遥感图像处理
三讲遥感图像处理3
原始图像
复合后图像 27
28
多源信息复合
1、遥感信息复合 2)不同时相的遥感数据复合
步骤 (1)配准 (2)直方图调整 (3)复合
29
多源信息复合
2、遥感与非遥感信息复合
步骤: 1、地理数据的网格化 (1) 网格数据生成 (2) 与遥感数据配准
1、n维多光谱空间
像元矢量
11多光谱变换1、n维多光谱间12多光谱变换
1、n维多光谱空间 每个像元点在多光谱空间中的位置都可以表示为一个N维向量X
x1
x2
X
xi
x1, x2 , xi , xn T
xn
13
多光谱变换
2、K-L变换[离散(Karhunen-Loeve)变换]
主 成 分 变 换 ( PCA, Principal Component Analysis)
数字图像增强
4 图像运算 5 多光谱变换
1
图像运算
两幅或多幅单波段图像,空间配准后可进行算术运算, 实现图像的增强。
1、差值运算:两幅同样行、列数的图像,对应像元的亮 度(灰度)值相减。差值图像提供了不同波段或不同时相图 像间的差异信息。
2、比值运算:两幅同样行、列数的图像,对应像元的亮 度(灰度)值相除(除数不为0)。比值图像,像元的亮度反 映了两个波段光谱比值的差异,常用来检测植被,消除“同 物异谱”现象。
2、最优遥感数据的选取:可选PCA变换后的前 两个波段。 3、复合
30
地层(R),化探(G)和重力(B)数据合成影像 31
遥感与地层,重力,化探融合影像
32
主要成矿地层影像
遥感图像处理
遥感图像处理1. 简介遥感图像处理是指利用遥感技术获取的卫星或无人机等遥感图像数据进行处理和分析的过程。
遥感图像处理可以应用于多个领域,包括地理信息系统(GIS)、环境监测、农业、城市规划等。
本文将介绍遥感图像处理的基本概念、常用方法和应用案例。
2. 遥感图像处理的基本概念遥感图像处理涉及多个概念和技术,以下是一些常用的基本概念:2.1 遥感图像遥感图像是通过遥感设备获取的图像数据,可以是卫星图像、航空摄影图像或无人机图像等。
遥感图像通常包含多个波段,每个波段代表不同的光谱信息。
2.2 遥感图像预处理遥感图像预处理是指对原始遥感图像数据进行校正、矫正和增强的过程。
预处理的目的是提高图像质量、减少噪声和伪影,并使得图像更适合进行后续处理和分析。
2.3 遥感图像分类遥感图像分类是指将遥感图像根据像素的特征或属性进行划分和分类的过程。
常见的遥感图像分类方法包括基于统计学的分类、基于机器学习的分类和基于深度学习的分类。
2.4 遥感图像变化检测遥感图像变化检测是指对多个时间点的遥感图像进行比较,以检测地物、景观或环境发生的变化。
遥感图像变化检测可以用于监测自然灾害、环境变化等。
2.5 遥感图像分析遥感图像分析是指对遥感图像进行解译和分析,提取图像中的有用信息和特征。
遥感图像分析可以用于土地利用/覆盖分类、植被指数计算等应用。
3. 遥感图像处理的常用方法遥感图像处理常用的方法包括图像增强、图像配准、图像融合和目标检测等。
3.1 图像增强图像增强是指通过对图像进行滤波、对比度拉伸、直方图均衡化等处理,以增强图像的可视化效果和信息提取能力。
常用的图像增强方法包括直方图均衡化、滤波(如中值滤波、高斯滤波)和锐化等。
3.2 图像配准图像配准是指将两幅或多幅遥感图像在坐标系、旋转、尺度和形变等方面进行校正和匹配的过程。
常用的图像配准方法包括特征点匹配、地物匹配和基于控制点的配准方法。
3.3 图像融合图像融合是指将多幅具有不同光谱或分辨率的遥感图像融合成一幅多光谱和高分辨率的遥感图像。
遥感图像处理的基本步骤与技巧
遥感图像处理的基本步骤与技巧遥感技术是指利用航天器、飞机、卫星等高空平台获得的遥感图像进行信息提取和数据分析的过程。
随着科技的不断进步和应用范围的扩大,遥感图像处理已经成为许多领域中的重要工具。
本文将介绍遥感图像处理的基本步骤与技巧,以帮助读者更好地理解和应用这一技术。
一、图像预处理遥感图像预处理是遥感图像处理的第一步,旨在通过去除噪声、辐射校正和几何校正等处理,使图像质量更高,方便后续处理。
其中,去除噪声主要是采用滤波算法,如中值滤波、均值滤波等。
辐射校正主要用于将图像的辐射能量转换为表观反射率,以消除云、阴影等因素的影响。
几何校正是通过对图像进行几何变换,将其与地理坐标系统对齐,以便于后续的地理信息提取。
二、特征提取特征提取是遥感图像处理的核心环节,目的是从遥感图像中提取出具有代表性和区分度的特征信息。
常用的特征包括光谱特征、纹理特征、形状特征等。
光谱特征是指根据图像像素的光谱反射率或辐射能量,提取出不同波段的特征。
纹理特征是指从图像中提取出地物的纹理信息,包括纹理方向、纹理密度等。
形状特征是指从图像中提取出地物的形状信息,包括面积、周长等。
三、分类与识别分类与识别是遥感图像处理中的重要任务,目的是将地物按照其属性进行分类和识别。
常见的分类方法包括监督分类和无监督分类。
监督分类是指根据已知的样本类别信息,通过训练分类器将图像中的地物分到不同的类别中。
无监督分类是指根据图像像素之间的相似性将其分为一定数量的类别。
分类结果可以用于制作地图、监测资源变化等。
四、变化检测变化检测是遥感图像处理中的一项重要任务,主要应用于监测和分析地表物体的变化。
遥感图像在不同时间获取的变化信息可以帮助我们了解自然和人类活动对地表的影响。
常见的变化检测方法包括像素级变化检测和对象级变化检测。
像素级变化检测是指比较两幅图像对应像素之间的差异,以确定变化的位置和类型。
对象级变化检测是指先将图像分割成不同的对象,然后比较不同时间获取的对象之间的差异。
遥感图像处理的基本步骤和技巧
遥感图像处理的基本步骤和技巧遥感图像处理是利用遥感技术获取的遥感图像数据进行分析、处理和解释的过程。
遥感图像处理技术在环境监测、资源管理、农业和城市规划等领域具有广泛的应用。
本文将介绍遥感图像处理的基本步骤和技巧。
一、图像预处理图像预处理是遥感图像处理的第一步,目的是改善图像质量,消除噪声和其他不必要的干扰。
常见的图像预处理技术包括辐射校正、大气校正和几何纠正。
辐射校正是将原始图像中的数字数值转换为辐射亮度值,以消除由于不同仪器和观测条件引起的辐射差异。
大气校正则是通过对图像进行大气光校正,消除大气吸收和散射效应,获得更准确的地物辐射亮度信息。
几何纠正是校正图像中的几何畸变,使其与实际地面特征对应。
二、图像增强图像增强是通过增加图像的对比度和清晰度,突出感兴趣的地物信息。
常见的图像增强技术包括直方图均衡化、滤波和波段变换。
直方图均衡化是通过调整图像像素的亮度分布,增强图像对比度。
滤波是通过应用各种滤波器来去除图像中的噪声和模糊。
波段变换是将图像从一种波段转换到另一种波段,以提取不同地物特征。
三、特征提取特征提取是从图像中提取与感兴趣地物相关的信息。
常见的特征提取技术包括阈值分割、边缘检测和纹理分析。
阈值分割是将图像分为不同的区域,使每个区域具有相似的亮度或颜色特征。
边缘检测是寻找图像中的边界线,以辅助划分地物边界。
纹理分析是通过提取图像的纹理特征来描述地物的空间结构。
四、分类与识别分类与识别是将特定地物进行分类和识别的过程。
常见的分类与识别技术包括监督分类、无监督分类和目标检测。
监督分类是通过使用已知类别的训练样本,建立分类器对图像进行分类。
无监督分类是根据图像像素的统计特征将图像自动分为不同的类别。
目标检测是在图像中检测和识别特定的目标,例如建筑物、道路等。
五、图像解译与分析图像解译与分析是对处理后的遥感图像进行解释和分析的过程。
通过对图像分析可以获取地表特征的数量和质量信息,用于环境变化监测、资源管理和规划决策。
遥感图像处理ppt课件
02
人工智能在遥感图像处理中可以应用 于地物分类、目标检测、变化检测等 方面。通过训练人工智能算法,使其 能够自动识别和分类地物,提高遥感 数据的利用价值和精度。同时,人工 智能算法还可以对遥感数据进行自动 化分析和处理,提高数据处理效率。
03
人工智能在遥感图像处理中需要解决 的关键问题包括数据标注、模型训练 和优化等。同时,还需要考虑人工智 能算法的可解释性和可靠性,以确保 其在实际应用中的效果和安全性。随 着技术的不断发展,人工智能在遥感 图像处理中的应用将进一步提高遥感 数据的利用价值和精度。
详细描述
遥感图像存储与处理是遥感技术应用的核心环节之一。 在这个过程中,原始数据会经过一系列的预处理、增强 和分类等操作,以提高图像质量和提取更多有用的信息 。例如,辐射定标、大气校正、几何校正等预处理操作 可以提高图像的精度和可靠性;图像增强技术如对比度 拉伸、滤波等可以提高图像的可视化效果和特征提取能 力;分类和目标检测等技术则可以对图像进行语义化表 达和信息提取,以满足不同应用的需求。
遥感图像处理涉及的技术包括辐 射校正、几何校正、图像增强、 信息提取等。
遥感图像处理的重要性
遥感图像处理是遥感技术应用的关键 环节,能够提高遥感数据的精度和可 靠性,为各领域提供更准确、更全面 的信息。
通过遥感图像处理,可以提取出更多 有用的信息,为决策提供科学依据, 促进各行业的智能化发展。
遥感图像处理的应用领域
图像预处理技术
01
02
03
04
去噪
消除图像中的噪声,提高图像 的清晰度。
校正
纠正图像的几何畸变和辐射畸 变,使图像更接近真实场景。
配准
将不同来源的图像进行坐标对 齐,以便于后续的图像分析和
遥感图像处理
2.多波段彩色变换 根据加色法彩色合成原理,选择遥感影像的某 三个波段,分别赋予红、绿、蓝三种原色,就 可以合成彩色影像。 根据原色的选择与原来遥感波段所代表的真实 颜色是否相同,可分为真彩色合成和假彩色合 成。
彩色合成的原理图
反射率ρ/%
λ
真彩色图像
真彩色图像上影像的颜色与地物颜色基本一致。 利用数字技术合成真彩色图像时,是把红色波段的影像 作为合成图像中的红色分量、把绿色波段的影像作为合 成图像中的绿色分量、把蓝色波段的影像作为合成图像 中的蓝色分量进行合成的结果。 如TM321分别用RGB合成的图像。
多波段影像合成时,方案的选择十分重要,它决定了彩 色影像能否显示较丰富的地物信息或突出某一方面的信 息。以陆地卫星Landsat的TM影像为例,TM的7个波段 中,第2波段是绿色波段(0.52~0.60μm),第4段 波段是近红外波段(0.76~0.90μm。当4,3,2波段 被分别赋予红、绿、蓝色时,即绿波段赋蓝,红波段赋 绿,红外波段赋红时,这一合成方案被称为标准假彩色 合成,是一种最常用的合成方案。
1.单波段彩色变换
单波段黑白遥感图像可按亮度分层,对每层赋予不同的色彩, 使之成为一幅彩色图像。这种方法又叫密度分割,即按图像的密度 进行分层,每一层所包含的亮度值范围可以不同。例如,亮度0~ 10为第一层,赋值1,11~15为第二层,赋值2,16~30为第三层, 赋值3,等等,再给1,2,3等分别赋不同的颜色,于是生成一幅彩 色图像。目前计算机显示彩色的能力很强,理论上完全可以将256 层的黑白亮度赋予256种彩色,因此彩色变换很有前景。 对于遥感影像而言,将黑白单波段影像赋上彩色总是有一定目 的的,如果分层方案与地物光谱差异对应得好,可以区分出地物的 类别。例如在红外波段,水体的吸收很强,在图像上表现为接近黑 色,这时若取低亮度值为分割点并以某种颜色表现则可以分离出水 体;同理砂地反射率高,取较高亮度为分割点,可以从亮区以彩色 分离出砂地。因此,只要掌握地物光谱的特点,就可以获得较好的 地物类别图像。当地物光谱的规律性在某一影像上表现不太明显时, 也可以简单地对每一层亮度值赋色,以得到彩色影像,也会较一般 黑白影像的目视效果好。
遥感数字图像处理
遥感数字图像处理1. 概述遥感数字图像处理是指利用遥感技术获取的各种遥感数据,如航空影像、卫星影像等,进行数字化处理和分析的过程。
遥感数字图像处理在地理信息系统(GIS)领域有着广泛的应用,能够提取出地表覆盖类型、地形和植被等丰富的地理信息,为环境监测、资源管理、农业和城市规划等领域提供重要的数据支持。
2. 遥感数字图像处理的步骤遥感数字图像处理主要包括以下几个步骤:2.1 数据获取数据获取是遥感数字图像处理的第一步,通过卫星、航拍等遥感设备获取地理信息数据。
这些数据以数字图像的形式存在,包括多光谱、高光谱、雷达和激光雷达等数据。
2.2 数据预处理数据预处理是为了消除图像中的噪声和伪影,以及纠正图像的几何和辐射畸变。
常见的数据预处理方法包括辐射校正、几何校正、大气校正等。
2.3 图像增强图像增强是为了使图像更加清晰,突出地物的特征。
常用的图像增强方法包括直方图均衡化、滤波、锐化等。
2.4 特征提取特征提取是为了从图像中提取出具有区别性的特征,以便进行后续的分类和识别。
常见的特征提取方法包括纹理特征、形状特征、频域特征等。
2.5 图像分类图像分类是将图像中的像素划分为不同的类别。
常用的图像分类方法包括基于像元的分类、基于对象的分类、基于深度学习的分类等。
2.6 图像分割图像分割是将图像划分为不同的区域或对象。
常用的图像分割方法包括阈值分割、边缘分割、区域生长等。
2.7 地物提取地物提取是从图像中提取出感兴趣的地物或地物属性。
常见的地物提取方法包括目标检测、目标识别、地物面积计算等。
2.8 结果评价结果评价是对处理结果进行准确性和可靠性的评估。
常用的结果评价方法包括混淆矩阵、精度评定、误差矩阵等。
3. 遥感数字图像处理的应用遥感数字图像处理在各个领域都有广泛的应用,主要包括以下几个方面:3.1 环境监测遥感数字图像处理可以用于环境监测,如水质监测、土壤污染监测等。
通过遥感图像,可以获取水体和土地的信息,分析水质和土壤的污染程度。
遥感图像处理知识点总结
遥感图像处理知识点总结一、遥感概述遥感是利用飞机、卫星等远距传感器获取地球表面信息的科学技术。
遥感图像处理就是处理遥感数据,进行信息提取的过程.二、遥感图像处理流程遥感图像处理的基本流程包括:数据获取、预处理、图像增强、特征提取和分类等环节。
1. 数据获取数据获取是遥感图像处理的第一步,可以通过卫星、飞机等遥感平台获得各种类型的遥感数据。
2. 预处理预处理是遥感图像处理的重要步骤,主要包括大气校正、几何校正、辐射定标等过程,目的是消除数据中的噪声和误差,保证数据质量。
3. 图像增强图像增强是指通过一系列的处理方法,提高遥感图像的视觉效果,突出图像中的信息,以便进行后续的分析和应用。
常见的图像增强方法包括直方图均衡化、滤波、拉普拉斯变换等。
4. 特征提取特征提取是指从原始遥感图像中提取各种地物和地物信息,常见的特征包括形状、纹理、光谱等。
5. 分类分类是将遥感图像中的像素划分到不同的类别中,如水体、植被、建筑等。
常用的分类方法包括最大似然分类、支持向量机(SVM)、人工神经网络等。
6. 应用遥感图像处理的最终目的是为了实现一定的应用目标,如土地利用/覆盖分类、资源调查、环境监测等。
三、遥感图像处理相关算法1. 监督分类监督分类是指在给定训练样本的情况下,采用某种分类算法识别遥感影像中的地物类型。
常用的监督分类算法有最大似然分类、支持向量机(SVM)、随机森林等。
2. 无监督分类无监督分类是指在不需要人工干预的情况下,利用图像自身的统计特性将像元分成若干类别。
常用的无监督分类算法有K均值聚类、ISODATA聚类等。
3. 特征提取特征提取是为了描述地物的形态、光谱、纹理等特性,从而区分不同地物。
常用的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)、小波变换等。
4. 联合处理联合处理是指将多幅遥感影像进行融合,或者将遥感影像与其他数据进行联合处理,从而获取更多的地物信息。
常用的联合处理方法包括影像融合、多源数据融合等。
遥感数字图像处理:遥感数字图像处理(62页)
不同波谱分辨率对水铝 反射光谱的获取
时间分辨率
■ 时间分辨率指对同一地点进行遥感来样的时间间隔, 即采样的时间频率,也称重访周期。
■ 遥感的时间分辨率范围较大。以卫星遥感来说,静止 气象卫星(地球同步气象卫星)的时间分辨率为 1次 /0.5小时;太阳同步气象卫星的时间分辨率 2次/天; Landsat为1次/16天;中巴(西)合作的CBERS为1次 /26天等。还有更长周期甚至不定周期的。
微波遥感与成像
在电磁波谱中,波长在1mm~
1m的波段范围称微波。该 范围内又可再分为毫米波、 厘米波和分米波。在微波 技术上,还可将厘米波分 成更窄的波段范围,并用 特定的字母表示
谱带名称
Ka K
Ku X
微波遥感是指通过微波传
C
感器获取从目标地物发射 或反射的微波辐射,经过 判读处理来识别地物的技
几种遥感图像处理系统简介
■ PCI ■ ERDAS ■ ENVI
PCI简介
■ PCI是加拿大PCI公司的产品,可进行遥感图像的处 理,也可应用于地球物理数据图像、医学图像、雷 达数据图像、光学图像的处理,并能够进行分 析 、制图等工作。它的应用领域非常广泛。
■ PCI拥有最齐全的功能模块:常规处理模块、几 何校正、大气校正、多光谱分析、高光谱分析、 摄影测量、雷达成像系统、雷达分析、极化雷达 分析、干涉雷达分析、地形地貌分析、矢量应用、 神经网络分析、区域分析、GIS联接、正射影像 图生成及DEM提取(航片、光学卫星、雷达卫 星)、三维图像生成、丰富的可供二次开发调用 的函数库、制图、数据输入/输出等四百多个软 件包。
多波段数字图像的数据格式
■BIP方式(band interleaved by pixel) 在一行中,每个像元按光谱波段次序进 行排列,然后对该行的全部像元进行这 种波段次序排列,最后对各行进行重复。
遥感图像处理
3.2 遥感图像的数字表示
1 图像的矩阵表示——灰度图像
☞ 像素值为量化的灰度值 ☞ 对于8位量化而言,灰度值0表示黑色,128表示 灰色,255表示白色。
3.2 遥感图像的数字表示
1 图像的矩阵表示——彩色图像
☞ 每个像素由红、绿、蓝三原色构成 ☞ R、G、B由不同的灰度级分别描述
3.2 遥感图像的数字表示
☞ 卷积计算的思路 ① 选定一卷积模板(窗口) ② 从待处理图像左上角开始,图像与模板像元 亮度值对应乘加,所得新值放入窗口中心位置 ③ 窗口右移一个像元后做同样运算 ④ 按从左到右从上到下的顺序,遍列生成新图 ☞ 图像边缘处理方法 ① 补 0值 ② 对称原则图像中取值 ③ 保留原值不参与计算
3.5 窗口、卷积与滤波
3 滤波
☞ 广义
从含有干扰的接受信号中提取有用的信号。
2.4 遥感数字图像的级别和数据格式
二、元数据
http://glcf.umiacs. /data/
2.4 遥感数字图像的级别和数据格式
三、通用遥感图像的数据格式
☞ 多波段遥感图像3种最基本的通用记录格式 (1)BSQ格式 (2)BIL格式 (3)BIP格式
四、特殊遥感图像数据格式
☞ .dat格式 ☞ .hdf格式 ☞ .TIFF格式/.GeoTIFF格式
遥感图像处理与应用
第1章 概论
主要内容:
☞ 1.1 图像与遥感数字图像
☞ 1.2 遥感数字图像处理
☞ 1.3 数字图像处理的发展
☞ 1.4 基础理论与基本知识要求
1.1 图像与遥感数字图像
一、图像与数字图像
1 图像的定义
☞ 图像是对客观对象的一种相似性的描述和写真,它包含了 被描述或写真对象的信息,是人们最主要的信息源。 (《数字图像处理》,冈萨雷斯,2003) ☞ 图像(Image)是通过镜头等设备得到的视觉形象。是以 某一技术手段再现于二维画面上的视觉信息。
遥感图像处理的常见问题及解决方法
遥感图像处理的常见问题及解决方法引言:遥感图像处理是一项涉及到观测、获取、处理和解释遥感数据的复杂任务。
随着遥感技术的发展和应用的广泛性,人们对于遥感图像处理中的一些常见问题的解决方法也变得越来越关注。
本文将探讨几个常见的问题,并提供相应的解决方法。
一、图像去噪问题在遥感图像处理中,图像中常常存在各种噪声,如椒盐噪声、高斯噪声等,这些噪声会对图像的质量和解译结果产生负面影响。
为了解决这个问题,可以采用以下方法:1. 统计滤波:采用均值、中值或高斯滤波器进行图像去噪。
2. 自适应滤波:根据图像的局部统计特性,采用自适应的滤波方法进行噪声抑制。
3. 小波变换去噪:利用小波变换的多尺度分析特性,可以实现对图像的去噪处理。
二、图像配准问题在遥感图像处理中,由于不同图像在获取时所处的视角、光照等条件的差异,图像之间存在一定的几何变换关系,这会导致图像配准问题。
为了解决这个问题,可以采用以下方法:1. 特征点匹配:通过提取图像中的特征点,并利用特征点之间的几何关系进行图像配准。
2. 条带纠正:针对由于卫星的扫描方式导致的条带状偏移问题,可以采用多模板方法或频域匹配方法进行纠正。
3. 控制点匹配:通过选择一些具有高精度地面坐标的控制点,进行图像间的控制点匹配实现图像配准。
三、图像分类问题在遥感图像处理中,图像分类是一项重要的任务,它涉及到对遥感图像的地物进行分类和分割。
为了解决这个问题,可以采用以下方法:1. 监督分类方法:通过事先获取训练样本,并利用这些样本进行分类器的训练和分类。
2. 无监督分类方法:根据图像中像素的统计特性,利用聚类等方法对图像进行自动分类。
3. 半监督分类方法:结合监督和无监督分类方法的特点,通过一定比例的训练样本和未标记样本进行分类。
四、信息提取问题在遥感图像处理中,信息提取是指从遥感图像中获取感兴趣的地物的特征和属性信息。
常见的信息提取问题包括目标检测、边界提取、变化检测等。
为了解决这个问题,可以采用以下方法:1. 特征提取:通过选择适当的特征,如纹理特征、形状特征等,对图像进行特征提取从而实现目标检测和边界提取。
遥感图像处理原理
遥感图像处理原理
遥感图像处理原理是利用遥感技术获取的遥感图像进行数字化和分析处理的过程。
遥感图像处理原理可以大致分为以下几个步骤。
1. 图像获取:首先需要通过遥感卫星、航空摄影等方式获取遥感图像。
这些图像会以数字形式储存,其中每个像素点都有其对应的数值。
2. 辐射校正:由于遥感图像受到大气、地表反射等因素的影响,图像中的像素值并不完全准确反映地物的特征。
因此,需要对图像进行辐射校正,消除光谱值的影响,以准确获取地物信息。
3. 影像配准:不同时间、不同传感器获取的图像可能存在光谱、几何畸变等差异。
为了对比不同图像或图像的不同区域,需要进行影像配准,将它们对齐到相同的坐标系。
4. 图像增强:图像增强是为了提高图像的可见性和解释能力。
常见的图像增强方法包括直方图均衡化、滤波、锐化等,以突出地物的特征,便于进行后续的分析和解译。
5. 特征提取:特征提取是指从遥感图像中提取出可用于分析和解译的信息。
例如,可以提取出不同光谱波段的亮度、纹理、形状等特征,用于进行不同地物类型的分类和识别。
6. 图像分类和解译:根据提取的特征,可以使用机器学习、人工智能等方法对图像进行分类和解译。
这些方法可以自动或半
自动地对图像中的地物进行识别和标注。
7. 结果分析和应用:最后,分析师可以对分类和解译结果进行验证和分析。
这些结果可以应用于资源管理、环境保护、城市规划等领域,为决策提供可靠的支持。
通过上述步骤,遥感图像处理原理可以有效地从遥感图像中提取出有用的地物信息,为地理研究和资源管理等工作提供数据支持。
遥感图像处理方法与技巧
遥感图像处理方法与技巧引言:遥感图像处理是指通过感知、获取地球表面信息的遥感数据,利用计算机技术和图像处理算法对遥感图像进行处理、分析、提取等操作的过程。
这一技术的发展不仅在地理信息系统领域有着广泛的应用,也在农业、环境保护、城市规划等诸多领域发挥着重要作用。
本文将介绍几种常见的遥感图像处理方法和技巧。
一、图像预处理技术在进行进一步的图像处理前,通常需要对原始遥感图像进行预处理,以消除图像中的噪声、增强图像的特定信息等。
图像预处理的主要方法有:1.空间滤波:通过利用滤波器,对图像进行平滑或锐化处理。
常用的滤波器包括均值滤波器、中值滤波器和高斯滤波器。
2.辐射校正:由于不同地表物体对电磁波的反射率不同,遥感图像中的亮度值会受到光照和传感器等因素的影响。
辐射校正可消除这些因素对图像的影响,使得不同遥感图像具有一致的亮度分布。
3.几何校正:由于遥感图像通常受到地球自转、地形起伏等因素的影响,导致图像中的地理信息不准确。
几何校正可以修正图像的位置和形状,使其与真实地理坐标一致。
二、图像分类与分割方法图像分类与分割是遥感图像处理的核心环节,旨在将遥感图像中的不同地物或地物类别进行识别和分离。
常见的分类与分割方法有:1.基于像元的分类:将遥感图像中的每个像元(图像的最小单位)分配给不同的类别。
这种方法基于每个像元的统计特征进行分类,如亮度、颜色和纹理等。
2.分层分类:将遥感图像中的类别按照层级进行分类,从粗粒度到细粒度逐步区分不同地物。
3.聚类分割:通过对遥感图像中的像元进行聚类,将具有相似特征的像元划分到同一类别。
常用的聚类算法有K-means和基于区域的分水岭算法。
4.基于边缘的分割:提取遥感图像中物体的边缘信息,并利用边缘信息对图像进行分割。
这种方法适用于物体之间边缘明显的场景。
三、变化检测技术变化检测是指通过比较不同时期的遥感图像,寻找并分析地表上发生的变化。
变化检测技术在自然灾害监测、城市规划等方面有着广泛的应用。
遥感原理与图像处理
通过遥感影像监测生物栖息地变化情况,为生态 保护提供数据支持。
气候变化研究
利用遥感技术获取地球表面温度、降水等气候参 数,为气候变化研究提供数据支撑。
04 遥感技术发展
高光谱遥感
高光谱遥感是一种利用光谱信息进行地物识别和分类的技术,通过获取地物在不同 光谱波段的反射和辐射信息,实现对地物的精细分类和特征提取。
通过遥感影像监测城市扩 张过程,为城市规划提供 数据支持。
城市环境质量评估
利用遥感技术获取城市空 气质量、水质等环境参数, 为城市环境治理提供依据。
城市绿地规划
通过遥感影像分析城市绿 地分布和覆盖情况,优化 城市绿地规划方案。
环境监测
污染源监测
利用遥感技术监测工业污染源的排放情况,为环 保部门提供执法依据。
取地表影像和环境数据。
无人机遥感技术具有低成本、高效率、 实时性强等优点,能够快速响应应急事 件和提供实时监测数据,为环境保护、 城市规划、农业监测等领域提供有力支
持。
无人机遥感技术需要借助先进的无人机 系统和数据处理技术,以实现地表信息
的获取和解析。
05 遥感图像处理软件介绍
ENVI
ENVI简介:ENVI(Environmental Vision)是由Harris 公司开发的一款遥感图像处理软件,广泛应用于科研、环 境监测、地理信息系统等领域。 支持多种数据格式,包括常见的遥感卫星数据和航空影 像。
图像增强
对比度拉伸
调整图像的对比度,使图像的细节更加突出,提高图像的可视化效 果。
直方图均衡化
通过拉伸图像的灰度直方图,使其均匀分布在整个灰度范围内,增 强图像的对比度和细节。
多光谱增强
利用不同波段之间的信息差异,通过彩色合成、比值运算、主成分 变换等方法,突出显示地物的光谱特征。
第五章--遥感图像处理
与光学图像相比,数字图像量化等级高(256级)、失 真度小,不同图像的配准精度高,可由计算机进行各种处 理,便遥感图像获得更好的判读、分析等应用效果。
(二)数字图像处理
所谓数字图像处理是将数字图像以不同亮度值像元 的行、列矩阵构造各种数字模型和相应的算法,由计算 机进行运算(矩阵变换)处理,进而获得更加有利于实际 应用的输出图像及有关数据和资料。故数字图像处理通 常也称为计算机增强处理。
数字图像可以有各种不同的来源:
卫星影像:如MSS等,地面景像的遥感信息都直接记 录在数字磁带上,有关的接收系统均可提供相应的计算机 兼容数字磁带(CCT)及其记录格式。只要按记录格式将CCT 数据输入计算机图像处理系统,即可获得数字图像。
胶片影像:则可通过专门仪器(透射密度计、飞点扫 描器,鼓形扫描器及摄像扫描器等),将影像密度转换为 数值,进而形成数字图像。
3.图像复合处理:
对同一地区各种不同来源的数字图像按统一的地理 坐标作空间配准叠合,以进行不同信息源之间的对比或 综合分析。通常也称多元信息复合,既包括遥感与遥感 信息的复合,也包括遥感与非遥感地学信息的复合。
4.图像分类处理:
对多重遥感数据,根据其像元在多维波谱空间的特 征(亮度值向量),按一定的统计决策标准,由计算机划 分和识别出不同的波谱集群类型,以实现地质体的自动 识别分类。有监督和非监督两种分类方法。
数字图像几何精纠正的实质是逐像元地将其图像坐 标按一定的精度要求变换到地形图的地理坐标系中,再 按恰当的方法对像元重新做亮度赋值。
几何精纠正能综合校正所有因素造成的几何畸变, 能显著改善数字图像的几何精度。
掌握测绘技术中的遥感数据处理和图像处理方法和技巧
掌握测绘技术中的遥感数据处理和图像处理方法和技巧随着科技的发展和进步,测绘技术也经历了巨大的变革。
其中,遥感技术的出现和应用给测绘工作带来了很多便利和准确性。
然而,要充分发挥遥感数据的作用,就需要对其进行处理和分析。
本文将介绍测绘技术中的遥感数据处理和图像处理方法和技巧。
一、遥感数据处理方法1. 数据获取与准备在进行遥感数据处理之前,首先需要获取相关的数据。
这些数据可以来自卫星、航空摄影、无人机等多种来源。
获取数据后,需要对其进行预处理和准备工作,如校正几何畸变、去除噪声等。
这能够提高后续处理时的质量。
2. 数据融合与分类遥感数据通常包括多个频段或分辨率的图像,因此需要将它们进行融合,提取出图像更加丰富的信息和特征。
常见的数据融合方法包括PCA(主成分分析)、IHS(Intensity-Hue-Saturation)等。
融合后的图像能够更加全面地反映地物的信息。
另外,还需要对融合后的图像进行分类,将图像中的像元分到不同的类别中,以便于后续的分析和应用。
3. 特征提取与分析在遥感图像处理中,特征提取是非常重要的一步。
通过提取地物的特征,能够更好地理解遥感图像中的信息。
常见的特征提取方法包括纹理特征、形状特征、光谱特征等。
在处理和分析过程中,还需要对特征进行分析,找出地物之间的关联性和差异性。
二、图像处理技巧1. 去噪与增强在遥感图像处理过程中,由于数据获取的方式和环境的影响,图像中常常存在噪声。
为了提高图像的质量,需要对图像进行去噪处理。
常见的去噪方法包括均值滤波、中值滤波等。
另外,为了更好地展示图像中的细节和特征,还需要对图像进行增强处理,如对比度增强、直方图均衡化等。
2. 目标检测与识别遥感图像中的地物目标往往是我们需要关注和研究的对象。
因此,目标检测与识别是图像处理中的一个重要任务。
经典的目标检测方法包括边缘检测、模板匹配、物体分割等。
通过这些方法,能够快速准确地定位和提取出遥感图像中的目标。
遥感图像处理
用白光由红、绿、蓝三色组成这种理想模型来理解,可以认为黄 色,是减去蓝色的的红绿组合;同样地,品红色是减去绿色的红 蓝组合,青色是减去红色的蓝绿组合。这样,黄、品红、青便是 减色法的三原色。
3、减色法
实际生活中,除了利用颜色相加原理形成颜色 的混合外,还常常利用颜色的减法混合。例如遥 感里常用的色彩摄影、彩色印刷等都是颜色法的 原理。
自己发光的设备生成的色彩,例如:电视机和 计算机的监视器,是通过把三种基本颜色:RGB 混合在一起,产生色彩,但印刷品和漆品,通过 吸收一定波长的光,反射其它的光来形成色彩。
–分层曝光法:利用彩色胶片具有的三层乳剂,使每一 层乳剂依次曝光的方法。
加色法(一)
合成仪法:
将不同波段的黑白透明片 分别放入有红、绿、蓝滤 光片的光学投影通道中精 确配准和重叠,生成彩色 影像的方法。
加色法(二)
分层曝光法: 利用彩色胶片具有的三层 乳剂,使每一层乳剂依次 曝光的方法。 采用单通道投影仪或放大机, 每次放入一个波段的透明片, 依次使用红、绿、蓝滤光片, 分三次或更多次对胶片或相 纸曝光,使感红层、感绿层 和感蓝层依次曝光,最后冲 洗成彩色片。
–利用减色法原理使白光经过多种乳剂(染料或滤色片) 而放射或透射出来的合成彩色,主要有染印法、印刷 法、重氮法。
彩色负片和彩色正片生成过程示意图
4.1.2、光学增强处理
• 相关掩模处理方法:将几何位置完全配准的、具有不 同密度和不同反差的正片和负片(膜片),通过不同 叠加方案改变原有影像显示效果,以达信息增强的目 的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录实验一:利用高分辨率图像提取城市绿地信息 (1)一、实验背景 (1)二、实验工具 (1)三、实验流程 (1)四、实验内容 (2)4.1数据预处理 (2)4.1.1图像融合 (2)4.1.2图像正射纠正 (3)4.1.3大气校正 (7)4.2面向对象绿地信息提取 (8)4.3矢量后处理 (14)实验二:基于环境小卫星的草原荒漠化监测 (16)一、实验背景 (16)二、实验工具 (16)三、实验流程 (16)四、实验内容 (17)4.1数据预处理 (17)4.1.1数据读取和定标 (18)4.1.2工程区裁剪 (19)4.1.3图像配准 (20)4.1.4大气校正 (22)4.1.5裁剪浑善达克地区 (26)4.2植被覆盖度反演 (27)4.2.1归一化植被指数 (27)4.2.2植被覆盖度计算 (27)4.3植被变化监测 (28)4.3.1两图像植被覆盖区域提取 (28)4.3.2变化区域计算 (29)4.4成果后处理及应用 (29)4.4.1植被变化区域图的背景值处理 (29)4.4.2植被变化区域制图 (30)实验一:利用高分辨率图像提取城市绿地信息一、实验背景城市绿地在改善城市生态环境和人居环境起着积极的作用,城市绿地含量逐渐成为衡量城市生活质量的一个重要指标。
此外,城市绿地的空间分布格局与其生态效应有着密切的关系。
因此,必须客观、准确地掌握城市绿地信息。
目前,随着航天遥感技术的发展,高分辨率遥感图像在国内已经得到广泛的应用。
而这些高分辨率图像的出现,也给城市绿地信息提取提供了更为有效而便捷的手段。
二、实验工具1、ENVI主模块2、大气校正扩展模块中的快速大气校正工具(QUAC)3、ENVIEX扩展模块中的FeatureExtraction工具三、实验流程流程说明:(1)图像获取:WorldView-2图像数据选择带RPC文件的LV2A级数据,其中多光谱数据是由8个波段组成,也可以是包含红色、近红外等4个波段组成的产品;成像时间为6~9月份,这期间植被长势最好。
(2)图像融合:根据WorldView-2卫星的特点,先做全色和多光谱图像的融合,再利用全色图像的RPC文件对融合图像进行正射纠正,得到的融合图像正射纠正结果与全色图像正射纠正结果在相同条件下的精度是一致的。
这样的顺序能减少流程而提高效率,并且进行全色和多光谱的图像融合时,能保证他们之间精确的空间配准。
(3)正射纠正:基于控制点+RPC+DEM完成正射纠正过程,控制点从参考影像中选择,也可以使用野外测量获取的控制点。
(4)大气校正:使用快速大气校正工具(QUAC)去除部分大气的影响,在进行面向对象绿地信息提取环节中,提高计算对象的NDVI、光谱属性值的精度,。
(5)面向对象绿地信息提取:选择一部分区域作为实验区,获取分类规则,包括对象分割和合并阈值、对象提取规则,然后将实验区的分类规则应用到整个图像中。
(6)矢量后处理:整个过程是在ArcGIS@ Desktop的ArcMAP中完成,包括矢量结果检查与编辑、矢量数据拼接与裁剪、属性赋值。
四、实验内容4.1数据预处理4.1.1图像融合选择ENVI的Pan Sharpening融合方法,本专题中选择在ENVI EX中完成这个过程,具体操作如下:(1)启动ENVI EX,在ENVI EX中打开WorldView-2多光谱和全色图像(选择.TIL后缀名的文件打开)。
(2)在Toolbox中,双击Pan Sharpening工具。
在第一个弹出对话框中单击选择多光谱图像文件,单击OK按钮。
(3)在弹出的对话框中选择全色图像文件,单击OK按钮,进入Pan Sharpening参数面板(图1)。
(图1)(4)自动识别传感器类型(Sensor):WorldView-2;选择输出路径及文件名,其他参数选择默认,单击OK执行Pan Sharpening融合。
4.1.2图像正射纠正在正射纠正之前,需要确定控制点以及输出正射纠正图像的坐标系,本专题中都采用北京54坐标系,首先在ENVI中定义北京54坐标系。
手动添加北京54坐标系的椭球体和基准面:打开安装目录下HOME\ITT\IDL7x\products\envi4x\map_proj\ellipse.txt文件,将“Krasovsky,6378245.0,6356863.0”添加到末端;打开安装目录HOME\ITT\IDL7x\products\envi4x\map_proj\ datum.txt文件,将“D_BEIJING_1954, Krasovsky, 0,0, 0”添加到末端。
启动ENVI软件,选择主菜单→Map→Customize Map Projection(如图2)(1)投影坐标系名称(Projection Name):BJ-54 6Degree 123E。
(2)选择投影类型(Projection Type):Transverse Mercator。
(3)选择基准面类型(Projection Datum):选择D_BEIJING_1954。
(4)东偏距离(False eastion):500000。
(5)False northing:0(6)中央纬线(Latitude):0(7)中央经线(Longitude):123(8)中央经线长度比(Scale factor):0.9996。
选择Projection→Add New Projection, 将投影添加到ENVI 所用的投影列表中。
选择File→Save Projections,存储自定义的投影坐标,一个自定义投影坐标完成。
(图2)说明:①为了更好的与ArcGIS系列产品兼容,从ENVI 4.7开始,所有产品包括ENVI、ENVI+IDL、ENVI Zoom 和ENVI EX,全部采用ArcGIS投影转换引擎(ENVI4.7之前的版本用的是GCTP——常规制图转换包),对我们来说,ENVI 菜单中所有的投影操作不变,同时还直接支持ArcGIS中的投影类型。
但是自定义北京54及西安80坐标系有一些改变,即定义两个坐标系的基准面(datum)时候使用统一的名称:D_BEIJING_1954和D_Xian_1980。
②这里采用的北京54坐标系是等角投影坐标系,对统计绿地面积会产生一定的系统误差。
下面开始利用控制点正射纠正图像。
(1)打开第一步中的融合结果图像,在Display窗口中RGB:532真彩色显示。
(2)在ENVI主菜单中,选择Map→Orthorectification→WorldView →Orthorectify WorldView with Ground Control,在文件对话框中选择WV-2_pansharpening融合结果,单击OK,打开Ground Control Points Selection面板。
(3)在Ground Control Points Selection面板中,单击Change Proj…按钮。
(4)在打开的Projection Selection面板中,选择前面定义好的坐标系:BJ-54 6Degree 123E。
单击OK回到Ground Control Points Selection 面板中。
开始选择地面控制点,下面使用两种选择控制点的方法。
(1)手动输入控制点信息:a)在校正图像Display中移动方框位置,寻找明显的地物特征点作为输入GCP。
b)在Zoom窗口中,移动定位十字光标(利用键盘↓↑←→微调),将十字光标定位到地物特征点上。
c)在Ground Control Points Selection面板上,将这个点坐标x(E)、y(N)、高程(Elev)值键盘输入,单击Add Point按钮添加控制点。
(2)从参考图像上选择控制点(从参考图像上获得坐标x(E)、y(N)、高程(Elev)值):a)打开参考图像文件gcpimage.img和DEM数据Aster-dem.tif,在波段列表中打开参考图像Edit Header,选择Edit Attributes→Associate DEM File,将参考图像文件和DEM数据进行绑定,这样就可以在参考图像上获取x、y和相同位置的高程(Elev)值。
在Display中显示参考图像文件。
b)在显示校正图像WV-2_pansharpening.img的Display窗口中,单击右键选择Geographic Link,将显示校正图像和参考图像的Display进行地理链接。
c)在校正图像Display中找到明显地物特征点,并在Zoom窗口中用十字光标定位。
由于校正图像有RPC文件进行基本地理定位,在参考图像的Display 中会自动定位到大致位置。
d)在参考图像Display窗口中,单击右键选择Geographic Link,断开两个Display窗口的地理链接,在Zoom窗口中移动十字光标精确定位到相同位置。
e)在参考图像的Display窗口中右键选择Pixel Locator菜单,在弹出的面板中有当前十字光标的坐标信息,单击Export按钮自动将x(E)、y(N)、高程(Elev)导入Ground Control Points Selection面板中。
f) 在Ground Control Points Selection面板中,单击Add Point 按钮添加控制点。
(5)整景图像上选择8~12个点即可。
(6)在Ground Control Points Selection面板上,单击Show List按钮,打开选择的控制点列表,可以用鼠标选择逐个浏览每个控制点情况。
(7)控制点的RMS为3.6个像素左右,约为1.8米的误差,基本符合精度要求。
(如图3)图3(8)在Ground Control Points Selection面板上,选择Options→Orthorectify File,在文件选择对话框中选择待校正的WorldView文件,单击OK弹出对话框选择WorldView全色图像的RPC文件(.rpb),之后打开Orthorectification Parameters面板。
(9)在Orthorectification Parameters面板中,单击Select DEM File 按钮,选择DEM文件;单击Change proj…按钮选择输出投影坐标系:BJ-54 6Degree 123E;选择输出路径及文件名:wv-2_Pansharpening_ ortho.img;其他选择默认,如图4所示。
单击OK执行正射校正。
图4说明:①这里正射纠正使用的DEM是像元分辨率30米免费ASTERG-Dem,这个分辨率的DEM远不能满足0.5米图像的正射纠正要求,在实际生产中需要至少1:5000比例尺的DEM数据。