河北省邢台市高中数学第一章集合与函数概念1.2函数及其表示1.2.1函数的概念课时训练无答案新人教A版必修
高中数学 第一章 集合与函数的概念 1.2 函数及其表示 1.2.1 第一课时 函数的概念 新人教A
所以这个函数的定义域为{x|1≤x≤3}.………………9 分
(4)y= x 12 - 1 x .
x 1
规范解答:(4)要 使函数有意义,
自变量
x
的取值必须 满足
x 1 1 x
0, 0,
………………10
分
解得 x≤1 且 x≠-1,……………………………… 11 分
即函数定义域为{x|x≤1 且 x≠-1}.………………12 分
③M={三角形},N={x|x>0},对应关系f:“对M中的三角形求面积与N中元素对
应.”
是集合M到集合N上的函数的有( A )
(A)1个
(B)2个
(C)3个
(D)0个
2.(函数判断)下列表示的是y关于x的函数的是( A) (A)y=x2 (B)y2=x
(C)|y|=x (D)|y|=|x|
3.(定义域)函数y=
方法技巧 判断某一对应关系是否为函数的步骤: (1)A,B为非空数集. (2)A中任一元素在B中有元素与之对应. (3)B中与A中元素对应的元素唯一. (4)满足上述三条,则对应关系是函数关系.
即时训练1-1:已知集合M={-1,1,2,4},N={1,2,4},给出下列四个对应关系:
①y=x2,②y=x+1,③y=x-1,④y=|x|,其中能构成从M到N的函数是( )
1.2 函数及其表示 1.2.1 函数的概念 第一课时 函数的概念
课标要求:1.通过实例理解函数的概念,能用集合语言描述具体的函数.2.体 会对应关系在刻画函数概念中的作用.3.会求一些简单函数的定义域.
自主学习——新知建构·自我整合
【情境导学】 导入一 初中是用运动变化的观点对函数进行定义的,虽然这种定义较为直 观,但并未完全揭示出函数概念的本质.对于y=1(x∈R)是不是函数,如果用运 动变化的观点去看它,就不好解释,显得牵强.但如果用集合与对应的观点来 解释,就十分自然.因此,用集合与对应的思想来理解函数,对函数概念的再认 识,就很有必要.
高中数学第一章集合与函数概念1.2函数及表示1.2.1函数的概念课件2新人教A版必修1
x+1 (2)y=|x|-x.
解 要使函数有意义,必须满足|x|-x≠0,即|x|≠x,∴x<0.
∴函数的定义域为{x|x<0}.
反思与感悟 解析答案
跟踪训练3 求下列函数的定义域: x+10
(1)y= x+2 ; 解 由于00无意义,故x+1≠0,即x≠-1. 又x+2>0,x>-2,所以x>-2且x≠-1.
系不同,所以是两个不同的函数.
2.区间实质上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,
即用端点所对应的数、“+∞”(正无穷大)、“-∞”(负无穷大)、方括号(包
含端点)、小圆括号(不包含端点)等来表示的部分实数组成的集合.如{x|a<x≤b}
=(a,b],{x|x≤b}=(-∞,b]是数集描述法的变式.
解析答案Байду номын сангаас
4.函数f(x)对任意自然数x满足f(x+1)=f(x)+1,f(0)=1,则f(5)=__6__. 解析 f(1)=f(0)+1=1+1=2,f(2)=f(1)+1=3, f(3)=f(2)+1=4,f(4)=f(3)+1=5,f(5)=f(4)+1=6.
解析答案
5.已知函数f(x)=x2+x-1. (1)求 f(2),f(1x); 解 f(2)=22+2-1=5, f(1x)=x12+1x-1=1+xx2-x2. (2)若f(x)=5,求x的值. 解 ∵f(x)=x2+x-1=5,∴x2+x-6=0, ∴x=2,或x=-3.
解析答案
课堂小结
1.对函数相等的概念的理解:
(1)函数有三个要素:定义域、值域、对应关系.函数的定义域和对应关系共同
确定函数的值域,因此当且仅当两个函数的定义域和对应关系都分别相同时,
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法1.2.2.2分段函数与映射课件新人教A版必修1
【解析】 (1)A 中当 x=0 时,y=0∉B.同理 B 错,C 中,当 x =1 时,y=0∉B,故 C 不正确;由于 x2-2x+2=(x-1)2+1≥1, 故 D 正确.
(2)由题意知x2+x-2yy==43, 解得xy==21. ∴映射 f 下(4,3)的原象为(2,1). 【答案】 (1)D (2)A
2.映射的特征 (1)任意性:A 中任意元素 x 在 B 中都有元素 y 与之对应,如图 ①所示的对应不是映射. (2)唯一性:A 中任意元素 x 在 B 中都有唯一元素 y 与之对应, 如图②所示的对应不是映射. (3)方向性:f:A→B 与 f:B→A 一般是不同的映射,如图③与 图④所示的对应不是同一映射.
当 x0>2 时,f(x0)=45x0,∴x0=10. 综上可知,x0=- 6或 x0=10. 【答案】 (1)2 (2)- 6或 10
类型二 分段函数的图象及应用 [例 2] (1)如图为一分段函数的图象,则该函数的定义域为 ________,值域为________; (2)已知函数 f(x)=1+|x|-2 x(-2<x≤2). ①用分段函数的形式表示该函数; ②画出该函数的图象; ③写出该函数的值域.
【课标要求】 1.掌握简单的分段函数,并能简单应用.(重点) 2.了解映射概念及它与函数的联系.(难点、易混点)
|新知预习|
知识点一 分段函数 在函数的定义域内,对于自变量 x 的不同取值区间,有着不同 的对应关系,这样的函数通常叫做分段函数.
知识点二 映射 设 A、B 是两个非空集合,如果按某一个确定的对应关系,使 对于集合 A 中的任意一个元素 x,在集合 B 中都有唯一确定的元素 y 与之对应,那么就称对应 f:A→B 为从集合 A 到集合 B 的一个映 射.
高中数学 第一章 集合与函数概念 1.2 函数及其表示学
1.2 函数及其表示1.2.1 函数的概念预习课本P15~18,思考并完成以下问题(1)在集合的观点下函数是如何定义?函数有哪三要素?(2)如何用区间表示数集?(3)相等函数是指什么样的函数?[新知初探]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.[点睛] 对函数概念的3点说明(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其它区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)[点睛] 关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)区间表示数集,数集一定能用区间表示.( )(2)数集{x|x≥2}可用区间表示为[2,+∞].( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( )(4)函数值域中每一个数在定义域中一定只有一个数与之对应.( )(5)函数的定义域和值域一定是无限集合.( )答案:(1)×(2)×(3)√(4)×(5)×2.函数y=1x+1的定义域是( )A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0) 答案:C3.已知f(x)=x2+1,则f ( f (-1))=( ) A.2 B.3 C.4 D.5 答案:D4.用区间表示下列集合:(1){x|10≤x≤100}用区间表示为________.(2){x|x>1}用区间表示为________.答案:(1)[10,100] (2)(1,+∞)[例1] (1)设M={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形:其中,能表示从集合M 到集合N 的函数关系的个数是( ) A .0 B .1 C .2D .3(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ① f :把x 对应到3x +1; ② g :把x 对应到|x |+1; ③ h :把x 对应到1x; ④ r :把x 对应到x .(1)[解析] ①中,因为在集合M 中当1<x ≤2时,在N 中无元素与之对应,所以①不是;②中,对于集合M 中的任意一个数x ,在N 中都有唯一的数与之对应,所以②是;③中,x =2对应元素y =3∉N ,所以③不是;④中,当x =1时,在N 中有两个元素与之对应,所以④不是.因此只有②是,故选B.[答案] B(2)[解] ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任一x ∈R,3x +1都有唯一确定的值与之对应,如x =-1,则3x +1=-2与之对应.同理,②也是实数集R 上的一个函数.③不是实数集R 上的函数.因为当x =0时,1x的值不存在.④不是实数集R 上的函数.因为当x <0时,x 的值不存在.1.判断对应关系是否为函数的2个条件 (1)A ,B 必须是非空数集.(2)A 中任意一元素在B 中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系. 2.根据图形判断对应是否为函数的方法 (1)任取一条垂直于x 轴的直线l . (2)在定义域内平行移动直线l .(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.函数的判断[活学活用]1.下列对应或关系式中是A 到B 的函数的是( ) A .A =R ,B =R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1解析:选B A 错误,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一.B 正确,符合函数的定义.C 错误,2∈A ,在B 中找不到与之相对应的数.D 错误,-1∈A ,在B 中找不到与之相对应的数.[例2] 下列各组函数中是相等函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1 C .y =2x 与y =2x (x ≥0) D .y =(x +1)2与y =x 2[解析] 对于选项A ,前者定义域为R ,后者定义域为{x |x ≠1},不是相等函数;对于选项B ,虽然变量不同,但定义域和对应关系均相同,是相等函数;对于选项C ,虽然对应关系相同,但定义域不同,不是相等函数;对于选项D ,虽然定义域相同,但对应关系不同,不是相等函数.[答案] B判断函数相等的方法判断函数是否相等,关键是树立定义域优先的原则. (1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同. [活学活用]2.下列各组式子是否表示同一函数?为什么?相等函数(1)f (x )=|x |,φ(t )=t 2; (2)y =x 2,y =(x )2;(3)y =1+x ·1-x ,y =1-x 2; (4)y =3-x2,y =x -3.解:(1)f (x )与φ(t )的定义域相同,又φ(t )=t 2=|t |,即f (x )与φ(t )的对应关系也相同,∴f (x )与φ(t )是同一函数.(2)y =x 2的定义域为R ,y =(x )2的定义域为{x |x ≥0},两者定义域不同,故y =x 2与y =(x )2不是同一函数.(3)y =1+x ·1-x 的定义域为{x |-1≤x ≤1},y =1-x 2的定义域为{x |-1≤x ≤1},即两者定义域相同.又∵y =1+x ·1-x =1-x 2,∴两函数的对应关系也相同.故y =1+x ·1-x 与y =1-x 2是同一函数.(4)∵y =3-x 2=|x -3|与y =x -3的定义域相同,但对应关系不同,∴y =3-x2与y =x -3不是同一函数.[例3] 求下列函数的定义域:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[解] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}.求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零. (2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合. (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 求函数的定义域[活学活用]3.求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0.解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1,且x ≠1}.[例4] (1)已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R),则f (2)=________,f (g (2))=________.(2)求下列函数的值域: ①y =x +1;②y =x 2-2x +3,x ∈[0,3); ③y =3x -1x +1;④y =2x -x -1.(1)[解析] ∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,求函数值和值域∴g (2)=22+2=6,∴f ( g (2))=f (6)=11+6=17.[答案] 13 17(2)[解] ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y ≠3, ∴y =3x -1x +1的值域为{y |y ∈R 且y ≠3}.④(换元法)设t =x -1,则t ≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.1.函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 2.求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.[活学活用]4.求下列函数的值域:(1)y =2x +1+1;(2)y =1-x21+x2.解:(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1].层级一 学业水平达标1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2解析:选D A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.4.设f (x )=x 2-1x 2+1,则f 2f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35D .-35解析:选Bf 2 f ⎝ ⎛⎭⎪⎫1 2 =22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1. 5.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1解析:选B y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x2+1的值域为[1,+∞).6.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意知3a -1>a ,则a >12.答案:⎝ ⎛⎭⎪⎫12,+∞ 7.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. 解析:∵x =1,2,3,4,5, ∴f (x )=2x -3=-1,1,3,5,7. ∴f (x )的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}8.设f (x )=11-x,则f ( f ( x ))=________.解析:f ( f (x ))=11-11-x =11-x -11-x =x -1x . 答案:x -1x(x ≠0,且x ≠1) 9.已知f (x )=x 2-4x +5. (1)求f (2)的值.(2)若f (a )=10,求a 的值. 解:(1)由f (x )=x 2-4x +5, 所以f (2)=22-4×2+5=1. (2)由f (a )=10,得a 2-4a +5=10, 即a 2-4a -5=0,解得a =5或a =-1. 10.求函数y =x +26-2x -1的定义域,并用区间表示.解:要使函数解析式有意义,需满足:⎩⎪⎨⎪⎧x +2≥0,6-2x ≥0,6-2x ≠1,即⎩⎪⎨⎪⎧x ≥-2,x ≤3,x ≠52,所以-2≤x ≤3且x ≠52.所以函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤3且x ≠52. 用区间表示为⎣⎢⎡⎭⎪⎫-2,52 ∪⎝ ⎛⎦⎥⎤52,3.层级二 应试能力达标1.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6D .x =y解析:选A 对于A ,由x =y 2+1得y 2=x -1.当x =5时,y =±2,故y 不是x 的函数;对于B ,y =2x 2+1是二次函数;对于C ,x -2y =6⇒y =12x -3是一次函数;对于D ,由x =y 得y =x 2(x ≥0)是二次函数.故选A.2.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B =( ) A .[1,+∞) B .(1,+∞) C .[2,+∞)D .(0,+∞)解析:选C 集合A 表示函数y =x -1的定义域,则A ={x |x ≥1},集合B 表示函数y =x 2+2的值域,则B ={y |y ≥2},故A ∩B ={x |x ≥2}.3.若函数f (x )=ax 2-1,a 为一个正数,且f ( f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1D .2解析:选A ∵f (x )=ax 2-1,∴f (-1)=a -1,f (f (-1))=f (a -1)=a ·(a -1)2-1=-1.∴a (a -1)2=0. 又∵a 为正数,∴a =1.4.已知函数y =f (x )与函数y =x +3+1-x 是相等的函数,则函数y =f (x )的定义域是( )A .[-3,1]B .(-3,1)C .(-3,+∞)D .(-∞,1]解析:选A 由于y =f (x )与y =x +3+1-x 是相等函数,故二者定义域相同,所以y =f (x )的定义域为{x |-3≤x ≤1}.故写成区间形式为[-3,1].5.函数y =1x -2的定义域是A ,函数y =2x +6 的值域是B ,则A ∩B =________(用区间表示).解析:要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =2x +6 ≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2,或x >2}.答案:[0,2)∪(2,+∞)6.函数y =6-x|x |-4的定义域用区间表示为________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧6-x ≥0,|x |-4≠0,即⎩⎪⎨⎪⎧x ≤6,x ≠±4,∴定义域为(-∞,-4)∪(-4,4)∪(4,6]. 答案:(-∞,-4)∪(-4,4)∪(4,6] 7.试求下列函数的定义域与值域:(1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=(x -1)2+1; (3)f (x )=5x +4x -1;(4)f (x )=x -x +1.解:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (3)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝ ⎛⎭⎪⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≥-54.8.已知函数f (x )=x 21+x2. (1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值;(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016的值.解:(1)∵f (x )=x 21+x2,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x=1, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=1,f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1,…,f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=2 015.1.2.2 函数的表示法 第一课时 函数的表示法预习课本P19~21,思考并完成以下问题(1)表示两个变量之间函数关系的方法有几种?分别是什么?(2)函数的各种表示法各有什么特点?[新知初探][点睛] 列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何一个函数都可以同上述三种方法表示.( ) (2)函数f (x )=2x +1不能用列表法表示.( )(3)函数的图象一定是定义区间上一条连续不断的曲线.( ) 答案:(1)× (2)√ (3)×2.已知函数f (x )由下表给出,则f (3)等于( )x 1≤x <2 2 2<x ≤4 f (x )1 23A.1C.3 D.不存在答案:C3.函数y=f(x)的图象如图,则f(x)的定义域是( )A.RB.(-∞,1)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-1,0)答案:C4.已知反比例函数f (x)满足f(3)=-6,f (x)的解析式为________.答案:y=-18x[例1] 某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来[解] (1)列表法:x/台1234 5y/元 3 000 6 0009 00012 00015 000x/台678910y/元18 00021 00024 00027 00030 000(2)图象法:(3)解析法:y=3 000x,x∈{1,2,3,…,10}.理解函数的表示法3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满函数的表示法足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义. (3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.[活学活用]1.已知函数f (x ),g (x )分别由下表给出.x 1 2 3 f (x )211则f ( g (1))的值为________; 当g ( f (x ))=2时,x =________.解析:由于函数关系是用表格形式给出的,知g (1)=3,∴f ( g (1))=f (3)=1.由于g (2)=2,∴f (x )=2,∴x =1.答案:1 1[例2] 作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[解] (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分,观察图象可知,其值域为[1,5].(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分,观察图象可知其值域为(0,1].(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.x 1 2 3 g (x )321函数图象的作法及应用由图可得函数的值域是[-1,8].作函数y=f(x)图象的方法(1)若y=f(x)是已学过的基本初等函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y=f(x)不是所学过的基本初等函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y=f(x)的图象.[活学活用]2.作出下列函数的图象:(1)y=1-x(x∈Z);(2)y=x2-4x+3,x∈[1,3].解:(1)因为x∈Z,所以图象为直线y=1-x上的孤立点,其图象如图①所示.(2)y=x2-4x+3=(x-2)2-1,当x=1,3时,y=0;当x=2时,y=-1,其图象如图②所示.[例3] 求下列函数的解析式:(1)已知函数f (x+1)=x+2x,求f (x);(2)已知函数f (x)是二次函数,且f (0)=1,f (x+1)-f (x)=2x,求f (x).[解] (1)[法一换元法]设t=x+1,则x=(t-1)2(t≥1).∴f (t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,∴f (x)=x2-1(x≥1).函数解析式的求法[法二 配凑法]∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 整理,得2ax +(a +b )=2x .由恒等式的性质,知上式中对应项的系数相等,∴⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1.求函数解析式的4种常用求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[活学活用]3.已知f (x +1)=x 2-3x +2,求f (x ).解:法一(配凑法):∵f (x +1)=x 2-3x +2=(x +1)2-5x +1=(x +1)2-5(x +1)+6, ∴f (x )=x 2-5x +6.法二(换元法):令t =x +1,则x =t -1, ∴f (t )=(t -1)2-3(t -1)+2=t 2-5t +6, 即f (x )=x 2-5x +6.4.已知函数f (x )是一次函数,若f ( f (x ))=4x +8,求f (x )的解析式. 解:设f (x )=ax +b (a ≠0),则f ( f (x ))=f ( ax +b )=a (ax +b )+b =a 2x +ab +b .又f ( f (x ))=4x +8, ∴a 2x +ab +b =4x +8,即⎩⎪⎨⎪⎧a 2=4,ab +b =8,解得⎩⎪⎨⎪⎧a =2,b=83或⎩⎪⎨⎪⎧a =-2,b =-8.∴f (x )=2x +83或f (x )=-2x -8.5.已知f (x )+2f (-x )=x 2+2x ,求f (x ). 解:∵f (x )+2 f (-x )=x 2+2x , ① ∴将x 换成-x ,得f (-x )+2 f (x )=x 2-2x . ② ∴由①②得3 f (x )=x 2-6x ,∴f (x )=13x 2-2x .层级一 学业水平达标1.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为( )A .3B .2C .1D .0解析:选B 由函数g (x )的图象知,g (2)=1,则f (g (2))=f (1)=2.2.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1解析:选B 令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t 1-1t=1t -1,故选B.3.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3解析:选B 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧22a +b -3a +b =5,20·a +b --a +b =1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.4.设f (x )=2x +3,g (x )=f (x -2),则g (x )=( ) A .2x +1 B .2x -1 C .2x -3D .2x +7解析:选B ∵f (x )=2x +3,∴f (x -2)=2(x -2)+3=2x -1,即g (x )=2x -1,故选B.5.若f (1-2x )=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12等于( )A .1B .3C .15D .30解析:选C 令1-2x =t , 则x =1-t2(t ≠1),∴f (t )=4t -12-1(t ≠1), 即f (x )=4x -12-1(x ≠1),∴f ⎝ ⎛⎭⎪⎫12=16-1=15. 6.已知函数f (x )由下表给出,则f ( f (3))=________.x 1 2 3 4 f (x )3241=1. 答案:17.已知函数f (x )=x -m x,且此函数图象过点(5,4),则实数m 的值为________. 解析:将点(5,4)代入f (x )=x -m x,得m =5. 答案:58.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则f (x +1)=a (x +1)+b =ax +a +b , 依题设,3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -239.(1)已知函数f (x )=x 2,求f (x -1); (2)已知函数f (x -1)=x 2,求f (x ). 解:(1)f ( x -1)=(x -1)2=x 2-2x +1.(2)法一(配凑法):因为f (x -1)=x 2=(x -1)2+2(x -1)+1,所以f (x )=x 2+2x +1.法二(换元法):令t =x -1,则x =t +1,可得f (t )=(t +1)2=t 2+2t +1,即f (x )=x 2+2x +1.10.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则3 f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.层级二 应试能力达标1.已知函数f (x +1)=x 2-x +3,那么f (x -1)的表达式是( ) A .f (x -1)=x 2+5x -9 B .f (x -1)=x 2-x -3 C .f (x -1)=x 2-5x +9D .f (x -1)=x 2-x +1解析:选C f (x +1)=(x +1)2-3(x +1)+5, 所以f (x )=x 2-3x +5,f (x -1)=(x -1)2-3(x -1)+5=x 2-5x +9,故选C.2.若一次函数的图象经过点A (1,6)和B (2,8),则该函数的图象还可能经过的点的坐标为( )A.⎝ ⎛⎭⎪⎫12,5 B.⎝ ⎛⎭⎪⎫14,4 C .(-1,3)D .(-2,1)解析:选A 设一次函数的解析式为y =kx +b (k ≠0),由该函数的图象经过点A (1,6)和B (2,8),得⎩⎪⎨⎪⎧k +b =6,2k +b =8,解得⎩⎪⎨⎪⎧k =2,b =4,,所以此函数的解析式为y =2x +4,只有A选项的坐标符合此函数的解析式.故选A.3.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为( )A .1B .-1C .1或-1D .1或-2解析:选B 因为g (x )=14(x 2+3),所以g (f (x ))=14[(2x +a )2+3]=14(4x 2+4ax +a2+3)=x 2-x +1,求得a =-1.故选B.4.函数y =f (x )(f (x )≠0)的图象与x =1的交点个数是( ) A .1 B .2 C .0或1D .1或2解析:选C 结合函数的定义可知,如果f :A →B 成立,则任意x ∈A ,则有唯一确定的B 与之对应,由于x =1不一定是定义域中的数,故x =1可能与函数y =f (x )没有交点,故函数f (x )的图象与直线x =1至多有一个交点.5.已知x ≠0,函数f (x )满足f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则f (x )=________.解析:f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,所以f (x )=x 2+2.答案:x 2+26.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.已知函数f (x )=xax +b(a ,b 为常数,且a ≠0)满足f (2)=1,且f (x )=x 有唯一解,求函数y =f (x )的解析式和f (f (-3))的值.解:因为f (2)=1,所以22a +b=1,即2a +b =2,①又因为f (x )=x 有唯一解,即x ax +b=x 有唯一解,所以ax 2+(b -1)x =0有两个相等的实数根,所以Δ=(b -1)2=0,即b =1.代入①得a =12.所以f (x )=x 12x +1=2xx +2.所以f (f (-3))=f ⎝⎛⎭⎪⎫-6-1=f (6)=2×66+2=32.8.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为:y =ax +bx.且当x =2时,y =100;当x =7时,y =35.且此产品生产件数不超过20件.(1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象.解:(1)将⎩⎪⎨⎪⎧x =2,y =100,与⎩⎪⎨⎪⎧x =7,y =35,代入y =ax +bx中,得⎩⎪⎨⎪⎧2a +b2=100,7a +b7=35⇒⎩⎪⎨⎪⎧4a +b =200,49a +b =245⇒⎩⎪⎨⎪⎧a =1,b =196.所以所求函数解析式为y =x +196x(x ∈N,0<x ≤20).(2)当x ∈{1,2,3,4,5,…,20}时,列表:x 1 2 3 4 5 6 7 8 9 10 y 197 100 68.353 44.2 38.7 35 32.5 30.8 29.6x 11 12 13 14 15 16 17 18 19 20 y28.828.328.12828.128.2528.528.929.329.8依据上表,画出函数y 的图象如图所示,是由20个点构成的点列.第二课时 分段函数与映射预习课本P21~23,思考并完成以下问题(1)什么是分段函数?分段函数是一个还是几个函数?(2)怎样求分段函数的值?如何画分段函数的图象?(3)映射的定义是什么?映射和函数的关系怎样?[新知初探]1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.[点睛] (1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.2.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.[点睛] 映射由三要素组成,集合A,B以及A到B的对应关系,集合A,B可以是非空的数集,也可以是点集或其他集合.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)映射中的两个非空集合并不一定是数集.( )(2)分段函数由几个函数构成.( )(3)函数f(x)=⎩⎪⎨⎪⎧x+1,x≤1,-x+3,x>1是分段函数.( )(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( )答案:(1)√(2)×(3)√(4)×2.已知f(x)=⎩⎪⎨⎪⎧-x,x≤0,x2,x>0.则f(-2)=( )A.2 B.4C.-2 D.2或4答案:A3.已知集合A={a,b},集合B={0,1},下列对应不是A到B的映射的是( )答案:C4.函数f(x)=⎩⎪⎨⎪⎧2,1≤x<2,3,x≥2的定义域为________.答案:[1,+∞)[例1] 下列对应是不是从A到B的映射?(1)A=B=N*,f:x→|x-3|;(2)A=N,B=Q,f:x→1x;(3)A={x|1≤x≤2},B={y|2≤y≤5},f:x→y=2x.[解] (1)当x=3∈A时,|x-3|=0∉B,即A中的元素3在B中没有元素与之对应,所以(1)不是映射.映射的概念(2)当x =0∈A 时,1x无意义,即A 中的元素0在B 中没有元素与之对应,所以(2)不是映射.(3)当1≤x ≤2时,2≤2x ≤4,而且对于A 中每一个x 值,按照对应关系y =2x ,在B 中都有唯一的元素与之对应,所以(3)是映射.判断一个对应是不是映射的2个关键(1)对于A 中的任意一个元素,在B 中是否有元素与之对应. (2)B 中的对应元素是不是唯一的.[点睛] “一对一”或“多对一”的对应才可能是映射. [活学活用]1.已知A ={1,2,3,…,9},B =R ,从集合A 到集合B 的映射f :x →x2x +1.(1)与A 中元素1相对应的B 中的元素是什么? (2)与B 中元素49相对应的A 中的元素是什么?解:(1)A 中元素1,即x =1,代入对应关系得x 2x +1=12×1+1=13,即与A 中元素1相对应的B 中的元素是13.(2)B 中元素49,即x 2x +1=49,解得x =4,因此与B 中元素49相对应的A 中的元素是4.[例2] 已知函数f (x )=⎩⎪⎨⎪⎧|x -1|-2,|x |≤1,11+x2,|x |>1.(1)求f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12的值;(2)若f (x )=13,求x 的值.[解] (1)因为f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+⎝ ⎛⎭⎪⎫-322=413.(2)f (x )=13,若|x |≤1,则|x -1|-2=13,分段函数求值得x =103或x =-43.因为|x|≤1,所以x 的值不存在;若|x |>1,则11+x 2=13,得x =±2,符合|x |>1.所以若f (x )=13,x 的值为± 2.1.求分段函数的函数值的方法(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.求某条件下自变量的值的方法先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.[活学活用]2.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +2,x ≤0,则f (-5)的值等于________.解析:f (-5)=f (-5+2)=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=2×1=2.答案:23.函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,45x ,x >2.若f (x 0)=8,则x 0=________.解析:当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6, ∴x 0=-6或x 0=6(舍去); 当x 0>2时,f (x 0)=45x 0,∴x 0=10.综上可知,x 0=-6或x 0=10. 答案:-6或10题点一:分段函数的图象的判定 1.函数f (x )=|x -1|的图象是( )分段函数的图象及应用解析:选B 法一:函数的解析式可化为y =⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1.画出此分段函数的图象,故选B.法二:由f (-1)=2,知图象过点(-1,2),排除A 、C 、D ,故选B. 题点二:分段函数图象的作法2.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,画出f (x )的图象.解:利用描点法,作出f (x )的图象,如图所示.题点三:由函数的图象确定其解析式3.已知函数f (x )的图象如右图所示,则f (x )的解析式是________. 解析:由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧-a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1.当0≤x ≤1时,设f (x )=kx ,将(1,-1)代入,则k =-1.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1题点四:分段函数的图象及应用 4.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b .则函数f (x )=x ⊙(2-x )的值域为________.解析:由题意得f (x )=⎩⎪⎨⎪⎧2-x ,x ≥1,x ,x <1,画出函数f (x )的图象得值域是(-∞,1].答案:(-∞,1]分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.层级一 学业水平达标1.下列对应关系f 中,能构成从集合A 到集合B 的映射的是( ) A .A ={x |x >0},B =R ,f :x →|y |=x 2B .A ={-2,0,2},B ={4},f :x →y =x 2C .A =R ,B ={y |y >0},f :x →y =1x2D .A ={0,2},B ={0,1},f :x →y =x2解析:选D 对于A ,集合A 中元素1在集合B 中有两个元素与之对应;对于B ,集合A 中元素0在集合B 中无元素与之对应;对于C ,集合A 中元素0在集合B 中无元素与之对应.故A 、B 、C 均不能构成映射.2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:选A ∵f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,∴f (-7)=10.f (f (-7))=f (10)=10×10=100.3.下列图形是函数y =x |x |的图象的是( )解析:选D 函数y =x |x |=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,故选D.4.已知集合M ={x |0≤x ≤4},N ={0|0≤y ≤2},按对应关系f 不能构成从M 到N 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x解析:选C 因为当x =4时,y =23×4=83∉N ,所以C 中的对应关系f 不能构成从M 到N的映射.5.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]解析:选B 先求各段上的图象,再求各段值域的并集,即为该函数的值域.6.已知f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥1,1x,x <1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=________.解析:依题意,得f ⎝ ⎛⎭⎪⎫13=113=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f (3)=32-1=8.答案:87.函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,若f (x )=3,则x 的值是________.解析:当x ≤-1时,x +2=3,得x =1舍去, 当-1<x <2时,x 2=3得x =3或x =-3(舍去). 答案: 38.在映射f :A →B 中,A =B ={(x ,y )|x ,y ∈R},且f :(x ,y )→(x -y ,x +y ),则与A 中的元素(-1,2)对应的B 中的元素为________.解析:由题意知,与A 中元素(-1,2)对应的B 中元素为(-1-2,-1+2),即(-3,1). 答案:(-3,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)若f (x 0)=8,求x 0的值. 解:(1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4.10.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示函数f (x ); (2)画出函数f (x )的图象; (3)写出函数f (x )的值域. 解:(1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).层级二 应试能力达标1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈0,1],则函数f (x )的图象是( )解析:选A 当x =-1时,y =0,即图象过点(-1,0),D 错;当x =0时,y =1,即图象过点(0,1),C 错;当x =1时,y =2,即图象过点(1,2),B 错.故选A.2.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,使函数值为5的x 的值是( ) A .-2 B .2或-52C .2或-2D .2或-2或-52解析:选A 当x ≤0时,令x 2+1=5,解得x =-2;当x >0时,令-2x =5,得x =-52,不合题意,舍去.3.已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素在A 中都能找到元素与之对应,且对任意的a ∈A ,在B 中和它对应的元素是|a |,则集合B 中元素的个数是( )A .4B .5C .6D .7解析:选A 注意到对应法则是f :a →|a |,因此3和-3对应集合B 中的元素3;2和-2对应集合B 中的元素2;1和-1对应集合B 中的元素1;4对应集合B 中的元素4.所以B ={1,2,3,4},有4个元素.4.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水量为( )A .13立方米B .14立方米C .18立方米D .26立方米解析:选A 该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧ mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13. 5.函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≥0,2-x ,-2≤x <0,的值域是________.解析:当x ≥0时,f (x )≥1,当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).答案:[1,+∞)6.设函数f (x )=⎩⎪⎨⎪⎧ 12x -1,x ≥0,1x ,x <0,若f (a )>1,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=12a -1>1, 解得a >4,符合a ≥0;当a <0时,f (a )=1a>1,无解. 答案:(4,+∞)7.如图所示,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解:(1)直接由图中观察,可得f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,解得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .得⎩⎪⎨⎪⎧ b =4,k =-2.∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2<x ≤6).∴f (x )=⎩⎪⎨⎪⎧ -2x +4,0≤x ≤2,x -2,2<x ≤6.8.A ,B 两地相距150公里,某汽车以每小时50公里的速度从A 地到B 地,在B 地停留2小时之后,又以每小时60公里的速度返回A 地.写出该车离A 地的距离s (公里)关于时间t (小时)的函数关系,并画出函数图象.解:(1)汽车从A 地到B 地,速度为50公里/小时,则有s =50t ,到达B 地所需时间为15050=3(小时). (2)汽车在B 地停留2小时,则有s =150.(3)汽车从B 地返回A 地,速度为60公里/小时,则有s =150-60(t -5)=450-60t ,从B 地到A 地用时15060=2.5(小时). 综上可得:该汽车离A 地的距离s 关于时间t 的函数关系为s =⎩⎪⎨⎪⎧ 50t ,0≤t ≤3,150,3<t ≤5,450-60t ,5<t ≤7.5.函数图象如图所示.。
高中数学第一章集合与函数概念1.2函数及其表示1.2.1第1课时函数的概念aa高一数学
12/9/2021
第十三页,共三十页。
1.判断(pànduàn)一个对应关系是否是函数,要从以下三个方 面去判断(pànduàn),即A,B必须是非空数集;A中任何一个元素在 B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其 对应.
12/9/2021
第八页,共三十页。
判断下列说法是否正确,正确的在后面的括号内打 “√”,错误的打“×”.
1.函数是定义域到值域的对应关系.( ) 2.对应关系与值域都相同的两个函数是相等函数.( ) 3.函数值域中的每一个(yī ɡè)数在定义域中都存在一个(yī ɡè) 数与之对应.( ) 4.所有数集都能用区间表示.( ) 答案:1.√ 2.× 3.√ 4.×
2.函数的定义中“任一x”与“有唯一确定的y”说明函数中 两变量x,y的对应关系是“一对一”或者是“多对一”,而不 能是“一对多”或者是“多对多”.
12/9/2021
第十四页,共三十页。
1.对于函数y=f(x),以下说法正确的有( )
①y是x的函数;②对于不同的x,y的值也不同;③f(a)表示
当x=a时函数f(x)的值,是一个常量;④f(x)一定可以用一个具体
能是空集,也就是说定义域为空集的函数是不存在的.
12/9/2021
第二十七页,共三十页。
(2)函数定义域中强调“三性”:任意性、存在性、唯一性,即 对于非空数集A中的任意一个(任意性)元素x,在非空数集B中都有(存在 性)唯一(唯一性)的元素y与之对应.这三性只要有一个不满足,便不能 构成(gòuchéng)函数.
高中数学第一章集合与函数概念1.2函数及其表示1.2.1函数的概念课件
一
二
2.实数集R及x≥a,x>a,x≤a,x<a如何用区间表示?
提示:
定义 R
{x|x≥a}
符号 (-∞,+∞) [a,+∞)
{x|x>a}
(a,+∞)
3.判断正误:
(1)所有的数集都能用区间表示.(
(2)所有的区间都能用数集表示.(
答案:(1)× (2)√
{x|x≤a}
(-∞,a]
)
)
{x|x<a}
答案:①④
一
二
二、区间的概念及表示
1.阅读教材17页上半部分,关于区间的概念,请填写下表:
设a,b∈R,且a<b,规定如下:
定义
名称
符号
{x|a≤x≤b} 闭区间
[a,b]
{x|a<x<b}
开区间
(a,b)
{x|a≤x<b}
半开半闭区间 [a,b)
{x|a<x≤b}
半开半闭区间 (a,b]
数轴表示
故原函数的定义域为(-∞,-2)∪(-2,0).
4- ≥ 0,
≤ 4,
(2)要使函数有意义,自变量 x 的取值必须满足
即
≠ 1.
-1 ≠ 0,
故原函数的定义域为(-∞,1)∪(1,4].
探究一
探究二
探究三
探究四
探究五
思想方法
当堂检测
反思感悟求函数的定义域时,常有以下几种情况:
(1)如果函数f(x)是整式,那么函数的定义域是实数集R;
(+2)0
(1)y=
||-
2 -1
; (2)f(x)= -1 − 4-.
高中数学第一章集合与函数概念1.2函数及其表示1.2.2第
解:(1)列表:
x
0
1 2
1
3 2
2
y12345
当 x∈[0,2]时,图象是直线的一部分, 观察图象可知,其值域为[1,5].
(2)列表:
x2345…
y
1
2 3
1 2
2 5
…
当 x∈[2,+∞)时,图象是反比例函数 y=2x的一部分,观
察图象可知其值域为(0,1].
(3)列表:
x -2 -1 0 1 2 y 0 -1 0 3 8
(1)写出函数 t 的解析式; (2)用列表法表示此函数; (3)画出函数 t 的图象.
思路点拨:(1)用待定系数法求解析式. (2)求出定义域内所有自变量的取值及对应的函数值,列出 对应值表. (3)函数图象是20个孤立的点. 解:(1)由题设条件知,当 x=2 时,t=100,当 x=14 时, t=28,得方程组
2.常见函数图象的画法技巧 (1)对于一次函数的图象,描出与坐标轴的交点,连线即 得; (2)对于二次函数的图象,描出与坐标轴的交点、顶点,连 线即得.
1.作出下列函数图象: (1)y=1-x(x∈Z,且|x|≤2); (2)y=2x2-4x-3(0≤x<3). 解:(1)∵x∈Z,且|x|≤2, ∴x∈{-2,-1,0,1,2}. ∴图象为一直线上的孤立点,如图(1).
画图象,图象是抛物线 y=x2+2x 在-2≤x≤2 之间的部分. 由图可得函数的值域是[-1,8].
1.作函数图象的三个步骤 (1)列表.先找出一些有代表性的自变量x的值,并计算出 与这些自变量相对应的函数值f(x),用表格的形式表示出来. (2)描点.把第(1)步表格中的点(x,f(x))一一在坐标平面上 描出来. (3)连线.用平滑的曲线把这些点按自变量由小到大的顺序 连接起来. 提示:所选的点越多画出的图象越精确,同时所选的点应 该是关键处的点.
高中数学第一章集合与函数概念1.2函数及其表示1.2.1第
2.区间与无穷的概念 (1)区间定义及表示. 设a,b是两个实数,而且a<b.
定义
名称
符号
{x|a≤x≤b} 闭区间
_[_a_,__b_]
{x|a<x<b} 开区间
_(a_,__b_)_
{x|a≤x<b} 半开半闭区间 _[a_,__b_)_
{x|a<x≤b} 半开半闭区间 _(a_,__b_]_
A.1 C.3
B.2 D.4
思路点拨:
集合A中任一元素在B中 的对应元素是否唯一 解析:(1)A中的元素0在B中没有对应元素,故不是A到B的 函数; (2)对于集合A中的任意一个整数x,按照对应关系f:x→y =x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A 到集合B的函数;
(3)对于集合A中任意一个实数x,按照对应关系f:x→y= 0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合 B的函数;
数轴表示
(2)无穷概念及无穷区间表示. 定义 R {x|x≥a} {x|x>a} {x|x≤a} {x|x<a} 符号 (-∞, _[a_,__+___∞_)_ _(a_,__+__∞__)_ _(-__∞__,__a_]_ _(_-__∞_,__a_)_
+∞)
用区间表示下列集合: (1){x|2<x≤4}用区间表示为________. (2){x|x>1且x≠2}用区间表示为________. 解析:(1){x|2<x≤4}用区间表示为(2,4].(2){x|x>1且 x≠2}用区间表示为(1,2)∪(2,+∞). 答案:(1)(2,4] (2)(1,2)∪(2,+∞)
第一章 集合与函数概念
1.2 函数及其表示 1.2.1 函数的概念 第1课时 函数的概念
河北高一数学新版必修一目录
河北高一数学新版必修一目录
第一章集合与函数概念
1.1 集合
阅读与思考集合中元素的个数
1.2 函数及其表⽰
阅读与思考函数概念的发展历程
1.3 函数的基本性质
信息技术应用⽰用计算机绘制函数图象
实习作业
小结
第二章基本初等函数(Ⅰ)
2.1 指数函数
信息技术应用⽰借助信息技术探究指数函数的性质2.2 对数函数
阅读与思考对数的发明
探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数
小结
复习参考题
第三章函数的应⽰
3.1 函数与方程
阅读与思考中外历史上的方程求解
信息技术应用借助信息技术方程的近似解3.2 函数模型及其应⽰
信息技术应用收集数据并建立函数模型实习作业
小结
复习参考题。
高中数学第一章集合与函数的概念1.2函数及其表示1.2.1第一课时函数的概念aa高一数学
分
解得 1≤x≤3,……………………………………………8 分
所以这个函数的定义域为{x|1≤x≤3}.………………9 分
第十七页,共二十二页。
(4)y= x 12 - 1 x .
x 1
规范解答:(4)要 使函数有意义,
自变量
x
的取值必须 满足
x 1 1 x
0, 0,
………………10
分
解得 x≤1 且 x≠-1,……………………………… 11 分
(C)②③④
(D)①②③⑤
第九页,共二十二页。
解析:①在对应关系f下,A中不能被3整除的数在B中没有数与它对应,所以不能确定 y是x的函数.②在对应关系f下,A中的数在B中有两个(liǎnɡ ɡè)数与之对应,所以不能确 定y是x的函数.③在对应关系f下,A中的数(除去5与-5外)在B中有两个数与之对应,所以 不能确定y是x的函数.⑤A不是数集,所以不能确定y是x的函数.④⑥显然满足函数的 特征,y是x的函数.故选D.
x 1 0,
规范解答:(2)函 数有意义,当且仅当
x
2
1
0,
…………4
分
x 1 0,
解得 x>-1 且 x≠1,…………………………………………5 分
所以这个函数的定义域为{x|x>-1 且 x≠1}.……………6 分
(3)函数有意义, 当且仅当
3 x
x 1
0, 0,
……………………7
(A)① (B)②
(C)③ (D)④
解:对应关系若能构成从M到N的函数,须满足:对M中的任意(rènyì)一个数,通过对应关系在 N中都有唯一的数与之对应, ①中,当x=4时,y=42=16∉N,故①不能构成函数; ②中,当x=-1时,y=-1+1=0∉N,故②不能构成函数; ③中,当x=-1时,y=-1-1=-2∉N,故③不能构成函数; ④中,当x=±1时,y=|x|=1∈N,当x=2时,y=|x|=2∈N,当x=4时,y=|x|=4∈N,故④能 构成函数.故选D.
高中数学集合与函数概念1.2函数及其表示1.2.1函数的概念课件新人教A版必修12018080149
返回导航 上页
下页
1.2函数及其表示1.2.1函数
的概念课件新人教A版必修
120180801492(ppt)
1.2 函数及其表示 1.2.1 函数的概念
考纲定位
重难突破
1.理解函数的概念,了解函数
构成的三要素.
重点:1.函数的概念;
2.会求一些简单函数的定义 2.定义域的求法.
[解析] 只有②是从 A 到 B 的函数,①,③,④,⑤都不是. 对于①,A 中的元素 0 在 B 中无元素和它对应,故不是函数. 对于③,A 中的负数没有算术平方根,故 B 中无元素和它们对应. 对于④,A 中的每一个元素(除 0 外)都有 2 个平方根,所以 B 中有 2 个元素和它 对应,故不是函数. 对于⑤,集合 A 中的一些元素,如 2,立方后不在集合 B 中,所以在 B 中无元素 和它对应.
二、区间
1.有界区间
设 a,b 是两个实数,且 a<b.
定义
名称
符号
{x|a≤x≤b} 闭区间
[a,b]
{x|a<x<b} 开区间
(a,b)
{x|a≤x<b}
半开半 闭区间
[a,b)
{x|a<x≤b}
半开半 闭区间
(a,b]
数轴表示
2.无界区间
定义
符号 数轴表示
{x|x≥a} [a,+∞)
{x|x>a} (a,+∞)
判断所给对应是否为函数的方法: (1)首先观察两个数集 A,B 是否非空; (2)其次验证对应关系下,集合 A 中 x 的任意性,集合 B 中 y 的唯一性,即不能没 有数 y 对应数 x,也不能有多于一个的数 y 对应 x.
高中数学 第一章 集合与函数的概念 1.2 函数及其表示 1.2.1 第二课时 函数概念的应用 新人
B)
A) (D)[1,+∞)
4.(相等函数)下列四组函数中,表示同一个函数的是( D) (A)y= 2x3 与 y=x 2x (B)y=( x )2 与 y=|x|
(C)y= x 1 · x 1 与 y= x 1 x 1
(D)f(x)=x2-2x-1 与 g(t)=t2-2t-1
5.(值域)函数f(x)=x+1,x∈{-1,1,2}的值域是
(A){x|1≤x≤2} (B){x|1<x≤2}
(C){x|1≤x<2} (D){x|1<x<2}
2.(区间)已知区间[2a,a+1],则a的取值范围为(
(A)(-∞,1)
(B)(-∞,1] (C)(1,+∞)
3.(函数值)已知f(x)=x+ ,则f(4)等于(
(A)4
(B)6
(Cx )8
(D)2
第二课时 函数概念的应用
课标要求:1.明确函数的三要素,会判断两个函数是否相等.2.能正确使用区 间表示数集.3.会求一些简单函数的值域.
自主学习——新知建构·自我整合
【情境导学】
导入一 问题1:函数的概念中函数值的集合{y|y=f(x),x∈A}与集合B有怎 样的关系? 答案:{y|y=f(x),x∈A}⊆B. 问题2:确定一个函数需明确哪些要素? 答案:定义域、对应关系和值域. 导入二 实例:(1)y=x2+1,y=t2+1;
g(x)的定义域是(2,+∞);
D选项根据绝对值的意义,把函数f(x)整理成g(x),两个函数的三个要素都相同.故选D.
题型三 求函数值与函数值域 【例3】 求下列函数的值域:
(1)y=2 x +3; (2)y=x2-2x+3,x∈{-2,-1,0,1,2,3};
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法学案4新人教版必修1【精选】.doc
1.2.2函数的表示法一、温顾互查:(二人小组互述)1.函数三要素:_______________, ________________, ________________2.函数定义域的求法:1)分式中,___________________________ 2)偶次方根的被开方数_________________ 3)函数0x y =,定义域为_______________ 二、设问导读:阅读课本19页至21页,完成下列问题 1、函数的三种表示法是什么?可以举例说明2、通过对本节例3的学习,你认为用解析法表示函数是否一定要写出自变量的取值范围?用描点法画函数的图象的一般步骤是什么?此题中的图象为什么不是一条直线?回答P 20思考。
3、通过对例4的学习思考:题目中的表格能否直观地分析出三名同学的成绩高低?如何才能更好地比较三名同学的成绩高低呢?怎样利用画出的图象来分析三名同学的成绩变化情况的呢?函数的三种表示法优缺点是什么?题型一:求函数解析式例1、求下列函数的解析式:(1)已知2)(2+=x x f ,求)1(-x f ,)2(+x f ;(2)已知x x x f 2)1(2+=+,求)(x f 。
例2、求下列函数的解析式:(1)已知)(x f 是二次函数,且,2)0(=f 1)()1(-=-+x x f x f 求)(x f ; (2)已知反比例函数)(x f 满足6)3(-=f ,求)(x f 的解析式。
题型二、函数的图像及应用例 3.作出下列函数图像并求其值域;(1)3422--=x x y ; (2))73(3422≤≤--=x x x y ;(3))03(3422≤≤---=x x x y ; (4))30(3422<≤--=x x x y三、自学检测:P231、2四、巩固训练:P24习题1.2 A组9五、拓展延伸:P25B组 21.2.2函数的表示法(二)一、温顾互查:(二人小组互述)复述.函数的概念:二、设问导读:班级里的每一位同学在教室都有唯一的座位与之对应,对于任意的三角形,都有唯一确定的面积与之对应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1函数的概念
一、选择题
1.下列对应是从S 到T 的函数的是( )
A. S=N T={–1, 1}
:
f (–1)n n ∈S B.S={0,1,4,9} T={-3,-2,-1,0,1,2,3} :f 开平方
C.S={0,1,2,5} T={1, 21,51} :
f 取倒数 D.S={}R x x ∈| T={}R y y ∈| :f x →y =x
x -+11 2.已知M={x ︱0≤x ≤6},P={y ︱0≤y ≤3},则下列对应关系中不能看成从M 到N 的函数的是( )
A.:f x →y =
21x B.:f x →y =3
1x C.:f x →y =x D.:f x →y =61x 3.A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是 ( )
4.下列函数中,不满足:f (2x )=2f (x )的是 ( )
A .f (x )=|x |
B .f (x )=x -|x |
C .f(x)=x +1
D .f(x)=-x
5.下列各组函数中,是同一函数的是( ) A. 42-=x y 与 2-=x y 2+x B. x 11+=y 与
x
11+=u C. 2x y = 与 2x y =x
D. ||2x y = 与 x y 2
2x =
6.f (x )=1+x +x
1-x 的定义域是( )
A .[-1,+∞)
B .(-∞,-1]
C .R
D .[-1,1)∪(1,+∞)
7.在下列函数中,值域为(0,+∞)的是( )
A.y=2x-1
B.y=︱x ︱
C. y
= D.y=x 2+1
8.若函数244y x x =--的定义域为[]0,m ,值域为[]8,4--,则m 的取值范围是(
)
A .()2,4
B .[)2,4
C .(]2,4
D .[]2,4
二、填空题
9.用区间表示下列数集:
(1){x |x ≥1}=________;
(2){x |2<x ≤4}=________;
(3){x |x >-1且x ≠2}=________.
10.如果函数y=x 2-2x 的定义域为{0,1,2,3},那么它的值域为 .
11. 若函数f(x)满足f(2x-1)=x+1,则f(3)= .
12.已知)1(11
)(-≠∈+-=x R x x x x f 且,)(3)(2R x x x g ∈-=,则
f(2)=________; g(2)=________;
=)]2([f g ; =)]2([g f
三、解答题
13.求下列函数的定义域:
(1)y =3
1-1-x
(2)0
(1)||x y x x
+=- (3).已知函数()1y f x =+定义域是[]2,3-,则()1y f x =-的定义域是?
(4).函数y =
的定义域为?
14.已知函数f (x )=1+x 2
1-x 2, (1)求f (x )的定义域;
(2)若f (a )=2,求a 的值; (3)求证:f ⎝ ⎛⎭
⎪⎫1x =-f (x ).
15.若规定a b a b *=++,且,a b R *∈,已知13k *=,求,(0)y x k x =*>的
取值范围.
附加题:
16、已知)(x f 满足)p (q f +=)(p f )(q f ,3)1(=f ,计算:22222(1)(2)(2)(4)(3)(6)(1)(3)(5)(4)(8)(5)(10)(7)(9)f f f f f f f f f f f f f f f +++++++++。