键.18.①②④【分析】对于分子分母都乘以分母的有理化因式计算约分后可判断①对于把分子化为再分解因式约分后可判断②对于当时分子分母都乘以分母的有理化因式计算约分后可判断③对于把分子化为再分解因式约分后可判断④解析:①②④【分析】-,计算约分后可判断①,对于,把分子化为22-,再分解因式,约分后可判断②,对于≠,计算约分后可判断③,把分子化为22-,再分解因式,约分后可判断④,从而可得答案.【详解】()()22333====-故①符合题意;22-===,故②符合题意;≠时,()()()()()()a b a b a b a b a b a b a b a b a b ----===--++-, 故③不符合题意; ()()22()()a b a b a b a b a b a b a b-+-===-+++,故④符合题意;故答案为:①②④.【点睛】本题考查的是分母有理化,掌握平方差公式的应用,分母有理化的方法是解题的关键. 19.2或【分析】分两种情况:①过A′作MN ∥CD 交AD 于M 交BC 于N 则直线MN 是矩形ABCD 的对称轴得出AM=BN=AD=2由勾股定理得到A′N=0求得A′M=2再得到A′E 即可;②过A′作PQ ∥AD 交解析:2或23 【分析】分两种情况:①过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,得出AM=BN=12AD=2,由勾股定理得到A′N=0,求得A′M=2,再得到A′E 即可;②过A′作PQ ∥AD 交AB 于P ,交CD 于Q ;求出∠EBA′=30°,再利用勾股定理求出A′E ,即可得出结果.【详解】解:分两种情况:①如图1,过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,∴AM=BN=12AD=2, ∵△ABE 沿BE 折叠得到△A′BE ,∴A′E=AE ,A′B=AB=2,∴A′N=22A B BN '-=0,即A′与N 重合,∴A′M=2= A′E ,∴AE=2;②如图2,过A′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP=PB ,AD ∥PQ ∥BC ,∴A′B=2PB ,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,设A′E=x ,则BE=2x ,在△A′EB 中,()22222x x =+,解得:x=23, ∴AE=A′E=23;综上所述:AE 的长为223, 故答案为:2或33. 【点睛】 本题考查了翻折变换—折叠问题,矩形的性质,勾股定理;正确理解折叠的性质是解题的关键.20.3【分析】作DG ⊥AC 于GEH ⊥AC 于H 则∠DGM =∠MHE =90°DG ∥BC 由勾股定理得出BC =6证出DG 是△ABC 的中位线得出DG =BC =3AG =CG =AC =4证明△MDG ≌△EMH (ASA )得解析:3【分析】作DG ⊥AC 于G ,EH ⊥AC 于H ,则∠DGM =∠MHE =90°,DG ∥BC ,由勾股定理得出BC =6,证出DG 是△ABC 的中位线,得出DG =12BC =3,AG =CG =12AC =4,证明△MDG ≌△EMH (ASA ),得出MG =EH ,由三角形面积关系得出DG =2EH =3,得出MG=EH =32,再证明∆DGF~∆EHF ,从而求出GF ,进而即可得出答案. 【详解】作DG ⊥AC 于G ,EH ⊥AC 于H ,如图所示:则∠DGM =∠MHE =90°,DG ∥BC ,∵∠ACB =90°,AB =10,AC =8,∴BC =221086-=, ∵DG ∥BC ,D 是AB 的中点,∴DG 是△ABC 的中位线,∴DG =12BC =3,AG =CG =12AC =4, ∵△DME 是等腰直角三角形,∴∠DME =90°,DM =ME ,∵∠DMG +∠GDM =∠DMG +∠EMH =90°,∴∠GDM =∠EMH ,在△MDG 和△EMH 中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF ,∴21DG GF EH HF ==, ∵GH=MH-MG=DG-MG=3-32=32, ∴GF=32×221+=1, ∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.三、解答题21.(1)83;(2)90<x ≤100【分析】(1)按照各项目所占比求得总成绩;(2)各项目所占比求得总成绩大于83分即可,列出不等式求解.【详解】(1)70×10%+80×40%+88×50%=83(分);(2)80×10%+75×40%+50%•x >83,∴x >90.∵每个项目按百分制计分∴90<x≤100∴李颖同学的总成绩是83分,张明同学要在总成绩上超过李颖同学,则他的普通话成绩应90<x≤100.【点睛】本题综合考查平均数的运用.解题的关键是正确理解题目的含义.22.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.23.(1)34k =;(2)点P 的坐标为(-4,3);(3)点M 的坐标为(-18,0),7(,0)4-,(2,0)或(8,0). 【分析】(1)由点B 的坐标,利用一次函数图象上点的坐标特征可求出k 值;(2)利用一次函数图象上点的坐标特征求出点C 的坐标,设点P 的坐标为3(,6)4+x x ,由S △PAC =S △BOC -S △BAP -S △AOC 结合△PAC 的面积为3,可得出关于x 的一元一次方程,解之即可得出点P 的坐标;(3)利用勾股定理求出BC 的长度,分CB=CM ,BC=BM ,MB=MC 三种情况考虑:①当CB=CM 时,由OM 1=OB=8可得出点M 1的坐标;②当BC=BM 时,由BM 2=BM 3=BC=10结合点B 的坐标可得出点M 2,M 3的坐标;③当MB=MC 时,设OM=t ,则M 4B=M 4C=8-t ,利用勾股定理可得出关于t 的一元一次方程,解之即可得出点M 4的坐标.综上,此题得解.【详解】解:(1)∵直线l :y=kx+6过点B (-8,0),∴0=-8k+6,∴k 3.4= (2)当x=0时,3664y x =+= ∴点C 的坐标为(0,6).设点P 的坐标为3(,6)4+x x ∴S △PAC =S △BOC -S △BAP -S △AOC , 1131862(6)66,2242=⨯⨯-⨯+-⨯⨯x 33,4=-=x ∴x=-4,3634=+=y x ∴点P 的坐标为(-4,3).(3)在Rt △BOC 中,OB=8,OC=6,2210.+=BC OB OC分三种情况考虑(如图2所示):①当CB=CM时,OM1=OB=8,∴点M1的坐标为(8,0);②当BC=BM时,BM2=BM3=BC=10,∵点B的坐标为(-8,0),∴点M2的坐标为(2,0),点M3的坐标为(-18,0);③当MB=MC时,设OM=t,则M4B=M4C=8-t,∴CM42=OM42+OC2,即(8-t)2=t2+62,解得:7 , 4=t∴点M4的坐标为7(,0)4-综上所述:在x轴上存在一点M,使得△BCM为等腰三角形,点M的坐标为(-18,0),7(,0)4-,(2,0)或(8,0).【点睛】本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式、等腰三角形的性质以及勾股定理,解题的关键是分类讨论的数学思想.24.(1)全等,理由见解析;(2)52t=秒,点Q的运动速度为12cm/s5.【分析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.【详解】解:(1)全等.理由:由题意:2BP CQ t==,当2t=时,4BP CQ==,10AB BC==,4AE=,1046BE CP∴==-=,在BPE∆与CQP∆中BP CQB CBE CP=⎧⎪∠=∠⎨⎪=⎩,BPE CQP ∴∆≅∆;(2)P 、Q 运动速度不相等,BP CQ ∴≠,90B C ∠=∠=︒,∴当BP CP =,CQ BE =时,BPE CPQ ∆≅∆,152BP CP BC ∴===,6CQ BE ==, ∴当5522t =÷=(秒)时,BPE CPQ ∆≅∆, 此时点Q 的运动速度为5126(/)25cm s ÷=. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.25.(1)2)0,(3)1.【分析】(1)先化成最简二次根式,再加减即可;(2)先用平方差公式进行计算,再化简合并;(3)先求立方根,再按运算顺序计算即可.【详解】解:(1,=,=;(2)224=--,734=--,0=;(3,3=,3=- 32=-,1=.【点睛】本题考查了二次根式的运算和求立方根,正确运用法则是解题关键.26.(1)OA 1010S =;(2)n OA =n S =;(3)554 【分析】(1)根据前面几个线段的值平方得出规律221n OA n =+=,即可求出10OA 的长,根据前面几个三角形的面积得到规律2n S =10S 的值;(2)根据规律发现221n OA n =+=,2n S = (3)根据(2)中的规律得原式的值为()1123104⨯++++,即可求出结果. 【详解】(1)∵22212OA =+=,22313OA =+=,22414OA =+=…, ∴2210110OA =+=,∴10OA =∵12S =,22S =,32S =…,∴2n S =10S =;(2)由(1)可知,221n OA n =+=,即n OA =2n S = (3)222212310123104444S S S S ++++=++++()1551231044=⨯++++=. 【点睛】 本题考查找规律,解题的关键是总结出题目中式子之间的规律进行计算求解.。
初二数学下期末试题及答案
一、选择题1.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的()A.平均数B.中位数C.众数D.极差2.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩5060708090100(分)全班40名同学的成绩的中位数和众数分别是()A.75,70 B.70,70 C.80,80 D.75,803.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A.1999年B.2004年C.2009年D.2014年4.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数x(厘375350375350米)方差2s12.513.5 2.4 5.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁5.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x-3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .56.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)7.函数2y x x=+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限8.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时9.下列命题中,其逆命题是真命题的有( )个①全等三角形的对应角相等,② 两直线平行,同位角相等,③等腰三角形的两个底角相等,④正方形的四个角相等. A .1 B .2 C .3D .410.己知172178a a b -+-=+,则a b -的值是( ). A .3±B .3C .5D .5±11.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .125312.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .15二、填空题13.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是(2)试用平均数估计该单位员工一周内使用共享单车的总次数.14.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.15.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.16.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 17.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.18.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.19.已知2(3)4y x x =-+,当x 分别取1,2,3,⋯,99时,所对应的y 值的总和是___.20.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.三、解答题21.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示: 月销售量/件数 1770 480 220 180 120 90 人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.22.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环 中位数/环 众数/环 方差 甲 a77 1.2 乙7b84.2(1)写出表格中a ,b 的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理. 23.如图,在平面直角坐标系中,直线AB 交坐标轴于点(0,6)A ,(8,0)B ,点C 为x 轴正半轴上一点,连接AC ,将ABC 沿AC 所在的直线折叠,点B 恰好与y 轴上的点D 重合.(1)求直线AB 的解析式;(2)点P 为直线AB 上的点,请求出点P 的坐标使94COP S =△. 24.如图,六个完全相同的小长方形拼成了一个大长方形,A 、B 是如图所示小长方形的顶点,请在大长方形中按下列要求完成画图:(1)请你仅用无刻度直尺在图1中画一个等腰Rt ABC △,其中90ABC ∠=︒; (2)请你仅用无刻度直尺在图2作出线段AB 的垂直平分线. 25.计算:11218383-++. 26.在△ABC 中,AB =AC =10, AD 是BC 边上的高,点E 在边BC 上,连接AE . (1)当AD =6时, ①求△ABC 的面积.②若AE 平分∠BAD ,求CE 的长.(2)探求三条线段AE , BE ,CE 之间的等量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据中位数的定义进行解答即可.【详解】∵小亮同学想知道自己的体重在班级中是否属于中等水平,∴需了解全班同学体重数据的中间的数据,即中位数,故选:B.【点睛】本题主要考查统计的有关知识,中位数是一组数据中,最中间的数据;对统计量进行合理的选择和恰当的运用是解题关键.2.A解析:A【分析】根据中位数和众数的定义解答即可.【详解】共40个数据中第20和第21个数分别是70、80,∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70,故选:A.【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.3.C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.4.C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.5.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.6.C解析:C【分析】先求得点A、B的坐标分别为:(﹣3,0)、(0,4),由此可求得AB=5,再根据折叠可得AD=AB=5,故OD=AD﹣AO=2,设点C(0,m),则OC=m,CD=BC=4﹣m,根据222CO OD CD+=列出方程求解即可.【详解】解:∵直线y=43x+4与x轴、y轴分别交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣3,则点A、B的坐标分别为:A(﹣3,0)、B(0,4),∴AO=3,BO=4,∴在Rt ABC中,AB=5,∵折叠,∴AD =AB =5,CD =BC , ∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m , ∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=, 即2222(4)m m +=-, 解得:m =32, 故点C (0,32), 故选:C . 【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.7.B解析:B 【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案. 【详解】 解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <,∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限; 故选:B . 【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.8.D解析:D 【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题; 【详解】 解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确; 乙车休息的时间为2.520.5h -=,故D 错误. 故选:D . 【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;9.B解析:B 【分析】先把每一个命题的条件和结论互换就得到它的逆命题,再进行判断即可. 【详解】解:“全等三角形的对应角相等”的逆命题是“三组角分别对应相等的两个三角形全等”,逆命题是假命题,故①不符合题意;“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,逆命题是真命题,故②符合题意;“等腰三角形的两个底角相等”的逆命题是“在一个三角形中,有两个角相等的三角形是等腰三角形”,逆命题是真命题,故③符合题意;“正方形的四个角相等”的逆命题是“四个角相等的四边形是正方形”,逆命题是假命题,故④不符合题意;综上:符合题意的有②③. 故选:.B 【点睛】本题考查的是命题与逆命题,命题真假的判断,正方形的判定方法,掌握由原命题得到逆命题,以及判断命题的真假是解题的关键.10.C解析:C 【分析】根据二次根式的性质求出a=17,b=-8 【详解】∵a-17≥0,17-a ≥0, ∴a=17, ∴b+8=0, 解得b=-8, ∴5==,故选:C . 【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.11.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.12.C解析:C【分析】取AB的中点D,连接CD,根据三角形的边角关系得到OC≤OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据D为AB中点,得到BD=3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD的值,进而求出DC+OD,即为OC的最大值.【详解】解:如图,取AB的中点D,连接CD,∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=12AB=6,CD⊥AB,∴22221068BC BD-=-=,连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值=OD+CD,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12AB=6∴OD+CD=6+8=14,即OC的最大值=14,故选:C.【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.二、填空题13.(1)1617;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列计算出中间两个数的平均数即是中位数出现次数最多的即为众数;(2)根据平均数的概念将所有数解析:(1)16,17;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;【详解】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.14.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5. 故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数. 15.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟解析:()1+()1()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =, 22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2),故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.16.4【分析】首先求出直线y =x ﹣1向上平移m 个单位长度得到y =﹣1+m 结合y =x+3即可求得m 的值【详解】解:直线y =x ﹣1向上平移m 个单位长度得到直线y =x+3∴﹣1+m =3解得m =4故答案为4【点 解析:4【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3, ∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .17.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF 故四边形的周长=AD+CD+EF 根据已知求解即可【详解】解:在平行四边形ABCD 中AD ∥BCAC 与BD 互相平分∴AO=OC ∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF ,故四边形EFCD 的周长=AD+CD+EF ,根据已知求解即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,AC 与BD 互相平分∴AO=OC ,∠DAC=∠ACB ,∠AOE=∠COF∴△AOE ≌△COF∴AE=CF ,OF=OE=2.5∴四边形EFCD 的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF =19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.18.①②③【分析】根据SSS 即可判定△ABF ≌△CFB 根据全等三角形的性质以及等式性质即可得到EC =EA 根据∠EBF =∠EFB =∠EAC =∠ECA 即可得出BF ∥AC 根据E 不一定是BC 的中点可得BE =CE解析:①②③【分析】根据SSS 即可判定△ABF ≌△CFB ,根据全等三角形的性质以及等式性质,即可得到EC =EA ,根据∠EBF =∠EFB =∠EAC =∠ECA ,即可得出BF ∥AC .根据E 不一定是BC 的中点,可得BE =CE 不一定成立.【详解】解:由折叠可得,AD =AF ,DC =FC ,又∵平行四边形ABCD 中,AD =BC ,AB =CD ,∴AF =BC ,AB =CF ,在△ABF 和△CFB 中,AB CF AF CB BF FB =⎧⎪=⎨⎪=⎩,∴△ABF ≌△CFB (SSS ),故①正确;∴∠EBF =∠EFB ,∴BE =FE ,∴BC -BE =FA -FE ,即EC =EA ,故②正确;∴∠EAC =∠ECA ,又∵∠AEC =∠BEF ,∴∠EBF =∠EFB =∠EAC =∠ECA ,∴BF ∥AC ,故③正确;∵E 不一定是BC 的中点,∴BE =CE 不一定成立,故④错误;故答案为:①②③.【点睛】本题主要考查了折叠问题,全等三角形的判定与性质以及平行线的判定的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.105【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:①当时此时②当时此时当分别取12399时故答案为:105【点睛】本题考查了二次根式的化简求值绝对值运算等知识点解析:105【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:434y x x x =+=--+,①当3x 时,|3|3x x -=-,此时43472y x x x x =+=--+=-, 1x =,725y x =-=,2x =,723y x =-=,3x =,721y x =-=,②当3x >时,33x x -=-,此时4341y x x x =-+=--+=,∴当x 分别取1,2,3,⋯,99时,4y x =+,5311(993)105=+++⨯-=.故答案为:105.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.20.【分析】根据勾股定理求出AC 根据全等三角形的性质得到AF =BC =6EF =AC =8求出FC 根据勾股定理计算得到答案【详解】解:在Rt △ABC 中AC =∵Rt △ACB ≌Rt △EFA ∴AF =BC =6EF =A解析:【分析】根据勾股定理求出AC ,根据全等三角形的性质得到AF =BC =6,EF =AC =8,求出FC ,根据勾股定理计算,得到答案.【详解】解:在Rt △ABC 中,AC =22221068AB BC -=-=,∵Rt △ACB ≌Rt △EFA , ∴AF =BC =6,EF =AC =8,∴FC =AC ﹣AF =2,∴CE =222282217EF FC +=+=,故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.三、解答题21.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278, 排序后位于中间位置的数为180,故中位数180,数据90出现了4次,出现次数最多,故众数为90;(2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.22.(1)7,7.5;(2)甲,理由略.【分析】(1)利用加权平均数的计算公式、中位数的概念解答即可;(2)根据方差的性质判断即可.【详解】解:∵甲队员的射击成绩为:5,6,6,7,7,7,7,8,8,9,∴甲队员的射击成绩平均数为:a=(5+6×2+7×4+8×2+9)÷10=7∵乙队员的射击成绩为:3,6,4,8,7,8,7,8,10,9,从小数到大数依次排列为:3,4,6,7,7,8,8,8,9,10,∴乙队员射击成绩的中位数为:b=7.5∴a=7, b=7.5(2)从方差的角度看,选派甲队员去参赛,理由是:从表中可知:S 甲2=1.2,S 乙2=4.2,∴S 甲2<S 乙2∴甲队员的射击成绩较稳定,∴选甲队员去参赛【点睛】本题考查的是加权平均数、中位数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.23.(1)364y x =-+;(2)36,2P ⎛⎫ ⎪⎝⎭或310,2⎛⎫- ⎪⎝⎭ 【分析】(1)利用待定系数法设直线AB 的解析式为:y =kx +b ,把A (0,6)、B (8,0)代入解析式,求出k 、b ,即可得到结论;(2)根据勾股定理得到AB =10,由折叠性质得AD =AB =10,求出OD ,设OC =x ,则BC =CD =8−x ,根据勾股定理列方程可得OC ,再由三角形的面积公式列方程1393?6244m ⨯⨯-+=,求出m 即可得到P 点坐标. 【详解】解:(1)设直线AB 的解析式为:y kx b +=(k≠0),根据题意得:680b k b =⎧⎨+=⎩, 解得:3k 4b 6⎧=-⎪⎨⎪=⎩.∴直线AB 的解析式为:364y x =-+. (2)∵点(0,6) A 、(8,0)B ,∴6OA =,8OB =.∴10AB ==.由折叠性质得10AD AB ==,∴4OD AD OA =-=.设OC x =,则8BC CD x ==-,∴在OCD 中,由勾股定理得2224(8)x x +=-,解得3x =.即OC =3.∵点P 为直线AB 上的点,∴设点P 的坐标为:3,?64m m ⎛⎫-+ ⎪⎝⎭. ∵94COP S =△, ∴1393?6244m ⨯⨯-+=. ∴364m -+=32. ∴m 6=或10m =. ∴P 点的坐标为36,2⎛⎫ ⎪⎝⎭或310,2⎛⎫-⎪⎝⎭. 【点睛】本题考查了待定系数法求一次函数解析式及其应用,熟练掌握一次函数的图象与性质,以及正确的理解题意,根据勾股定理、折叠性质与三角形的面积计算公式建立等量关系求出相应线段的长度或点的坐标是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)如图1所示,取点C ,连接AC 、BC ,然后找出图中全等的三角形,依据全等三角形的性质可证明AB=BC ,最后再结合全等三角形的性质和直角三角形的性质即可证明90ABC ∠=︒;(2)先确定出AB 的中点D ,然后再确定出AC 的中点E ,依据直角三角形斜边上中线的性质可得到AE=BE ,则DE 为AB 的垂直平分线.【详解】解:如图:(1)三角形ABC 即为所求;(2)直线DE 即为所求.【点睛】本题考查了尺规作图,熟练掌握矩形的性质、直角三角形的性质、线段垂直平分线的判定方法是解题的关键.25.332【分析】先化简二次根式,然后进行求解即可.【详解】1121838333323223=⨯+2332322=332=【点睛】本题考查了二次根式的运算,解题的关键是掌握二次根式的运算法则.26.(1)①△ABC的面积=48;②CE=11;(2)2100AE BE CE=-⋅.【分析】(1)①利用等腰三角形三线合一和勾股定理可求得BC=16,再计算面积即可;②作EF⊥AB,与AB相交于F,根据角平分线的性质可得EF=ED,利用等面积法即可求得ED,从而求得EC;(2)在Rt△AED和Rt△ADC利用勾股定理可得等量关系式,再借助线段的和差和等量代换即可得出AE,BE,CE之间的等量关系.【详解】解:(1)①∵AB=AC=10,AD是BC边上的高,∴DC=BC=2BD,AD⊥BC,∵AD=6,在Rt△ABD中,根据勾股定理22221068BD AB AD=-=-=,∴BC=16,△ABC的面积=1116648 22BC AD⋅=⨯⨯=;②作EF ⊥AB ,与AB 相交于F ,∵AD ⊥BC ,AE 平分∠BAD ,∴EF=ED ,∵AD =6,AB=10, ∴111()8222ABD S AB FE AD ED ED AB AD ED =⋅+⋅=⋅+=, 11862422ABD S BD AD =⋅=⨯⨯=, ∴3ED =, ∴CE=DC+ED=8+3=11;(2)在Rt △AED 中222AE AD ED =+,在Rt △ADC 中,222221()2AD AC DC AC BC =-=-, 12DE BD BE BC BE =-=-, ∴222211()()22AE AC BC BC BE =-+- =22221144AC BC BC BC BE BE -+-⋅+ =22AC BC BE BE -⋅+=2()AC BE BC BE --=2AC BE CE -⋅=100BE CE -⋅,故2100AE BE CE =-⋅.【点睛】 本题考查勾股定理,等腰三角形的性质,角平分线的性质.(1)中掌握等面积法是解题关键;(2)中能借助勾股定理列出等量关系式建立线段之间的联系是解题关键.。
初二数学下期末试题带答案
一、选择题1.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人数4812115则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分=,S2乙2.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S2甲172=,下列说法:256①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的有()个A.2 B.3 C.4 D.53.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁4.某公司全体职工的月工资如下:月工资18000120008000600040002500200015001200(元)人数1(总经2(副总经34102022126理) 理)的普通员工最关注的数据是( ) A .中位数和众数 B .平均数和众数 C .平均数和中位数D .平均数和极差5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定6.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .7.关于函数(3)y k x k =-+,给出下列结论: ①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-; ③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<. 其中正确结论的序号是( ) A .①②③B .①③④C .②③④D .①②③④8.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( ) A .4B .1C .2D .-59.估计26 )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间10.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半 D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 11.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( ) A .OAB OBA ∠=∠; B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.12.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②1x y -=,③2125xy +=,④7x y +=.其中说法正确的是( )A .①②B .①②③C .①②④D .①②③④二、填空题13.一组数2、a 、4、6、8的平均数是5,这组数的中位数是______.14.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表: 分数(单位:分) 126 132 136 138 142 人数14212则这10名学生的数学周考成绩的中位数是________分.15.甲,乙两人都要从A 仓库运送货物到B 仓库.甲从A 仓库出发匀速行驶,1小时后乙也从A 仓库出发沿同一线路匀速行驶,当乙先到达B 仓库送完货物后(不考虑货物交接的时间)立刻以原速一半的速度返回并在途中与甲第二次相遇.设甲行驶的时间为()h x ,甲和乙之间的距离为()km y 与甲出发的时间x 的函数关系式如图所示.则甲与乙第二次相遇时到A 仓库的距离为______km .16.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y随自变量x增大而增大;②函数的图像经过第二象限.17.如图,在平面直角坐标系中,点A、点B分别在x轴和y轴的正半轴上运动,且AB=4,若AC=BC=5,△ABC的形状始终保持不变,则在运动的过程中,点C到原点O的最小距离为____________.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线DE ,则BF的长为__________.段AE上的点G处,折痕为AF.若119.比较大小:3________39.20.如图,△ABC是等边三角形,边长为2,AD是BC边上的高.E是AC边中点,点P是AD上的一个动点,则PC+PE的最小值是_______ ,此时∠CPE的度数是_______.三、解答题21.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下: 每人销售件数 1650 510 250 210 150 120 人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为310件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由. 22.下表是随机抽取的某公司部分员工的月收入资料. 月收入/元 45000 18000 10000 5500 5000 3400 3000 2000 人数111361112(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平.23.如图,在直角坐标系中,ABC 的三个顶点的坐标分别是()3,4A -,()5,2B -,()2,1C -.(1)画出ABC 关于x 轴成轴对称的111A B C △,并写出点1A ,1B ,1C 的坐标; (2)请在x 轴上找一点P ,使1AP PC +的值最小,标出点P 的位置并写出点P 的坐标. 24.如图,菱形ABCD 的对角线,AC BD 相交于点,O E 是AD 的中点,点,F G 在AB 上,,//EF AB OG EF ⊥.(1)判断四边形OEFG 的形状;(2)若8,6AC BD ==,求菱形ABCD 的面积和EF 的长. 25.已知31,31x y =+=-,求下列代数式的值: (1)22x y +;(2)y x x y+. 26.如图,在Rt △ABC 中,∠C =90°,AC =8,AB =10,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.2.C解析:C【分析】根据中位数、众数、方差、平均数的概念来解答.【详解】解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S甲2=172<S乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好.故①②③⑤正确.故选:C.【点睛】此题考查中位数和众数的定义.解题关键在于掌握各定义性质.3.B解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.4.A解析:A【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.【详解】∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选A.【点睛】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.5.B解析:B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可. 【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱. 故选:B . 【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.A解析:A 【分析】根据△ABC 为等边三角形,得到∠A=∠C=∠ABC=60︒,利用DE //AC ,证得△DEB 是等边三角形,求出DE=BD=2-x ,利用EF ⊥DE ,求出=,再根据面积公式求出函数解析式,依据函数的性质确定函数图象. 【详解】∵△ABC 为等边三角形, ∴∠A=∠C=∠ABC=60︒, ∵DE //AC ,∴∠DEB=∠C=60︒,∠EDB=∠A=60︒, ∴∠DEB=∠EDB=∠DBE=60︒, ∴△DEB 是等边三角形, ∴DE=BD=2-x , ∵EF ⊥DE , ∴∠DEF=90︒, ∴∠DFE=30, ∴DF=2DE=4-2x,∴,∴△DEF 的面积为y=21(2))2)22x x x --=-(0<x<2), ∵此函数为二次函数,开口向上,对称轴为直线x=2,且0<x<2, 故选:A . 【点睛】此题考查等边三角形的判定及性质,平行线的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半,函数的性质,函数图象,根据题意分别求出DE 、EF ,由此得到函数解析式是解题的关键.7.D解析:D 【分析】①根据一次函数定义即可求解;②根据(3)(1)3y k x k k x x =-+=+-即可求解;③图象经过二、三、四象限,则30k -<,0k <,即可求解;④函数图象与x 轴的交点始终在正半轴,则03kx k=>-,即可求解; 【详解】①根据一次函数定义:0k ≠函数为一次函数,故正确; ②(3)(1)3y k x k k x x =-+=+-,故函数过(-1,3),故正确;③图象经过二、三、四象限,则30k -<,0k <,解得:0k <,故正确; ④函数图象与x 轴的交点始终在正半轴,则03kx k=>-,解得:03k <<,故正确. 故选:D . 【点睛】本题考查了一次函数图象上的点的坐标特征,解答此题的关键是熟知一次函数图象上点的坐标特点,确定函数与系数之间的关系,进而求解;8.C解析:C 【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值. 【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值 由图象可知:当61x -≤<时,1y <2y ,2y >2 ∴此时p=2y >2; 当x=1时,1y =2y =2, ∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2 ∴此时p=1y >2. 综上所述:p≥2 ∴p 的最小值是2. 故选:C . 【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.9.C解析:C 【分析】先根据二次根式的乘法法则可知,再由16<24<25,利用算术平方根的性质可得4<5,可得结果. 【详解】解:∵16<24<25, ∴45,即4<5, 故选:C . 【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键.10.C解析:C 【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.11.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.12.D解析:D【分析】根据正方形的性质、直角三角形的性质、直角三角形的面积的计算公式以及勾股定理按顺序判断即可.【详解】①∵ABC 为直角三角形,∴22225x y AB +==,故①正确;②由图可知:11x y CE -===,故②正确;③由图可知:四个直角三角形与小正方形面积之和等于大正方形面积, 由此可得:141252xy ⨯+=,即:2125xy +=, 故③正确;④由①③相加可得:222150xy x y +++=,即()249x y +=,故7x y +=,故④正确;故选:D .【点睛】本题考查了勾股定理及正方形和三角形的边的关系,此图被称为弦图,熟悉勾股定理并认清图中的关系是解答本题的关键.二、填空题13.5【解析】【分析】由平均数可求解a 的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a 的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.14.134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数【详解】由表格可得这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分)故答案为:134【点睛】本解析:134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数.【详解】由表格可得,这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分),故答案为:134.【点睛】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数. 15.72【分析】根据题意和函数图象中的数据可以求得甲乙的速度然后即可求得甲乙第二次相遇的时刻进而求得乙第二次与甲相遇时距离A 地多少千米【详解】解:从图象可以看出A 点表示乙从A 仓库出发B 点表示甲乙第一次相 解析:72【分析】根据题意和函数图象中的数据可以求得甲乙的速度,然后即可求得甲乙第二次相遇的时刻,进而求得乙第二次与甲相遇时,距离A 地多少千米.【详解】解:从图象可以看出,A 点表示乙从A 仓库出发,B 点表示甲乙第一次相遇,C 点表示乙到达B 码头,D 点表示甲乙第二次相遇.设甲的速度为akm/h ,乙的速度为bkm/h ,()()1.5 1.517 1.5403a b b a ⎧-⎪⎨⎛⎫-⨯- ⎪⎪⎝⎭⎩== 解得,2472a b ⎧⎨⎩== 设甲乙第二次相遇的时间为t 小时,()74024363t ⎛⎫=+⨯- ⎪⎝⎭, 解得,t=3,则乙第二次与甲相遇时,甲距离A 仓库:24×3=72(km ),故答案为:72.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列 解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 17.【分析】如图过作于证明求解结合三角形的三边的关系可得:>当三点共线时可得从而可得答案【详解】解:如图过作于由三角形三边的关系可得:>当三点共线时的最小值是:点C 到原点O 的最小距离为故答案为:【点睛】2【分析】如图,过C 作CG AB ⊥于,G 4AB =,证明2,GB GA ==求解2,CG OG == 结合三角形的三边的关系可得:OC >,CG OG - 当,,C O G 三点共线时,,OC CG OG =-可得2,CO CG OG ≥-=从而可得答案.【详解】解:如图,过C 作CG AB ⊥于,G 4AB =, 5,CB CA ==2,GB GA ∴==CG ∴== 90AOB ∠=︒,122OG AB ∴==, 由三角形三边的关系可得:OC >,CG OG -当,,C O G 三点共线时,,OC CG OG =-2,CO CG OG ∴≥-=∴CO 2.∴点C 到原点O 2.故答案为:21 2.-【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,三角形三边之间的关系,掌握以上知识是解题的关键.18.【分析】连接FE根据题意得CD=2AE=设BF=x则FG=xCF=2-x在Rt△GEF中利用勾股定理可得EF2=(-2)2+x2在Rt△FCE中利用勾股定理可得EF2=(2-x)2+12从而得到关于解析:51-【分析】连接FE,根据题意得CD=2,AE=5,设BF=x,则FG=x,CF=2-x,在Rt△GEF中,利用勾股定理可得EF2=(5-2)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(2-x)2+12,从而得到关于x方程,求解x即可.【详解】解:连接EF,如图,∵E是CD的中点,且CE=1∴CD=2,DE=1∵四边形ABCD是正方形,∴AB=BC=CD=DA=2∴2222+=+AD DE215设BF=x,由折叠得,AG=AB=2,FG=BF=x,∴52,在Rt △GFE 中,222222)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴22222)(2)1x x +=-+解得:1x ,即1,1【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.【分析】首先把和化成与原根式相等的根指数相等的根式再进行比较即可【详解】故答案为:【点睛】本题考查了实数的大小比较和根式的性质的应用关键是把根式化成与原根式相等的根指数相等的根式解析:<【分析】【详解】63327==,62981==,66∴<,<故答案为:<.【点睛】本题考查了实数的大小比较和根式的性质的应用,关键是把根式化成与原根式相等的根指数相等的根式.20.60°【分析】作点E 关于AD 的对称点F 然后连接CF 交AD 于点H 连接HE 由轴对称的性质及两点之间线段最短可得CF 即为PC+PE 的最小值进而由等边三角形的性质可求解【详解】解:作点E 关于AD 的对称点F 然【分析】作点E 关于AD 的对称点F ,然后连接CF ,交AD 于点H ,连接HE ,由轴对称的性质及两点之间线段最短可得CF 即为PC+PE 的最小值,进而由等边三角形的性质可求解.【详解】解:作点E 关于AD 的对称点F ,然后连接CF ,交AD 于点H ,连接HE ,如图所示:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠ACB=∠BAC=60°,∵AD⊥BC,∴AD平分∠BAC,BD=DC,∵点E是AC的中点,AD垂直平分EF,∴点F是AB的中点,∴CF⊥AB,CF平分∠ACB,∴∠BCF=30°,∴当点P与点H重合时,根据轴对称的性质及两点之间线段最短可得此时PC+PE为最小值,即为CF的长,∵BC=2,∴BF=1,在Rt△CBF中,223-C BCF BF=∴PC+PE3∴∠DHC=∠FHP=60°,∵AD垂直平分EF,∴FH=HE,∴∠FHP=∠PHE=60°,∴∠CHE=60°,即为∠CPE=60°;3;60°.【点睛】本题主要考查勾股定理、等边三角形的性质及轴对称的性质,熟练掌握勾股定理、等边三角形的性质及轴对称的性质是解题的关键.三、解答题21.(1)310, 210, 210;(2)不合理,理由见解析.【分析】(1)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.(2)根据表中数据和平均数、中位数和众数的意义回答.【详解】解:(1)平均数是:1650510250321051503120231015++⨯+⨯+⨯+⨯=(件), 表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到310件,310件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.【点睛】此题考查了中位数,众数,平均数,它们都是反映数据集中趋势的指标,掌握平均数、中位数和众数的意义是解题的关键.22.(1)平均数:6150元;中位数:3200元;(2)乙推断比较科学合理,答案见解析.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;【详解】解:(1)平均数:450001180001100001550035000634001300011200026150111361112⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=+++++++(元)中位数:这组数据共有26个,第13 、14个数据分别为3400,3000, 所以样本的中位数为:3400300032002+=(元) (2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.由题意可知,样本中的26名员工,只有3位员工的收入在6150以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点睛】本题考查的知识点是平均数与中位数,掌握平均数与中位数的求法是解此题的关键. 23.(1)作图见解析,A 1的坐标为(-3,-4)、B 1的坐标为(-5,-2)、C 1的坐标为(-2,-1);(2)标出点P 的位置见解析,点P 的坐标为(115-,0). 【分析】(1)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得;(2)连接1AC ,与x 轴的交点即为所求,再利用待定系数法求得直线1AC 的解析式即可求解.【详解】(1)如图所示,△A 1B 1C 1即为所求,由图知,A 1的坐标为(-3,-4)、B 1的坐标为(-5,-2)、C 1的坐标为(-2,-1); (2)如图所示,点P 即为所求.设直线1AC 的解析式为y kx b =+,∴3421k b k b -+=⎧⎨-+=-⎩, 解得:511k b =-⎧⎨=-⎩, ∴直线1AC 的解析式为511y x =--, 当0y =时,115x =-, ∴点P 的坐标为(115-,0). 【点睛】本题主要考查了作图-轴对称变换,待定系数法确定一次函数的解析式,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.24.(1)矩形;(2)24,125 【分析】(1)先证明四边形OEFG 是平行四边形,再根据垂直即可得到结果;(2)根据菱形的面积求解和等面积法计算即可;【详解】解:()1四边形OEFG 是矩形.在菱形ABCD 中,,DO BO = E 是AD 的中点,,AE DE ∴=//,OE AB ∴//,OE FG ∴又//,OG EF∴四边形OEFG 是平行四边形.,EF AB ⊥90,EFG ∴∠=︒四边形OEFG 是矩形.()2菱形的面积11862422AC BD =⋅=⨯⨯=. 四边形ABCD 是菱形,11,4,322BD AC AO AC BO BD ∴⊥====, 5AB ∴=.由()1知,四边形OEFG 是矩形,,EF OG OG AB ∴=⊥.1122AO BO AB OG ∴⋅=⋅, 125AO BO OG AB ⋅∴==, 125EF ∴=. 【点睛】本题主要考查了矩形和菱形的判定和性质,准确计算是解题的关键.25.(1)8;(2)4.【分析】(1)先计算出x y +和xy 的值,再利用完全平方公式求解即可;(2)通分后利用(1)的结论求解即可.【详解】(1)∵3131x y =+=-,, ∴23(31)(31)2x y xy +==+-=,,∴22x y +2()2x y xy =+-2(23)22=-⨯124=-8=;(2)∵2231318x y x y =+=-+=,,,2xy =, ∴y x x y+ 22x y xy+= 82= 4=.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.注意整体代入的方法的运用.26.254【分析】连接BE ,先利用勾股定理求出BC 的长,根据线段垂直平分线的性质可得AE =BE ,然后设AE =BE =x ,再由勾股定理可得方程(8−x )2+62=x 2,求解后即可得出答案.【详解】解:连接BE ,在Rt △ABC 中,∵∠C =90°,AC =8,AB =10,∴AC2+BC2=AB2.即82+BC2=102,解得:BC=6.∵DE是AB的垂直平分线,∴AE=BE.设AE=BE=x,则EC=8−x,∵Rt△BCE中,EC2+BC2=BE2,∴(8−x)2+62=x2,解得:x=254,∴AE=254.【点睛】此题考查了线段垂直平分线的性质以及勾股定理,掌握线段垂直平分线的性质并结合勾股定理求解线段的长度是解题的关键,且要注意数形结合思想应用.。
苏科初二数学期末下册第二学期考试试卷及答案
苏科初二数学期末下册第二学期考试试卷及答案一、解答题1.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?2.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.3.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.4.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.5.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.6.已知23x =+,23y =-。
求22x xy y ++的值。
7.用适当的方法解方程:(1)x 2﹣4x ﹣5=0;(2)y (y ﹣7)=14﹣2y ;(3)2x 2﹣3x ﹣1=0.8.计算:242933x x x x x ----- 9.解方程:224124x x x +-=-- 10.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A(-6,0),D(-7,3),点B 、C 在第二象限内.(1)点B 的坐标 ;(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t,使在第一象限内点B 、D 两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q,使得以P 、Q 、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P 、Q 的坐标;若不存在,请说明理由.11.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.12.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.13.(发现)(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;(探究)(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.(应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)14.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.15.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.2.(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质得到AB//CD,AB=CD,然后根据CE=DC,得到AB=EC,AB//EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC 是平行四边形,通过角的关系得出FA=FE=FB=FC ,AE=BC ,得证.【详解】(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∵CE =DC ,∴AB =EC ,AB ∥EC ,∴四边形ABEC 是平行四边形;(2)∵由(1)知,四边形ABEC 是平行四边形,∴FA =FE ,FB =FC .∵四边形ABCD 是平行四边形,∴∠ABC =∠D .又∵∠AFC =2∠ADC ,∴∠AFC =2∠ABC .∵∠AFC =∠ABC +∠BAF ,∴∠ABC =∠BAF ,∴FA =FB ,∴FA =FE =FB =FC ,∴AE =BC ,∴四边形ABEC 是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.3.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI .∵四边形ABCD 是正方形,∴AD =AB ,∠ADF =∠ABC =90°,∴∠ABI =90°,又∵BI =DF ,∴△DAF ≌△BAI (SAS ),∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,又∵AE 是△EAI 与△EAF 的公共边,∴△EAI ≌△EAF (SAS ),∴∠BEA =∠FEA .【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.4.见解析【分析】先根据平行四边形的性质,得出ED ∥BF ,再结合已知条件∠ABE =∠CDF 推断出EB ∥DF ,即可证明.【详解】证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠ABC =∠ADC ,∴∠ADF =∠DFC ,ED ∥BF ,∵∠ABE =∠CDF ,∴∠ABC -∠ABE =∠ADC -∠CDF ,即∠EBC =∠ADF ,∴∠EBC =∠DFC ,∴EB ∥DF ,∴四边形BFDE 是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.5.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD ∥FC ,2DE =BC ,然后结合已知条件“EF ∥DC ”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB =2DC ,即可得出四边形DCFE 的周长=AB +BC ,故BC =16﹣AB ,然后根据勾股定理即可求得.【详解】(1)证明:∵D 、E 分别是AB 、AC 的中点,∴ED 是Rt △ABC 的中位线,∴ED ∥BC .BC =2DE ,又 EF ∥DC ,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC =EF ,∵DC 是Rt △ABC 斜边AB 上的中线,∴AB =2DC ,∴四边形DCFE 的周长=AB +BC ,∵四边形DCFE 的周长为16cm ,AC 的长8cm ,∴BC =16﹣AB ,∵在Rt △ABC 中,∠ACB =90°,∴AB 2=BC 2+AC 2,即AB 2=(16﹣AB )2+82,解得:AB =10cm ,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.6.15【解析】【分析】先根据完全平方公式对代数式22x xy y ++进行变形可得:()2x y xy +-,再根据2x =+2y =-可分别计算出4x y +=,1xy =,代入变形后的代数式即可. 【详解】因为2x =+2y =,所以4x y +=,1xy =,所以()22224115x xy y x y xy ++=+-=-=.【点睛】本题主要考查代数式化简求值,二次根式加法和乘法计算,解决本题的关键是要熟练根据完全平方公式对代数式进行变形和二次根式加法乘法法则.7.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12x x == 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y (y ﹣7)-14+2y =0,分解因式得:(y ﹣7)(y +2)=0,则y ﹣7=0或y +2=0,解得:y 1=7,y 2=﹣2.(3)2x 2﹣3x ﹣1=0,∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x 1,x 2 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.8.3x -【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】 解:原式22242969(3)3333x x x x x x x x x x --+-+-====----; 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.9.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x 2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3), ∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B ′D ′为对角线时,∵四边形B ′PD ′Q 为平行四边形,∴63162n m n ⎧-=⎪⎨⎪-=-⎩,解得:13232m n ⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.11.(1)见解析;(2)①②③④;(3)①证明见解析;②【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,∵∠ACB=15°,∴∠AMB=30°,∵∠ACD=30°,∴∠AMD=60°,∴∠BMD=90°,∴△BMD是等腰直角三角形,∴BM=DM=2BD=2=1, ∴AC=2(直角三角形斜边上的中线等于斜边的一半),∴AD=AC ×sin30°=1,CD=AC ×cos30°∴菱形ACEF 的面积=12×1×4= 【点睛】本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.12.详见解析.【分析】先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DAC ,得出CD =AD =AB ,证出四边形ABCD 是平行四边形,再由AD =AB ,即可得出结论.【详解】证明:∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 平分∠BAD .∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.13.(1)见解析 (2)8 (3)见解析【分析】(1)根据ASA 证明三角形全等即可.(2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,∴AO =OC ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ).(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △ABC ,∵四边形ABCD 是菱形,∴S △ABC =12S菱形ABCD , ∵S 菱形ABCD =12•AC •BD =12×4×8=16, ∴S 四边形ABFE =12×16=8. (3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.如图3中,直线l 即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.14.见解析【分析】由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .【详解】BG =DH ,理由如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,∴∠E =∠F ,又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,∴AF =CE ,在△CEH 和△AFG 中,A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFG ≌△CEH (ASA ),∴AG =CH ,∴BG =DH .【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.15.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.。
苏科初二数学期末下册考试试卷及答案
苏科初二数学期末下册考试试卷及答案一、解答题1.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.2.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.3.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?4.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.5.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.6.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?7.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?8.在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF 的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.9.如图,已知△ABC.(1)画△ABC关于点C对称的△A′B′C;(2)连接AB′、A′B,四边形ABA'B'是形.(填平行四边形、矩形、菱形或正方形)10.如图,在ABC中,∠BAC=90°,DE是ABC的中位线,AF是ABC的中线.求证DE=AF.证法1:∵DE是ABC的中位线,∴DE=.∵AF是ABC的中线,∠BAC=90°,∴AF=,∴DE=AF.请把证法1补充完整,连接EF,DF,试用不同的方法证明DE=AF证法2:11.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.12.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)13.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且 ,连接PD,O为AC中点.PB PE(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,并说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.14.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;S=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A (2)已知ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.15.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3P m ⎛ ⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)a =8,b =0.08;(2)作图见解析;(3)14. 【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可; (2)直接根据(1)中的结果补全频数分布直方图即可; (3)根据89.5~100.5这一组的人数及概率公式求解即可. 【详解】解:(1)由题意得a =50-2-20-16-4=8,b =1-0.04-0.16-0.40-0.32=0.08; (2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.2.(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质得到AB//CD,AB=CD,然后根据CE=DC,得到AB=EC,AB//EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.3.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,依题意,得:1001201 0.8x x-=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.4.(1)(3,2),12y x=;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x ;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),∵点G在直线ON上,∴e﹣3=12(e+5),解得e=11,∴H(16,11).(3)s1:s2的值是一个常数,理由如下:如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),∵点G在直线y=12x上,∴a﹣3m=12(a+5m),∴a=11m,∴E(11m,11m),H(16m,11m),F(11m,8m),G(16m,8m)J(11m,0),K (16m,0),∴S△OEG=S△OEJ+S梯形EJKG﹣S△OKG=12×11m×11m+12(8m+11m)•5m•12﹣12×16m×8m =44m2,S矩形EFGH=EF•FG=15m2,∴12SS=224415mm=4415.∴s1:s2的值是一个常数,这个常数是4415.【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.6.(1)50;32;43.2(2)见解析(3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x 件衬衫,用含x 的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x 件衬衫,则第二批购进了2x 件衬衫.根据题意得12000x =264002x-10 解得x=120. 经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.8.(1)254 (2)152【分析】(1)根据折叠的性质可得∠ADB=∠EDB ,再根据两直线平行,内错角相等可得∠ADB=∠DBC ,然后求出∠FBD=∠FDB ,根据等角对等边可得BF=DF ,设BF=x ,表示出CF ,在Rt △CDF 中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH ,设BH=DH=x ,表示出CH ,然后在Rt △CDH 中,利用勾股定理列出方程求出x ,再连接BD 、BG ,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中,S 菱形BHDG =12BD ⋅GH=BH ⋅CD , 即12×10⋅GH=254×6,解得GH=152.故答案:152 【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.9.(1)见解析;(2)平行四边形.【分析】(1)根据题意画出三角形即可;(2)由对称的性质判断即可.【详解】(1)如图,△A′B′C 即为所求;(2)如上图,由题意可得△ABC ≌△A′B′C ,∴AC =A′C ,BC =B′C ,∴四边形ABA'B'为平行四边形.【点睛】本题考查了对称图形的性质,平行四边形的判定,掌握知识点是解题关键.10.2BC ,2BC ,证明见解析 【分析】证法1:根据三角形中位线定理得到DE=12BC ,根据直角三角形的性质得到AF=12BC ,等量代换证明结论; 证法2:连接DF 、EF ,根据三角形中位线定理得到DF ∥AC ,EF ∥AB ,证明四边形ADFE 是矩形,根据矩形的对角线相等证明即可.【详解】证法1:∵DE 是△ABC 的中位线,∴DE=12BC , ∵AF 是△ABC 的中线,∠BAC=90°, ∴AF=12BC , ∴DE=AF ,证法2:连接DF 、EF ,∵DE 是△ABC 的中位线,AF 是△ABC 的中线,∴DF 、EF 是△ABC 的中位线,∴DF ∥AC ,EF ∥AB ,∴四边形ADFE 是平行四边形,∵∠BAC=90°,∴四边形ADFE 是矩形,∴DE=AF .故答案为:12BC ;12BC . 【点睛】本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.12.(1)1.5;(2)58;(3)4m . 【分析】 (1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE =2.51 1.5EF DF BE ∴=-=-=.故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.13.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上, ∴BA DA =,45BAP DAP ∠=∠=︒, 又PA PA =,∴BAP DAP ∆≅∆(SAS), ∴PB PD =,又∵PB PE =,∴PE PD =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..14.(1)证明见详解;(2)①5或6;②9或10或496. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即4<t≤10时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC=12×5x×4x=160cm 2,而x >0, ∴x=4cm ,则BD=8cm ,AD=12cm ,CD=16cm ,AB=AC=20cm .由运动知,AM=20-2t ,AN=2t ,①当MN ∥BC 时,AM=AN ,即20-2t=2t ,∴t=5;当DN ∥BC 时,AD=AN ,∴12=2t ,得:t=6;∴若△DMN 的边与BC 平行时,t 值为5或6.②存在,理由:Ⅰ、当点M 在BD 上,即0≤t <4时,△MDE 为钝角三角形,但DM≠DE ;Ⅱ、当t=4时,点M 运动到点D ,不构成三角形Ⅲ、当点M 在DA 上,即4<t≤10时,△MDE 为等腰三角形,有3种可能.∵点E 是边AC 的中点,∴DE=12AC=10当DE=DM ,则2t-8=10,∴t=9;当ED=EM ,则点M 运动到点A ,∴t=10;当MD=ME=2t-8,如图,过点E 作EF 垂直AB 于F ,∵ED=EA ,∴DF=AF=12AD=6, 在Rt △AEF 中,EF=8;∵BM=2t ,BF=BD+DF=8+6=14,∴FM=2t-14在Rt △EFM 中,(2t-8)2-(2t-14)2=82,∴t=496. 综上所述,符合要求的t 值为9或10或496. 【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.15.(12332)存在.(0,23Q 或()32或(0,3-或3⎛ ⎝⎭;(2)PHOB S 梯形334m =,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③B Q=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形334m =,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 33m =-,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()()11,0,0,3A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a =, 11223232233ABC S AC AB ∆∴==⨯⨯=; ()2存在设()0,Q a ,则(2224,3AB BQ a ==-,221AQ a =+, ①当AB BQ =时,即22AB BQ =,(243a ∴=-,解得:123a =232a =, (()120,23,32Q Q ∴==;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =3a =B 重合),(30,3Q ∴;③当BQ AQ =时,即22BQ AQ =, (2231,32a a a ∴=+=,解得:33a =, 430,3Q ⎛⎫∴= ⎪ ⎪⎝⎭, 综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,P m ⎛ ⎝⎭,(),0H m ∴,3,1OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形, ()1332m =⨯⨯-⎭334m =, 11313222AOB S OA OB ∆==⨯⨯=, ()113122APH S AH PH m ∆==⨯-)31m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)33331424m m =+--=, ABP ABC S S ∆∆=,+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.。
初二数学第二学期期末考试试卷.doc
A B C D A B C D a 初二数学第二学期期末考试试卷A 卷(100分)一、专心填一填(每题3分,共39分)1、64的平方根是 ,立方根是 。
2在π,31,—3,0,12345,2003,2—1这些数中,是无理数的为 3.若∠A 为锐角,且sinA=22,则tanA= . 4.在函数y=12+x x 中,自变量x 的取值范围是 .5.在平面直角坐标系中,点P (3,—4)关于y 轴的对称点的坐标是 .6. 己知Rt ΔABC 与Rt ΔDEF ,∠C=90°, ∠F=90°,∠A=67° ∠D=23° 则ΔABC 与 ΔDEF (填“相似”或“不相似” )7.如图,已知AD 是Rt ⊿ABC 斜边BC 上的高,且AB=6,,BC=10,则AC= ,sin а= .8.如图,D 为AB 上一点,只要具备一个条件: ,就可使⊿ACD ∽⊿ABC.9.tan50°×tan а=1,则а= , 4sin 260°=10. 某人沿坡度i=1:3的桥向上走50米,这时,他离地面的高度是 米。
11.盒字里装有10颗水果糖、2颗奶糖、3颗巧克力糖,随手拿出一颗,恰好是水果糖的机会是 ,恰好是巧克力糖的机会是 。
12.样本101,98,102,100,99的标准差是13.边长为2的等边三角形的面积是A 、6=3 B 、9=3 C 、9=±3 D 、39=3 15.下列是同类二次根式的是( ) A 、2和12 B 、2和21 C 、3和30 D 、1—a 和1+a 16. 在Rt ΔABC 中,∠C =90o ,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则下列正确的是( )A 、c b A =sinB 、c a A =cosC 、b c A =tanD 、ab A =cot 17. 若△ABC ∽△A ′B ′C ′,∠A=40°,∠C=110°,则∠B ′等于( ) A 、30° B 、50° C 、40° D 、70°18.在下列函数中,当x (x > 0) 增大时,y 反而减小的函数是( )A 、 y = 32xB 、 y= —x 8C 、y= 5 xD 、y = x3 19.“早穿皮袄午穿纱”是对一天中温度的最佳写照,它的含义是一天中的( )A 、最高气温B 、最低温度C 、平均温度D 、温差极大20. 如图:在△ABC 中,DE ∥AC ,则DE :AC=( )A 、8:3B 、3:8C 、8:5D 、5:821. 甲、乙两班学生参加了同一次数学考试,班级的均分和方差如下:,180,240,80,8022====乙甲乙甲S S x x 则成绩较为整齐的是----------( ) A 、甲班 B 、乙班 C 、两班一样 D 、无法确定22.1口袋中有一个红球和2个白球,搅匀后从中摸出第一个球,然后放回口袋,搅匀后摸出第二个球,两次摸的球都是红球的机会是( )A 、 91B 、 61C 、 41D 、31 23.一个直角三角形的两条边是3㎝和4㎝,则第三边长是( ) A 、5㎝ B 、7 ㎝ C 、 5㎝或7㎝ D 、不能确定三、细心做一做(共31分)24.(本题10分)计算:(1)212-9271+448(2)2sin30°-cot60°+2tan45°25.(本题6分)在C ∆AB 和C 'B 'A '∆中,已知AB =7,BC =5,,=︒A ∠45,=14B 'A ',=10C 'B ' ,=︒A '∠45试判定C ∆AB 与C 'B 'A '∆是否相似?请说明理由。
【人教版】初二数学下期末试题附答案
一、选择题1.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人数4812115则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分2.一组数据3,4,6,8,8,9的中位数和众数分别是()A.7,8 B.7,8,5 C.5,8 D.7,5,73.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐4.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.25.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20210x yy x+-=⎧⎨-+=⎩B.20210x yy x-+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩6.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =- D .3y x =-7.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫⎪⎝⎭ C .30,2⎛⎫ ⎪⎝⎭D .(0,2) 8.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系:用电量x (千瓦时)1 234······应交电费y (元)0.55 1.1 1.65 2.2 ······x y x y x ②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( ) A .4个 B .3个C .2个D .1个9.已知三个数22,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .22B .22或22C .22,42或82D .22,22或4210.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠11.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF =,则两个正方形重合部分的面积为( )A .212a B .214a C .218aD .2116a 12.在Rt △ABC 中,∠C=90°,CA=CB=4,D 、E 分别为边AC 、BC 上的两点,且AD=CE , 当线段DE 取得最小值时,试在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则满足条件的点P 的个数是( )A .6B .7个C .8个D .以上都不对二、填空题13.数据﹣2、﹣1、0、1、2的方差是_____.14.一组数据3,2,3,4,x 的平均数是3,则它的方差是_____.15.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.16.已知一个一次函数的图象过点(1,2)-,且y 随x 的增大而减小,则这个一次函数的解析式为__________.(只要写出一个)17.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为_____. 18.如图,菱形ABCD 的对角线相交于点O ,AC =12,BD =16,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE ⊥AC 于E ,PF ⊥BD 于F ,连结EF ,则EF 的最小值等于__________.19.若二次根式26a +与33-是同类二次根式,则整数a 可以等于___________.(写出一个即可)20.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDFMEFSS=,则CF 的长为________.三、解答题21.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为 人,图1中m 的值是 ; (2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.学校开展的“书香校园”活动受到同学们的广泛关注,为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表. 学生借阅图书的次数统计表: 借阅图书的次数 0次 1次 2次3次 4次及以上人数713a10 3请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ;(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书4次及以上的人数.23.如图,在平面直角坐标系中,四边形OABC 是直角梯形,//BC OA ,(8,0)A ,(0,4)C ,5AB =,现有一动点P 从点A 出发,以每秒2个单位长度的速度沿AO 方向,经O 点再往OC 方向移动,最后到达C 点.设点P 移动时间为t 秒.(1)求点B 的坐标;(2)当t 为多少时,ABP ∠的面积等于13;(3)在(2)的条件下,取BP 中点M ,在x 轴上找一点N ,使BN MN +和最小,求此时N 点的坐标.24.如图,ABCD 中,E 、F 是直线AC 上两点,且AE CF =. 求证:(1)BE DF =; (2)//BE DF .25.()20143220202π-⎛⎫+-+-- ⎪⎝⎭26.如图,△ABC 中,AB =42,∠ABC =45°,D 是BC 边上一点,且AD =AC ,若BD ﹣DC =1.求DC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.2.A解析:A【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,据此可得答案.【详解】解:将数据从小到大排列为3、4、6、8、8、9,则这组数据的中位数为(6+8)÷2=7,众数为8.故选:A.【点睛】本题考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键4.D解析:D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.5610⨯-+⨯-+⨯-+⨯-+-=故选D 【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.B解析:B 【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题. 【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0). 将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0). 将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0.因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B 【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.6.D解析:D设直线l 与y 轴交于点C ,由已知条件求出点C 的坐标后利用待定系数法可以得到直线l 的函数表达式. 【详解】解:分别令x=0和y=0可得B 、A 的坐标为(0,-4)、(3,0), ∴AB=22345+=,则三角形OAB 的周长为12 如图,设直线l 与y 轴交于点C (0,c ),则OA+OC=6,即3-c=6, ∴c=-3,即C 的坐标为(0,-3),设l 的函数表达式为y=kx+b ,由l 经过A 、C 可得:033k b b =+⎧⎨-=⎩,解之得: 13k b =⎧⎨=-⎩, ∴l 的函数表达式为:y=x-3, 故选D . 【点睛】本题考查一次函数的应用,熟练掌握一次函数的图象、勾股定理的应用及待定系数法求解析式的方法是解题关键.7.C解析:C 【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4), ∴AO =3,BO =4,∴在Rt ABC 中,AB 22AO BO +=5,∵折叠,∴AD =AB =5,CD =BC , ∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m , ∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=, 即2222(4)m m +=-, 解得:m =32, 故点C (0,32), 故选:C . 【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.8.B解析:B 【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性. 【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55, ∴y 是x 的一次函数,故①正确,②正确, 设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误. 故选:B . 【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解.9.D解析:D 【分析】运用比例的基本性质,将所添的数当作比例式a :b =c :d 中的任何一项,进行计算即可, 【详解】设添加的这个数是x当24:x=时,2x=x=当2:4x=时,2x=x=x=,当2:4x=时,4x=2当2:4=,解得x==8x故选D.【点睛】本题考查比例的基本性质,注意写比例式的时候,一定要按照顺序写,顺序不同,结果不同.10.D解析:D【分析】先证明△ADF≌△BEF,得到AD=BE,推出四边形AEBD是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD中,AD∥BC,∴∠DAB=∠EBA,∵点F是AB的中点,∴AF=BF,∵∠AFD=∠BFE,∴△ADF≌△BEF,∴AD=BE,∵AD∥BE,∴四边形AEBD是平行四边形,∠=∠时,得到AB=BD,无法判定四边形AEBD是菱形,故该选项不符合A、当BAD BDA题意;B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.11.B解析:B【分析】由正方形OMNQ与ABCD得∠DOC=∠MOQ=90°可推出∠DOE=∠COF由AC,BD是正方形ABCD的对角线求得∠ODE=∠OCF=45°,可证△DOE≌△COF(AAS),利用面积和差S四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.12.B解析:B【分析】先找出DE 最短时的位置,然后根据等腰三角形的性质,进行分类讨论,即可求出点P 的个数.【详解】解:在Rt △ABC 中,∠C=90°,设AD=CE=x ,则4CD x =-,由勾股定理,得:2222222(4)28162(2)8DE CD CE x x x x x =+=-+=-+=-+, ∴当2x =时,2DE 最小,即DE 最小,∴此时2AD CD CE BE ====,DE ==∵在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则可分为三种情况进行分析:PD=PE ;PD=DE ,PE=DE ;如下图所示:点P 共有7个点;故选:B .【点睛】本题考查了等腰三角形的性质,完全平方公式的应用,勾股定理,最短路径问题,解题的关键是熟练掌握所学的知识,正确的确定点P 的位置,注意运用数形结合的思想进行解题.二、填空题13.2【分析】根据题目中的数据可以求得这组数据的平均数然后根据方差的计算方法可以求得这组数据的方差【详解】由题意可得这组数据的平均数是:x==0∴这组数据的方差是:故答案为2【点睛】此题考查方差解题关键 解析:2【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【详解】由题意可得,这组数据的平均数是:x=()210125-+-+++ =0, ∴这组数据的方差是:()()()()()222222201000102025s --+--+-+-+-== ,故答案为2.【点睛】 此题考查方差,解题关键在于掌握运算法则14.04【解析】【分析】根据数据2334x 的平均数是3先利用平均数的计算公式可求出x 然后利用方差的计算公式进行求解即可【详解】∵数据2334x 的平均数是3∴∴∴故答案为【点睛】本题主要考查了平均数和方差解析:0.4【解析】【分析】根据数据2、3、3、4、x 的平均数是3,先利用平均数的计算公式可求出x ,然后利用方差的计算公式进行求解即可.【详解】∵数据2、3、3、4、x 的平均数是3,∴2334x 35++++=⨯,∴x 3=, ∴(2222221S [(33)(23)(33)(43)33)0.45⎤=⨯-+-+-+-+-=⎦, 故答案为0.4. 【点睛】本题主要考查了平均数和方差的计算,解题的关键是熟练掌握平均数和方差的计算公式. 15.70【分析】利用待定系数法求出相遇前y 与x 的关系式确定出甲乙两地的距离进而求出两车的速度即可确定出所求【详解】解:设线段AB 的解析式为把与代入得:解得即令则即甲乙两地相距280千米设两车相遇时慢车行 解析:70【分析】利用待定系数法求出相遇前y 与x 的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.【详解】解:设线段AB 的解析式为y kx b =+,把()1.5,70与()2,0代入得: 1.57020k b k b +=⎧⎨+=⎩, 解得140280k b =-⎧⎨=⎩, 即140280y x =-+,令0x =,则280y =,即甲乙两地相距280千米,设两车相遇时,慢车行驶了x 千米,则快车行驶了()40x +千米,根据题意得:40280x x ++=,解得:120x =,即两车相遇时,慢车行驶了120千米,则快车行驶了160千米,∴快车的速度为80千米/时,慢车速度为60千米/时,根据题意得:()28016080 1.5-÷=(小时),1.56090⨯=(千米),2801209070--=(千米),则快车到达乙地时,慢车还有70千米到达甲地.【点睛】本题考查一次函数的应用,解题的关键是能看懂函数图象,利用数形结合的思想将图象与已知条件联系在一起,灵活变化,找出所求问题需要的条件.16.y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k可取-1,把(-1,2)代入y=-x+b得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.17.5【分析】根据勾股定理逆定理判断出三角形是直角三角形然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:∵62+82=100=102∴该三角形是直角三角形∴×10=5故答案为:5【点睛】解析:5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∴该三角形是直角三角形,∴1×10=5.2故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.18.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故 解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二 解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵与-∴==∴2612a+=,解得3a=,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.20.3【分析】作DG⊥AC于GEH⊥AC于H则∠DGM=∠MHE=90°DG∥BC由勾股定理得出BC=6证出DG是△ABC的中位线得出DG=BC=3AG=CG=AC=4证明△MDG≌△EMH(ASA)得解析:3【分析】作DG⊥AC于G,EH⊥AC于H,则∠DGM=∠MHE=90°,DG∥BC,由勾股定理得出BC=6,证出DG是△ABC的中位线,得出DG=12BC=3,AG=CG=12AC=4,证明△MDG≌△EMH(ASA),得出MG=EH,由三角形面积关系得出DG=2EH=3,得出MG=EH=32,再证明∆DGF~∆EHF,从而求出GF,进而即可得出答案.【详解】作DG⊥AC于G,EH⊥AC于H,如图所示:则∠DGM=∠MHE=90°,DG∥BC,∵∠ACB=90°,AB=10,AC=8,∴BC6=,∵DG∥BC,D是AB的中点,∴DG是△ABC的中位线,∴DG=12BC=3,AG=CG=12AC=4,∵△DME是等腰直角三角形,∴∠DME=90°,DM=ME,∵∠DMG+∠GDM=∠DMG+∠EMH=90°,∴∠GDM=∠EMH,在△MDG和△EMH中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF ,∴21DG GF EH HF ==, ∵GH=MH-MG=DG-MG=3-32=32, ∴GF=32×221+=1, ∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.三、解答题21.(1)50,32;(2)16,15;(3)768.【分析】(1)根据题意由5元的人数及其所占百分比可得抽样调查的学生人数,用10元人数除以抽样调查的学生人数可得m 的值;(2)由题意根据统计图可以分别得到本次调查获取的样本数据的平均数和中位数; (3)由题意根据全校总人数捐款金额为10元的学生人数所占乘以抽样调查的学生人数的比例,即可估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人, ∵16100%32%50⨯=, 32m ∴=.故答案为:50;32. (2)本次调查获取的样本数据的平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元); 本次调查获取的样本数据的中位数是:15元.(3)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图和扇形统计图、用样本估计总体、平均数、中位数,解题的关键是明确题意,找出所求问题需要的条件.22.(1)17,20a b ==;(2)中位数是2次,众数是2次;(3)120人【分析】(1)根据借阅1次的人数及百分比求出样本总人数,减去其他的人数即可得到a ,用借阅3次的人数除以总人数乘以100%即可得到3次的百分比,由此得到b ;(2)根据中位数及众数的定义解答;(3)根据样本中4次及以上的百分比乘以2000解答.【详解】(1)调查的总人数是1326%50÷=(人),∴a=50-7-13-10-3=17,10%100%20%50b =⨯=, 故答案为:17,20; (2)50个数据中中间两个数据都是2次,故中位数是2次,数据出现次数最多的是2次,故众数是2次,故答案为:2次,2次;(3)3100%200050⨯⨯=120(人), ∴该校学生在一周内借阅图书4次及以上的人数是120人.【点睛】此题考查统计数据的计算,正确掌握样本总数的计算方法,中位数的定义,众数的定义,利用样本的百分比求总体的方法是解题的关键.23.(1)(5,4) (2)13 s 4t =或19 s 4t = (3)23,06⎛⎫ ⎪⎝⎭或95,027⎛⎫ ⎪⎝⎭【分析】(1)过点B 作BD OA ⊥于点D ,得出ADB △为直角三角形,利用勾股定理求出AD ,BD 的值,从而可求出点B 的坐标,(2)当点P 运动时间为t 秒时,则2AP t =,由三角形的面积公式建立等量关系即可求出t 的值,(3)结合(2)问,求出点P 的坐标,进而求出BP 中点M 的坐标,再作出点B 关于x 的对称点,求出该对称点与点M 所在直线的的解析式,该直线与x 的交点即为点N .【详解】(1)过点B 作BD OA ⊥于点D ,∴90BDO ∠=︒,∵四边形OABC 是直角梯形,BC OA , ∴90BCO COD ∠=∠=︒,∴四边形ODBC 为矩形,∵(0,4)C ,(8,0)A ,∴4OC BD ==,8OA =,∵5AB =,在Rt ABD △中,由勾股定理得:222AB BD AD =+, ∴2222543AD AB BD =--=,∴5OD OA AD =-=,∴(5,4)B .(2)当P 点在O 点时,4s t =,当P 点在C 点时,6s 2OA OC t +==, ①当04s t <≤时,由题可知:2AP t =, ∴112441322ABP S AP BD t t =⋅=⨯⨯==△, ∴13s 4t =. ②当46t <≤时,则28OP t =-,4122CP OP t =-=-,∴ABP AOP BCP OABC S S S S =--△△△梯形()111222OA BC OC OA OP BC CP =+⋅-⋅-⋅ 111(48)48(28)4(122)222t t =⨯+⨯-⨯⨯--⨯⨯-24832244t t =-+-+324t =-13=.∴419t =,19s 4t =.故当13s 4t =或19s 4t =时,ABP △的面积是13. (3)由(2)得:①当13s 4t =时,132AP =, ∴32OP =, ∴3,02P ⎛⎫ ⎪⎝⎭, 又∵(5,4)B ,M 为BP 的中点,∴13,24M ⎛⎫ ⎪⎝⎭, 作B 点关于x 轴对称点B ',则(5,4)B '-,连接MB '交x 轴于点N ,则BN MN B N MN B M ''+=+=. 设直线B M '的解析式为(0)y kx b k =+≠,代入B ',M 两点,得451324k b k b -=+⎧⎪⎨=+⎪⎩,解得247927k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线B M '为249277y x =-+, 令0y =,则249277x =,236x =, ∴23,06N ⎛⎫ ⎪⎝⎭. ②当19s 4t =时,3282OP t =-=,∴3 0, 2P⎛⎫⎪⎝⎭,又∵(5,4)B,M为BP中点,∴511,24M⎛⎫⎪⎝⎭,作B点关于x轴的对称点B'',∴(5,4)B''-,设直线B M''交x轴于点N,则MN BN MN B N MB'''+=+=.设直线B M''的解析式为()111y k x b k=+≠,代入M,B''得4511542k bk b-=+⎧⎪⎨=+⎪⎩,解得2710192kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线B M''为2719102y x=-+,令0y=,得19109522727x=⨯=,∴95,027N⎛⎫⎪⎝⎭.综上N的坐标为23,06⎛⎫⎪⎝⎭或95,027⎛⎫⎪⎝⎭.【点睛】本题考查了勾股定理,矩形的判定及性质,点的坐标的确定,以及利用轴对称求最值,待定系数法求一次函数解析式,熟练运用三角形面积,以及利用轴对称方法求最值是解题关键.24.(1)见解析;(2)见解析【分析】(1)利用平行四边形的性质借助全等三角形的判定与性质得出即可;(2)利用全等三角形的性质结合平行线的判定方法得出即可.【详解】证明:(1)四边形ABCD 是平行四边形,,//AD BC AD BC ∴=,DAC BCA ∴∠=∠,DAF BCE ∴∠=∠,AE CF =,AF EC ∴=,在ΔFAD 和ΔECB 中,AF CE FAD ECB AD BC =⎧⎪∠=∠⎨⎪=⎩,ΔΔ()FAD ECB SAS ∴≅,BE DF ∴=;(2)ΔΔFAD ECB ≅,F E ∠=∠∴,//BE DF ∴.【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,得出△FAD ≌△ECB 是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.DC =2.【分析】过点A 作AE ⊥BC 于点E ,则∠AEB=90°,DE=CE ,结合∠ABC=45°可得出∠BAE=45°,进而可得出AE=BE ,在Rt △ABE 中,利用勾股定理可求出BE 的长,即BD+12DC=4,结合BD-DC=1可求出DC 的长.【详解】解:过点A 作AE ⊥BC 于点E ,如图所示.∵AD=AC,AE⊥BC,∴∠AEB=90°,DE=CE.∵∠ABC=45°,∴∠BAE=45°,∴AE=BE.在Rt△ABE中,AB=2∴AE2+BE2=AB2,即BE2+BE2=(2)2,∴BE=4,∴BD+1DC=4.2又∵BD﹣DC=1,∴DC+1+1DC=4,2∴DC=2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在Rt△ABE中,利用勾股定理求出BE的长是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学下期期未试题7
一.填空。
1.若
234X X +=4+-X X ,则X 的取值范围 。
2.已知0122=+++-X X Y X ,则222XY X += 。
3.最简根式
2
334++a b a 与
a
b b a +--62是同类根式,则()
2
b a += 。
4.CD 是ABC Rt ∆斜边上的高,且AD =4,BD =5,则AC =。
5
.正方形的对角线长为cm 2,则面积为 。
6.一个三角形的三个角度之比为3:2:1,则三边之比为 。
7.在非等腰三角形中,D 是AB 上一点,要在AC 上取一点E ,
使ADE ∆与原ABC ∆相似,这样的点有 个。
8.ABC ∆中,DE//BC ,AD : DB=2 : 3,则ADE S ∆ : ABC S ∆= 。
9.如图,ABCDE 为封闭折线,则E D C B A ∠+∠+∠+∠+∠= 。
10.顺次连结等腰梯形各边中点所组成的四边形是 。
二、选择。
1. 下列各数2
1-,π,3
9,16,0 ,722 ,.
.12.0 ,0.2020020002无理数有( )
个
2. m
m 1
-可化简为( )
A.
m B. m - C.
m - D. m --
3.()()7
9
3
22
223-+的值( )
A. 21217+
B. 21217--
C. 223+
D. 223-- 4.如图,AB//CD ,AE//FD ,图中共有相似三角形( ) A. 2对 B. 4对 C. 6对 D. 8对 5.已知,5:4:3::=c b a ,2=-+c b a 那么
c b a -+2
1
23为( ) A. 3 B. 2
3
C. 6
D. 9 6. ABC Rt ∆两直角边BC AC :为5:3,CD 为斜边AB 上的高,则BD AD :是( )
A.
2
1 B. 169 C. 53 D. 259
二.计算。
1.()()
3
21321+--+
2. b
a b ab ab a ab ab --÷⎪⎪⎭
⎫ ⎝
⎛
+
-
3.()()
2
7
532753---÷
四、化简求值。
1.2
231+=A , 2
231-=
B 求
1
1
11-+-B A
A
B
C
D
E F
H
G 4小题图
C D
3. 已知3
11-=
a ,3
11+=
b 求
⎪⎪⎭
⎫ ⎝⎛+b a a b ab
五、作图
1. 画等腰梯形ABCD ,使底AD=3cm ,BC=6cm ,︒=∠60B
2. 已知线段AB ,用平行线分线段定理把它三等分。
六、已知ABC ∆中,D 为BC 上一点,B CAD ∠=∠, DE//AC ,交AB 于点E ,BD=4 , DC=6,求DE 的长?
七、如图,平行四边形ABCD 中,︒=∠45DBC ,BC DE ⊥于E , CD BF ⊥于F ,DE 、BF 交于H , BF 、AD 的延长线交于G ,求证:HE GA AB ∙=2
八、如图,点E 为矩形ABCD 边BC 上一点,先把矩形纸片对折,折痕为MN ,恢复形状后,再把点B 折到MN 上,设EB 的延长线交AD 于F,试判断AEF ∆形状,并加以证明。
九、已知,如图.,,90b BC a AC CDB ABC ==︒=∠=∠
⑴当BD 与a , b 满足什么关系时,ABC ∆∽CDB ∆
⑵过A 作BD 垂线,与DB 的延长线交于E ,若ABC ∆∽CDB ∆, 求证:四边形AEDC 为矩形。
A B C D E F M N
B` B C
E
A
E。