清华大学电路原理课件-17

合集下载

第01章电路基本概念和定律

第01章电路基本概念和定律
(反向放电)
亦即:C为储能元件,不耗能;又它释放或吸收的能量
都不是自己产生的,故属于无源元件。
例:某电容的电压、电流波形如图,(1) 求C值;(2) 求它在0到
1ms 期间得到的电荷;(3) 求电容吸收的功率的瞬时值及t=2ms

时的功率;(4) 求w(t)与 w(2ms) .
解(1) 当0 t 1ms时:
内容多、概念多、习题多
课程地位:基础课程、承前启后 课程重点:基本理论(概念和定理)、分析电路的基本方法 课程安排:72学时
要求
作业:每周交作业一次 成绩:8(2)或7(3),提问也计算在内 上课要求:须认真预、复习,上课听讲;
作业要独立、认真完成; 不要有声音,不能自由活动; 保留进一步规定的权利。
和符号),在计算过程中不得任意改变。
(3) 参考方向不同时,其表达式符号也不同,但实际方向不变。
iR
iR
+
u

u = Ri
+
u

u = –Ri
第三节 电功率和电能量
电功率(Electric-Power):电场力做功的速率,也称
瞬时功率。
p(t) dw
+
dt
- 若u,i为关联参考方向
p吸 ui
dw u dq
第一章 电路基本概念和定律
第一节 电路和电路模型 第二节 电流和电压的参考方向 第三节 电功率和电能量 第四节 电阻元件 第五节 电容元件 第六节 电感元件 第七节 电压源和电流源 第八节 受控源 第九节 运算放大器 第十节 基尔霍夫定律
第一节 电路和电路模型
1. 实际电路是由若干电气器件(Electric devices)按照一 定的方式相互联系而成的整体。

清华大学电路原理课件1

清华大学电路原理课件1

电路原理Principle of Electric Circuits于歆杰yuxj@Tel: 62771944西主楼1区308第一讲绪论,电压电流和功率第一部分:绪论Principles of Electric Circuits Lecture 1 Tsinghua University 2005什么是电路?a电路(electric circuits)就是由若干电气元件(electrical elements)相互连接构成的电流的通路。

a本课程中要接触的电气元件有`电阻、电容、电感、二极管、MOSFET、理想运算放大器(Operational Amplifier)、互感线圈、理想变压器等Principles of Electric Circuits Lecture 1 Tsinghua University 2005为什么要学习电路?a从学术的观点来看`电路是电气工程(Electrical Engineering)的基础。

`电路是计算机科学(Computer Science)的基础。

a从实际情况来看`电路原理是许多高级课程的先修课程。

`熟练掌握电路原理对现实生活有帮助。

Principles of Electric Circuits Lecture 1 Tsinghua University 2005t q t q t i t d d ∆∆lim )(0∆def ==→d d BABA Weq=AI110ΩU1U2t w p d d =uit qq w ==d dd d q wu d d =t qi d d =。

清华考研_电路原理课件_第16章__二端口网络

清华考研_电路原理课件_第16章__二端口网络

清华大学电路原理电子课件江辑光版参考教材:《电路原理》(第2版)清华大学出版社,2007年3月江辑光刘秀成《电路原理》清华大学出版社,2007年3月于歆杰朱桂萍陆文娟《电路》(第5版)高等教育出版社,2006年5月邱关源罗先觉本章重点 16.1二端口概述 16.2二端口的参数和方程 16.3二端口的等效电路 16.4二端口的联接二端口的特性阻抗和传播常数 16.5 二端口的特性阻抗和传播常数 16.6二端口的转移函数 16.7回转器和负阻抗变换器第16章二端口网络本章重点16.1二端口概述16.2二端口的参数和方程16.3二端口的等效电路16.4二端口的联接 16.516.6二端口的转移函数16.7回转器和负阻抗变换器本章重点.16.1二端口概述二端网络(two-terminal network )+u S _PAR四端网络(four-terminal network )n :1R理想变压器CC滤波器电路iii1i1 线性RLCM受控源i2i2三、二端口与四端网络i1 i2 i1 i2i1二端口i2 i1i2具有公共端的二端口i2i1 i3i4四端网络例+ u1 –112i1i1332ii12Ri22442i2i2222+u2-1-12,2-2 2是二端口。

3-3 2,4-4 2不是二端口,是四端网络。

因为i12 = i1 i ⎺ i1i22 = i2 + i ⎺ i2不满足端口条件i1i 线性RLCM受控源i2i216.2 二端口的参数和方程I1I 1 2I II1♠♥I 2=Y 21U 1+Y 22U 2+Y 12=U 1=0= Y b=Y b +Y c例1求图示二端口的Y 参数。

I 1Y bI 2解♣♠ I 1 = Y 11U 1 + Y 12U 2 ♦+ U 1 -Y aY c+ U 2 -I 1+U 1-U 1 = 0Y b Y a Y cI 1 Y bY a Y cY 12 = Y 21 = Y bI 2Y 11 = U 2=0 = Y a + Yb U 2 = 0I 2互易二端口U1U2U 2 = 0I1I例I12& 10& I2思路1:+U15& 10& +电阻网络,互易Y12 = Y21-电路结构左右不对称-Y11 =12 + 5 // 10=316S思路2:Y– 等效变换Y22 =110 //(10 + 2 // 5)=316SI1 2& I2对称二端口(电气对称)+ U1 - 2& 4&2&+-电路结构左右对称♠♥I 2=Y 21U 1+Y 22U 2♠例2求所示电路的Y 参数。

清华大学电力系统分析课件孙宏斌

清华大学电力系统分析课件孙宏斌
生产率
节能:能耗小,能量转换效率高
3
二、什么是电力系统?(I)
系统定义:由相互作用、依赖的若干部 分组成的具有特定功能的有机整体,它 又从属于一个更大的系统(《系统 论》)
4
3/7/2023
什么是电力系统?(II)
3/7/2023
电力系统:完成电能生产、输送、分配、消 费的统一整体。通常由发电机、变压器、电 力线路和负荷等电力设备组成的三相交流系 统。
北仑 火电厂
上海 外高桥 火电厂
香港 青山 火电厂
台中 火电厂
3/7/2023
国外典型火电厂
日本 横滨 火电厂
3/7/2023
德国 火电厂1
德国 火电厂2
汽轮机-发电机
汽轮机 发电机 外观1
汽轮机 发电机 外观2
汽轮机 发电机 外观3
3/7/2023
600MW 汽轮机 安装
600MW 发电机 穿转子
·开式
·闭式
5
3/7/2023
地理接线图
发电厂 变电站
6
3/7/2023
开式接线(从一个方向得电能)
放射式
干线式
链式
无备用
(a)
(b)
(c)
(d)
3/7/2023
(e)
一般配电网运行时
有备用
(f)
7
闭式接线(多个方向获得电能)
环式(单电源)
闭式(多电源)
两端供电式
输电网运行时
8
3/7/2023
• 考虑绝缘,发电机电压10-30kV,变压器升 压到110-750kV;
• 高压线远距离输电,变压器降压给负荷; • 大负荷6-110kV,民用负荷110/220V单相

电路原理-清华-36共25页文档

电路原理-清华-36共25页文档

u2u S
+
D
+
u
_
S
R
u
_
2
0
t
非线性电感(nonlinearity inductance)电路
i
+
us
uS i
0
t
25.03.2020
课件
2
3. 大量脉冲信号均为周期性非正弦信号
f(t)

f(t)
0
t0
t
f(t) 0
t
尖脉冲
方波
锯齿波
二、周期性非正弦电流电路的分析方法
—谐波(harmonic wave)分析法
(3) 2 I 0 I m k sik n tk ()(k 1 ,2 ,3 , )直次流谐分波量乘与积各
T 10 T2I0k 1Ikm sik nt(k)dt0
余弦函数是偶函数 coxscosx)(

-T
f(t)

t 0T
… -T
f(t)
T 0

t
此类函数的傅里叶级数展开式只包含余弦函数项,不 包含正弦函数项,可能有常数项。
25.03.2020
课件
13
2. 根据半波对称性质判断 (a) f(t)f(tT)
2
半波对称横轴

-T
f(t)

0T
t
f (t T ) 2
2E
k
(1
cos
k
)
4E
k
0
k为 奇 数 k为 偶 数
25.03.2020
课件
10

f(t)4Esi nt4 3Esin 3t4 5Esin 5t 4E(sint1 3sin 3t1 5sin 5t)

最新清华大学-电路原理教学讲义PPT课件

最新清华大学-电路原理教学讲义PPT课件

返回首页
def L
i
韦安( ~i )特性
0
i
二、线性电感电压、电流关系:
i
+–
ue –+
i , 右螺旋 e , 右螺旋
u , e 一致 u , i 关联
由电磁感应定律与楞次定律
e L di dt
u e Ldi dt
iL +u –
u L di dt
(1) 当 u,i 为关联方向时,u=L di / dt u,i 为非关联方向时,u= – L di / dt
一、 电功率:单位时间内电场力所做的功。
p d w dw dq ui d t dq dt
功率的单位名称:瓦(特) 符号(W) 能量的单位名称:焦(耳) 符号(J)
二、功率的计算 1. u, i 取关联参考方向
i 元件(支路)吸收功率
+
u
p=ui
或写为 p吸 = u i

2. u, i 取非关联参考方向
的参考方向。
UAB
A
B
三、电位
取恒定电场中的任意一点(O点),设该点的电位为零, 称O点为参考点。则电场中一点A到O点的电压UAO称为A
点的电位,记为A 。单位 V(伏)。
a
b
设c点为电位参考点,则 c= 0
a= Uac, b=Ubc, d= Udc
d
c
Uab = a- b
返回首页
电路元件的功率 (power)
短路
i = 0 , u由外电路决定
0
i
开路
电感 (inductor)元件
iL
变量: 电流 i , 磁链
+
u

清华大学电路原理于歆杰精品PPT课件

清华大学电路原理于歆杰精品PPT课件
电路中某个支路(或元件)的电压(或电流)的控制。
电路符号
+– 受控电压源
受控电流源
清华大学电路原理教学组
一个受控电流源的例子(MOSFET)
IDS
MOSFET
+ D
G

S
UDS
IDS
UGS


电流源
电 阻
受控源与独立源的比较:
UDS
(1) 独立源电压(或电流)由电源本身决定,而受控源电压(或
电流)直接由控制量决定。
二、欧姆定律 (Ohm’s Law)
(1) 电压电流采用关联参考方向
i
R
+u
uRi
R 电阻 (resistance) 单位: (欧)
清华大学电路原理教学组
令G 1/R
G 电导 (conductance)
单位: S (西) (Siemens,西门子)
欧姆定律(关联参考方向下): i G u
u 关联参考方向下线性电阻器的u-i关系 :
清华大学电路原理教学组
(2) 伏安特性 i
+
iS
u
_
u
IS
0
i
(a)若iS= IS ,即直流电源,则其伏安特性为平行于电 压轴的直线,反映电流与端电压无关。
(b)若iS为变化的电源,则某一时刻的伏安关系也是 平行于电压轴的直线
(c)电流为零的电流源,伏安特性曲线与 u 轴重合,相 当于开路状态。
清华大学电路原理教学组
(3) 理想电流源的短路与开路
+
i
(1) 短路:R=0, i= iS ,u=0 ,
电流源被短路。
iS
u
R
_

清华考研 电路原理课件 第3章 线性电阻电路的一般分析方法

清华考研 电路原理课件 第3章  线性电阻电路的一般分析方法

返回目录
3.2 回路电流法(Loop Current Method)
基本思想 以假想的回路电流为未知量列写回路的KVL方程。 若回路电流已求得,则各支路电流可用回路电流线性组合表 示。 a 选图示的两个独立回路, 设回路电流分别为il1、 il2。 支路电流可由回路电流表出
I1 R1 US1
+ –
+ : 流过互阻的两个回路电流方向相同 - : 流过互阻的两个回路电流方向相反 0 : 无关
uSlk: 第k个回路中所有电压源电压升的代数和。
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,标明回路电流及方向; (2) 对l个独立回路,以回路电流为未知量,列写 其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示); 网孔电流法(mesh-current method) 对平面电路( planar circuit ),若以网孔为独立回 路,此时回路电流也称为网孔电流,对应的分析方法称 为网孔电流法。
本章重点 本章重点 3. 3. 1 1 支路电流法 支路电流法 3. 3. 2 2 回路电流法 回路电流法 3. 3. 3 3 节点电压法 节点电压法
重点 本章重点 � 本章
• 熟练掌握电路方程的列写方法 � 支路电流法 � 回路电流法 � 节点电压法
返回目录
3.1 支路电流法 (Branch Current Method)
支路电流法: 以各支路电流为未知量列写电路方程分析电路的方法。 举例说明 2
支路数 b=6
R4
节点数 n=4
i2
1
R2 i3 R3 R1 i1 R6
+ 4
(1) 取支路电流 i1~ i6为独立变

模拟电子电路模电清华大学华成英半导体二极管和三极管

模拟电子电路模电清华大学华成英半导体二极管和三极管

稳压 二极管
发光 二极管
一、二极管的组成
点接触型:结面积小, 面接触型:结面积大, 平面型:结面积可小、
结电容小,故结允许 结电容大,故结允许 可大,小的工作频率
的电流小,最高工作 的电流大,最高工作 高,大的结允许的电
频率高。
频率低。
流大。
第14页/共36页
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
• 为什么半导体器件有最高工作频率?
第11页/共36页
§2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
第12页/共36页
一、二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
第13页/共36页
有利于漂移运动,形成漂移电 流。由于电流很小,故可近似 认为其截止。
第9页/共36页
四、PN 结的电容效应
1. 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
2. 扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
第四版——P20
第21页/共36页
讨论:解决两个问题
• 如何判断二极管的工作状态?
• 什么情况下应选用二极管的什么等效电路?
iD
V
uD R
对V和Ui二极管的模 型有什么不同?
V与uD可比,则需图解: ID 实测特性
Q

清华大学《数字电子技术基本教程》教学课件.pptx

清华大学《数字电子技术基本教程》教学课件.pptx
Mealy型:Y F ( X , Q) Moore型:Y F (Q)
与X、Q有关 仅取决于电路状态
6.2 时序电路的分析方法
《数字电子技术基本教程》
分析:找出给定时序电路的逻辑功能 即找出在输入和CLK作用下,电路的次态和输出。
一般步骤:
①根据给定的逻辑图写出存储电路中每个触发器输入端的逻 辑函数式,得到电路的驱动方程。
R’D S1 S0 工作状态 0 X X 置零 1 0 0 保持 1 0 1 右移 1 1 0 左移 1 1 1 并行输入
《数字电子技术基本教程》
6.3.3 计数器
• 用于计数、分频、定时、产生节拍脉冲等
• 分类: 按时钟分,同步、异步 按计数过程中数字增减分,加、减
……
1. 异步计数器
异步二进制加法计数器 在末位+1时,从低位到高位逐位进 位方式工作。 原则:每1位从“1”变“0”时,向高
6.1 时序逻辑电路的特点和逻辑功能的描述 一、时序逻辑电路的特点 1. 功能上:任一时刻的输出不仅取决于该时刻的输入,还
与电路原来的状态有关。 例:串行加法器,两个多位数从低位到高位逐位相加
2. 电路结构上 ①包含存储电路和组合电路 ②存储器状态和输入变量共同决定输出
《数字电子技术基本教程》
二、时序电路的一般结构形式与功能描述方法
因为 触发器有延迟时间t pd 所以 CLK 到达时,各触发器按前一级触发器原来的状态翻转
数据依次右移1位
《数字电子技术基本教程》
应用: 代码转换,串 并 数据运算
《数字电子技术基本教程》
器件实例:74LS 194A,左/右移,并行输入,保持,异步 置零等功能
并行输入
并行输出
《数字电子技术基本教程》

清华大学—电路原理完全版17

清华大学—电路原理完全版17

Im[
2Ie jt ]
Im[
d dt
(
2Ie jt )]
Im[ 2(j I) e jt ]
u d t 2 U sin( t ) d t
2 U cos( t )
2U
sin(
t
) 2
U Ue j
j
e 2 j
Im[ Im[
2U
e ] j( t / 2 )
2 U e j t ] j
i2 I sit n ) ( A ( t)2 Ij( e t )
A(t)还可以写成 A(t) 2Iejejt 旋转向量
复常数
IIejI i 2Isint()
相量


I IΨ
为正弦量 i(t) 对应的相量。
相量包含了正弦量的二个要素 I m ,
同样可以建立正弦电压与相量的对应关系:

u (t)2U siω n tθ () U U θ
相量图 (Phasor Diagram )

U

q
I
i(t)2 I sω itn ) ( I I
u ( t)2 U sω it n θ ) (U U θ
• 不同频率的相量不能画在一张相量图上。
二、相量运算
(1) 同频率正弦量相加减
取虚部
u1(t)Ums1 inωt(Ψ1)Im2(U •1ejωt)
相量 正弦量
例1. 已知
i14.41sin3(1t430o)A 试用相量表示i, u . u311.11si4nt6(30o)V
解:

I
10030o
A

U 220 60o V
例2. 已知 I• 5 015A,f 50H . z 试写出电流的瞬时值表达式。

电路原理参考答案-电路原理-张燕君-清华大学出版社

电路原理参考答案-电路原理-张燕君-清华大学出版社

《电路原理》课后参考答案第一章一、略二、10~22:BCBBB ,ABACD ,ACC ;23:ABCD ;24:AAA ;25:ABD ;26:BB ;27:D ;28:D 三、29:(a )U s =U R =8V ,2A I =,16W s U P =(发出),P R =16W(吸收)。

(b )I =I s =5A ,U =20V ,100W s I P =(发出),P R =100W(吸收)。

(c )流过电压源的电流为I s =5A ,而电流源两端的电压为U s =8V ,40W s I P =(关联参考方向,吸收40W),40W s U P =(非关联参考方向,发出40W)30:(a )流过电压源、电阻的电流为电流源电流5A ,U R =50V ,U '=60V ,P R =250W (吸收250W),300W s I P =-(发出300W),50W s U P =(吸收50W)(b )电阻电流源端电压均为10V ,R 5A I =,电压源电流S -10A I '=,100W s U P =-(发出100W),50W s I P =(吸收50W),P R =50W(吸收50W)(c )1R 5A I =,2R 10V U =,2R 5A I =,s 0A I '=,20V U '=,0W s U P =,100W s I P =-(发出100W),150W R P =(吸收50W),250W R P =(吸收50W)(d )25A I =,U 1=-10V ,s 10A I '=,U '=0V ,100W s U P =-(发出100W),0W s I P =(吸收0W),P 1=50W(吸收50W),P 2=50W(吸收50W)31:图(a):u =Ri +u s ;图(b):u =-Ri +u s ;图(c):u =Ri -u s ;图(d):u =-Ri -u s 32:11A 3I =,27A 3I =,34A 3I =,45A 3I =33:220()L S R L Lu u p R R μ==34:P 3A =36W(吸收36W),436 W P Ω=(吸收36W),P 受控源=72W(发出72W)35:I 1=3A ,U 3=18V 36:U =5V ,I =-1.5A ,323R =Ω二、18~37:BDCAC ,ADABA ,CCDAB ,DBCDA 三、38:R 1=2Ω、R 2=18Ω、R 3=180Ω39:R L =24Ω40: 1.44A I =,345.6W P =41:1VU =-42:(a)10ab R =Ω;(b)2ab R =Ω;(c) 6.6ab R =Ω;(d)53ab R =Ω;(e)30ab R =Ω;43:150V U =,15V U =44:0.5AI =45:11A I =,2 2.2A I =,独立电流源吸收功率为16W -;受控电流源吸收功率为1.2W ,5Ω、3Ω和2Ω吸收功率分别为5W 、0.12W 和9.68W 46:12.8W P =47:67R =Ω48:080VU =49:120V 电压源发出功率约为113.49W ,60V 电压源发出功率约为59.14W 50:115V 4U =51:18A I =、210A I =,32A I =、40A I =、52A I =-52:09A,3A s I I ==-53:14WP =54:受控电压源吸收功率为0;受控电流源吸收功率为9W -55:8V ab U =-56:2α=57:21V 19ab U =-二、9~20:DACBC ,DCACB ,CB 三、21:(a )U 4.5x =V ;(b )I 1x =-A 22:1I 1.4=A 23:3U 19.6=V 24:os0.364U U =25:(1)I x =37.5A ;(2)I x =40A 26:(a)(b)27:0.2I =A 28:29:1Ax I =-30:R =R eq =8Ω时,R 上得到最大功率为max 4.5P =W 31:U s2=100V 32:1 1 VU ∧=二、14~18:ABCDA 三、19:(1))(t u 波形为:(2)s t st s s t t t t t t i t u t p 22110 0 1624122 )()()(23><<<<⎪⎩⎪⎨⎧-+-=⋅=,,,(3)当s t 1=时,V u 1)1(=,(1)0.5()W J =当s t 2=时,0)2(=u ,(2)0W =当∞=t 时,0)(=∞u ,()0W ∞=20:t =1s 时,(1) 2.5(A)i =,t =2s 时,(2)5(A)i =,t =3s 时,(3)5(A)i =,t =4s 时,(4) 3.75(A)i =21:2.5F ;10H22:(a)V 10)0(=+c u .5A 1)0()0(-==++i i c (0)15V R u +=-(b)(0)1A L i +=,(0)5V R u +=,V 5)0(-=+L u 23:(a)A 34)0(1=+i ,1A )0(2=+i ,A 37)0(=+i (b)A 3)0(1=+i ,(0)18V u +=-,(0)21.6V L u +=-(c)1(0)A 6c i +=-,11(0)A 6i +=(d)(0) 3.33A c i +=,(0)66.6A u +=24:1(0)4L u V +=-,2(0)0L u V+=25:(1)1(0)0u +=2(0)0u +=,(2)101s t duU dtCR +==,200t du dt+==,(3)222021s t d u R U dtLCR +==26:2()4V tc u t e-=,2()0.04mAt i t e -=27:(1):1.024kV (2)652.6610R =⨯Ω(3)4588.44s t ≥(4)()50kA i t ≤,75.010W p -=⨯(5)7.5s28:(1)V )e 1(100200tc u --=(0≥t ),2000.2e A (0)ti t -=≥(2)18.045 mst =29:()50010000.24Att i ee --=-30:50()14eV tL u t -=,()50614e Wt p -=--31:()6102121Vt c u t e -⎛⎫=- ⎪ ⎪⎝⎭32:2()1A Rt s L L u i t e R -⎛⎫=- ⎪⎝⎭,211W2Rt S Lu p e R -⎛⎫=- ⎪⎝⎭33:(1)()2A L i t =(2)48W p =34:()40.8tC u t e V-=+35:2() 1.50.75t i t e A-=-36:2()(22)()t L i t e t A ε-=-,21()(3)()t i t e t A ε-=+37:23()[5 e] A (0)ti t t -=-≥38:(1)()L i t =591.22.4e A (0) t t --≥(2)591()[1.8 1.6] A (0)t i t et -=-≥39:43[2.5 2.5e ] V (0)t c u t -=-+≥40:()54.1710180.667A ti e-⨯=-,()54.17100.833A t c i t e -⨯=,()54.17104Vt c u t e -⨯=-41:(1)在20≤≤t 区间,RC 电路的零状态响应为()()V110100tc e t u --=在32<≤t 区间,RC 的全响应为()()10022030V t c u t e--=-+在∞<≤t 3区间,RC 的零输入响应为()()100320Vt c u t e --=-(2)()()()()()()()1002100310010130122013V t t t c u t e t e t e t εεε-----⎡⎤⎡⎤=----+--⎣⎦⎣⎦42:(2)(6)()[10(1e )()15(1e )(2)5(1e )(6)] V t t t c u t t t t εεε-----=----+--43:(1)()()()201001V tc u t et ε-=-,()2010mAt cie t ε-=(2)()()2080V t c u t e t ε-=,()()()200.48mAtc i t t e t δε-⎡⎤=-⎣⎦44:()L i t =10 5eε() Att -⋅45:200 ()(1.5e ) ε() Vtu t t -=-第五章一、略二、20~36:C(ACB)CBA,CCBBC,(CA)BABC,BC 三、37:(1)波形图如题5-37图(a)所示。

清华大学电路原理电子课件

清华大学电路原理电子课件

三相交流电路的分析方法
总结词
掌握三相交流电路的分析方法
详细描述
分析三相交流电路时,需要使用相量法、对称分量法等 数学工具,以便更好地理解电路的工作原理和特性。
三相交流电路的应用
总结词
了解三相交流电路的应用领域
详细描述
三相交流电在工业、电力、交通、通信等领域得到广泛应用,如电动机控制、输电线路、电力系统自动化等。
瞬态响应是指电路在输入信号的作用下, 电压和电流随时间从零开始变化至稳态的 过程。稳态响应是指电路达到稳定状态后 ,电压和电流不再随时间变化的状态。一 阶动态电路的响应可以通过求解一阶常微 分方程得到。
一阶动态电路的应用
总结词
一阶动态电路在电子工程、通信工程、自动 控制等领域有着广泛的应用。
详细描述
电路元件和电路模型
总结词
掌握电路元件和电路模型是分析电路的基本方法。
详细描述
电路元件包括电阻、电容、电感等,它们具有特定的电气特性。电路模型是用 图形符号表示电路元件及其连接关系的一种抽象表示方法。
电路的工作状态和电气参数
总结词
了解电路的工作状态和电气参数是评估电路性能的关键。
详细描述
电路的工作状态可以分为有载、空载和短路等,不同的工作状态对电路的性能产 生影响。电气参数包括电压、电流、功率等,它们是描述电路性能的重要指标。
二阶动态电路的应用
要点一
总结词
二阶动态电路在电子设备和系统中的应用
要点二
详细描述
二阶动态电路广泛应用于各种电子设备和系统中,如振荡 器、滤波器、放大器等,用于实现特定的信号处理和控制 系统功能。
06
三相交流电路分析
三相交流电的基本概念
总结词

考研专业课之清华大学电路原理简介

考研专业课之清华大学电路原理简介

考研专业课之清华大学电路原理简介第一讲专业信息介绍一、清华大学电机系简介:1.概况:清华大学电机工程与应用电子技术系即原电机工程系,创建于1932年。

随着科学技术的发展,本系早已突破了传统的学科范围,在电气工程的基础上,扩展到计算机、电子技术、自动控制、系统工程、信息科学等新科技领域,开拓了许多新的研究方向。

电机系拥有一级学科"电气工程"下属的全部五个二级学科:电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动。

五个二级学科均各自首批获得硕士和博士学位授予权,前四个在1989年和2002年均被评为全国重点学科。

1996年,电机系成为国家首批一级学科博士学位授权的试点单位。

在2003年电气工程一级学科评估中,电机系电气工程学科不仅整体水平获得全国第一,并在学术队伍、科研成果、人才培养、学术声誉所有四个单项中均名列全国第一。

2006年电机系电气工程学科又以满分100分的成绩获得一级学科评估全国第一。

电机系拥有"电力系统与发电设备控制与仿真"国家重点实验室。

2.研究机构:目前电机系共有五个研究所和两个教学组,如下:研究所/教学组名称所长/组长副所长/副组长电力系统研究所闵勇康重庆、梅生伟、鲁宗相柔性输配电系统研究所刘文华沈斐、陆超高电压及绝缘技术研究所何金良张贵新、高文胜电力电子与电机系统研究所肖曦孙宇光、王善铭电工新技术研究所袁建生朱桂萍、黄松岭电工学教学组唐庆玉计算机硬件及应用教学组刘建政3.师资力量:电机系拥有中科院院士1 位(卢强,瑞典皇家工程科学院外籍院士)、中国工程院院士1 位(韩英铎),IEEE Fellow 3 位(蔡宣三、卢强、何金良),IEE Fellow 1 位(关志成),长江学者特聘教授1 位(孙元章),国家杰出青年基金获得者4 人(孙元章、梁曦东、何金良、梅生伟),教育部跨世纪优秀人才1人(袁建生),教育部新世纪优秀人才6人(周远翔、孙宏斌、曾嵘、刘文华、康重庆、姜齐荣),清华大学"百名人才引进计划"教授1名(江伟华)。

清华大学电路原理课件-

清华大学电路原理课件-
实际方向 实际方向
参考方向:任意选定的一个方向即为电流的参考方向。
i
参考方向
A
B
电流的参考方向与实际方向的关系
i
参考方向
i
参考方向
实际方向
i> 0
实际方向
i< 0
电流参考方向的两种表示
• 用箭头表示:箭头的指向为电流的参考方向。 • 用双下标表示:如 iAB ,电流的参考方向由A指向B。

I 10V
Uac= a– c = 1.5 –(–1.5) = 3 V
结论:电路中电位参考点可任意选择;当选择不同的电 位参考点时,电路中各点电位将改变,但任意两点 间电压保持不变。
4. 电动势(electromotive force) 外力(非静电力)克服电场力把单位正电荷从负极经电
源内部移到正极所作的功称为电源的电动势。
_
_
模型(circuit model)不再存在)。
i
实际电压源
r
(physical source)
u
US
_
_
u
US
0
i
u=US – r i
二、理想电流源(ideal current source)
电路符号
iS
1. 特点:
(a) 电源电流由电源本身决定,与外电路无关; (b) 电源两端电压由外电路决定。
电容( capacitor )元件:表示各种电容器产生电场、 储存能量的作用。
电源( source )元件:表示各种将其它形式的能量转 变成电能的元件。
2. 电路模型
由理想电路元件组成的电路,其与实际电路具有基本相同 的电磁性质。

开关
10BASE-T wall plate
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

割集Q是连通图G中一个支路的集合,具有下述性质: (1)把Q 中全部支路移去,将图分成两个分离部分; (2)保留Q 中的一条支路,其余都移去, G还是连通的。



1

2 5 4

1

2 5

3

4
3

6 Q2: { 2, 3 , 6 }

6 Q3: { 1, 4, 5}

1

2 5 4 3
④ ③ ①
u1 u2 u3 u4 u5 u6
A un u
T
二、基本回路矩阵(fundamental loop matrix)B 用矩阵形式描述基本回路和支路的关联性质
B = { b ij} lb
基本回路数 支路数 约定: (1) 回路电流的参考方向取连支电流方向。 (2)支路排列顺序为先树(连)支后连(树)支。 1 支路j与回路i关联,方向一致 -1 支路j 与回路i关联,方向相反 0 支路j 不在回路 i 中
1 5 4
2

3

6 Q4: { 1 , 2 , 5 }
6
Q4: {1 , 5,3,6 }
单树支割集(基本割集(fundamental cut set ) 每个割集中只包含一个树支, 其余均为连支。 选1,2,4为树支的基本割集

② ②
1

2 5 4 3

③ ①
1 5 4
2
③ ①
1 5 4
2

3

un1 un un 2 un 3

Ai =
2

1

1 0 0 -1 0 1 -1 -1 0 0 1 0 0 1 1 0 0 -1
5
4

3
6
i1 i4 i6 0 i i i 1 2 5 i 2 i 3 i6
Q = { q i j } n-1 b
基本割集数
支路数
约定: (1) 割集方向与树支方向相同。 (2) 支路排列顺序先树(连)支, 后连(树)支。 1 j支路与割集 i 方向一致
qij =
-1 j支路与割集 i 方向相反 0 j 支路不在割集 i 中
4 3 2
1
5
选 4、5、6为树支,连支为1、2、3。 Q1:{1,2,4} Q2:{1,2,3,5} Q3:{2,3,6}
t l
矩阵形式的KCL
Qi =0
矩阵形式的KCL的另一种形式
Qi =0 可写成
it it [Qt Ql ] [1 Ql ] 0 il il
it Ql il
用回路矩阵表示时
用连支电流表示树支电流
it B i
T t l
可见,回路矩阵和割集矩阵有
返回目录
17.2
一、回路(loop)
回路

割集
回路L是连通图G的一个子图。 具有下述性质 (1)连通; (2)每个节点关联支路数恰好为2。
1 2 3 7 5 6 8 4 图G
2
3
1
7
2 8
5 9
5 回路
不是回路
二、树 (tree)
树T是连通图G的一个子图,具有下述性质: (1) 连通; (2) 包含G的所有节点; (3) 不包含回路。
连支电压
树支电压
4 3 2
1
矩阵形式的KCL 5
BT il = i
6
i4 i i 1 2 1 1 0 i i i i5 1 1 1 1 2 3 i1 i6 i i 2 3 0 1 1 i 2 i1 i1 1 0 0 i 3 i2 0 1 0 i2 i i 3 0 1 3 0

1

2 5

4

3
6 按行列写 支 1 2 3 4 节 1 1 0 0 -1 -1-1 0 0 Aa= 2 0 1 1 0 3 4 0 0-1 1
按列列写 支 1 节 1 1 Aa= 2 -1 3 0 4 0
2 0 -1 1 0
3 0 0 1 -1
4 -1 0 0 1
5 0 1 0 -1
6 1 0 -1 0
矩阵形式的KCL
设 支路电流 支路电压 节点电压
i1 i 2 i3 i i4 i5 i6
u1 u 2 u3 u u4 u5 u6
基本回路和基本割集关系 1 5 4 3 {1,2,3,4} {1,4,5} {1,5,3,6} {2,3,6} 6 1,2,4 树支 2 基本回路
基本割集
{1,2,6}
{3,4,5}
对同一个树 (1)由某个树支bt确定的基本割集应包含那些连支,每个 这种连支构成的单连支回路中包含该树支bt 。
例 由树支4确定的基本割集包含连支3、5 ,则连支3、 5 构成的单连支回路中一定包含树支4 。
[i ] [i4 i5 i6 i1 i2 i3 ]T
it il
矩阵形式的KVL
Bu = 0
Bu = 0 可写成另一种形式
ut [ Bt 1 ] 0 ul
Bt ut + ul = 0 ul = - Btut 用树支电压表示连支电压。
u1 ul u 2 u3 u4 ut u 5 u6
第17章 网络图论基础
本章重点 17.1 网络的图
17.2 回路 树 割集
17.3 图的矩阵表示和KCL, KVL方程的矩阵形式 17.4 节点电压法 17.5 含VCCS电路的节点分析 17.6 割集法 17.7 回路法
17.8 改进节点法 17.9 表格法
本章重点
. . . .
回路,树, 割集 关联矩阵A, 基本回路矩阵B, 基本割集矩阵Q 矩阵形式的KCL,KVL 节点法列写电路方程
基本回路 1 5 4
基本割集 {1,5,3,6} {2,3,6} {3,4,5}
2 3
{1,2,3,4} {1,4,5} {1,2,6}
6 1,2,4 树支
(2) 由某个连支bl确定的单连支回路应包含那些树支,每 个这种树支所构成的基本割集中含有bl 。

由连支6确定的单连支回路包含树支1,2 ,则由树支1,
Ql BtT 的关系。
4 3 2 1
5
矩阵形式的KVL
QTut=u
6
u4 0 0 u4 1 u 0 u5 1 0 5 u4 u6 0 1 u6 0 u5 1 1 u4 u5 u1 0 u6 u4 u5 u6 u2 1 1 1 u u u 0 1 1 3 5 6
16个 图G 树支(tree branch):属于树的支路。 树T1 树T2 树不唯一
连支(link): 属于G而不属于T的支路。
树支数 bt= n-1 连支数 bl = b-(n-1)
单连支回路(基本回路(fundamental loop)):每个 回路中只包含一个连支,其余均为树支。
4
1
2 3 7
5
6
单连支回路
单连支回路
以2,3,6,7为树支, 树支数 4 分别加入1,4,5形成 三个单连支回路 连支数 3 4 1 6 5 3 独立回路 2 独立回路 7
三、割集(cut set) 例


1

2 5 4

2
5 4

1

3

3

6 闭合面与支路 2,5,4,6相交
6 移去支路 2,5,4,6
图分成两个 分离部分
3

6 Q1: { 2 , 3 , 6 }
6
6
Q2: { 3 , 4 , 5}
Q3: { 1 , 3 ,5 , 6 }
单树支割集
单树支割集
独立割集
独立割集
{ 1,2,3,4 }是否组成割集?
例1 1 3
2
4
三个分离部分 { 1,2,3,4 } 割集
例2 1 2
3
4
4 保留4支路,图不连通的。
{ 1,2,3,4 } 割集
5 6 0 1 1 0 0 -1 -1 0
支 节 1 A= 2 3
1 1 -1 0
2 3 4 0 0 -1 -1 0 0 1 1 0
5 6 0 1 1 0 0 -1
称A为降阶关联矩阵(reduced 各行不独立 incidence matrix) (n-1)b , 设④为参考节点,划去第4行 表征独立节点与支路的关联性质
2所构成的基本割集中一定含有连支6。
返回目录
17.3
图的矩阵表示和KCL,KVL方程的矩阵形式
一、节点关联矩阵(node incidence matrix)A 用矩阵形式描述节点和支路的关联性质
关联矩阵
Aa={aij}n b
节点数 1 支路数 有向支路 j 背离 i 节点
aij =
-1 0
有向支路 j 指向 i 节点 i节点与 j 支路无关
支路 6
割集 Q1 Q = Q2 Q3
4 5
1 0 0
6
1
2
3

0 0 -1 -1 0 1 0 1 1 -1 0 1 0 -1 1 Ql Qt
相关文档
最新文档