第23章-旋转教案

合集下载

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

23.3 课题学习图案设计一、教学目标【知识与技能】赏析生活中的精美图案,探究团的组成规律,能够利用图形的平移、轴对称和旋转变换进行一些简单的图案设计。

【过程与方法】在应用图形变换进行图案设计的过程中,对所学数学知识进行“再认识”,同时进行独立的数学创造,发展形象思维和创造性思维能力.【情感态度与价值观】在经历应用数学知识进行独立的图案设计的活动中,感受到数学美与创造的同时获得自我创造的成就感,激发创造性地应用数学知识的热情.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】利用各种图形变换设计组合图案.【教学难点】将基本图形创造性地应用平移、轴对称、旋转等变换设计出和谐、丰富、美观的组合图案.五、课前准备课件、圆规、直尺、三角尺、铅笔、图片等.六、教学过程(一)导入新课让学生说一说:下列图形可以通过其中一个圆怎样变化而得到?(出示课件2)(二)探索新知探究一分析构成图案的基本图形出示课件4,例试说出构成下列图形的基本图形.(1)(2)(3)(4)学生观察后,师生共同分析:思考:成轴对称时基本图形是什么?学生思考后教师总结:对于这三种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.(出示课件5)探究二分析图形形成过程例分析下列图形的形成过程.(出示课件6)(1)(2)(3)(4)学生观察交流后,师生共同分析:(出示课件7,8)出示课件9:教师总结归纳:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案,希望同学们认真分析,精心设计出漂亮的图案来.探究三图案的设计出示课件10:例1 下面花边中的图案以正方形为基础,由圆弧、圆或线段构成.仿照例图,请你为班级的板报设计一条花边.要求:(1)只要画出组成花边的一个图案;(2)以所给的正方形为基础,用圆弧、圆或线段画出;(3)图案应有美感.让学生自主设计图案(应以平移、旋转、轴对称变换为基本方法),然后同学间相互交流,看看谁设计的图案最美,并由设计者说说图案设计中所运用的图形交换有哪些?出示课件11,12,13:教师展示参考图案,让学生感受数学的美.出示课件14:例2 怎样用圆规画出这个六花瓣图?教师出示课件15,对学生画图进行进行启发:学生在教师的指导下进行画图.(出示课件16)教师问:图中A点的位置对六花瓣的形状有没有影响?对花瓣的位置有影响吗?(出示课件17)学生答:对形状没影响,对位置有影响.教师归纳总结:(出示课件18)在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.探究四图案设计欣赏出示课件19-22,教师引导学生反思图案设计的关键在于选取简单的基本几何图形,通过不同的变换组合出丰富的图案,在欣赏教师出示的课件中组合图案,进一步增强图案设计方法的理解和掌握.(三)课堂练习(出示课件23-28)1.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.2.图案可以通过将字母___经过______变换得到.3.图案可以通过将________经过______变换得到.4.图案可以看做将汉字___经过________变换得到.5.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的立体图形,但是涂阴影时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理想的效果.6.如图已知每个网格中小正方形的边长都是1,图中的图案是由三段以格点(每个小正方形的顶点叫格点)为圆心,半径分别为1、2、3的圆弧围成.(1)填空:图中三段圆弧所围成的封闭图形的面积是.(结果保留π);(2)请你在图中以(1)中的图为基本图案,借助轴对称变换和旋转变换设计一个完整的图案.7.用直尺,圆规,三角尺再设计一个新颖的(课堂上未见过的)美丽图案.参考答案:1.解:如图所示:2.S;旋转3.正方形;平移4.弓;轴对称5.如图所示:6.解:(1)3π-6⑵如图所示:7.略.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看. (五)课前预习预习下节课(24.1.1)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:通过反思图案设计的过程和欣赏变换产生的美,展现了数学的应用价值和美学价值.帮助学生了解数学是图形变换的根本,了解数学在人类文明发展中的作用,促进其形成正确的数学观.。

第二十三章旋转全章教案

第二十三章旋转全章教案

九年级上册第23章第1课时教案23.1图形的旋转(1)学校主备人时间备课审核设计理念让学生经历观察、操作等过程,了解图形旋转的概念,发展学生的空间观念,培养运动几何的观点,增强审美意识,让学生通过独立思考、自主探究和合作交流体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.教学目标1、知识与技能:了解旋转及对应点的有关概念,并能应用它们解决一些问题.2、过程与方法:让学生感受生活中的几何,•通过不同的情境设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.3、情感态度与价值观:经历图形旋转的探索活动,发展空间观念,培养运动几何的观点,增强审美意识.重点旋转及对应点的有关概念及其应用.难点从活生生的数学中抽象出概念.方法体验、探究式教学法课型新授课教学过程教学环节教学内容师生活动设计意图一、创设情境1.向学生展示有关的图片:(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器(5)由平面图形转动而产生的奇妙图案。

用课件展示图片并显示现实生活中部分物体的旋转现象学生观察图片通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。

2、提出问题:这些情境中的转动现象,有什么共同特征? 学生思考,归纳它们的共同特征。

让学生再举一些类似的例子初步感受转动的本质是绕着某一点,旋转一定的角度这两点,引导学生寻找、认识生活中的旋转现象,并揭示本节的研究课题-----图形的旋转。

二、自主探究1.建立旋转的概念请同学们尝试用自己的语言来描述上述图形的运动现象.2、给出旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

九年级数学上册第二十三章旋转23.1图形的旋转教案2(新版)新人教版

九年级数学上册第二十三章旋转23.1图形的旋转教案2(新版)新人教版
Байду номын сангаас情 感

态 度
经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.
重 点
旋转的有关概念和旋转的基本性质
难 点
探索旋转的基本性质
教学流程安排
活动流程图
活动内容和目的
活动1:创设情境,导入新课
AD
E
BC
学生动手练习,教师及时展示学生练习结果,并及时给予点评.
通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能力.
教 学 过 程 设 计
问题与情境
师生行为
设计意图
2、分析香港特别行政区的区徽图中的图形的旋转现象.
学生思考后,展示结果.
本次活动中,教师应重点关注:
(1)学生画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据.
(2)学生中作图的不同方法.
通过图形欣赏让学生感受数学图形的魅力,激发学生兴趣.
活动四 课堂练习 巩固提高
1、P64页练习
2、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有( )
A、2个 B、3个
C、4个 D、5个
学生单独完成后及时反馈,教师及时点评.
教 学 过 程 设 计
问题与情境
师生行为
设计意图
2、动手做一做:
在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA´B´C´.在纸片上分别连接0A、0B、0C、0A´、0B´、0C´.

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计一. 教材分析旋转是几何学中的一个重要概念,也是初中数学的重要内容。

本节课主要通过图形的旋转,使学生理解旋转的性质,学会如何对图形进行旋转,并能够运用旋转解决一些实际问题。

教材通过丰富的实例,引导学生探索旋转的规律,培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。

但是,对于图形的旋转,可能还停留在直观的认识上,缺乏对旋转性质的深入理解。

因此,在教学过程中,需要通过大量的实例和实践活动,让学生感受旋转的魅力,逐步引导学生掌握旋转的性质和运用。

三. 教学目标1.理解旋转的定义,掌握旋转的性质。

2.学会对图形进行旋转,并能运用旋转解决一些实际问题。

3.培养学生的空间想象能力和抽象思维能力。

4.提高学生的合作交流能力和问题解决能力。

四. 教学重难点1.旋转的性质的理解和运用。

2.对图形进行旋转的方法和技巧。

五. 教学方法1.采用问题驱动法,引导学生主动探索旋转的性质。

2.利用多媒体辅助教学,直观展示图形的旋转过程。

3.采用合作交流的方式,让学生在实践中掌握旋转的方法。

4.通过解决实际问题,培养学生运用旋转解决问题的能力。

六. 教学准备1.多媒体教学设备。

2.旋转的相关教具和模型。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门、旋转木马等,引导学生对旋转现象产生兴趣,进而提出本节课的学习主题——图形的旋转。

2.呈现(10分钟)利用多媒体展示图形的旋转过程,让学生直观感受旋转的魅力。

同时,引导学生观察和思考旋转前后图形的变化,初步感知旋转的性质。

3.操练(10分钟)让学生分组进行实践活动,每组选择一个图形,进行旋转操作,并观察旋转前后的变化。

然后,各组汇报实验结果,共同总结旋转的性质。

4.巩固(10分钟)出示一些练习题,让学生运用旋转的性质进行解答。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案,主要讲述了图形的旋转性质及其在实际问题中的应用。

本节课内容是学生在学习了图形的平移、翻转的基础上,进一步探究图形的旋转特点,培养学生的空间想象能力和动手操作能力。

二. 学情分析九年级的学生已具备一定的图形变换基础,对于图形的平移、翻转有一定的了解。

但学生在理解和应用图形旋转方面可能存在一定的困难,因此,在教学过程中,教师需要注重引导学生通过实际操作来掌握图形旋转的性质,提高学生的空间想象能力。

三. 教学目标1.理解图形旋转的性质,掌握图形旋转的基本方法。

2.能够运用图形旋转解决实际问题,提高学生的应用能力。

3.培养学生的空间想象能力和动手操作能力。

四. 教学重难点1.图形旋转的性质及其在实际问题中的应用。

2.学生空间想象能力的培养。

五. 教学方法采用“问题驱动”的教学方法,引导学生通过自主探究、合作交流的方式,掌握图形旋转的性质。

同时,运用多媒体技术辅助教学,提高学生的空间想象能力。

六. 教学准备1.多媒体课件。

2.图形旋转的实际问题案例。

3.练习题。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转现象,激发学生的学习兴趣。

同时,提问:“你们认为图形旋转有哪些性质呢?”2.呈现(10分钟)教师通过多媒体课件,展示图形旋转的性质,如旋转变换不改变图形的形状和大小,对应点、对应线段、对应角相等等。

同时,引导学生观察图形旋转前后的变化,总结旋转的规律。

3.操练(10分钟)教师提出一些实际问题,让学生运用图形旋转的性质进行解决。

如:“一个正方形绕着其一个顶点旋转90度后,求得旋转后的正方形面积。

”学生在教师的指导下,进行动手操作,巩固图形旋转的应用。

4.巩固(10分钟)教师给出一些关于图形旋转的练习题,让学生独立完成。

人教版九年级上册数学第23章旋转和圆(教案)

人教版九年级上册数学第23章旋转和圆(教案)
4.旋转与圆的关系:圆是旋转对称图形,旋转与圆的相关性质及应用;
5.圆的方程:圆的标准方程、一般方程及其应用。
本章节将带领学生深入学习圆的相关知识,理解旋转与圆的关系,培养学生的空间想象能力和逻辑思维能力。教学内容紧密结合教材,注重实用性和知识深度的把握。
二、核心素养目标
本章节的核心素养目标主要包括:
1.培养学生的几何直观和空间想象能力,通过旋转和圆的学习,使学生能够直观描述和理解几何图形的性质和变化;
2.提升学生的逻辑推理和问题解决能力,让学生掌握圆的相关性质和旋转对称图形的特点,并能运用这些知识解决实际问题;
3.培养学生的数学抽象和数学建模能力,通过圆的方程的学习,使学生能够从具体实例中抽象出数学模型,并运用方程进行问题求解;
(2)旋转对称图形的识别与性质:如何判断旋转对称图形,旋转对称图形的性质及应用;
难点解析:指导学生通过观察和分析,识别旋转对称图形,并掌握其性质。
(3)圆的方程推导与应用:从实际问题中抽象出圆的方程,并运用方程解决几何问题;
难点解析:引导学生学会从实际问题中提炼数学模型,掌握圆的方程推导过程。
(4)综合运用旋转和圆的性质解决实际问题:如求旋转体体积、求解与圆有关的位置关系等;
其次,在讲解重点和难点时,我要更加注意引导学生运用所学知识解决实际问题。通过案例分析和小组讨论,让学生在实践中掌握旋转和圆的性质,提高他们解决问题的能力。
此外,实践活动的设计也很关键。今天的教学中,我发现学生们在分组讨论和实验操作环节表现得非常积极,这说明他们对于动手实践的活动有很高的兴趣。因此,在今后的教学中,我应多设计一些类似的实践活动,让学生在操作中学习,提高他们的学习兴趣和效果。
4.增强学生的数学运算和数据处理能力,使学生能够熟练运用圆的相关公式进行计算和推导;

第23章旋转全章教案

第23章旋转全章教案

教学过程设计分别移本节课内容和前面学习过的什么知识可以归为一类?书设旋转的基本性质教学过程设计°后,这三点是否在一条直线上?归纳:像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这两个图形中的对应点叫做关于中心的对称点.(三)、中心对称作图1.课本例1归纳:画出与已知图形关于已知点的对称图形的方法:一般地,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可.2.已知四边形ABCD和其外一点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).三、课堂训练1课本64页练习.2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.3.如下图:△ABC与△DEF关于点O中心对称,下列说法不正确的() A.S△ABC = S△DEF B.AB=DE,DF=AC,BC=EFC.AB∥DE,AC∥DF,BC∥EF D.S△ABD= S△FED四、小结归纳1.中心对称,对称中心,对称点的概念.2.性质特点.3.中心对称作图的方法.五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复补充作业:已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转1800得到△FEC.(1)试猜想AE与BF有何关系?说明理由(2)若△ABC得面积为3㎝2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由. 帮助学生理解教师引导学生怎样找到一个点的对称点,学生思考中心对称的对应点间的关系,如何运用中心对称性质,尝试分析,并作图,教师对学生引导,并提出要求,根据学生完成情况,点评指正教师鼓励学生汇总,归纳,强系,总结规律方法,体会,反思,形成知识体系提出要求,按时完成作课类别课题23.2.2中心对称图形;22.2.3关于原点对称的点的坐标教学媒体多媒体教学目标知识技能1.正确认识什么是中心对称图形,理解中心对称图形的性质特点2.能理解中心对称和中心对称图形的异同.3.正确认识关于原点对称的两点的坐标间的关系.4.能运用关于原点成中心对称的点的坐标间的关系进行中心对称图形的变换过程方法1.经历中心对称图形的探索过程,通过观察、操作、发现、探究中心对称图形的有关概念和基本性质,培养学生的观察能力和动手操作能力.2.通过观察、实际操作,理解关于原点对称的点的坐标的关系,了解坐标系内中心对称作图的步骤及关键.情感态度通过对中心对称图形的学习,感受图形的美感,体验图形变化的规律,感受图形变换和图形的美丽,培养学生归纳、类比的学习意识.教学重点中心对称图形的概念和性质,关于原点对称的点的坐标关系教学难点中心对称与中心对称图形的区别与联系.关于原点对称的点的坐标关系的探索教学过程设计教学程序及教学内容一、导语:上节课我们学习了中心对称的有关概念和性质,这节课我们来研究一个图形中有没有类似的结论.二、探究新知(一)、中心对称图形的概念完成课本思考并回答问题:1.线段AB绕它的中点旋转180°旋转后的图形与原图形是否重合?平行四边形呢?2.各对称点绕O旋转180°后,这三点是否在一条直线上?归纳:像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原图形重合,那么就说这个图形是中心对称图形,这个点就是它的对称中心.这个图形中的对应点叫做关于中心的对称点.课题,引起学生思考教师提出问题,学生观察,思考,动手操作,尝试描述出发现规律和结论,并交流,师生观点达成一致结合操作教师引导学生得到概念一起分析概念要素,帮助学生理解教学过程设计计.○1.自己独立设计○2.小组交流设计图案○3.小组内选出优秀图案班内展示○4.能否绘制一幅反映你身边面貌的图案? 四、小结归纳 1.图案设计的关键是选取简单的基本图形,通过不同的变换组合出丰富的图案.2.图案设计是创造性地运用数学知识的实践过程. 五、作业设计 补充作业:一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )2.将三角形绕直线旋转一周,可得如图所示的立体图形的是( )二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如右图,是由________关系得到的图形. 三、综合提高题1.图案设计人员在进行图设计时,•常常用一个模板来设计一幅幅美丽漂亮的图案,你能说出用同一模板设计出的两个图案之间是什么关系吗?2.现利用同一模板经过平移、旋转、轴对称设计一个图案,•并说明你所表达的意义.可在黑板上设计图案.教师引导学生反思图案设计的关键,让学生感受创造的快乐l。

2024年人教版九年级上册教学设计第23章 23.1 图形的旋转

2024年人教版九年级上册教学设计第23章 23.1 图形的旋转

第1课时旋转的概念及性质课时目标1.通过引入具体实例,让学生在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.2.通过对图形旋转的基本性质的探究,培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.通过让学生经历实验探究、知识应用等数学活动,进一步体会旋转的内涵,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点旋转的概念及图形旋转的性质.学习难点旋转概念的形成过程及性质的探究过程.课时活动设计情境引入同学们都见过风车吧,小小的风车在风的吹动下不停的转动,生活中能够转动的物体还有很多,如风力发电机、飞机的螺旋桨、时钟的指针等,同学们知道它们所做的这种运动叫什么吗?设计意图:通过多媒体播放视频和图片,感受旋转现象,给学生产生视觉上的强烈冲击,产生强烈的求知欲,为下面探究新知识打下基础.让学生感悟数学来源于生活并应用于生活的辨证思想,初步感受旋转的概念.我们在前面的章节中已经学习了平移和轴对称两种图形的变化方式,分别研究了它们的定义、性质以及坐标表示等,类比它们的研究方式,你能获得旋转的有关知识吗?设计意图:通过设问使学生明确旋转和平移、轴对称一样都属于图形的变化,因此可以类比平移和轴对称去研究旋转,向学生渗透类比是发现解决问题方法的重要途径.另外一方面渗透获得定义的一种思想方法——从具体实例中归纳概括本质特征.探究新知如图1,钟表的指针在不停的转动,从3时到5时,时针转动了多少度?如图2,风车风轮的每个叶片在风的吹动下转动到新的位置.以上这些现象有什么共同特点呢?设计意图:让学生从具体实例中发现旋转现象,抽象出旋转的本质属性,类比图形平移的概念,给出旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.在此过程中培养学生的表达能力和总结能力,学会用数学语言表达现实世界,同时发展学生的抽象概括能力.新知讲解如图所示,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A'B'C'),移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA'有什么关系?△AOA'与△BOB'有什么关系?△ABC与△A'B'C'的形状和大小有什么关系?设计意图:通过教师引导或者学生独立思考后小组交流,共同探究并归纳出旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.通过问题的形式展示知识的形成过程,让学生亲身经历性质的发现、猜想、验证、归纳概括的过程,发展学生的合情推理能力,归纳概括能力,培养学生的数学应用意识.典例精讲例1如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.解:因为点A是旋转中心,所以它的对应点是它本身.正方形ABCD中,AD=AB,△DAB=90°,所以旋转后点D与点B重合.设点E的对应点E'.因为旋转后的图形与旋转前的图形全等,所以△ABE'=△ADE=90°,BE'=DE.因此,在CB的延长线上取点E',使BE'=DE,则△ABE'为旋转后的图形.设计意图:通过在较为复杂的背景下,运用旋转的性质画出旋转后的图形,提高学生运用旋转性质的灵活性,进一步加深学生对旋转性质的理解.在解本题时,通过师生共同探讨,确定△ADE三个顶点的对应点,画出旋转后的图形,在活动中培养学生合作、交流、归纳的能力.课堂8分钟.1.教材第61页练习第2题,第62页习题23.1第2,10题.2.七彩作业.第1课时旋转的概念与性质一、旋转的概念.二、旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.三、例题讲解.教学反思第2课时旋转作图课时目标1.通过使学生亲身经历旋转的作图,感受旋转性质的内涵,促使学生由感性认识到理性思考的升华,提升学生学习数学的兴趣,发展学生的抽象思维能力.2.通过让学生从事自主学习、合作交流等数学活动,进一步体会旋转作图的依据,在动手实践中培养学生的空间观念,发展学生的数学思维.3.通过使学生经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光观察实际生活,感受数学与现实生活的密切联系,培养学生的应用意识.学习重点利用旋转的性质设计简单的图案.学习难点利用旋转性质进行旋转作图.课时活动设计回顾引入问题:如图,△AOB绕点O旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.设计意图:通过学生回顾前面所学过知识,并完成画图,既巩固了对旋转的性质的理解,又为新知学习作铺垫.教学时,教师应引导学生正确解读旋转性质,即按同一方向作出△AOA'=△BOG,且OA'=OA,这样达到由感性认识到理性思考,为利用旋转设计图案埋下伏笔.探究新知如图1,这是一片月牙形图案,把图1绕点O旋转,就会慢慢出现两片(图2、图3)、三片,……,最终形成图4中的图案,请同学们仔细观察,感受图案的形成过程,回答如下问题:(1)你能说出上述图案是怎样得到的吗?(2)如果仅给你一片月牙形图案,你能设法得到图中的图案吗?(3)谈谈你对这些图案形成过程的认识,与同伴交流.设计意图:通过观察这些美丽的图案,可激发学生的学习兴趣,增强动手画出类似美丽图案的欲望,发展学生的想象力、创造力,提高审美能力.同时通过思考,感受由旋转而得到美丽图案的形成过程,加深对旋转性质的理解,掌握利用旋转来设计美丽图案的方法.教学时,应让学生进行充分交流,并让学生自主画图感受新知,最终形成共识:选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.新知讲解下图中的图形是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图中图形绕点P顺时针依次旋转90°,180°,270°,依次画出旋转后得到的图形,你会得到一个美丽的图案,涂阴影时不要涂错位置,否则不能出现理想的效果,你来试一试吧!(注:方格纸中小正方形的边长为1个单位长度)设计意图:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特征,很容易得到旋转后的图案.设置这道问题的目的是进一步加深学生对旋转性质的内涵的准确把握,同时又为解决新问题寻求解题思路,既锻炼学生分析问题、解决问题的能力,又培养学生的应用意识.新知应用把一个三角形旋转.(1)选择某一固定点为旋转中心,旋转角分别为45°,90°和135°,请画出旋转后的图形,并观察旋转效果;(2)选取两个不同点为旋转中心,旋转角均为30°,请画出旋转后的图形,观察旋转效果;(3)改变三角形的形状,看看旋转的效果.设计意图:让学生动手操作,进一步理解旋转中心不变,改变旋转角,与旋转角不变,改变旋转中心产生不同效果的合理性,进而可激发学生利用旋转进行图案设计的欲望,锻炼学生的艺术创作力.典例精讲利用所学,请同学们思考如何将甲图案变成乙图案:设计意图:设置此题的目的在于让学生认识到已知两个全等图形,其中一个图形可由另一个图形经过一定的全等变换而得到,拓宽了学生的视野,加深了对旋转作图的理解及应用.拓展应用请以下列图形为基本图形,利用旋转进行图案设计,并与同伴交流效果.学生自主交流.设计意图:设置这道题目,一方面让学生通过画图感受数学的应用价值,另一方面由于学生各自审美观点不同,创造力不同,学生所画出的图案也各不相同.教学中,引导学生在动手操作,设计图案过程中深化对旋转性质的认知,培养学生的数学应用意识.课堂8分钟.1.教材第62页习题23.1第3,4,7,8题.2.七彩作业.第2课时旋转作图一、旋转的性质.二、旋转作图.选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.三、例题讲解.教学反思。

人教版数学九年级上册第23章旋转数学活动优秀教学案例

人教版数学九年级上册第23章旋转数学活动优秀教学案例
5.作业小结的针对性:布置具有针对性的作业,让学生巩固所学知识,提高他们的数学应用能力。同时,要求学生在作业中运用旋转知识解决实际问题,培养他们的实践能力。教师及时批改作业,给予学生反馈,帮助他们改进学习方法,提高学习效果。这样的作业小结有助于学生对所学知识的巩固和应用,提高他们的数学素养。
4.教师对各小组的成果进行评价,及时给予反馈,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结自己在学习旋转知识中的优点和不足。
2.组织学生进行自我评价,鼓励他们发现自己的长处,增强自信心。
3.教师对学生的学习成果进行评价,关注学生的全面发展,不仅重视知识的掌握,还要注重能力的培养。
2.通过设计有趣的数学故事或问题,激发学生的学习兴趣,使他们主动参与到课堂活动中。
3.创设具有挑战性的数学问题,让学生在解决问题的过程中,自然地引入旋转知识,提高他们的思维能力。
(二)问题导向
1.设计一系列由浅入深的问题,引导学生逐步深入探讨旋转的性质和运算,培养学生的问题解决能力。
2.鼓励学生提出自己的疑问,教师及时解答,确保学生对旋转知识的理解。
人教版数学九年级上册第23章旋转数学活动优秀教学案例
一、案例背景
本节内容是“人教版数学九年级上册第23章旋转”,旋转是几何中的一个重要概念,也是中考的热点之一。学生需要通过本节学习,理解旋转的定义、性质和基本运算。在实际教学中,我发现许多学生在学习旋转时,容易与其生活实际脱节,难以理解旋转的本质,因此,我设计了一份数学活动,旨在让学生在实践中理解旋转,提高他们的空间想象能力和数学思维能力。
3.总结学生提出的旋转现象,引出本节课的主题——旋转。
(二)讲授新知
1.介绍旋转的定义:在平面内,将一个图形绕着某一个点旋转一个角度的图形变换叫做旋转。

(完整word版)第23章-旋转教案

(完整word版)第23章-旋转教案

第二十三章旋转教学过程:一、课前引入1.旋转的概念:把一个图形饶着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P’,那么这两个点就叫做这个旋转的对应点。

如上图,时钟的各根针的运动就是旋转,风车的叶片也是旋转。

例题1:手表上的时间从12:00走到12:45,时针与分针的旋转角各是多少,他们之间的夹角是多少?例题2:如图所示,将三角形ABC绕点A逆时针旋转90度,请作出旋转后的图形。

例题3:如图所示,该图形是瓷砖切割机的刀片,在整个圆周上均匀分布着四个完全相同的刃口,每个刃口相当于一把切割用的刀,当整个圆盘转动一周时,相当于向瓷砖砍切4刀。

若将轮盘安装在每秒钟20转的电动机上进行切割,则瓷砖每分钟相当于接受多少次砍切?2.中心对称:把一个图形绕着某个点旋转180度,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

3.平面直角坐标系中关于原点对称的点的坐标:例题4:如图所示,利用平面直角坐标系中关于原点对称的点的坐标的关系,作出与ABC关于原点对称的图形。

例题5:如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB'C',则△ABB'是___三角形.二、课堂练习1.如图,将△ABC绕原点O逆时针旋转90°后,求它的顶点坐标。

2.如图,△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2,求∠BAD的度数和AD的长。

3.如图,一图形各边长度如图上数据所示,请把该图形分成和它形状相同的四个全等图形。

三、课后作业1.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.900 B.600C.450 D.3002.(2005山东威海) 如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是 ( )3. 如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为12A A A →→,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ) A .10cm B .4cm πC .72cm πD .52cm4.已知,点P 是正方形ABCD 内的一点,连PA 、PB 、PC. (1)将△PAB 绕点B 顺时针旋转90°到△P ′CB的位置(如图1).①设AB 的长为a ,PB 的长为b (b <a ),求△PAB旋转到△P ′CB 的过程中边PA 所扫过区域(图1中阴影部分)的面积;②若PA=2,PB=4,∠APB=135°,求PC 的长.(2)如图2,若PA 2+PC 2=2PB 2,请说明点P 必在对角线AC 上.(A) (B) (C) (D)乙(C 11图1 AB CDP P′ABCDP图2。

人教版数学九年级上册第23章旋转数学活动教学设计

人教版数学九年级上册第23章旋转数学活动教学设计
2.知识传授,突破重点
(1)采用直观演示、动态模拟等方法,让学生直观地认识旋转中心、旋转角、旋转方向等概念。
(2)通过实际操作,让学生体会旋转的动态过程,培养学生的空间想象能力。
(3)运用对比分析法,让学生掌握旋转与其他几何变换的联系与区别,提高学生的分类比较能力。
3.实践操作,解决难点
(1)组织学生进行旋转操作练习,如绘制旋转后的图形,提高学生的实际操作能力。
4.提醒学生课后进行复习和巩固,为下一节课的学习打下坚实基础。
五、作业布置
为了巩固本节课所学的旋转知识,培养学生的空间想象能力和问题解决能力,特布置以下作业:
1.基础巩固题:
(1)根据课堂所学,绘制以下图形旋转后的图形:正方形、三角形、圆形。
(2)计算以下旋转角度:一个图形绕旋转中心旋转90°、180°、270°后的位置。
人教版数学九年级上册第23章旋转数学活动教学设计
一、教学目标
(一)知识与技能
1.理解旋转的定义和性质,掌握旋转的基本要素:旋转中心、旋转角和旋转方向。
2.学会使用旋转进行图形的变换,能够准确地描述和绘制旋转后的图形。
3.能够运用旋转知识解决实际问题,如平面图案的设计、物体运动的模拟等。
4.掌握旋转与轴对称、平移等几何变换的关系,提高空间想象能力和几何直观能力。
在教学过程中,教师要关注学生的个体差异,因材施教,充分调动学生的积极性,使学生在轻松愉快的氛围中掌握旋转知识,提高学生的数学素养。同时,注重培养学生的空间想象能力和几何直观能力,为后续学习打下坚实基础。
二、学情分析
九年级学生在前两年的数学学习中,已经掌握了基本的几何知识和变换方法,如平移、轴对称等。在此基础上,学生对旋转概念的理解和运用具有一定的认知基础。然而,由于旋转涉及到空间想象和动态过程的观察,学生在实际操作和问题解决中可能存在以下困难:对旋转中心、旋转角等概念理解不够深入;在绘制旋转后的图形时,空间定位和角度把握不够准确;将旋转知识应用于解决实际问题时,缺乏灵活性和创造性。针对这些情况,教师在教学过程中应注重引导和启发,通过丰富的教学资源和活动,帮助学生克服困难,提高旋转相关知识的学习效果。同时,关注学生的兴趣和需求,激发学生的学习积极性,使其在主动参与中不断提升自己的数学素养。

2018秋人教版九年级上册数学第二十三章《旋转》教案

2018秋人教版九年级上册数学第二十三章《旋转》教案

2018秋人教版九年级上册数学第二十三章《旋转》教案一、教学目标1.了解旋转的基本概念和性质;2.能够根据旋转的规则进行图形的旋转;3.能够熟练运用旋转相关的知识解决实际问题。

二、教学重点和难点•教学重点:旋转的规则和方法;•教学难点:将旋转应用到解决实际问题中。

三、教学准备1.教材《人教版九年级上册数学》;2.运动图形卡片;3.白板和黑板;4.计算器。

四、教学过程1. 导入新知识•通过展示一些旋转的实际例子,引导学生认识旋转的概念和应用。

2. 正式学习2.1 旋转的定义和性质•讲解旋转的定义:旋转是指将一个图形围绕中心点按照一定角度和方向旋转,使得所有点保持相对位置不变的变换。

•介绍旋转的性质:旋转后的图形与原图形形状相同,但位置和方向不同。

2.2 旋转的规则和方法•手工演示旋转的规则:以指定的轴点和旋转角度为基础,用手工操作图形卡片进行旋转演示,让学生观察和分析旋转的规律。

•讲解旋转的方法:书写旋转的符号表示和操作步骤,并通过示例演示具体的旋转操作。

3. 拓展练习•让学生在练习册上进行一些基础旋转的练习,检验他们对旋转规则的理解和运用能力。

4. 知识应用4.1 解决实际问题•通过一些日常生活中的问题,引导学生将旋转的知识应用到实际情境中,解决问题。

4.2 项目设计•设计一个项目任务,要求学生用旋转的方法完成指定的图形构造或问题解决,提高学生的综合应用能力。

5. 总结和小结•对本节课学习的内容进行总结和小结,强调旋转的重要性和应用范围。

五、课堂作业•布置适量的课后练习题,巩固旋转的理论知识和操作技能。

六、教学反思通过这堂课的教学,学生对旋转的概念和应用有了初步了解,并能进行一些基本的旋转操作。

但在实际问题的解决和项目设计方面,学生的能力还有待提高。

在今后的教学中,要进一步强化旋转知识的运用,并提供更多的实践机会,帮助学生通过实际操作和练习提高旋转技巧和应用能力。

人教版九年级上册第二十三章-旋转教案

人教版九年级上册第二十三章-旋转教案

一、导入~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~二、知识梳理+经典例题知识点一:图像的平移1(1)定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(2)条件:平移运动的条件是平移的方向和距离.2、平移的性质(1)平移不改变图形的形状与大小,即平移后所得的新图形与原图形全等;(2)连接各组对应点的线段长度相等;(3)对应线段所在的直线相互平行或重合;(4)对应角相等.例1:在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是( )A.先向右平移5个单位,再向下平移1个单位 B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位 D.先向右平移4个单位,再向下平移3个单位知识点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕一个定点沿某个方向转动一定角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角.注意:在旋转过程中保持不动的点是旋转中心.注:(1)弄清旋转中心在哪,旋转的角度多大,旋转方向是顺时针还是逆时针;(2)图上的对应点与图形具有相同的旋转方向和旋转角度。

2.旋转的三个要素:旋转中心、旋转的角度和方向.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.如图所示,将∆OBA绕着O点按逆时针方向旋转︒45,得到∆OBA’,我们可以发现:OA=OA’ ,OB=OB’ , AB=AB’ ,∠OBA=∠OBA’ ,∠AOB=∠AOB’ , ∠OAB=∠OAB’.注意:与对称轴、平移相同,旋转只改变图形的位置,不改变图形的形状和大小。

例2:如图所示,点A,B,C,D都在方格纸的格点上,若三角形AOB绕点O按逆时针方向旋转到三角形COD 的位置,则旋转的角度为:_________知识巩固:如图,该五角星绕点O按下列角度旋转后,不能与其自身重合的是()A. 72度B.108度C.144度 D .216度知识点三:中心对称图形与中心对称1、中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

第23章旋转教案

第23章旋转教案

环县木钵初中教案23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O 叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.这个图案可以看做是哪个“基本图案”通旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.课后反思:23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA 是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA 与OA ′,OB 与OB ′,OC 与OC ′有什么关系?2.∠AOA ′,∠BOB ′,∠COC ′有什么关系?3.△ABC 与△A ′B ′C ′形状和大小有什么关系?老师点评:1.OA=OA ′,OB=OB ′,OC=OC ′,也就是对应点到旋转中心相等.2.∠AOA ′=∠BOB ′=∠COC ′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC 和△A ′B ′C ′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC 绕C 点旋转后,顶点A 的对应点为点D ,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C 点旋转,A 点的对应点是D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB ′=ACD ,•又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定B ′的位置,如图所示.解:(1)连结CD(2)以CB 为一边作∠BCE ,使得∠BCE=∠ACD(3)在射线CE 上截取CB ′=CB则B ′即为所求的B 的对应点.(4)连结DB ′则△DB ′C 就是△ABC 绕C 点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=1 4∴∵对应点到旋转中心的距离相等且F是E的对应点∴AF=4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形.三、巩固练习教材P64 练习1、2.四、应用拓展例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD、四边形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.课后反思:23.1 图形的旋转(3)第三课时教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA ,按菊花叶的形状画出即可.解:(1)连结OA(2)以O 点为圆心,OA 长为半径旋转45°,得A .(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A 、A 、A 、A 、A 、A .(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O 点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O ′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O 点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA ,过O 点沿OA 逆时针作∠AOA ′=90°,在射线OA ′上截取OA ′=OA ;(2)用同样的方法分别求出B 、C 、D 、E 、F 、G 、H 的对应点B ′、C ′、D ′、E ′、F ′、G ′、H ′;(3)作出对应线段A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′F ′、F ′A ′、A•′G ′、G ′D ′、D ′H ′、H ′A ′;(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.课后反思:23.2 中心对称(1)第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题. 重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题. 2.难点与关键:从一般旋转中导入中心对称. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入请同学们独立完成下题.如图,△ABC 绕点O 旋转,使点A 旋转到点D 处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A 的对应点是点D ,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA 、OD ,则∠AOD 即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA 、OB 、OC 、OD ; (2)分别以OB 、OB 为边作∠BOM=∠CON=∠AOD ;(3)分别截取OE=OB ,OF=OC ; (4)依次连结DE 、EF 、FD ;即:△DEF 就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题: 1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A 、B 、C 、D 关于中心D 的对称点是A ′、B ′、C ′、D ′,这里的D ′与D 重合.例2.如图,已知AD 是△ABC 的中线,画出以点D 为对称中心,与△ABD•成中心对称的三角形.分析:因为D 是对称中心且AD 是△ABC 的中线,所以C 、B 为一对的对应点,因此,只要再画出A 关于D 的对应点即可.解:(1)延长AD ,且使AD=DA ′,因为C 点关于D 的中心对称点是B (C ′),B•点关于中心D 的对称点为C (B ′) (2)连结A ′B ′、A ′C ′.则△A ′B ′C ′为所求作的三角形,如图所示.C(B ')B(C ')AA 'D三、巩固练习教材P74 练习2.课后反思:23.2 中心对称(2)第二课时教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材P74 复习巩固1 综合运用6、7.1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°课后反思:23.2 中心对称(3)第三课时教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?B ACDO(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.A O(2)作出三角形AOB关于O点的对称图形,如图所示.B AO(2)延长AO使OC=AO,延长BO使OD=BO,连结CD则△COD为所求的,如图所示.B ACDO二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.B ACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD是平行四边形.三、巩固练习教材P72 练习.四、应用拓展例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O 点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接AF,∵点C与点A重合,折痕为EF,即EF垂直平分AC.BAC EDOF∴AF=CF ,AO=CO ,∠FOC=90°,又四边形ABCD 为矩形,∠B=90°,AB=CD=3,AD=•BC=4设CF=x ,则AF=x ,BF=4-x , 由勾股定理,得AC 2=BC 2+AB 2=52 ∴AC=5,OC=12AC=52∵AB 2+BF 2=AF 2 ∴32+(4-x )=2=x 2 ∴x=258∵∠FOC=90°∴OF 2=FC 2-OC 2=(258)2-(52)2=(158)2 OF=158同理OE=158,即EF=OE+OF=154五、归纳小结(学生归纳,老师点评) 本节课应掌握:1.中心对称图形的有关概念; 2.应用中心对称图形解决有关问题. 六、布置作业1.教材P74 综合运用5 P75 拓广探索8、9 课后反思:23.2 中心对称(4)第四课时教学内容两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y ),关于原点的对称点为P ′(-x ,-y )及其运用. 教学目标理解P 与点P ′点关于原点对称时,它们的横纵坐标的关系,掌握P (x ,y )关于原点的对称点为P ′(-x ,-y )的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 重难点、关键1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )•关于原点的对称点P ′(-x ,-y )及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入(学生活动)请同学们完成下面三题.1.已知点A 和直线L ,如图,请画出点A 关于L 对称的点A ′.lA2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.BAC老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知(学生活动)如图23-74,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、•D(2,2)、E(3,-3)、F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连结AO并延长AO(2)在射线AO上截取OA′=OA(3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等∴AD′=A′D″,OA=OA′∴A′(3,-1)同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P(x,y)关于原点O的对称点P′(-x,-y).例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′、B′即可.解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,-1),B(3,0)关于原点的对称点分别为A′(1,0),B(-3,0).连结A′B′.则就可得到与线段AB关于原点对称的线段A′B′.(学生活动)例2.已知△ABC,A(1,2),B(-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,•依次连结,便可得到所求作的△A′B′C′.三、巩固练习教材P73 练习.课后反思:23.3 课题学习图案设计教学内容课题学习──图案设计教学目标利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.。

2022年人教版九年级数学上册第二十三章旋转教案 图形的旋转 (第1课时)

2022年人教版九年级数学上册第二十三章旋转教案  图形的旋转 (第1课时)

23.1 图形的旋转(第1课时)一、教学目标【知识与技能】通过观察生活中的具体实例认识旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.【情感态度与价值观】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.五、课前准备课件、图片等.六、教学过程(一)导入新课教师问:以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.学生思考并让学生感受到现实生活中存在着平移,轴对称变换.教师问:请观察下列图形的变化.1.新疆的风车田;(出示课件2)2.荷兰的大风车;(出示课件3)3.游乐场的摩天轮;(出示课件4)4.卫星拍摄到的台风“桑美”的中心旋涡;(出示课件5)5.钟表时针的转动;电扇上扇叶的转动.(出示课件6)(1)以上现象有什么共同特点?(2)钟表的指针、电扇的风叶在转动过程中,其形状、大小、位置是否发生变化呢?学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.(二)探索新知探究一旋转的概念教师问:1.观察下列图形的运动,它有什么特点?(出示课件8)2.钟表的指针在不停地转动,从12时到4时,时针转动了_120度.(出示课件9)3.怎样来定义这种图形变换?学生观察后思考并口答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.教师问:1.风车风轮的每个叶片在风的吹动下转动到新的位置.(出示课件10)2.怎样来定义这种图形变换?学生观察后思考并口答:把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.师生共同归纳如下:旋转的概念:把一个平面图形绕着平面内某一个定点O 转动一个角度,叫做图形的旋转.这个定点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点.线段OP与OP’叫做对应线段.出示课件12:如图点A绕_O点,往顺时针方向,转动了45度到点B.师生共同认定:旋转的三要素:旋转中心、旋转方向、旋转角度.出示课件13:例1 如图,△ABC为等边三角形,点P在△ABC中,将△ABP 旋转后能与△CBQ重合.(1)旋转中心是哪一点?(2)旋转角是多少度?(3)△BPQ是什么三角形?教师分析:(1)根据对应点到旋转中心的距离相等来确定旋转中心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)由旋转角和对应边的关系可以得到答案.师生共同解答:解:(1)旋转中心是点B.(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置时,正好转过了60°,所以旋转角的度数是60°.(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样△BPQ就是一个等边三角形.想一想:图形在旋转时,旋转的方向有几种?(出示课件15)教师提示:有两种情况,分别为逆时针方向旋转和顺时针方向旋转.出示课件16:巩固练习:若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.学生口答:O;∠AOB;60;A与B;B与C;C与D;D与E;E与F;F 与A出示课件17:师生共同认定:确定平面图形旋转时,必须明确:旋转中心,旋转方向,旋转角.教师提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素;②旋转变换同样属于全等变换.出示课件18:例2 如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°教师分析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知,OB、OD 是对应边,∠BOD是旋转角,所以,旋转角为90°.出示课件19:巩固练习:如图,点P是正方形ABCD内一点,将△ABP绕B 点顺时针方向旋转到△CBP′的位置时,其旋转中心是点,旋转角度为.学生思考后口答:B;90°探究二旋转的性质出示课件20:如图,△ABC是如何运动到△A′B′C的位置?学生观察后口答:绕点C逆时针旋转45°.出示课件21:学生观察并根据上图填空:旋转中心是点__________;图中对应点_______________________________________;图中对应线段有_____________________________________.每对对应线段的长度.图中旋转角等于________.教师问:观察下图,你能得到什么结论?(出示课件22)学生答:角:∠AOA'=∠BOB'=∠COC'.线:AO=A'O,BO=B'O,CO=C'O.师生共同总结:旋转的性质(出示课件23)1.对应点到旋转中心的距离相等.(OD=OA,OE=OB,OF=OC)2.两组对应点分别与旋转中心的连线所成的角相等.(∠DOA=∠EOB=∠FOC)3.旋转中心是唯一不动的点.(旋转中心O)4.旋转不改变图形的形状和大小.出示课件24:例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.师生共同解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴∠BE'E=45°,EE′=2√2在△EE′C中,E′C=1,EC=3,EE′=2√2,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.出示课件25:巩固练习:如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.求证:△BCF≌△BA1D.教师分析:根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A1=∠A=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D.出示课件26:学生板演:证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,由旋转的性质,可得A 1B=AB=BC,∠A=∠A 1=∠C,∠A 1BD=∠CBC 1,在△BCF 与△BA 1D 中,111∠=∠⎧⎪=⎨⎪∠=∠⎩A C A B BC A BD CBF ,,,所以△BCF ≌△BA 1D (ASA ).(三)课堂练习(出示课件27-37)1.如图,在△ABC 中,∠ACB=90°,AC=BC,D 是AB 边上一点(点D 与A,B 不重合),连结CD,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE,连结DE 交BC 于点F,连接BE .(1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.2.下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A.2B.3C.4D.53.下列说法正确的是( )A.旋转改变图形的形状和大小B.平移改变图形的位置C. 图形可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到4.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对应点D恰好落在BC边上.若,∠B=60°,则CD的长为()A.0.5B.1.5C.D.15.△A′OB′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20°,∠A′OB=24°,AB=3,OA=5,则A′B′= ,OA′= ,旋转角等于.6.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角7.如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°8.如图,△ADE可由△CAB旋转而成,点B的对应点是E,点A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)、B(3,0)、C(1,4).请找出旋转中心P的位置,并写出P的坐标.9.如图所示,AB是长为4的线段,且CD⊥AB于O.你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.10.将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示).你知道旋转角是多少吗?连结BB′,△ABB′有什么特征吗?参考答案:1.解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB, ∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS).(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.2.C3.B4.D5.3;5;44°6.D7.A8.解:根据旋转中心到对应点距离相等可以知道,旋转中心P既在线段AD的垂直平分线上,又在线段BE的垂直平分线上,它们的交点就是点P.9.解:把所有的阴影部分通过旋转都转移到同一个BC所在的圆中,则有大圆的半径OC=2.π×22=π.因此:S阴影=1410.解:150°;△ABB′是等腰三角形.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.1第2课时)的相关内容.七、课后作业1.教材59页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.。

第23章旋转单元教学计划

第23章旋转单元教学计划

第23章旋转单元教学计划1. 导言本文将介绍第23章旋转单元的教学计划。

旋转单元是数学课程中的重要话题,通过学习旋转单元,学生能够深入理解几何概念和操作技巧。

本教学计划旨在帮助学生全面掌握旋转单元的相关知识和技能,在培养学生的抽象思维和解决问题的能力上取得显著进展。

2. 教学目标在本章学习结束后,学生应能够:- 理解旋转单元的定义和性质;- 掌握计算旋转单元的周长、面积和体积的方法和技巧;- 运用旋转单元的相关知识解决实际问题;- 培养抽象思维和解决问题的能力。

3. 教学重点本章的教学重点主要包括:- 旋转单元的定义和性质;- 计算旋转单元的周长、面积和体积的方法和技巧;- 运用旋转单元的相关知识解决实际问题。

4. 教学内容和安排3.1 旋转单元的定义和性质- 通过教师讲解和示范,引入旋转单元的概念和定义;- 通过案例和实例,让学生感知旋转单元的基本性质;- 组织学生进行小组讨论,共同总结旋转单元的特点和性质。

3.2 计算旋转单元的周长、面积和体积的方法和技巧- 教师以示范为主,讲解计算旋转单元的周长、面积和体积的基本公式和方法;- 学生进行练习,巩固计算技巧;- 教师提供挑战性问题,激发学生的思考和探索欲望。

3.3 运用旋转单元的相关知识解决实际问题- 教师引导学生分析和解决旋转单元的实际问题;- 学生个别或小组独立解决问题,并展示解题过程和结果;- 教师及时给予评价和指导。

5. 学习资源和工具- 课本、作业本、习题集;- 教学PPT和多媒体设备;- 计算器。

6. 评估方式- 日常练习和作业;- 课堂小组讨论表现;- 个人或小组解决实际问题的能力;- 学习笔记和思维导图的完整性和准确性。

7. 教学反思与改进在教学过程中,教师应注重以下几点:- 结合具体案例和实例,引发学生的兴趣和思考;- 鼓励学生互相讨论和合作,培养团队合作精神;- 关注学生的学习进度和困难,及时给予帮助和指导;- 设计丰富多样的评估方式,全面了解学生的学习情况;- 根据学生的学习表现和反馈,及时进行教学调整和改进。

第23章旋转全章精品教案

第23章旋转全章精品教案

人教版九年级上册第23章旋转第1节图形的旋转第3课时利用图形的旋转知识设计图案精品教案教学目标知识技能:理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.数学思考:通过独立思考,自主探究和合作交流体验旋转的数学知识,享受成功乐趣.解决问题:复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.情感态度:让学生经历观察、操作等过程,进一步理解图形旋转的概念和性质,利用图形旋转知识探索设计出美丽的图案,进一步发展空间观察,培养运动几何的观点,增强审美意识. 教学重点:用旋转的有关知识画图.教学难点:根据需要设计美丽图案.教学内容:课本第58页至59页.教学过程设计:活动一.复习回顾,引入新课.1.回顾思考,回答问题.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.学生独立完成作图题.如图,△ABC 绕B 点旋转后,O 点是A 点的对应点,作出△ABC 旋转后的三角形.分析:要作出△ABC 旋转后的三角形,应找出三方面的关系:①旋转中心:B.②旋转角:∠ABO.③C 点旋转后的对应点:C ′.活动二.合作交流,探索新知.从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O 点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.A B C ·OαOOα2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.活动三.知识应用,例题解析.例 1.如图是一片花瓣和中心与圆圈,现以O•为旋转中心画出分别旋转30°,60°,90°,120°,150°,180°,210°,240°,270°,300°,330°的一朵花的图案. 分析:只要以O 为旋转中心、旋转角以上面为变化,•旋转长度为花瓣的最长OA,按花瓣的形状画出即可.解:(1)连结OA(2)以O 点为圆心,OA 长为半径旋转30°,得A 1.(3)依此类推画出旋转角分别为60°,90°,120°,150°,180°,210°,240°,270°,300°,330°的A 2,…,A 11.(4)按一片花瓣图案画出各片花瓣.那么所画的图案就是绕O 点旋转后的图形.活动四.知识巩固,课堂练习.课本第69页小练习.活动五.知识梳理,课堂小结.· OA1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.活动六.知识反馈,作业布置.课本第60至61页第7,8,9题.。

人教版九年级数学RJ上册精品教案 第23章 旋转 23.1 图形的旋转

人教版九年级数学RJ上册精品教案 第23章 旋转 23.1 图形的旋转

第二十三章旋转23.1 图形的旋转第1课时旋转的概念及性质教师备课素材示例●情景导入向学生展示有关的图片,思考共同点是什么?表盘上秒针的转动电扇扇叶的转动钟表钟摆的运动摩天轮的转动【教学与建议】教学:让学生切身感受转动现象,从而产生对这种图形变换进一步探究的强烈欲望.建议:把班级学生分为几组,通过小组竞赛的形式举例生活中的平移、轴对称和旋转现象,辨别平移、轴对称和旋转的区别,从而真正理解旋转的概念.●悬念激趣(1)手工制作一个小风车;(2)欣赏部分物体旋转现象;(3)观察:时钟上分针的运动.(动画演示)问题:时钟上分针的转动是绕哪一个点转动?沿着什么方向转动?从5分到15分转动了多少角度?学生在观察后,回答问题,然后教师讲解:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.【教学与建议】教学:欣赏旋转图片,体验旋转实物,为后面学习旋转的性质作铺垫.建议:小组合作,提前准备小风车模型.考查方式有①识别旋转变换;②求旋转角度.【例1】(1)下列运动形式属于旋转的是(C)A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪(2)如图,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则旋转中心是点__A__,旋转角度是__60°__,△ADP是__等边__三角形.此类考题一般要利用旋转的性质求一些边长、角的度数或进行证明.【例2】(1)如图,△ABC绕点B逆时针旋转到△EBD的位置,若∠A =20°,∠C=15°,E,B,C在同一直线上,则旋转角度是__35°__,∠EBD=__145°__;(2)如图,在正方形ABCD中,E为CD边上一点,连接AE,将△ADE 顺时针旋转,使AD与AB重合,点E落在CB的延长线上的F处.①求旋转中心及旋转角的度数;②若CE=3cm,BF=2cm,求四边形AFCE的面积.解:①旋转中心是点A,旋转角的度数为90°;②∵将△ADE顺时针旋转,使AD与AB重合,∴△ADE≌△ABF,∴DE=BF=2(cm),S△ADE=S△ABF,∴CD=CE+DE=5cm,∴四边形AFCE的面积=正方形ABCD的面积=25cm2.高效课堂教学设计1.掌握旋转的有关概念,理解旋转变换是图形的一种基本变换.2.理解旋转的性质.3.能综合运用旋转的性质解决有关代数、几何类问题.▲重点理解旋转的基本性质.▲难点1.探索旋转的基本性质.2.综合运用旋转的性质解决有关代数、几何类问题.◆活动1 新课导入同学们,请欣赏下面几幅图案,并思考下列问题:在以前的学习中,我们已经学习了图形的平移和图形的轴对称,对于上述各图案,你能说出它们分别是由怎样的基本图形经过怎样的变换得到的吗?请同学们进入本章内容的学习.◆活动2 探究新知1.教材P59思考.提出问题:(1)钟表的指针在不停地转动,指针都是绕着哪一点转动的?从3时到5时,时针由点P转到了哪一点?转动了多少度?旋转方向呢?(2)图中的风车的每一个叶片都是绕着哪一点转动的?若风车按顺时针方向转动一定的角度与自身重合,需要旋转多少度?(3)生活中还有类似的物体运动吗?观察这些现象?有什么共同特征?学生完成并交流展示.2.教材P60探究.根据探究内容,在横线上填上恰当的符号:OA__=__OA′,AB__=__A′B′,∠AOC__=__∠A′OC′,∠AOA′__=__∠BOB′,△ABC__≌__△A′B′C′.学生完成并交流展示.◆活动3 知识归纳1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转.点O叫做__旋转中心__,转动的角叫做__旋转角__.2.旋转的三要素:__旋转中心__、__旋转方向__、__旋转角__.3.旋转的性质:(1)对应点到旋转中心的距离__相等__;(2)对应点与旋转中心所连线段的夹角等于__旋转角__;(3)旋转前、后的图形全等.◆活动4 例题与练习例1 在下列现象中,不属于旋转现象的是( C )A.方向盘的转动B.水龙头开关的转动C.电梯的上下移动D.钟摆的运动例 2 如图,图形甲变成图形乙,既能用平移,又能用旋转的是( C )例3 如图,四边形ABCD是边长为4的正方形,DE=1,△ABF是△ADE 旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是点A;(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°;(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17;(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.练习1.教材P59练习1,2,3题.2.教材P61练习1,2,3题.3.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A =40°,∠B′=110°,则∠BCA′的度数是( B )A.110°B.80°C.40°D.30°◆活动5 课堂小结(1)旋转及旋转中心、旋转角的概念;(2)旋转的对应点及其应用;(3)旋转的基本性质;(4)旋转变换与平移、轴对称两种变换的共性与区别.1.作业布置(1)教材P62习题23.1第5,6题;(2)对应课时练习.2.教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章旋转
)旋转中心是什么?旋转角是什么?
分别移动到什么位置?
“基本图案”
(老师点评)分析:能.看做是一条边(如线段AB
(分组讨论)根据图回答下面问题(一组推荐一人上
与OC′有什么
′有什么关系?
′形状和大小有什么关系?
点,
根据对应点与旋转中心所连线段
又由对应点到旋
两个图案绕O旋转180°都是重合的,
即甲图与乙图重合,△OAB与△COD
重合.
像这样,把一个图形绕着某一个点旋转180°,
第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.
例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.
四、归纳小结(学生归纳,老师点评)
.中心对称及对称中心的概念;
.关于中心的对称点的概念及其运用..
23.2 中心对称(2)
△ADC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.
l
第23章旋转小结与复习。

相关文档
最新文档