【初三数学】金华市九年级数学上(人教版)第22章二次函数单元综合练习卷(解析版)
人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案解析
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A . y=(x +2)2﹣5 B . y=(x +2)2+5 C . y=(x ﹣2)2﹣5 D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12 D . 14或34 6.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表: x … ,1 0 1 2 2.5 3 4 … y 1 … 0 m 1 ,8 n 1 ,8.75 ,8 ,5 … y 2…5m 2,11n 2,12.5,11,5…则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc <0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数. 2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.5.A【解析】【分析】首先根据题意确定a,b的符号,然后进一步确定a的取值范围,根据a,b为整数确定a,b的值,从而确定答案.【详解】,0,a+b,2=0,依题意知a,0,b2a故b,0,且b=2,a,a,b=a,,2,a,=2a,2,于是0,a,2,∴,2,2a,2,2,又a,b为整数,∴2a,2=,1,0,1, 故a=12,1,32,b=32,1,12,∴ab=34或1,故选A, 【点睛】根据开口和对称轴可以得到b 的范围。
人教版 九年级数学上册 第22章 二次函数 综合训练(含答案)
人教版九年级数学上册第22章二次函数综合训练(含答案)一、选择题(本大题共8道小题)1. 抛物线y=-x2+4x-4与坐标轴的交点个数为()A.0 B.1 C.2 D.32. 已知抛物线y=ax2+bx+c经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为()A.y=x2-3x+2 B.y=2x2-6x+4C.y=2x2+6x-4 D.y=x2-3x-23. 在平面直角坐标系中,二次函数y=a(x-h)2的图象可能是()4. 已知抛物线y=ax2(a>0)过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>05. 下面的表格列出了函数y=ax2+bx+c(a,b,c是常数,且a≠0)的x与y的部分对应值,那么方程ax2+bx+c=0的一个根x的取值范围是()A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.206. 将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是()A.y=(x-4)2-6 B.y=(x-1)2-3C.y=(x-2)2-2 D.y=(x-4)2-27. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为() A. y=(x-2)2+3 B. y=(x-2)2+5C. y=x2-1D. y=x2+4二、填空题(本大题共8道小题)9. 已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是__________.(只需写一个)10. 抛物线y=12(x+3)2-2是由抛物线y=12x2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.11. 如图所示,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点的坐标为(3,0),那么它对应的函数解析式是______________.12. 某学习小组为了探究函数y=x2-|x|的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=________.13. 已知二次函数y=2(x+1)2+1,且-2≤x≤1,则函数y的最小值是________,最大值是________.14. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)15. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.16. 在平面直角坐标系中,抛物线y=x2如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……依次进行下去,则点A2019的坐标为________.三、解答题(本大题共5道小题)17. 已知二次函数y=-2x2,y=-2(x-2)2,y=-2(x-2)2+2,请回答下列问题:(1)写出抛物线y=-2(x-2)2+2的顶点坐标、开口方向和对称轴;(2)将抛物线y=-2x2分别通过怎样的平移可以得到抛物线y=-2(x-2)2和y=-2(x-2)2+2?(3)如果要得到抛物线y=-2(x-2020)2-2021,应将y=-2(x-2)2怎样平移?18. 已知抛物线与x 轴的交点是A (-1,0),B (2,0),且抛物线最高点的纵坐标是92,求该抛物线的解析式.19. 已知二次函数y =12x 2-2x -1.(1)求该二次函数图象的顶点坐标和对称轴;(2)通过列表、描点、连线,在图中画出该函数的图象; (3)求该二次函数图象与坐标轴的交点坐标.20. 如图,已知二次函数y =x 2+ax +3的图象经过点P (-2,3).(1)求a 的值和图象的顶点坐标. (2)点Q (m ,n )在该二次函数的图象上: ①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.21. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A、B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.人教版九年级数学上册第22章二次函数综合训练(含答案)-讲评卷一、选择题(本大题共8道小题)1. 抛物线y=-x2+4x-4与坐标轴的交点个数为()A.0 B.1 C.2 D.3【答案】C[解析] 当x=0时,y=-x2+4x-4=-4,则抛物线与y轴的交点坐标为(0,-4);当y=0时,-x2+4x-4=0,解得x1=x2=2,则抛物线与x轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点.故选C.2. 已知抛物线y=ax2+bx+c经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为()A.y=x2-3x+2 B.y=2x2-6x+4C.y=2x2+6x-4 D.y=x2-3x-2【答案】B[解析] 把(1,0),(2,0),(3,4)分别代入y =ax 2+bx +c ,得⎩⎨⎧a +b +c =0,4a +2b +c =0,9a +3b +c =4,解得⎩⎨⎧a =2,b =-6,c =4,所以y =2x 2-6x +4.故选B.3. 在平面直角坐标系中,二次函数y =a (x -h )2 的图象可能是( )【答案】D4. 已知抛物线y =ax 2(a >0)过A (-2,y 1),B (1,y 2)两点,则下列关系式一定正确的是( ) A .y 1>0>y 2 B .y 2>0>y 1 C .y 1>y 2>0D .y 2>y 1>0【答案】C[解析] ∵y =ax 2(a >0),∴抛物线的开口向上,对称轴为y 轴,当x=0时,函数取得最小值,最小值是0.∵A(-2,y 1)在对称轴的左侧,B(1,y 2)在对称轴的右侧,点A 到对称轴的距离大于点B 到对称轴的距离,∴y 1>y 2>0.故选C.5. 下面的表格列出了函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的x 与y 的部分对应值,那么方程ax 2+bx +c =0的一个根x 的取值范围是( )A.6<x <6.17B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.20【答案】C[解析] 由表格中的数据,得在6.17<x <6.20范围内,y 随x 的增大而增大,当x =6.18时,y =-0.01,当x =6.19时,y =0.02,故方程ax 2+bx +c =0的一个根x 的取值范围是6.18<x <6.19.6. 将抛物线y =x 2-6x +5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是( ) A .y =(x -4)2-6 B .y =(x -1)2-3 C .y =(x -2)2-2D .y =(x -4)2-2【答案】D[解析] y =x 2-6x +5=(x -3)2-4,将其向上平移2个单位长度,再向右平移1个单位长度后,得y =(x -3-1)2-4+2,即y =(x -4)2-2.7. 已知抛物线y =2x 2+bx +c 的顶点坐标是(-1,-2),则b 与c 的值分别为()A .-1,-2B .4,-2C .-4,0D .4,0【答案】D8. 若抛物线y =x 2-2x +3不动,将平面直角坐标系........xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为( )A. y =(x -2)2+3B. y =(x -2)2+5C. y =x 2-1D. y =x 2+4【答案】C 【解析】由抛物线y =x 2-2x +3得y =(x -1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y =(x -1+1)2+2-3=x 2-1. 二、填空题(本大题共8道小题)9. 已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是__________.(只需写一个)【答案】答案不唯一,如y =2x 2-1 [解析] ∵顶点坐标为(0,-1),∴该抛物线的解析式为y =ax 2-1. 又∵二次函数的图象开口向上, ∴a >0,∴这个二次函数的解析式可以是y =2x 2-1.10. 抛物线y =12(x +3)2-2是由抛物线y =12x 2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y=12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.11. 如图所示,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点的坐标为(3,0),那么它对应的函数解析式是______________.【答案】y =-x 2+2x +3[解析] ∵抛物线y =-x 2+bx +c 的对称轴为直线x =1,∴b2=1, 解得b =2.∵抛物线y =-x 2+2x +c 与x 轴的一个交点的坐标为(3,0),∴0=-9+6+c ,解得c =3.故抛物线的函数解析式为y =-x 2+2x +3.12. 某学习小组为了探究函数y =x 2-|x |的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________.【答案】0.75 【解析】根据表格可得该图象关于y 轴对称,故当x =1.5和x =-1.5时,y 的值相等.∴m =0.75.13. 已知二次函数y =2(x +1)2+1,且-2≤x ≤1,则函数y 的最小值是________,最大值是________.【答案】19 [解析] 当x =1时,有最大值9,当x =-1时,有最小值1.14. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y (件)与售价x (元/件)的关系满足y =-2x +400;(2)工商部门限制售价x 满足70≤x ≤150(计算月利润时不考虑其他成本). 给出下列结论:①这种文化衫的月销量最小为100件; ②这种文化衫的月销量最大为260件; ③销售这种文化衫的月利润最小为2600元; ④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)【答案】①②③[解析] 由题意知,当70≤x≤150时,y=-2x+400,∵-2<0,∴y随x的增大而减小,∴当x=150时,y取得最小值,最小值为100,故①正确;当x=70时,y取得最大值,最大值为260,故②正确;设销售这种文化衫的月利润为W元,则W=(x-60)(-2x+400)=-2(x-130)2+9800,∵70≤x≤150,∴当x=70时,W取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x=130时,W取得最大值,最大值为9800,故④错误.故答案为①②③.15. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.【答案】75[解析] 设与墙垂直的一边的长为x m,则与墙平行的一边的长为27-(3x-1)+2=(30-3x)m.因此饲养室总占地面积S=x(30-3x)=-3x2+30x,∴当x=-302×(-3)=5时,S最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m2.16. 在平面直角坐标系中,抛物线y=x2如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……依次进行下去,则点A2019的坐标为________.【答案】(-1010,10102)[解析] 由点A的坐标可得直线OA的解析式为y=x.由AA 1∥x 轴可得A 1(-1,1),又因为A 1A 2∥OA ,可得直线A 1A 2的解析式为y =x +2,进而得其与抛物线的交点A 2的坐标为(2,4),依次类推得A 3(-2,4),A 4(3,9),A 5(-3,9),…,A 2019(-2019+12,10102),即A 2019(-1010,10102). 三、解答题(本大题共5道小题)17. 已知二次函数y =-2x 2,y =-2(x -2)2,y =-2(x -2)2+2,请回答下列问题:(1)写出抛物线y =-2(x -2)2+2的顶点坐标、开口方向和对称轴;(2)将抛物线y =-2x 2分别通过怎样的平移可以得到抛物线y =-2(x -2)2和y =-2(x -2)2+2?(3)如果要得到抛物线y =-2(x -2020)2-2021,应将y =-2(x -2)2怎样平移?【答案】解:(1)抛物线y =-2(x -2)2+2的顶点坐标为(2,2),开口向下,对称轴为直线x =2.(2)y =-2x 2的顶点坐标为(0,0),y =-2(x -2)2的顶点坐标为(2,0),y =-2(x -2)2+2的顶点坐标为(2,2),所以抛物线y =-2x 2向右平移2个单位长度得到抛物线y =-2(x -2)2,抛物线y =-2x 2向右平移2个单位长度,再向上平移2个单位长度得到抛物线y =-2(x -2)2+2(平移方法不唯一). (3)∵抛物线y =-2(x -2020)2-2021的顶点坐标为(2020,-2021),∴应将y =-2(x -2)2向右平移2018个单位长度,再向下平移2021个单位长度(平移方法不唯一).18. 已知抛物线与x 轴的交点是A (-1,0),B (2,0),且抛物线最高点的纵坐标是92,求该抛物线的解析式.【答案】解:依题意设抛物线的解析式为y =a(x +1)(x -2),即y =ax 2-ax -2a. ∵抛物线最高点的纵坐标是92,∴4a (-2a )-(-a )24a =92,解得a =-2.∴抛物线的解析式为y =-2x 2+2x +4.19. 已知二次函数y =12x 2-2x -1.(1)求该二次函数图象的顶点坐标和对称轴;(2)通过列表、描点、连线,在图中画出该函数的图象;(3)求该二次函数图象与坐标轴的交点坐标.【答案】解:(1)y=12x2-2x-1=12x2-2x+2-3=12(x2-4x+4)-3=12(x-2)2-3,∴该二次函数图象的顶点坐标为(2,-3),对称轴为直线x=2.(2)列表:(3)令y=0,则12x2-2x-1=0,解得x1=2+6,x2=2-6,∴函数图象与x轴的交点坐标为(2+6,0),(2-6,0).令x=0,则y=12×02-2×0-1=-1,∴函数图象与y轴的交点坐标为(0,-1).综上,该二次函数图象与坐标轴的交点坐标为(2+6,0),(2-6,0),(0,-1).20. 如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数的图象上:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.【答案】解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴图象的顶点坐标为(-1,2).(2)①当m =2时,n =11.②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <11.21. 如图,二次函数y =ax 2+bx 的图象经过点A (2,4)与B (6,0).(1)求a ,b 的值;(2)点C 是该二次函数图象上A 、B 两点之间的一动点,横坐标为x (2<x <6).写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.【答案】 解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).∴⎩⎨⎧4a +2b =436a +6b =0,解得⎩⎪⎨⎪⎧a =-12b =3.(4分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD·AD =12×2×4=4,S △ACD =12AD·CE =12×4×(x -2)=2x -4,S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6).(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)解图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D ,∴C(x ,-12x 2+3x),D(x ,-x +6),∴S △ABC =S △ADC +S △BDC =12·CD·(x -2)+12·CD·(6-x)=12·CD·4=2CD ,其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6,∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.解图②解法二:∵点C 在抛物线y =-12x 2+3x 上,∴点C(x ,-12x 2+3x),如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.解图③。
第22章 二次函数 初中数学人教版九年级上册单元检测(含答案)
检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。
人教版九年级数学上册第22章二次函数 单元综合测试题(含解析)
2022-2023学年人教版九年级数学上册《第22章二次函数》单元综合测试题(附答案)一、选择题(本大题共12小题,共36分)1.下列函数中不属于二次函数的是()A.y=(x+1)(x﹣2)B.y=(x+1)2C.y=2(x+2)2﹣2x2D.y=1﹣x22.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+2 3.已知抛物线y=x2﹣x+1,与x轴的一个交点为(m,0),则代数式m2﹣m+2022的值为()A.2020B.2021C.2022D.20234.将抛物线y=2(x﹣4)2﹣1先向右平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣35.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=36.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)7.已知抛物线y=a(x﹣2)2+k(a>0,a,k为常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.9.抛物线y=﹣x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.x<﹣4或x>1B.x<﹣3或x>1C.﹣4<x<1D.﹣3<x<1 10.已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()A.ac<0B.b<0C.b2﹣4ac<0D.a+b+c<0 11.若二次函数y=ax2+bx+c(a<0)图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值612.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0二、填空题(本大题共6小题,共24分)13.顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为.14.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.把二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,则y=ax2+bx+c图象顶点坐标是.16.如图,一为运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+,此运动员将铅球推出m.17.是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是.18.如图,线段AB=8,点C是AB上一点,点D、E是线段AC的三等分点,分别以AD、DE、EC、CB为边作正方形,则AC=时,四个正方形的面积之和最小.三、解答题(本大题共7小题,共60分)19.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象写出A、B、C三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴.20.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出方程ax2+bx+c<0时x的取值范围;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.22.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,﹣m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是直线x=﹣)25.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案一、选择题(本大题共12小题,共36分)1.解:A、y=(x+1)(x﹣2)是二次函数,故此选项不合题意;B、y=(x+1)2是二次函数,故此选项不合题意;C、y=2(x+2)2﹣2x2=8x+8不是二次函数,故此选项符合题意;D、y=1﹣x2是二次函数,故此选项不合题意;故选:C.2.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.3.解:∵抛物线y=x2﹣x+1与x轴的一个交点为(m,0),∴m2﹣m+1=0,∴m2﹣m+2022=m2﹣m+1+2021=2021.故选:B.4.解:抛物线y=2(x﹣4)2﹣1的顶点坐标为(4,﹣1),∵向右平移4个单位长度,再向下平移2个单位长度,∴平移后的函数图象的顶点坐标为(8,﹣3),∴平移后所得抛物线解析式为y=2(x﹣8)2﹣3,故选:D.5.解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是直线x==1.故选:A.6.解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.7.解:抛物线y=a(x﹣2)2+k(a>0,a,k为常数)的对称轴为直线x=2,所以A(﹣3,y1)到直线x=2的距离为5,B(3,y2)到直线x=2的距离为1,C(4,y3)到直线的距离为2,所以y2<y3<y1.故选:C.8.解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选:B.9.解:函数的对称轴为:x=﹣1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(﹣3,0),故:y<0时,x<﹣3或x>1,故选:B.10.解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵﹣>0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选:B.11.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.12.解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选:B.二、填空题(本大题共6小题,共24分)13.解:设顶点式y=a(x+2)2﹣5,将点(1,﹣14)代入,得a(1+2)2﹣5=﹣14,解得a=﹣1,∴y=﹣(x+2)2﹣5,即y=﹣x2﹣4x﹣9.14.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.15.解:y=2(x﹣1)2的顶点坐标为(1,0),∵二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,∴二次函数y=ax2+bx+c的解析式为:y=2(x+1)2﹣3,∴二次函数y=ax2+bx+c的顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).16.解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.17.解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(﹣2,﹣2)点,故﹣2=4a,a=﹣,故y=﹣.18.解:设AC为x,四个正方形的面积和为y.则BC=8﹣x,AD=DE=EC=,∴y=3×()2+(8﹣x)2=x2﹣16x+64=,∴x=﹣=6时,四个正方形的面积之和最小.故答案为6.三、解答题(本大题共7小题,共60分)19.解:(1)根据二次函数的图象可知:A(﹣1,0),B(0,﹣3),C(4,5),把A(﹣1,0),B(0,﹣3),C(4,5)代入y=ax2+bx+c可得,解得.即二次函数的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=y=(x﹣1)2﹣4,∴此抛物线的顶点坐标(1,﹣4),和对称轴x=1.20.解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.21.解:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴y=(x﹣1)2﹣4令y=0得(x﹣1)2﹣4=0令y=0得(x﹣1)2﹣4=0解得x1=3,x2=﹣1∴A(﹣1,0),B(3,0)(2)∵△P AB与△MAB同底,且S△P AB=S△MAB,∴|y P|=×4=5,即y P=±5又∵点P在y=(x﹣1)2﹣4的图象上∴y P≥﹣4∴y P=5,则(x﹣1)2﹣4=5,解得x1=4,x2=﹣2∴存在合适的点P,坐标为(4,5)或(﹣2,5).22.解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.23.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.24.解:(1)设二次函数的解析式为y=a(x﹣2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=﹣.所以二次函数的解析式为y=﹣(x﹣2)2+1;(2)∵抛物线y=﹣(x﹣2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2;(3)∵点P(m,﹣m)(m≠0)为抛物线y=﹣(x﹣2)2+1上一点,∴﹣m=﹣(m﹣2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,﹣8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(﹣4,﹣8).25.解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).。
人教版九年级数学上册 第22章 二次函数 单元测试卷(含解析)
人教版九年级数学上册第22章二次函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.抛物线的顶点坐标是A. B. C. D.2.已知二次函数的最小值是,那么m的值等于A. 10B. 4C. 5D. 63.抛物线上两点、,则a、b的大小关系是A. B. C. D. 无法比较大小4.已知a、b、c是的三边长,且关于x的方程的两根相等,则为A. 等腰三角形B. 等边三角形C. 直角三角形D. 任意三角形5.二次函数的图象如图所示,则一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.直线与抛物线在同一平面直角坐标系中的图象大致为A. B.C. D.7.若、为方程的两个实数根,则的值为A. B. 12 C. 14 D. 158.已知二次函数的图象如图,则一次函数的图象大致是A. B. C. D.9.抛物线的对称轴是A. 直线B. 直线C. 直线D. 直线10.将抛物线绕它的顶点旋转,所得抛物线的解析式是.A. B.C. D.二、填空题(本大题共7小题,共21分)11.如果函数是二次函数,那么m的值一定是______.12.已知二次函数的图象的顶点在x轴下方,则实数k的取值范围是.13.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是__________.14.如果抛物线的对称轴是y轴,那么m的值是______ .15.在解一元二次方程时,小明看错了一次项系数b,得到的解为,;小刚看错了常数项c,得到的解为,请你写出正确的一元二次方程______.16.如图,在中,,,AD为BC边上的高,动点P从点A出发,沿方向以的速度向点D运动,过P点作交AC于点E,过E点作于点F,设的面积为,四边形PDFE的面积为,则点P在运动过程中,的最大值为______.17.如图,是二次函数的图象的一部分,给出下列命题:;;的两根分别为和1;.其中正确的命题是________填写正确命题的序号三、解答题(本大题共6小题,共49分)18.已知二次函数的顶点在直线上,并且图象经过点求这个二次函数的解析式.当x满足什么条件时二次函数随x的增大而减小?19.已知抛物线与x轴交于A,B两点点A在点B的左侧,抛物线的顶点记为C.分别求出点A、B、C的坐标;计算的面积.20.二次函数a,b,c为常数图象如图所示,根据图象解答问题.直接写出过程的两个根.直接写出不等式的解集.若方程有两个不相等的实数根,求k的取值范围.21.如图,是某座抛物线型的隧道示意图.已知路面AB宽24米,抛物线最高点C到路面AB的距离为8米,为保护来往车辆的安全,在该抛物线上距路面AB高为6米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.22.某商店经销一种学生用双肩包,成本价为每个30元.市场调查发现,这种双肩包每天的销售量个与销售单价元有如下关系:设这种双肩包每天的销售利润为w元.求w与x之间的函数关系式;这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.如图,抛物线与x轴交于A,B两点,且点A在点B的左侧,直线与抛物线交于A,C两点,其中点C的横坐标为2.求二次函数的解析式;是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值.答案和解析1.【答案】C【解析】解:抛物线的顶点坐标是.故选:C.根据顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.2.【答案】D【解析】【分析】本题考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.将二次函数化为顶点式,即可建立关于m的等式,解方程求出m的值即可.【解答】解:原式可化为:,函数的最小值是,,,故选D.3.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征,属于基础题.由题意,抛物线开口向上,抛物线上的点离对称轴越远,对应的函数值就越大,点在对称轴上,即可得到答案.【解答】解:,抛物线开口向上,对称轴是直线,抛物线上的点离对称轴越远,对应的函数值就越大,点在对称轴上,.故选A.4.【答案】C【解析】【分析】方程的两根相等,即,结合直角三角形的判定和性质确定三角形的形状.总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.的三边长满足,由勾股定理的逆定理可知,此三角形是直角三角形.【解答】解:原方程整理得,因为两根相等,所以,即,所以是直角三角形.故选C.5.【答案】D【解析】解:由图象开口向上可知,对称轴,得.所以一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.6.【答案】C【解析】【分析】本题考查一次函数和二次函数的图象,属于基础题.本题可先由二次函数图象得到字母a的正负,再与一次函数的图象相比较看是否一致.逐一排除.【解答】解:由二次函数的图象可知,此时直线不可能在二、三、四象限,故D可排除;A中,二次函数的对称轴是y轴,可知,此时直线应该经过原点,故A可排除;因为对于,当时,,即抛物线一定经过原点,故B可排除.正确的只有C.故选:C.7.【答案】B【解析】【分析】本题主要考查方程的根与系数的关系,一元二次方程的解,代数式求值的有关知识,属于中档题.根据一元二次方程的解得到,即,则可表示为,根据题意得到,,然后整体代入求值即可.【解答】解:为的实数根,,即,,、为方程的两个实数根,,,.故选B.8.【答案】A【解析】【分析】先由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,再由一次函数的性质解答.本题考查了二次函数图象与系数的关系,一次函数图象与系数的关系.用到的知识点:二次函数,当时,抛物线开口向上;抛物线与y轴交于,当时,与y轴交于正半轴;当,时,一次函数的图象在一、二、三象限.【解答】解:抛物线开口向上,与y轴交于正半轴,,,一次函数的图象经过第一、二、三象限.故选A.9.【答案】D【解析】【分析】本题考查二次函数的对称轴,熟练掌握二次函数的图像与性质是解题的关键.【解答】解:抛物线可以看成是抛物线向上平移3个单位得到的,所以对称轴为y轴,即.故选D.10.【答案】D【解析】【分析】本题考查了二次函数的图象与几何变换,利用了绕定点旋转的规律.根据抛物线解析式间的关系,可得顶点式解析式,根据绕它的顶点旋转,可得顶点相同,开口方向相反,即可得出答案.【解答】解:将y配方得.此抛物线开口向上,顶点为,因为绕的顶点旋转后,新抛物线开口大小,形状不变,开口向下,顶点为,故新抛物线的解析式为,即.故选D.11.【答案】2【解析】解:函数是二次函数,,且,解得:.故答案为:2.直接利用二次函数的定义计算得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.12.【答案】【解析】【分析】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出是解此题的关键先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出,求出即可.【解答】解:二次函数中,图象的开口向上,又二次函数的图象的顶点在x轴下方,1,解得.13.【答案】【解析】【分析】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先确定抛物线的顶点坐标为,再根据点平移的规律,点经过平移后所得对应点的坐标为,然后利用顶点式写出平移后的抛物线的解析式.【解答】解:抛物线的顶点坐标为,把点向左平移2个单位,再向上平移1个单位后所得对应点的坐标为,所以平移后得到的抛物线的解析式为.故答案为.14.【答案】1【解析】解:的对称轴是y轴,,解得,故答案为:1.由对称轴是y轴可知一次项系数为0,可求得m的值.本题主要考查抛物线的对称轴,掌握抛物线的对称轴为y轴其一次项系数为0是解题的关键.15.【答案】【解析】【分析】本题考查了根与系数的关系:若,是一元二次方程的两根时,,.利用根与系数的关系得到,,然后求出b、c即可.【解答】解:根据题意得,,解得,,所以正确的一元二次方程为.故答案为.16.【答案】72【解析】【分析】本题考查了相似三角形的判定及性质,以及等腰直角三角形的性质,正确表示出和是关键.利用三角形的面积公式以及矩形的面积公式,表示出和,然后确定最值即可.【解答】解:中,,,AD为BC边上的高,,又,则,,,∽,,,,.的最大值为72,故答案为:72.17.【答案】【解析】【分析】本题主要考查对二次函数与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键由图象可知过,代入得到;根据,推出;根据图象关于对称轴对称,得出与x轴的交点是,;由,根据结论判断即可.【解答】解:由图象可知:过,代入得:,正确;,,错误;根据图象关于对称轴对称,抛物线与x轴的交点是,,的两根分别为和1,正确;,,,,,错误.故答案为.18.【答案】解:二次函数的顶点在直线上,并且图象经过点二次函数的顶点为,将和分别代入和,得,解得,,二次函数的解析式为;二次函数的解析式为,对称轴为,又,当时,y随x的增大而减小.【解析】二次函数的顶点为,将和分别代入和,求得b、c,从而得出二次函数的解析式;求得对称轴在对称轴的左侧y随x的增大而减小.本题是一道二次函数的综合题,考查了用待定系数法求二次函数的解析式以及二次函数的性质,是中考热点,难度不大.19.【答案】解:当时,,解得,,点坐标为,B点坐标为;,顶点C的坐标为;的面积.【解析】本题考查了抛物线与x轴的交点:把求二次函数b,c是常数,与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.解方程得A点坐标和B点坐标;把一般式配成顶点式得到顶点C的坐标;利用三角形面积公式计算即可.20.【答案】解:由图象得:的两个根为;由图象得:不等式的解集为;设抛物线解析式为;把代入得:;解得:,抛物线解析式为;方程有两个不相等的实数根;二次函数与有两个交点;可得:k的范围为【解析】此题考查了二次函数与不等式组,抛物线与x轴的交点由图象抛物线与x轴的交点横坐标确定出方程的解即可;由图象确定出不等式的解集即可;利用待定系数法确定出抛物线解析式,设设抛物线解析式为,把代入得:,得到解析式,确定出顶点坐标,方程有两个不相等的实数根,二次函数与有两个交点,即可求出所求k的范围.21.【答案】解:如图,以AB所在直线为x轴,线段AB的中垂线为y轴建立直角坐标系,由题意知,,,,设过点A,B,C的抛物线解析式为:,把点的坐标代入,得,解得:,则该抛物线的解析式为:,把代入,得,解得,,所以两盏警示灯之间的水平距离为:.【解析】本题主要考查的是二次函数的应用,注意利用函数对称的性质来解决问题利用待定系数法求得抛物线的解析式,已知抛物线上距水面AB高为6米的E,F两点,可知E,F两点纵坐标为6,把代入抛物线解析式,可求E,F两点的横坐标,根据抛物线的对称性求EF长.22.【答案】解:,w与x之间的函数解析式;根据题意得:,,当时,w有最大值,最大值是225.当时,,解得,,,不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【解析】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.每天的销售利润每天的销售量每件产品的利润;根据配方法,可得答案;根据自变量与函数值的对应关系,可得答案.23.【答案】解:当时,有,解得:,点A的坐标为;当时,,点C的坐标为.将、代入,得:解得:二次函数的解析式为.设点P的坐标为,则点E的坐标为,.,当时,PE取最大值,最大值为.【解析】本题考查了一次函数图象上点的坐标特征、二次函数的性质、二次函数图象上点的坐标特征、二次函数的最值以及待定系数法求二次函数解析式;解题的关键是:利用一次函数图象上点的坐标特征求出点A、C的坐标;用含m的代数式表示出PE的值.根据点C在x轴上求得点A的坐标,再根据点C的横坐标为2求出点C的纵坐标,把,代入二次函数的解析式,利用待定系数法即可求得函数的解析式;设点P的坐标为,则点E的坐标为,进而可得出,再利用二次函数的性质即可解决最值问题.。
人教版九年级数学上册 第22章 二次函数 综合测试卷(包含答案)
人教版数学九年级上册第22章二次函数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列函数中,是二次函数的有()①y=3(x-1)2+1;②y=x+1x;③y=8x2+1;④y=3x3+2x2.A.1个B.2个C.3个D.4个2. 已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m3. 抛物线y=(x-2)2-1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度4.若抛物线y=x2-2x+c与y轴的交点坐标为(0,-3),则下列说法不正确的是( ) A.抛物线的开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-45. 如图,在△ABC中,∠B=90°,AB=3 cm,BC=6 cm,动点P从点A开始沿AB向点B以1 cm/s 的速度移动,动点Q从点B开始沿BC向点C以2 cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是( )6. 有下列函数:①y=-3x;②y=x-1;③y=x2+2x+1,其中当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有()A.①②B.①③C.②D.②③7.二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.图象的开口都向上B.图象的对称轴都是y轴C.图象都有最高点D.y都随x的增大而增大8.若一种服装销售盈利y(万元)与销售数量x(万件)满足函数关系式y=-2x2+4x+5,则盈利( ) A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最大值为6万元9.二次函数y=ax2+bx+c的x与y的部分对应值如下表.利用二次函数的图象可知,当函数值y<0时,x的取值范围是()A.x<0或x>2 B.0<x<2C.x<-1或x>3 D.-1<x<310.已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()C .b 2-4ac <0D .a +b +c <0第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11. 把抛物线y =x 2-2x +3沿x 轴向右平移2个单位,得到的抛物线解析式为______________. 12.如图,已知抛物线y =x 2+bx +c 经过点(0,-3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间,你所确定的b 的值是______.13.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y=60t ﹣32t 2.在飞机着陆滑行中,最后4s 滑行的距离是 m .14.设抛物线y =ax 2+bx +c(a ≠0)过点A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的解析式为______________15.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式是_________________16.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:科学家经过猜想、推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为____℃17. 已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x≤1时,y 的最大值为9,则a 的值为____________18.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s=60t ﹣32t 2,则飞机着陆后滑行的最长时间为 秒.三.解答题(共7小题,66分)19.(6分) 某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x 天(1≤x≤30且x 为整数)的销售量为y 件. (1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?20.(6分) 设二次函数y=ax 2+bx ﹣(a+b )(a ,b 是常数,a ≠0). (1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过A (﹣1,4),B (0,﹣1),C (1,1)三个点中的其中两个点,求该二次函数的表达式.21.(6分) 已知二次函数y=ax2+bx+c的图象与y轴相交于点(0,-3),并经过点(-2,5),它的对称轴是直线x=1,如图为函数图象的一部分.(1)求二次函数的解析式,写出函数图象的顶点坐标;(2)在原题图上,画出函数图象的其余部分;(3)利用图象写出方程ax2+bx+c=0的解;(4)利用图象写出不等式ax2+bx+c>0的解集.22.(6分) 已知直线y=12x+2分别交x轴、y轴于A,B两点,抛物线y=12x2+mx-2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;23.(6分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?24.(8分) 如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.25.(8分) 某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.26.(10分) 如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P运动到点B时,P,Q两点停止运动,设P点运动时间为t(s).(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y cm2,求y关于t的函数解析式,当t取何值时,四边形APQC的面积最小?并求出最小值.27.(10分) 如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;参考答案:1-5BDDCC 6-10CBBDB11. y =(x -3)2+212. -1213. 2414. y =18x 2-14x +2或y =-18x 2+34x +215. y =2(x -1)2+1 16. -1 17. 1 18. 2019. 解:(1)由题意可知y =2x +40(2)根据题意可得:w =(145-x -80-5)(2x +40)= -2x 2+80x +2400=-2(x -20)2+3200,∵a =-2<0, ∴函数有最大值,∴当x =20时,w 有最大值为3200元, ∴第20天的利润最大,最大利润是3200元20. 解:(1)由题意△=b 2﹣4•a[﹣(a+b )]=b 2+4ab+4a 2=(2a+b )2≥0∴二次函数图象与x 轴的交点的个数有两个或一个 (2)当x=1时,y=a+b ﹣(a+b )=0 ∴抛物线不经过点C把点A (﹣1,4),B (0,﹣1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a+b),-1=-(a+b), 解得⎩⎪⎨⎪⎧a =3,b =-2,∴抛物线解析式为y=3x 2﹣2x ﹣121. 解:(1)设二次函数的函数式为y =ax 2+bx -3,将已知条件代入得:⎩⎪⎨⎪⎧b 2a =-1,4a -2b -3=5, 解得a=1,b=-2,∴二次函数的解析式为y =x 2-2x -3,函数图象的顶点坐标是(1,-4)(3)x 1=-1,x 2=3 (4)x <-1或x >322. 解:(1)把y =0代入y =12x +2得:0=12x +2,解得:x =-4,∴A(-4,0). 把点A 的坐标代入y =12x 2+mx -2得:m =32,∴抛物线的解析式为y =12x 2+32x -2(2)过点D 作DH ∥y 轴,交AB 于点H ,设D(n ,12n 2+32n -2),H(n ,12n +2).∴DH =(12n +2)-(12n 2+32n -2)=-12(n +1)2+92.∴当n =-1时,DH 最大,最大值为92,此时△ABD 面积最大,最大值为12×92×4=923. 解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为:y=a (x ﹣3)2+5(a ≠0), 将(8,0)代入y=a (x ﹣3)2+5, 得:25a+5=0, 解得:a=﹣15,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15(x ﹣3)2+5(0<x <8).(2)当y=1.8时,有﹣15(x ﹣3)2+5=1.8,解得:x 1=﹣1,x 2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.24. 解:(1)抛物线y =(x +2)2+m 经过点A(-1,0),∴0=1+m ,m =-1,∴抛物线的解析式为y =(x +2)2-1=x 2+4x +3, ∴点C 的坐标为(0,3).∵对称轴为直线x =-2,B ,C 关于对称轴对称, ∴点B 的坐标(-4,3).∴⎩⎪⎨⎪⎧-4k +b =3,-k +b =0, 解得⎩⎪⎨⎪⎧k =-1,b =-1, ∴一次函数的解析式为y =-x -1(2)由图象可知,满足(x +2)2+m≥kx +b 的x 的取值范围为x <-4或x >-1 25. 解:(1)设y 与x 的函数关系式为y =kx +b ,将(10,200),(15,150)代入,得:⎩⎪⎨⎪⎧10k +b =200,15k +b =150, 解得⎩⎪⎨⎪⎧k =-10,b =300, ∴y 与x 的函数关系式为y =-10x +300(8≤x≤30)(2)设每天销售获得的利润为w ,则w =(x -8)y =(x -8)(-10x +300)=-10(x -19)2+1210,∵8≤x ≤30,∴当x =19时,w 取得最大值,最大值为1210(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y =-10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4800,∴不能销售完这批蜜柚26. 解:(1)由题意可知∠B =60°,BP =(3-t)cm ,BQ =t cm.若△PBQ 是直角三角形,则∠BPQ =30°或∠BQP =30°,于是BQ =12BP 或BP =12BQ , 即t =12(3-t)或3-t =12t , 解得t =1或t =2,即当t 为1 s 或2 s 时,△PBQ 是直角三角形(2)过点P 作PM ⊥BC 于点M ,则易知BM =12BP =12(3-t)cm ,∴PM =BP 2-BM 2=32(3-t)cm , ∴S 四边形APQC =S △ABC -S △PBQ =12×3×323-12t·32(3-t)= 34t 2-334t +934, 即y =34t 2-334t +934, 易知0<t<3.于是y =34(t -32)2+27316, ∴当t =32时,y 最小=27316, 即当t 为32 s 时,四边形APQC 的面积最小,最小值为27316cm 2 27. 解:(1)二次函数的表达式是y =x 2-4x +3(2)当x =0时,y =3,即点C(0,3),设BC 的表达式为y =kx +b ,将点B(3,0),点C(0,3)代入函数解析式,得⎩⎪⎨⎪⎧3k +b =0,b =3, 解得⎩⎪⎨⎪⎧k =-1,b =3, ∴直线BC 的解析式为y =-x +3,过点P 作PE ∥y 轴,交直线BC 于点E ,设E 坐标为(t ,-t +3),PE =-t +3-(t 2-4t +3)=-t 2+3t ,∴S △BCP =S △BPE +S △CPE=12(-t 2+3t)×3 =-32(t -32)2+278, ∵-32<0, ∴当t =32时,(S △BCP )最大=278。
人教版九年级数学上学期 第22章 :二次函数 单元练习 (含答案解析)
第22章二次函数一.选择题(共12小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=﹣3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个2.若y=(m﹣2)x2﹣x+1是二次函数,则()A.m≠0 B.m>2 C.m<2 D.m≠23.对于抛物线y=﹣2(x+5)2+4,下列说法正确的是()A.开口向下,顶点坐标(5,4)B.开口向上,顶点坐标(5,4)C.开口向下,顶点坐标(﹣5,4)D.开口向上,顶点坐标(﹣5,4)4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=5005.已知函数y=,当y=5时,x的值是()A.6 B.﹣C.﹣或6 D.±或66.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确7.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax﹣bc的图象大致是()A.B.C.D.8.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()A.﹣0.01<x<0.02 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.209.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x =﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.410.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x 的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a11.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b <0;③abc<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5二.填空题(共6小题)13.二次函数y=a(x+1)(x﹣4)的对称轴是.14.已知直线y=x﹣3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是.15.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.17.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为.18.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.三.解答题(共4小题)19.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用描点法画出此抛物线(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是.20.如图,抛物线y=a(x﹣1)(x+3)交x轴于A、B两点,交y轴于点C,∠BAC=45°.(1)求a的值;(2)点D为第三象限内抛物线上的一点,当△DAC的面积为3时,求D点的坐标.21.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.22.在平面直角坐标系中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;(3)将直线y=﹣x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,请求出b的取值范围.参考答案与试题解析一.选择题(共12小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=﹣3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个【分析】整理一般形式后,根据二次函数的定义判定即可.【解答】解:①y2=2x2﹣4x+3,不符合二次函数的定义,不是二次函数;②y=4﹣3x+7x2,是二次函数;③y=﹣3x+5,分母中含有自变量,不是二次函数;④y=(2x﹣3)(3x﹣2)=6x2﹣13x+6,是二次函数;⑤y=ax2+bx+c,含有四个自变量,不是二次函数;⑥y=(n2+1)x2﹣2x﹣3,含有两个自变量,不是二次函数;⑦y=m2x2+4x﹣3,含有两个自变量,不一定是二次函数.∴只有②④一定是二次函数.故选:B.2.若y=(m﹣2)x2﹣x+1是二次函数,则()A.m≠0 B.m>2 C.m<2 D.m≠2【分析】根据二次函数的定义进行计算即可.【解答】解:∵函数y=(m﹣2)x2+2x﹣1是二次函数,∴m﹣2≠0,∴m≠2.故选:D.3.对于抛物线y=﹣2(x+5)2+4,下列说法正确的是()A.开口向下,顶点坐标(5,4)B.开口向上,顶点坐标(5,4)C.开口向下,顶点坐标(﹣5,4)D.开口向上,顶点坐标(﹣5,4)【分析】由于抛物线y=a(x+b)2+c的顶点坐标为(﹣b,c),若a>0,抛物线开口向上;若a<0,抛物线开口向下,利用这些知识即可确定选择项.【解答】解:∵抛物线y=﹣2(x+5)2+4,∴抛物线的开口方向向下,顶点坐标为(﹣5,4).故选:C.4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=500【分析】利用抛物线经过点(0,2)得到c=2,根据抛物线的对称性得到抛物线的对称轴为直线x=200,抛物线经过点(300,﹣2),由于方程ax2+bx+4=0变形为ax2+bx+2=﹣2,则方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.【解答】解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.5.已知函数y=,当y=5时,x的值是()A.6 B.﹣C.﹣或6 D.±或6【分析】根据题意的函数解析式,利用分类讨论的方法可以求得当y=5时,x的值.【解答】解:∵函数y=,∴当x≤2时,x2﹣1=5,得x1=﹣,x2=(舍去),当x>2时,x﹣1=5,得x=6,故当y=5时,x的值是或6,故选:C.6.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分两种情况进行讨论,①当抛物线与直线相切,△=0求得c=1,②当抛物线与直线不相切,但在0≤x≤3上只有一个交点时,找到两个临界值点,可得c=3,4,5,故c=3,4,5【解答】解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式得x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得:c=1,当c=1时,相切时只有一个交点,和题目相符所以不用舍去;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5,所以甲乙合在一起也不正确,故选:D.7.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax﹣bc的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、c的正负,从而可以得到一次函数y=ax ﹣bc的图象经过哪几个象限,本题得以解决.【解答】解:由二次函数y=ax2+bx+c的图象可得,a<0,b>0,c>0,∴bc>0,∴一次函数y=ax﹣bc的图象经过第二、三、四象限,故选:D.8.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()A.﹣0.01<x<0.02 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.20【分析】观察表格可知,y随x的值逐渐增大,ax2+bx+c的值在6.18~6.19之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在6.18~6.19之间.【解答】解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.9.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x =﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.4【分析】根据一元二次方程的一个近似根,得到抛物线与x轴的一个交点,根据抛物线的对称轴,求出另一个交点坐标,得到方程的另一个近似根.【解答】解:∵抛物线与x轴的一个交点为(﹣3.4,0),又抛物线的对称轴为:x=﹣1,∴另一个交点坐标为:(1.4,0),则方程的另一个近似根为1.4,故选:D.10.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x 的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x,然后根据已知条件可得出方程.【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.11.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b <0;③abc<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个【分析】(1)当x=﹣2时,y=4a﹣2b+c<0,即可求解;(2)函数的对称轴为:x=﹣>﹣1,故b>2a,即可求解;(3)ab同号,c>0,即可求解;(4)顶点纵坐标大于2,故>2,即可求解.【解答】解:(1)当x=﹣2时,y=4a﹣2b+c<0,故①符合题意;(2)函数的对称轴为:x=﹣>﹣1,故b>2a,故②符合题意;(3)ab同号,c>0,故③不符合题意;(4)顶点纵坐标大于2,故>2,故④符合题意;故选:C.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.二.填空题(共6小题)13.二次函数y=a(x+1)(x﹣4)的对称轴是x=.【分析】首先求得方程与x轴的两个交点坐标,然后根据交点坐标求得对称轴方程即可.【解答】解:令y=a(x+1)(x﹣4)=0,解得:x=﹣1或x=4,∴y=a(x+1)(x﹣4)与x轴交与点(﹣1,0),(4,0)∴对称轴为:x==.故答案为:x=.14.已知直线y=x﹣3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是y=x2﹣2x﹣3 .【分析】求得A、B的坐标,然后根据待定系数法即可求得.【解答】解:直线y=x﹣3中,令y=0,求得x=3;令x=0,则y=﹣3,∴A(3,0),B(0,﹣3),设二次函数的解析式为y=ax2+bx+c,∵二次函数的图象经过A、B两点,且对称轴方程为x=1,∴,解得,∴这个二次函数的解析式是y=x2﹣2x﹣3,故答案为y=x2﹣2x﹣3.15.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是②.【分析】①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,即可求解;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,即可求解;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,即可求解;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:0<m<1,即可求解.【解答】解:①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,故不符合题意;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,符合题意;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,故不符合题意;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:﹣1<m<0,故m<1,不符合题意;故答案为:②16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=1或0或.【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.17.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3 .【分析】先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x 的方程ax2+bx=﹣的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.18.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是y=10(x+1)2.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)2三.解答题(共4小题)19.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用描点法画出此抛物线(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围﹣5<y≤2 .(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是﹣3<b<1或b=.【分析】(1)用配方法把二次函数一般式写成顶点式.(2)由顶点式得对称轴为直线x=1,列表描点画图象.(3)观察图象,在﹣3<x<1时,y随x的增大而增大,随后y减小,结合计算可得x =﹣3时y的值,即求出y的范围.(4)利用抛物线方程和直线方程联立求出两函数图象只有一个交点时b的值.由于抛物线只取x轴上方的部分,故需求直线经过抛物线与x轴的交点时b的值,再根据直线的平移得到相应b的范围.【解答】解:(1)y=﹣x2+x+=(x2﹣2x)+=(x2﹣2x+1﹣1)+=(x ﹣1)2+=(x﹣1)2+2(2)列表得:用描点画图象得:(3)x=﹣3时,y=﹣5,x=3时,y=0当﹣3<x<1时,y随x的增大而增大,且x=1时,y=2故答案为:﹣5<y≤2(4)整理得:x2=3﹣2b当方程只有一个解时,即对应的两函数图象只有一个交点∴3﹣2b=0,解得:b=把x=﹣1,y=0代入y=x+b,得b=1把x=3,y=0代入y=x+b,得b=﹣3∴b≤﹣3时,直线y=x+b与G没有交点;﹣3<b<1时,直线y=x+b与G有一个交点;1≤b<时,直线y=x+b与G有两个交点;b=时,直线y=x+b与G有一个交点,b >,直线y=x+b与G无交点.故答案为:﹣3<b<1或b=20.如图,抛物线y=a(x﹣1)(x+3)交x轴于A、B两点,交y轴于点C,∠BAC=45°.(1)求a的值;(2)点D为第三象限内抛物线上的一点,当△DAC的面积为3时,求D点的坐标.【分析】(1)利用抛物线与x轴的交点问题得到A(﹣3,0),B(1,0),再利用△OAC 为等腰直角三角形得到C(0,﹣3),然后把C点坐标代入y=a(x﹣1)(x+3)中求出a 得到抛物线解析式,(2)在y轴取点E使S△ACE=3,过点E作AC的平行线交第三象限的抛物线于点D,如图.设D(0,t),利用三角形面积公式求出t得到E(0,﹣1),利用直线AC的解析式为y=﹣x﹣3得到直线DE的解析式为y=﹣x﹣5,然后解方程组得D点坐标.【解答】解:(1)当y=0时,a(x﹣1)(x+3)=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∵∠BAC=45°,∴△OAC为等腰直角三角形,∴OC=OA=3,∴C(0,﹣3),把C(0,﹣3)代入y=a(x﹣1)(x+3)得﹣3=a(0﹣1)(0+3),解得a=1,∴抛物线解析式为y=(x﹣1)(x+3),即y=x2+2x﹣3;(2)在y轴取点E使S△ACE=3,过点E作AC的平行线交第三象限的抛物线于点D,如图,设E(0,t),∵×(﹣3﹣t)×3=3,解得t=﹣5,∴E(0,﹣5),易得直线AC的解析式为y=﹣x﹣3,∴直线DE的解析式为y=﹣x﹣5,解方程组得或,∴D点坐标为(﹣1,﹣4),(﹣2,﹣3).21.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x<140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,【解答】解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则,(2)由利润=(售价﹣成本)×销售量可以列出函数关系式w=﹣x2+300x﹣10400(50≤x≤80)w=﹣3x2+540x﹣16800(80<x<140).22.在平面直角坐标系中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;(3)将直线y=﹣x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,请求出b的取值范围.【分析】(1)把B、C两点的坐标代入求出a和b的值即可求出抛物线的解析式;(2)把抛物线解析式化成顶点式求出顶点坐标,运用割补法求出△BCD的面积即可;(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)把B(﹣2,6),C(2,2)两点坐标代入得:,解这个方程组,得,∴抛物线的解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴顶点D(1,),∴△BCD的面积=4×﹣×3×﹣×1×﹣×4×4=3.(3)由消去y得到x2+x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=5,当直线y=﹣x+b经过点B时,b=3,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3。
九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)
九年级数学上册《第二十二章二次函数》单元测试卷附答案(人教版)一、单选题1.下列各式中表示二次函数的是()+1B.y=2−x2A.y=x2+1x−x2D.y=(x−1)2−x2C.y=1x22.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=5(x+2)2+3B.y=5(x+2)2−3C.y=5(x−2)2+3D.y=5(x−2)2−33.抛物线y=x2−2x−3与x轴的两个交点间的距离是()A.-1 B.-2 C.2 D.44.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是()B.x=2 C.x=4 D.x=3A.x=−ab5.不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x2B.y=-x C.y=-2x D.y=x6.已知函数y=1x2-x-12,当函数y随x的增大而减小时,x的取值范围是()2A.x<1 B.x>1 C.x>-4 D.-4<x<67.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …−20 1 3 …y … 6 −4−6−4…下列选项中,正确的是()A.这个函数的开口向下B.这个函数的图象与x轴无交点C.当x>2时,y的值随x的增大而减小D.这个函数的最小值小于68.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是 ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1,3D.当-1<x<3时,y<09.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.210.如图,是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面上升1m时,水面的宽为()A.2 m B.2m C. m D.3m二、填空题11.不论m取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,则这条直线的解析式是.12.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.抛物线y=x2−6x+c与x轴只有一个交点,则c=.14.已知抛物线y=a(x﹣h)2+k与x轴交于(﹣2,0)、(4,0),则关于x的一元二次方程:a(x ﹣h+3)2+k=0的解为.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题16.已知二次函数的图象经过(-6,0),(2,0),(0,-6)三点.(1)求这个二次函数的表达式;(2)求这个二次函数的顶点坐标.17.在平面直角坐标系xOy中,抛物线y=ax2−4ax+1 .(1)若抛物线过点A(−1,6),求二次函数的表达式;(2)指出(1)中x为何值时y随x的增大而减小;(3)若直线y=m与(1)中抛物线有两个公共点,求m的取值范围.18.如图,抛物线y=a x2 +c与直线y=3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线y=ax 2 +c与x轴的交点坐标;19.如图一,抛物线y=ax2+bx+c过A(−1,0)B(3.0),C(0,√3)三点(1)求该抛物线的解析式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD,CB,点F为线段CB的中点,点M,N分别为直线CD和CE上的动点,求ΔFMN周长的最小值.20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55 60 65 70销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A.点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(3)点P是直线上方的抛物线上的一个动点,求ΔABP的面积最大时的P点坐标.参考答案1.B2.B3.D4.D5.B6.A7.D8.D9.D10.A11.y=−x−112.<13.914.x1=−515.2516.(1)解:设抛物线y=ax2+bx+c把(-6,0),(2,0),(0,-6)三点代入解析式,得{36a+6b+c=0 4a+2b+c=0c=−6解得∴抛物线的解析式为:y=12x2+2x−6(2)解:y=12x2+2x−6=12(x+2)2−8∴抛物线的顶点坐标为:(-2,-8).17.(1)解:把点A(-1,6),代入y=ax2−4ax+1得:6=a×(−1)2−4a×(−1)+1解得a=1∴二次函数的表达式y=x2−4x+1(2)解:二次函数y=x2−4x+1对称轴x=2∵a=1>0∴二次函数在对称轴左边y随x的增大而减小∴当x≤2是y随x的增大而减小;(3)解:∵直线y=m与y=x2−4x+1有两个公共点∴一元二次方程m=x2−4x+1有两不等根即一元二次方程x2−4x+1−m=0有两不等根∴Δ>0∴42−4×1×(1−m)>0解得m>−318.(1)解:设y=a x2 -1把(-4,3)代入得:3=a(-4) 2 -1∴a= 14∴y= 14x 2 -1∴a= 14,c=-1(2)解:y= 14x 2 -1=0∴x=±2∴(-2,0),(2,0)19.(1)解:∵抛物线y=ax2+bx+c过A(−1,0)B(3,0) C(0,√3)三点∴{a−b+c=09a+3b+c=0c=√3解得:a=−√33,b=2√33,c=√3;∴抛物线的解析式为:y=−√33x2+2√33x+√3(2)解:抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(−2,y2) P(x1,y1)在该抛物线上y1≤y2,根据抛物线的增减性得:∴x1≤−2或x1≥4答:P点横坐标x1的取值范围:x1≤−2或x1≥4.(3)解:∵C(0,√3),B(3,0)∴OC=√3,OB=3∵F是BC的中点∴F(32,√3 2)当点 F 关于直线 CE 的对称点为 F ′ ,关于直线 CD 的对称点为 F ′′ ,直线 F ′F ′′ 与 CE 、 CD 交点为 M,N ,此时 ΔFMN 的周长最小,周长为 F ′F ′′ 的长,由对称可得到: F ′(32,3√32) , F ′′(0,0) 即点 O F ′F ′′=F ′O =(32)(3√32)=3即: ΔFMN 的周长最小值为320.(1)解:设y 与x 之间的函数表达式为 y =kx +b ( k ≠0 ),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60解得: {k =−2b =180∴y 与x 之间的函数表达式为 y =−2x +180 ;(2)解:由题意得: (x −50)(−2x +180)=600整理得 :x 2−140x +4800=0解得 x 1=60,x 2=80答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)解:设当天的销售利润为w 元,则:w =(x −50)(−2x +180)=−2(x ﹣70)2+800∵﹣2<0∴当 x =70 时w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.(1)解:∵点B (4,m )在直线y =x +1上∴m =4+1=5∴B (4,5)把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =025a +5b +c =0解得{a =−1b =4c =5∴抛物线解析式为y =−x 2+4x +5;(2)解:设P (x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|∵PE =2ED∴|−x 2+3x +4|=2|x +1|当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (6,−7);综上可知P 点坐标为(2,9)或(6,−7);(3)解:∵点P 是直线上方的抛物线上的一个动点设(x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =−x 2+4x +5−(x +1)=−x 2+3x +4∴ΔABP = S ΔAEP + S ΔEBP = 12×PE ×(x B −x A ) = 12×(−x 2+3x +4)×5= −52(x −32)2+1258 ∴当x= 32 , ΔABP 的面积最大把x= 32 代入y =−x 2+4x +5,解得y= 354故P ( 32 , 354 ).。
人教版九年级上册数学第22章《二次函数》单元测试卷(含答案解析)
第 1 页 共 18 页 人教版九年级上册数学第22章《二次函数》单元测试卷满分120分姓名:___________班级:___________学号:___________成绩:___________一、选择题(每小题3分,共30分)1.下列函数中,属于二次函数的是A .y=x–3B .y=x 2–(x+1)2C .y=x (x–1)–1D .21y x = 2.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3) 3.将抛物线y ()2321y x =+-向右平移2个单位长度,再向上平移3个单位长度,所得的抛物线为( )A .232y x =+B .()2342y x =++ C .()2353y x =+- D .234y x =- 4.在同一坐标系中,二次函数2y ax bx =+与一次函数y ax a =-的图象可能是( ) A .B .C .D . 5.已知两点M (6,y 1),N (2,y 2)均在抛物线y =ax 2+bx +c (a ≠0)上,点P (x 0,y 0)是抛物线的顶点,若y 0≤y 2<y 1,则x 0的取值范围是( )A .x 0<4B .x 0>﹣2C .﹣6<x 0<﹣2D .﹣2<x 0<2 6.在平面直角坐标系中,若函数()222y k x kx k =--+的图象与坐标轴共有三个交点,则下列各数中可能的k 值为( )A .1-B .0C .1D .2第 2 页 共 18 页 7.若二次函数y=(m+1)x 2-mx+m 2-2m -3的图象经过原点,则m 的值必为( ) A .-1或3 B .-1 C .3 D .-3或18.如图,以40m /s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m 9.如图,边长为2cm 的等边ABC ∆中,动点P 从点A 出发,沿着A B C A →→→的路线以1/cm s 的速度运动,设点P 运动的时间为x 秒,2y AP =,则能表示y 与x 的函数关系的大致图象是( )A .B .C .D . 10.已知二次函数y =ax +bx +c (a ≠0)的图象如图所示,以下结论中正确的个数是( ) ①abc >0、②3a >2b 、③m (am +b )≤a ﹣b (m 为任意实数)、④4a ﹣2b +c <0.A .1B .2C .3D .4第 3 页 共 18 页 二、填空题(每小题4分,共24分)11.若y=+a+3+x |a|﹣1+3x+2是二次函数,则a 的值为__+12.二次函数y =(m ﹣1)x 2的图象开口向下,则m _____.13.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.14.抛物线2(1)1y k x x =--+与x 轴有交点,则k 的取值范围是___________________.15.某同学用描点法y=ax 2+bx+c 的图象时,列出了表:x … ﹣2 ﹣1 0 1 2 … y… ﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.16.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为_____.(不要求写出自变量x 的取值范围)三、解答题(共7小题,共66分)17.(7分)已知抛物线y =ax 2+bx +c 经过(﹣1,0),(0,﹣3),(2,3)三点. (1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标18.(本题8分)已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;。
2023-2024学年九年级数学上册《第二十二章 二次函数》单元检测卷含答案(人教版)
2023-2024学年九年级数学上册《第二十二章二次函数》单元检测卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如果将抛物线y=x2+2向左平移1个单位长度,再向下平移4个单位长度,那么所得新抛物线的顶点坐标是()A.(−1,−2)B.(1,−2)C.(−1,2)D.(1,2)2.已知二次函数y=a(x+3)2﹣h(a≠0)有最大值1,则该函数图象的顶点坐标为()A.(﹣3,﹣1)B.(﹣3,1)C.(3,1)D.(3,﹣1)3.关于二次函数y=2x2+4x-3,下列说法正确是()A.图象与y轴的交点坐标为(0,3)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-54.已知二次函数y=(x−ℎ)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或 -5 B.-1或5 C.1或 -3 D.1或35.若二次函数y=a2x2−bx−c的图象,过不同的六点A(−1,n)、B(5,n−1)、C(6,n+1)、D(√2,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y36.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x …0 3 4 …y … 2 -1 2 …则方程ax2+bx+3=0的根是()A.0或4 B.1或3 C.-1或1 D.无实根7.如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+ √2B.1﹣√2C.√2﹣1 D.1﹣√2或1+ √28.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:①abc>0;②9a+c>3b;③4a+b=0;④当x>-1时,y的值随x值的增大而增大.其中正确结论有()A.1个B.2个C.3个D.4个二、填空题9.请写出一个开口向下,对称轴为直线x=1,且与y轴的交点坐标为(0,2)的抛物线的解析式.10.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线。
人教版九年级数学上册 第22章 《二次函数》 综合测试卷(含答案)
人教版九年级数学上册 第22章 《二次函数》 综合测试卷(含答案)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.抛物线y =3(x -1)2+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)2.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )A.6425 m 2B.43 m 2C.83m 2 D .4 m 23.对于二次函数y =(x -1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点 4. 有下列函数:①y =-3x ;②y =x -1;③y =x 2+2x +1,其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有( )A .①②B .①③C .②D .②③ 5.抛物线y =(x -2)2-1可以由抛物线y =x 2平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度6.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m .其中正确结论的个数是( )A .1B .2C .3D .47.对于抛物线y =-12(x -2)2+6,下列结论:①抛物线的开口向下;②对称轴为直线x =2;③顶点坐标为(2,6);④当x>2时,y 随x 的增大而减小.其中正确的结论有( )A .1个B .2个C .3个D .4个8.某大学的校门是一抛物线形水泥建筑物(如图),大门的地面宽度为8 m ,两侧距离地面4 m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高(精确到0.1 m ,水泥建筑物的厚度不计)为( )A .8.1 mB .9.1 mC .10.1 mD .12.1 m9. 若正比例函数y =mx(m ≠0),y 随x 的增大而减小,则它和二次函数y =mx 2+m 的图象大致是( )10. 如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),B(3,0).下列结论:①2a -b =0;②(a +c)2<b 2;③当-1<x <3时,y <0;④当a =1时,将抛物线先向上平移2个单位, 再向右平移1个单位,得到抛物线y =(x -2)2-2.其中正确的是( )A .①③B .②③C .②④D .③④第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11. 已知函数y=(m-1)xm2+1+5x+3是关于x的二次函数,则m的值为______.12. 已知二次函数y=x2,当x>0时,y随x的增大而______(填“增大”或“减小”).13. 将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是___________.14.若抛物线y=-3(x+k)2-k的顶点在直线y=3x-4上,则k的值为___.15. 已知二次函数y=a(x-1)2+b有最大值2,则a,b的大小关系为a _______b16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.17.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为18. 某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为____________元.三.解答题(共9小题,66分)19.(6分) 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数解析式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?20.(6分) 如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.21.(6分) 如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.22.(6分) 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数解析式,并求S的最大值.23.(6分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?24.(8分) 设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由;(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a +b <0,点P(2,m)(m >0)在该二次函数图象上,求证:a >0.25.(8分) ) 我市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧mx -76m (1≤x <20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?26.(10分) 如图,二次函数y=ax 2+bx 的图象经过点A (2,4)与B (6,0).(1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.27.(10分) 俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?参考答案:1-5ACCCD 6-10BDBAD11. -112. 增大13. y=x2+214. -215. <16. 2517. 1或618. 2519. 解:(1)由题意得:y=(210-10x)(50+x-40)=-10x2+110x+2 100(0<x≤15且x为整数)(2)由(1)得:y=-10(x-5.5)2+2 402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2 400(元),当x=6时,50+x=56,y=2 400(元),∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2 400元20. 解:(1)∵顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0),∴点C的坐标为(﹣1,0),设抛物线的解析式为y=a(x﹣3)(x+1),把A(1,﹣4)代入,可得﹣4=a(1﹣3)(1+1),解得a=1,∴抛物线的解析式为y=(x﹣3)(x+1),即y=x2﹣2x﹣3;(2)由图可得,当函数值为正数时,自变量的取值范围是x<﹣1或x>3.21. 解:(1)y=-x2+4x+5(2)y=-x2+4x+5=-(x-2)2+9,则M点坐标为(2,9),可求直线MC 的解析式为y =2x +5(3)把y =0代入y =2x +5得2x +5=0,解得x =-52, 则E 点坐标为(-52,0),把y =0代入y =-x 2+4x +5得-x 2+4x +5=0, 解得x 1=-1,x 2=5,则B 点坐标为(5,0),所以S △MCB =S △MBE -S △CBE =12×152×9-12×152×5=15 22. 解:(1)a =-12,b =3 (2)过A 作x 轴的垂线,垂足为D(2,0),连接CD ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD·AD =12×2×4=4, S △ACD =12AD·CE =12×4×(x -2)=2x -4, S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x , 则S =S △OAD +S △ACD +S △BCD =4+2x -4-x 2+6x =-x 2+8x ,∴S 关于x 的函数解析式为S =-x 2+8x(2<x<6),∴S =-x 2+8x =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 有最大值,最大值为1623. 解:(1)由题意得:⎩⎪⎨⎪⎧40k +b =300,55k +b =150,, 解得:⎩⎪⎨⎪⎧k =10, b =700,. 故y 与x 之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x ≤46,设利润为w=(x ﹣30)•y=(x ﹣30)(﹣10x+700),w=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,∵﹣10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;24. 解:(1)由题意Δ=b 2-4·a[-(a +b)]=b 2+4ab +4a 2=(2a +b)2≥0,∴二次函数图象与x 轴的交点的个数有两个或一个(2)当x =1时,y =a +b -(a +b)=0,∴抛物线不经过点C ,把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2, ∴抛物线解析式为y =3x 2-2x -1(3)当x =2时,m =4a +2b -(a +b)=3a +b >0①,∵a +b <0,∴-a -b >0②,①②相加得:2a >0,∴a >025. 解:(1)-12,25 (2)由(1)第x 天的销售量为20+4(x -1)=4x +16,当1≤x <20时,W =(4x +16)(-12x +38-18) =-2x 2+72x +320=-2(x -18)2+968,∴当x =18时,W 最大=968,当20≤x ≤30时,W =(4x +16)(25-18)=28x +112.∵28>0,∴W 随x 的增大而增大,∴当x =30时,W 最大=952.∵968>952,∴当x =18时,W 最大=96826. 解:(1)将A (2,4)与B (6,0)代入y=ax 2+bx ,得⎩⎪⎨⎪⎧4a +2b =4,36a +6b =0,,解得:⎩⎪⎨⎪⎧a =12,b =3,; (2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD 、CB ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD•AD=12×2×4=4; S △ACD =12AD•CE=12×4×(x ﹣2)=2x ﹣4; S △BCD =12BD•CF=12×4×(﹣12x 2+3x )=﹣x 2+6x , 则S=S △OAD +S △ACD +S △BCD =4+2x ﹣4﹣x 2+6x=﹣x 2+8x ,∴S 关于x 的函数表达式为S=﹣x 2+8x (2<x <6),∵S=﹣x 2+8x=﹣(x ﹣4)2+16,∴当x=4时,四边形OACB 的面积S 有最大值,最大值为16.27. 解:(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。
人教版九年级上册数学第22章 二次函数 单元测试卷(含答案解析)
人教版九年级上册数学第22章 二次函数 单元测试卷一.选择题(30分)1.在同一平面直角坐标系中,函数2y ax bx =+与y ax b =+的图象不可能是( )A .B .C .D .2.已知函数212(13)(5)8(38)x y x x <⎧=⎨-+⎩的图象如图所示,若直线3y kx =-与该图象有公共点,则k 的最大值与最小值的和为( )A .11B .14C .17D .203.抛物线23y x =+上有两点1(A x ,1)y ,2(B x ,2)y ,若12y y <,则下列结论正确的是()A .120x x <B .210x x <C .210x x <或120x x <D .以上都不对4.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是( )A .y =(200﹣5x )(40﹣20+x )B .y =(200+5x )(40﹣20﹣x )C .y =200(40﹣20﹣x )D .y =200﹣5x5.下列对二次函数2(1)3y x =-+-的图像描述不正确的是( ) A .开口向下 B .顶点坐标为(1,3)-- C .与y 轴相交于点(0,3)-D .当?1x >时,函数值y 随x 的增大而减小6.抛物线2y x x c =++与x 轴只有一个公共点,则c 的值为( ) A .14-B .14C .4-D .47.已知二次函数2y x bx c =++的图象与x 轴的两个交点分别是(,0)n 和(4,0)n -+,且抛物线还经过点1(4,)y -和2(4,)y ,则下列关于1y 、2y 的大小关系判断正确的是( ) A .21y y =B .21y y <C .12y y <D .12y y8.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h =at 2+bt ,其图象如图所示,若小球发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A .第3秒B .第3.5秒C .第4秒D .第4.5秒9.已知23(0)y ax bx a =++≠的对称轴为直线2x =,与x 轴的其中一个交点为(1,0),该函数在14x 的取值范围,下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值1-,有最大值3 C .有最小值3-,有最大值4D .有最小值1-,有最大值410.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A的坐标为16(0,)9,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m二、填空题(每题4分,共24分) 11.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小12.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.13.如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴正半轴交于点A,其顶点为P,将点P绕点O旋转180°后得到点C,连结PA、PC、AC,则△PAC的面积为.。
人教版九年级数学上册 第22章 二次函数 综合测试卷 (含答案)
人教版数学九年级上册第22章二次函数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1) D.(1,﹣1)2.我市某镇的一种特产由于运输的原因,长期只能在当地销售,当地政府对该特产的销售投资与收益的关系为每投入x万元,可获得利润P=-1100(x-60)2+41(万元),每年最多可投入100万元的销售投资,则5年所获得利润的最大值是().A.200万元B.202万元C.205万元D.210万元3.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣254.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0 D.a﹣b+c=05.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6C.1或3 D.4或66. 已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y 轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3. 其中,正确结论的个数为()A.0 B.1C.2 D.37. 有一座抛物线形的立交桥拱,这个桥拱的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心M点5 m处垂直竖立一根铁柱支撑拱顶,则这根铁柱的长为()A.10m B.15mC.20m D.40m8. 对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限 B.第二象限C.第三象限 D.第四象限9. 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个10. 如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2C.3 D.4第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11. 抛物线y=2(x+2)2+4的顶点坐标为.12. 若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.13. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.14. 已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).15. 若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.16. 如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s 的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别同时出发,当四边形APQC的面积为最小时,运动时间t为____s.17. 某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足y甲=-x2+10x,y乙=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为____万元.18. 如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).三.解答题(共7小题,66分)19.(6分) 已知抛物线y=-12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=-12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.20.(6分)已知抛物线在x轴上截得的线段长是4,对称轴是x=-1,且过点(-2,-6),求该抛物线的解析式.21.(6分) 某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.22.(6分) 已知关于x的函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴总有交点.(1)求m的取值范围;(2)当函数图象与x轴的两交点的横坐标的倒数和等于-4时,求m的值.23.(6分) 为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?24.(8分) 某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?25.(8分)用19 m 长的铝合金条制成如图所示的矩形窗框,CD 长表示窗框的宽,EF =0.5 m(铝合金条的宽度忽略不计).(1)求窗框的透光面积S(m 2)与窗框的宽x(m)之间的函数解析式; (2)如何设计才能使窗框的透光面积最大?最大透光面积是多少? (3)当窗框的透光面积不小于10 m 2时,直接写出x 的取值范围.26.(10分) 如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到墙面OB 的水平距离为3 m 时,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?27.(10分) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线与x轴交于A,B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;参考答案:1-5ACBDB 6-10CBCCB11. (﹣2,4) 12. ﹣1 13. 150 14. 增大 15. m >9 16. 2 17. 46 18. ②③19. 解:(1)把(1,0),(0,32)代入抛物线解析式, 得:⎩⎨⎧-12+b +c =0,c =32,解得⎩⎪⎨⎪⎧b =-1,c =32,则抛物线解析式为y =-12x 2-x +32(2)抛物线解析式为y =-12x 2-x +32=-12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =-12x 220. 解:∵抛物线的对称轴为x =-1,在x 轴上截得的线段长为4,∴抛物线与x 轴的交点坐标为(-3,0),(1,0), 设抛物线解析式为y =a(x +3)(x -1), 把(-2,-6)代入得: a·(-2+3)·(-2-1)=-6, 解得a =2,所以抛物线解析式为y =2(x +3)(x -1), 即y =2x 2+4x -621. 解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;y=(x ﹣40)[200﹣10(x ﹣50)] =﹣10x 2+1100x ﹣28000 =﹣10(x ﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.22. 解:(1)当m +6=0,即m =-6时,函数解析式为y =-14x -5,此一次函数与x 轴有一个交点; 当m +6≠0,即m≠-6时,函数为二次函数, 当Δ≥0时,抛物线与x 轴有交点, 即4(m -1)2-4(m +6)(m +1)≥0, 解得m≤-59.综上所述,m 的取值范围为m≤-59(2)设函数图象与x 轴的两交点的横坐标分别为a ,b , 则a +b =-2(m -1)m +6,ab =m +1m +6,∵1a +1b =-4,∴a +b ab =-4, ∴-2(m -1)m +1=-4,解得m =-3,∴经检验m =-3是方程的解.当m =-3时,m +6≠0,且Δ>0,符合题意, ∴m 的值为-323. 解:(1)设y 与x 之间的函数关系式为y=kx+b ,⎩⎪⎨⎪⎧70k +b =75,80k +b =70,,得⎩⎪⎨⎪⎧k =0.5, b =110,, 即y 与x 之间的函数关系式是y=﹣0.5x+110; (2)设合作社每天获得的利润为w 元,w=x (﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x 2+120x ﹣2200=﹣0.5(x ﹣120)2+5000, ∵60≤x ≤150,∴当x=120时,w 取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.24. 解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,解得⎩⎪⎨⎪⎧k =-80,b =560, 则y 与x 之间的函数关系式为y =-80x +560(2)由题意,得(x -3)(-80x +560)-80=160,整理,得x 2-10x +24=0,解得x 1=4,x 2=6.∵3.5≤x ≤5.5,∴x =4.答:如果每天获得160元的利润,销售单价为4元(3)由题意得:w =(x -3)(-80x +560)-80=-80x 2+800x -1760=-80(x -5)2+240,∵3.5≤x ≤5.5,∴当x =5时,w 有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元25. 解:(1)由题意可知AF =BE =CD =x m ,AB =EF =0.5 m ,BC =GH =DE ,∴AC =0.5+19-3x -13=(6.5-x)m ,∴S =AC ·CD =(6.5-x)·x ,即S =-x 2+6.5x(0<x<6)(2)∵S =-x 2+6.5x =-(x -134)2+16916, ∴当x =134时,S 最大值=16916, 即当CD =AC =134 m 时,窗框的透光面积最大,最大透光面积是16916m 2 (3)52≤x ≤4 26. 解:(1)y =-16x 2+2x +4,即y =-16(x -6)2+10, ∴拱顶D 到地面OA 的距离为10 m(2)由题意得货运汽车最外侧与地面OA 的交点为(2,0)或(10,0), 当x =2或x =10时,y =223>6,所以这辆货车能安全通过(3)令y =8,则-16(x -6)2+10=8, 解得x 1=6+23,x 2=6-23,则x 1-x 2=43,所以两排灯的水平距离最小是4 3 m27. 解:(1)依题意得⎩⎪⎨⎪⎧-b 2a =-1,a +b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3,∴抛物线解析式为y =-x 2-2x +3,∵对称轴为直线x =-1,且抛物线经过A(1,0),∴B(-3,0).把B(-3,0),C(0,3)分别代入直线y =mx +n ,得⎩⎪⎨⎪⎧-3m +n =0,n =3, 解得⎩⎪⎨⎪⎧m =1,n =3, ∴直线BC 的解析式为y =x +3(2)设直线BC 与对称轴x =-1的交点为M ,则此时MA +MC 的值最小, 把x =-1代入直线y =x +3得,y =2,∴M(-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(-1,2)。
人教版九年级数学上册 第22章 二次函数 综合复习测试卷(含答案)
二次函数 综合复习测试卷第Ⅰ卷 A 卷 (选择题)一、选择题(每题3分,共39分)1.抛物线()223y x =++的顶点坐标是 ( )A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)2、抛物线23x y -=经过平移得到抛物线2)1(32-+-=x y ,平移的方法是( ) A .向左平移1个,再向下平移2个单位 B .向右平移1个,再向下平移2个单位 C .向左平移1个,再向上平移2个单位 D .向右平移1个,再向上平移2个单位 3.二次函数2(0)y ax bx c a =++≠的图象如右图,当0y <时,x 的取值范围是( ) A .13x -<< B .3x > C .1x <- D .3x >或1x <- 4、下列关于抛物线221y x x =--+的描述不正确的是( )A 、对称轴是直线x=14-B 、函数y 的最大值是78C 、与y 轴交点是(0,1)D 、当x=1-时,y=05.二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且6.若点(2,5),(4,5)是抛物线c bx ax y ++=2上的两个点,则抛物线的对称轴是( )A .直线1=xB .直线2=xC .直线3=xD .直线4=x 7、如果二次函数c bx ax y ++=2(a>0)的顶点在x 轴的上方,那么( )A 、240b ac -≥ B 、240b ac -< C 、240b ac -> D 、240b ac -=-1O x =1yx8. 用配方法将2611y x x =-+化成2()y a x h k =-+的形式为( ).A .2(3)2y x =++错误!未找到引用源。
B .2(3)2y x =-- 错误!未找到引用源。
人教版九年级数学上册 第22章二次函数 综合测试卷(含答案)
人教版九年级数学上册第22章二次函数综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.下列函数中,是二次函数的有( )①y=3(x-1)2+1;②y=x+1x;③y=8x2+1;④y=3x3+2x2.A.1个B.2个C.3个D.4个2.对于抛物线y=ax2,下列说法正确的是( )A.a越大,抛物线开口越大B.a越小,抛物线开口越大C.|a|越大,抛物线开口越大D.|a|越小,抛物线开口越大3.若抛物线y=x2-2x+c与y轴的交点坐标为(0,-3),则下列说法不正确的是( )A.抛物线的开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点坐标为(-1,0),(3,0)4.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式是( )A.y=(x-1)2+1 B.y=(x+1)2+1C.y=2(x-1)2+1 D.y=2(x+1)2+15.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x2( )A.向右平移2个单位长度,再向上平移3个单位长度B.向右平移2个单位长度,再向下平移3个单位长度C.向左平移2个单位长度,再向上平移3个单位长度6. 二次函数y=ax2+bx+c(a≠0)的图象如图,一元二次方程ax2+bx+c=0(a≠0)的根的判别式为Δ=b2-4ac,则下列四个选项正确的是( )A.b<0,c<0,Δ>0B.b>0,c>0,Δ<0C.b>0,c<0,Δ>0D.b<0,c>0,Δ<07.某畅销书的售价为每本30元,每星期可卖出200本,书城准备开展“读书节活动”,决定降价促销.经调研,如果调整书籍的售价,每降价2元,每星期可多卖出40本.设每种商品降价x元后,每星期售出此畅销书的总销售额为y元,则y与x之间的函数解析式为( )A.y=(30-x)(200+40x)B.y=(30-x)(200+20x)C.y=(30-x)(200-40x)D.y=(30-x)(200-20x)8.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是( )A B C D9.二次函数y=ax2+bx+c的图象如图所示,下面关于一元二次方程ax2+bx+c=0的根的情况,说法正确的是( )A.方程有两个相等的实数根B.方程的两个实数根的积为负数C.方程有两个正的实数根D.方程没有实数根10.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行( )A.20米B.40米C.400米D.600米11.已知函数y=(m-1)xm2+1+5x+3是关于x的二次函数,则m的值为______.12. 把抛物线y=x2-2x+3沿x轴向右平移2个单位,得到的抛物线解析式为______________. 13.二次函数y=x2-2x+6有最小值,是________.14.如果二次函数y=x2-mx+1的对称轴为直线x=2,那么m=.15.如图为二次函数y=x2+bx+c的图象,则这个二次函数的解析式为16.如图,某广场有一喷水池,水从地面喷出,以水平地面为x轴,出水点为原点建立平面直角坐标系xOy,水在空中划出的曲线是抛物线y=-12x2+2x的一部分,则水喷出的最大高度是.17.如图,在平面直角坐标系中,抛物线y=a(x-3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=-13x2-2于点B,则A,B两点间的距离为____.18.如图,用长为24 m的篱笆,一面利用墙(墙的最大可用长度a为9 m),围成中间隔有一道篱笆的矩形花圃,则围成的花圃的面积最大为m2.三.解答题(共7小题,66分)19.(8分) 抛物线y=ax2+bx+c过(-3,0),(1,0)两点,与y轴的交点为(0,4),求抛物线的解析式.20.(8分) 已知二次函数y =a(x -h)2+k(a≠0)的图象经过原点,当x =1时,函数有最小值-1.(1)求这个二次函数的解析式,并在如图所示的坐标系中画出图象.(2)利用图象填空:这条抛物线的开口向________,顶点坐标为________,对称轴是直线________;当__________时,y≤0.21.(8分) 如图,某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y(m)与喷出水流喷嘴的水平距离x(m)之间满足y =-12x 2+2x. (1)喷嘴能喷出水流的最大高度是多少?(2)喷嘴喷出水流的最远距离为多少?22.(10分) 已知抛物线y =-12x 2+bx +c 经过点(1,0),(0,32). (1)求该抛物线的函数表达式;(2)将抛物线y =-12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10分) 如图,△ABC 为等边三角形,边长为1,D ,E ,F 分别为AB ,BC ,AC 上的动点,且AD =BE =CF ,若AD =x ,△DEF 的面积为y.(1)求y 与x 的函数解析式,并写出x 的取值范围;(2)求△DEF 的面积的最小值.24.(10分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.25.(12分) 如图,排球运动员站在点O处练习发球,将球从点O正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与点O的水平距离为9 m,高度为2.43 m,球场的边界距点O的水平距离为18 m.(1)当h=2.6时,求y与x的函数解析式(不要求写出自变量x的取值范围).(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.参考答案1-5 BDCCD 6-10ABCBB11. -112. y =(x -3)2+213. 514. 415. y =x 2+2x -316. 217. 718. 4519. 解:∵抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4), 设抛物线的解析式为y =a(x +3)(x -1).把(0,4)代入,得4=-3a ,解得a =-43. ∴抛物线的解析式为y =-43(x +3)(x -1)=-43x 2-83x +4. 20. 解:(1)∵当x =1时,函数有最小值-1,∴二次函数的解析式为y =a(x -1)2-1.∵二次函数的图象经过原点,∴(0-1)2·a -1=0.∴a =1.∴二次函数的解析式为y =(x -1)2-1.函数图象如图所示.(2)上;(1,-1);x =1;0≤x≤221. 解:(1)因为二次函数的解析式为y =-12x 2+2x =-12(x 2-4x)=-12(x -2)2+2, 所以当x =2时,喷嘴喷出水流的高度最大,最大高度是2 m.(2)令y =0,得-12x 2+2x =0, 解得x 1=0(舍去),x 2=4.22. 解:(1)把(1,0),(0,32)代入抛物线解析式得:⎩⎨⎧-12+b +c =0,c =32,解得⎩⎪⎨⎪⎧b =-1,c =32, 则抛物线解析式为y =-12x 2-x +32(2)抛物线解析式为y =-12x 2-x +32=-12(x +1)2+2, 将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =-12x 2 23. 解:(1)易证△ADF ≌△BED ≌△CFE ,过点D 作DH ⊥BC 交BC 于点H ,则∠BDH =30°.∵AD =x ,∴BD =1-x ,∴BH =1-x 2, 则DH =32(1-x),∴S △BDE =12x·32(1-x). ∵S △ABC =34,∴y =S △ABC -3S △BDE =34-334x(1-x), 即y =334x 2-334x +34(0<x<1) (2)当x =-b 2a =12时,y 最小=31624. 解:(1)抛物线y =(x +2)2+m 经过点A(-1,0),∴0=1+m ,m =-1, ∴抛物线的解析式为y =(x +2)2-1=x 2+4x +3,∴点C 的坐标为(0,3). ∵对称轴为直线x =-2,B ,C 关于对称轴对称,∴点B 的坐标(-4,3).∵y =kx +b 经过点A ,B ,∴⎩⎪⎨⎪⎧-4k +b =3,-k +b =0,解得⎩⎪⎨⎪⎧k =-1,b =-1, ∴一次函数的解析式为y =-x -1(2)由图象可知,满足(x +2)2+m≥kx +b 的x 的取值范围为x <-4或x >-125. 解:(1)∵h =2.6,球从点O 正上方2 m 的A 处发出,∴抛物线y =a(x -6)2+2.6过点(0,2),∴2=a(0-6)2+2.6,解得a =-160. 故y 与x 的函数解析式为y =-160(x -6)2+2.6. (2)当x =9时,y =-160(x -6)2+2.6=2.45>2.43,∴球能过球网. 当y =0时,y =-1(x -6)2+2.6=0,解得x 1=6+239>18,x 2=6-239(舍去).。
第22章 二次函数 人教版数学九年级上册单元测试卷(解析版)
第22章二次函数一.选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是()A.xy+x2=1B.x2+y﹣2=0C.y2﹣ax=﹣2D.x2﹣y2+1=0 2.在同一坐标系中,作y=2x2+2、y=﹣2x2﹣1、的图象,则它们()A.都是关于y轴对称B.顶点都在原点C.都是抛物线开口向上D.以上都不对3.下列对二次函数y=ax2+bx+c(a≠0,a,b,c为常数)叙述不正确的是()A.二次函数因变量一定有最大值或最小值B.二次函数图象是轴对称图形C.二次函数图象一定会与y轴相交D.二次函数图象一定过原点4.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2B.0C.2D.无法确定5.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣26.关于x2﹣x﹣n=0没有实数根,则y=x2﹣x﹣n的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限7.在同一直角坐标系中,函数y=ax2﹣b与y=ax+b(ab≠0)的图象大致如图()A.B.C.D.8.抛物线y=x2﹣2x+1,则图象与x轴交点为()A.二个交点B.一个交点C.无交点D.不能确定9.直线y=ax+b(ab≠0)不经过第三象限,那么y=ax2+bx的图象大致为()A.B.C.D.10.关于y=2(x﹣3)2+2的图象,下列叙述正确的是()A.顶点坐标为(﹣3,2)B.对称轴为直线y=3C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小二.填空题:(每题3分,共15分)11.当m=时,函数y=(m﹣1)是关于x的二次函数.12.写出一个开口向上,顶点坐标是(2,﹣3)的函数解析式.13.函数y=ax2+bx+c(a≠0,a、b、c为常数)的对称轴是,顶点坐标是.14.抛物线y=3x2的图象向右移动两个单位,再向下移动一个单位,它的顶点坐标是,对称轴是,解析式是.15.如果抛物线y=ax2+b和直线y=x+b都经过点P(2,6),则a=,b=,抛物线的图象不经过第象限.三.解答题(共105分)16.(8分)若抛物线y=x2﹣2x﹣3经过点A(m,0)和点B(﹣2,n),求点A、B的坐标.17.(7分)请设计一个开口向下,与x轴交于(﹣1,0),(3,0)的二次函数解析式,并指出它的对称轴.18.(8分)已知抛物线y=x2﹣4x+m的顶点在x轴上,求这个函数的解析式及其顶点坐标.19.(8分)若二次函数的图象y=(m﹣1)x2+2x与直线y=x﹣1没有交点,求m的取值范围.20.(12分)已知二次函数的图象的顶点坐本标为(3,﹣2)且与y轴交与(0,)(1)求函数的解析式,并画出它的图象;(2)当x为何值时,y随x增大而增大.21.(10分)若直线y=x+3与二次函数y=﹣x2+2x+3的图象交于A、B两点,求以A、B 及原点O为顶点的三角形的面积.22.(6分)一台机器原价为60万元,如果每年的折旧率为x,两年后这台机器的价格为y 万元,求y关于x的函数关系式,若折旧率以10%计算,那么两年后该机器的价值为多少?23.(12分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.24.(16分)某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?25.(18分)二次函数的图象与x轴从左到右两个交点依次为A、B,与y 轴交于点C.(1)求A、B、C三点的坐标;(2)如果P(x,y)是线段BC之间的动点,O为坐标原点,试求△POA的面积S与x 之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,是否存在这样的点P,使得PO=P A?若存在,求出点P的坐标;若不存在请说明理由.参考答案与试题解析一.选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是()A.xy+x2=1B.x2+y﹣2=0C.y2﹣ax=﹣2D.x2﹣y2+1=0【分析】整理成一般形式,根据二次函数定义即可解答.【解答】解:A、变形得y=,不是二次函数,错误;B、由x2+y﹣2=0,得y=﹣x2+2,是二次函数,正确;C、y的指数是2,不是函数,错误;D、y的指数是2,不是函数,错误.故选:B.2.在同一坐标系中,作y=2x2+2、y=﹣2x2﹣1、的图象,则它们()A.都是关于y轴对称B.顶点都在原点C.都是抛物线开口向上D.以上都不对【分析】根据所给二次函数的共同特点找到正确选项即可.【解答】解:经过观察可得3个二次函数的一次性系数均为0,那么这3个二次函数的对称轴都是y轴,故选A.3.下列对二次函数y=ax2+bx+c(a≠0,a,b,c为常数)叙述不正确的是()A.二次函数因变量一定有最大值或最小值B.二次函数图象是轴对称图形C.二次函数图象一定会与y轴相交D.二次函数图象一定过原点【分析】根据二次函数图象与系数的关系和抛物线与x轴的交点即可求解.【解答】解:A.二次函数因变量一定有最大值或最小值,故A不符合题意;B.二次函数图象是轴对称图形,故B不符合题意;C.二次函数图象一定会与y轴相交,故C不符合题意;D.二次函数图象不一定过原点,故D符合题意;故选:D.4.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2B.0C.2D.无法确定【分析】本题中已知了二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m﹣2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,所以m=2.故选:C.5.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣2【分析】由于原点是抛物线y=(m+1)x2的最高点,这要求抛物线必须开口向下,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最高点,∴m+1<0,即m<﹣1.故选:A.6.关于x2﹣x﹣n=0没有实数根,则y=x2﹣x﹣n的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据根的判别式b2﹣4ac<0来裁定n的取值范围,再根据顶点坐标来解答即可.【解答】解:由题意,得△<0,即(﹣1)2﹣4×1×(﹣n)<0.解得,n<﹣①﹣=,=﹣(n+)②由①②,得>0∴顶点坐标是(,)在第一象限,故选:A.7.在同一直角坐标系中,函数y=ax2﹣b与y=ax+b(ab≠0)的图象大致如图()A.B.C.D.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2﹣b的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;B、由抛物线可知a<0,由直线可知a>0,故本选项错误;C、由抛物线可知,a>0,b>0,由直线可知,a>0,b>0,故本选项正确;D、由抛物线可知,a<0,b>0,由直线可知,a<0,b<0,故本选项错误.故选:C.8.抛物线y=x2﹣2x+1,则图象与x轴交点为()A.二个交点B.一个交点C.无交点D.不能确定【分析】直接利用b2﹣4ac的符号进而得出抛物线与x轴交点个数即可.【解答】解:∵b2﹣4ac=(﹣2)2﹣4×1×1=0,∴抛物线y=﹣x2+2kx+2与x轴交点的个数为:1.故选:B.9.直线y=ax+b(ab≠0)不经过第三象限,那么y=ax2+bx的图象大致为()A.B.C.D.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx 的图象相比较看是否一致.【解答】解:一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴﹣>0,二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴右侧,交坐标轴于(0,0)点.故选:B.10.关于y=2(x﹣3)2+2的图象,下列叙述正确的是()A.顶点坐标为(﹣3,2)B.对称轴为直线y=3C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小【分析】已知二次函数的顶点式,可确定抛物线的开口方向,顶点坐标及对称轴,逐一判断即可.【解答】解:顶点坐标为(3,2),故A选项错误;对称轴为x=3,故选项B错误;因为二次项系数为2>0,故函数图象开口向上对称轴为x=3,故当x≥3时,y随x增大而增大,故C选项正确;D选项错误,故选:C.二.填空题:(每题3分,共15分)11.当m=﹣1时,函数y=(m﹣1)是关于x的二次函数.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.12.写出一个开口向上,顶点坐标是(2,﹣3)的函数解析式y=(x﹣2)2﹣3.【分析】已知顶点坐标,可用抛物线的顶点式表达解析式,由于开口向上,可取二次项系数a=1.【解答】解:由抛物线开口向上,取a=1,已知顶点坐标为(2,﹣3),所以,抛物线解析式可写为y=(x﹣2)2﹣3.13.函数y=ax2+bx+c(a≠0,a、b、c为常数)的对称轴是x=﹣,顶点坐标是(﹣,).【分析】直接根据二次函数的性质进行解答即可.【解答】解:由二次函数的性质可知,函数y=ax2+bx+c(a≠0,a、b、c为常数)的对称轴是x=﹣,顶点坐标是(﹣,).故答案为:x=﹣;(﹣,).14.抛物线y=3x2的图象向右移动两个单位,再向下移动一个单位,它的顶点坐标是(3,﹣4),对称轴是x=3,解析式是y=3(x﹣3)2﹣4.【分析】直接根据“上加下减,左加右减”的原则进行解答即可得出抛物线解析式,进而得出抛物线的顶点坐标.【解答】解:抛物线y=3x2的图象向右移动3个单位,再向下移动4个单位,解析式是y=3(x﹣3)2﹣4,它的顶点坐标是(3,﹣4),对称轴是直线x=3故答案为:(3,﹣4);x=3;y=3(x﹣3)2﹣4.15.如果抛物线y=ax2+b和直线y=x+b都经过点P(2,6),则a=,b=4,抛物线的图象不经过第三、四象限.【分析】将点P坐标代入解析式可求a,b的值,即可求解.【解答】解:∵抛物线y=ax2+b和直线y=x+b都经过点P(2,6),∴,∴,∴抛物线的解析式为:y=x2+4,∴抛物线图象不经过第三、四象限,故答案为:,4,三、四.三.解答题(共105分)16.(8分)若抛物线y=x2﹣2x﹣3经过点A(m,0)和点B(﹣2,n),求点A、B的坐标.【分析】将A和B坐标代入抛物线方程中,解出m和n的值.【解答】解:∵抛物线y=x2﹣2x﹣3经过点A(m,0)和点B(﹣2,n),∴0=m2﹣2m﹣3,n=(﹣2)2﹣2(﹣2)﹣3.∴(m﹣3)(m+1)=0,n=5.∴m=3或﹣1;n=5.故A的坐标为(3,0),(﹣1,0),B的坐标为(﹣2,5).17.(7分)请设计一个开口向下,与x轴交于(﹣1,0),(3,0)的二次函数解析式,并指出它的对称轴.【分析】设该抛物线的开口向下,则a<0,利用两点式写出抛物线解析式,根据抛物线与x轴两交点求得对称轴.【解答】解:∵该抛物线的开口向下,∴a<0.∵与x轴交于(﹣1,0),(3,0),∴该抛物线解析式可以是:y=﹣(x+1)(x﹣3),其对称轴是:x==1,即x=1.18.(8分)已知抛物线y=x2﹣4x+m的顶点在x轴上,求这个函数的解析式及其顶点坐标.【分析】顶点在x轴上,即纵坐标为0.利用顶点公式求出m的值,进而求出这个函数的解析式及其顶点坐标.【解答】解:∵抛物线y=x2﹣4x+m的顶点在x轴上,∴==0,∴m=4,∴y=x2﹣4x+4,∴﹣=2,顶点坐标为(2,0).19.(8分)若二次函数的图象y=(m﹣1)x2+2x与直线y=x﹣1没有交点,求m的取值范围.【分析】根据二次函数的定义和二次函数图象与一次函数图象的交点问题得到m﹣1≠0,方程组无解,再把方程组无解的问题转化为一元二次方程(m﹣1)x2+x+1=0没有实数根的问题,则根据根的判别式的意义得到12﹣4(m﹣1)<0,然后解不等式即可得到满足条件的m的取值范围.【解答】解:根据题意m﹣1≠0,方程组无解,所以m≠1且(m﹣1)x2+2x=x﹣1没有实数解,整理得(m﹣1)x2+x+1=0,所以△=12﹣4(m﹣1)<0,解得m>,所以m的取值范围为m>.20.(12分)已知二次函数的图象的顶点坐本标为(3,﹣2)且与y轴交与(0,)(1)求函数的解析式,并画出它的图象;(2)当x为何值时,y随x增大而增大.【分析】(1)设抛物线的解析式为y=a(x﹣3)2﹣2,将点(0,)代入解析式即可求出a的值,从而得到二次函数解析式;(2)根据图象即可判定y随x增大而增大时x的取值.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)2﹣2,将(0,)代入y=a(x﹣3)2﹣2得,a=,函数解析式为y=(x﹣3)2﹣2,即函数的解析式为y=x2﹣3x+;画出函数图象如图:.(2)由图象可知,当x>3时,y随x增大而增大.21.(10分)若直线y=x+3与二次函数y=﹣x2+2x+3的图象交于A、B两点,求以A、B 及原点O为顶点的三角形的面积.【分析】先根据题意列出方程组,再求出方程组的解即可得出A、B两点的坐标,再根据A、B两点的坐标是A(0,3)B(1,4),求出△OAB的边OA的长和边OA上的高,再根据三角形面积公式计算即可,【解答】解:(1)根据题意得:,解得:或,则A、B两点的坐标是A(0,3)B(1,4),∵A、B两点的坐标是A(0,3)B(1,4),∴OA=3,边OA上的高是1,∴S△OAB=×3×1=;22.(6分)一台机器原价为60万元,如果每年的折旧率为x,两年后这台机器的价格为y 万元,求y关于x的函数关系式,若折旧率以10%计算,那么两年后该机器的价值为多少?【分析】原价为60万元,一年后的价格是60×(1﹣x),二年后的价格是为:60×(1﹣x)×(1﹣x)=60(1﹣x)2,进而利用函数解析式求得两年后该机器的价值.【解答】解:两年后的价格是为:y=60×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式是:y=60(1﹣x)2,∵x=10%,∴y=60(1﹣x)2=48.6(万元),答:两年后该机器的价值为48.6万元.23.(12分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.【分析】(1)设每千克应涨价x元,则每千克盈利(10+x)元,每天可售出(500﹣20x)千克,根据利润=每千克盈利×日销售量,列方程解出即可,根据要让顾客得到实惠,所以涨价要选择最小的,即每千克应涨价为5元;(2)设每千克应涨价x元,利润为w元,根据(1)的等量关系列函数解析式,配方求最值即可.【解答】解:(1)设每千克应涨价x元,根据题意得:(10+x)(500﹣20x)=6000,解得:x1=10,x2=5,∵要让顾客得到实惠,∴x=10舍去,即x=5,答:每千克应涨价为5元;(2)设每千克应涨价x元,利润为w元,根据题意得:w=(10+x)(500﹣20x)=﹣20x2+300x+5000,w=﹣20(x﹣7.5)2+6125,∵﹣20<0,∴w有最大值,即当x=7.5时,w有最大利润为6125元,答:若该商场单纯从经济角度看,每千克应涨价7.5元,商场获利最多为6125元.24.(16分)某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【分析】(1)根据题意可设解析式为顶点式形式,由A、P两点坐标求解析式;(2)求水池半径即时求当y=0时x的值.【解答】解:(1)设这条抛物线解析式为y=a(x+m)2+k由题意知:顶点A为(1,4),P为(0,3)∴4=k,3=a(0﹣1)2+4,a=﹣1.所以这条抛物线的解析式为y=﹣(x﹣1)2+4.(2)令y=0,则0=﹣(x﹣1)2+4,解得x1=3,x2=﹣1所以若不计其它因素,水池的半径至少3米,才能使喷出的水流不至于落在池外.25.(18分)二次函数的图象与x轴从左到右两个交点依次为A、B,与y 轴交于点C.(1)求A、B、C三点的坐标;(2)如果P(x,y)是线段BC之间的动点,O为坐标原点,试求△POA的面积S与x 之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,是否存在这样的点P,使得PO=P A?若存在,求出点P的坐标;若不存在请说明理由.【分析】(1)抛物线的解析式中,令y=0可求得C点坐标,令y=0可求得A、B的坐标;(2)已知了B、C的坐标,用待定系数法求解即可,根据直线BC的解析式可用x表示出P点的纵坐标,以OA为底,P点纵坐标的绝对值为高即可得到△OAP的面积,由此可求得S、x的函数关系式;(3)易知△OBC是等腰Rt△,且直角边长为6,根据垂直平分线的性质得出P点位置,进而求出即可.【解答】解:(1)由题意,在y=x2﹣中,令y=00=x2﹣,解得:x=4或6,当x=0,y=6,可得:A(4,0),B(6,0),C(0,6);(2)设一次函数的解析式为:y=kx+b;将B(6,0)、C(0,6)代入上式,得:,解得;∴y=﹣x+6;根据题意得S△POA=×4×y,∴y=﹣x+6;∴S△POA=﹣2x+12;∴0≤x<6;(3)∵|OB|=|OC|,∠COB=90°;∴△BOC是等腰直角三角形;作AO的中垂线交CB于P,根据垂直平分线的性质得出PO=P A,而OA=4,∴P点横坐标为2,代入直线BC解析式即可,∴y=﹣x+6=﹣2+6=4,∴P点坐标为:(2,4),∴存在这样的点P(2,4),使得OP=AP.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学第二十二章二次函数单元达标测试题一、选择题1.下列函数中,属于二次函数的是( )A. y=2x-1B. y=x2+C. y=x2(x+3)D. y=x(x+1)2.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A. 3B. ﹣3C. ±3D. 93.二次函数的对称轴是A. 直线B. 直线C. y轴D. x 轴4.二次函数y=(a﹣1)x2(a为常数)的图象如图所示,则a的取值范围为()A. a>1B. a<1C. a>0D. a<05.二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)6.已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A. 2>y1>y2B. 2>y2 >y1C. y1>y2>2D. y2 >y1>27.已知抛物线经过和两点,则n的值为()A. ﹣2B. ﹣4C. 2D. 48.二次函数的图象如图所示,对称轴为直线,下列结论错误的是()A. B. 当时,顶点的坐标为C. 当时,D. 当时,y随x的增大而增大9.已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()A. x1<﹣1<2<x2B. ﹣1<x1<2<x2C. ﹣1<x1<x2<2D. x1<﹣1<x2<210.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A. x1=﹣1,x2=5B. x1=﹣2,x2=4C. x1=﹣1,x2=2D. x1=﹣5,x2=511.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C.D.12.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD 总长为12m,则该梯形储料场ABCD的最大面积是()A. 18m2B. m2C. m2D. m2二、填空题13.某长方形的周长为24cm,其中一边长为xcm(x>0),面积为ycm2,则y与x的关系式为________.14.已知二次函数y=x2,当x>0时,y随x的增大而________(填“增大”或“减小”).15.抛物线y=3(x+2)2﹣7 的对称轴是________.16.抛物线y=-x2+15有最________值,顶点坐标是________.17.二次函数的图象如图所示,若,.则、的大小关系为________ .(填“ ”、“ ”或“ ”)18.将二次函数y=x2﹣8x+3化为y=a(x﹣m)2+k的形式是________.19.抛物线y=ax2+bx+c经过点A(-3,0)、B(4,0)两点,则关于x的一元二次方程a(x-1)2+c=b-bx的解是________20.如图,抛物线y=ax2和直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1), 则关于x的方程ax2=bx+c的解为________.21.矩形的周长等于40,则此矩形面积的最大值是________.22.为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是________m2.三、解答题23.已知抛物线y=x2﹣(2k﹣1)x+k2﹣k+1的顶点在坐标轴上,求k的值.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2).(1)求抛物线的表达式,并用配方法求出顶点D的坐标;(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.25.在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.26.某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?27.设二次函数的图象的顶点坐标为,且过点,求这个函数的关系式.28.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC 以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ 的面积S的函数关系式,求出t的取值范围.参考答案一、选择题1. D2. B3. C4. B5. A6. A7. B8. D9. A 10. A 11. B 12. C二、填空题13. 14. 增大15. x=﹣2 16. 大;(0,15) 17. < 18. y=(x﹣4)2﹣13 19. 或5 20. 21. 100 22. 300三、解答题23. 解:当抛物线y= x2-(2k-1)x+k2-k+1的顶点在y轴上时,=0,解得,k= ;当抛物线y= x2-(2k-1)x+k2-k+1的顶点在x轴上时,=0,解得,k=2或k=-1,由上可得,k的值是,2或-124. (1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C (0,2),∴,得,∴y=﹣x2﹣x+2=,∴抛物线顶点D的坐标为(﹣1,),即该抛物线的解析式为y=﹣x2﹣x+2,顶点D的坐标为(﹣1,);(2)∵y=,∴该抛物线的对称轴为直线x=﹣1,∵点E是点C关于抛物线对称轴的对称点,点C(0,2),∴点E的坐标为(﹣2,2),当y=0时,0=,得x1=﹣3,x2=1,∴点B的坐标为(1,0),设直线BE的函数解析式为y=kx+n,,得,∴直线BE的函数解析式为y=﹣+ ,当x=0时,y=,设直线BE与y轴交于点F,则点F的坐标为(0,),∴OF=,∵点C(0,2),点E(﹣2,2),∴OC=2,CE=2,∴CF=2﹣=,∴tan∠CEF=,即tan∠CEB的值是.25. (1)∵y=x2-2mx+m2-m+2=(x-m)2-m+2,∴D点的坐标为(m,-m+2). (2)∵抛物线经过点B(1,m),∴m=1-2m+m2-m+2,解得m=3或m=1.(3)根据题意,∵A点的坐标为(-3,m),B点的坐标为(1,m),∴线段AB为y=m(-3≤x≤1),与y=x2-2mx+m2-m+2联立得x2-2mx+m2-2m+2=0,令y'=x2-2mx+m2-2m+2,若抛物线y=x2-2mx+m2-m+2与线段AB只有1个公共点,即函数y'在-3≤x≤1范围内只有一个零点,当x=-3时,y'=m2+4m+11<0,∵Δ>0,∴此种情况不存在,当x=1时,y'=m2-4m+3≤0,解得1≤m≤3.26. (1)解:设要想平均每天销售这种童装盈利1200元,那么每件童装应降价x元,(40﹣x)(20+2x)=1200,解得,x1=10,x2=20∵当x=20时,卖出的多,库存比x=10时少,∴要想平均每天销售这种童装盈利1200元,那么每件童装应降价20元;(2)解:设每件童装降价x元,利润为y元,y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250,∴当x=15时,y取得最大值,此时y=1250,即每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.27. 解:设这个函数的关系式为,把点代入得,解得,所以这个函数的关系式为28. 解:∵PB=6﹣t,BE+EQ=6+t,∴S= PB•BQ= PB•(BE+EQ)= (6﹣t)(6+t)=﹣t2+18,∴S=﹣t2+18(0≤t<6).人教版九年级上册数学第二十二章二次函数单元达标测试题一、选择题1.下列函数中,属于二次函数的是( )A. y=2x-1B. y=x2+C. y=x2(x+3)D. y=x(x+1)2.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A. 3B. ﹣3C. ±3D. 93.二次函数的对称轴是A. 直线B. 直线C. y轴D. x 轴4.二次函数y=(a﹣1)x2(a为常数)的图象如图所示,则a的取值范围为()A. a>1B. a<1C. a>0D. a<05.二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)6.已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A. 2>y1>y2B. 2>y2 >y1C. y1>y2>2D. y2 >y1>27.已知抛物线经过和两点,则n的值为()A. ﹣2B. ﹣4C. 2D. 48.二次函数的图象如图所示,对称轴为直线,下列结论错误的是()A. B. 当时,顶点的坐标为C. 当时,D. 当时,y随x的增大而增大9.已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()A. x1<﹣1<2<x2B. ﹣1<x1<2<x2C. ﹣1<x1<x2<2D. x1<﹣1<x2<210.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A. x1=﹣1,x2=5B. x1=﹣2,x2=4C. x1=﹣1,x2=2D. x1=﹣5,x2=511.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C.D.12.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD 总长为12m,则该梯形储料场ABCD的最大面积是()A. 18m2B. m2C. m2D. m2二、填空题13.某长方形的周长为24cm,其中一边长为xcm(x>0),面积为ycm2,则y与x的关系式为________.14.已知二次函数y=x2,当x>0时,y随x的增大而________(填“增大”或“减小”).15.抛物线y=3(x+2)2﹣7 的对称轴是________.16.抛物线y=-x2+15有最________值,顶点坐标是________.17.二次函数的图象如图所示,若,.则、的大小关系为________ .(填“ ”、“ ”或“ ”)18.将二次函数y=x2﹣8x+3化为y=a(x﹣m)2+k的形式是________.19.抛物线y=ax2+bx+c经过点A(-3,0)、B(4,0)两点,则关于x的一元二次方程a(x-1)2+c=b-bx的解是________20.如图,抛物线y=ax2和直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1), 则关于x的方程ax2=bx+c的解为________.21.矩形的周长等于40,则此矩形面积的最大值是________.22.为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是________m2.三、解答题23.已知抛物线y=x2﹣(2k﹣1)x+k2﹣k+1的顶点在坐标轴上,求k的值.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2).(1)求抛物线的表达式,并用配方法求出顶点D的坐标;(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.25.在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.26.某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?27.设二次函数的图象的顶点坐标为,且过点,求这个函数的关系式.28.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC 以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ 的面积S的函数关系式,求出t的取值范围.参考答案一、选择题1. D2. B3. C4. B5. A6. A7. B8. D9. A 10. A 11. B 12. C二、填空题13. 14. 增大15. x=﹣2 16. 大;(0,15) 17. < 18. y=(x﹣4)2﹣13 19. 或5 20. 21. 100 22. 300三、解答题23. 解:当抛物线y= x2-(2k-1)x+k2-k+1的顶点在y轴上时,=0,解得,k= ;当抛物线y= x2-(2k-1)x+k2-k+1的顶点在x轴上时,=0,解得,k=2或k=-1,由上可得,k的值是,2或-124. (1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C (0,2),∴,得,∴y=﹣x2﹣x+2=,∴抛物线顶点D的坐标为(﹣1,),即该抛物线的解析式为y=﹣x2﹣x+2,顶点D的坐标为(﹣1,);(2)∵y=,∴该抛物线的对称轴为直线x=﹣1,∵点E是点C关于抛物线对称轴的对称点,点C(0,2),∴点E的坐标为(﹣2,2),当y=0时,0=,得x1=﹣3,x2=1,∴点B的坐标为(1,0),设直线BE的函数解析式为y=kx+n,,得,∴直线BE的函数解析式为y=﹣+ ,当x=0时,y=,设直线BE与y轴交于点F,则点F的坐标为(0,),∴OF=,∵点C(0,2),点E(﹣2,2),∴OC=2,CE=2,∴CF=2﹣=,∴tan∠CEF=,即tan∠CEB的值是.25. (1)∵y=x2-2mx+m2-m+2=(x-m)2-m+2,∴D点的坐标为(m,-m+2). (2)∵抛物线经过点B(1,m),∴m=1-2m+m2-m+2,解得m=3或m=1.(3)根据题意,∵A点的坐标为(-3,m),B点的坐标为(1,m),∴线段AB为y=m(-3≤x≤1),与y=x2-2mx+m2-m+2联立得x2-2mx+m2-2m+2=0,令y'=x2-2mx+m2-2m+2,若抛物线y=x2-2mx+m2-m+2与线段AB只有1个公共点,即函数y'在-3≤x≤1范围内只有一个零点,当x=-3时,y'=m2+4m+11<0,∵Δ>0,∴此种情况不存在,当x=1时,y'=m2-4m+3≤0,解得1≤m≤3.26. (1)解:设要想平均每天销售这种童装盈利1200元,那么每件童装应降价x元,(40﹣x)(20+2x)=1200,解得,x1=10,x2=20∵当x=20时,卖出的多,库存比x=10时少,∴要想平均每天销售这种童装盈利1200元,那么每件童装应降价20元;(2)解:设每件童装降价x元,利润为y元,y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250,∴当x=15时,y取得最大值,此时y=1250,即每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.27. 解:设这个函数的关系式为,把点代入得,解得,所以这个函数的关系式为28. 解:∵PB=6﹣t,BE+EQ=6+t,∴S= PB•BQ= PB•(BE+EQ)= (6﹣t)(6+t)=﹣t2+18,∴S=﹣t2+18(0≤t<6).人教版九年级上册数学第二十二章二次函数单元达标测试题一、选择题1.下列函数中,属于二次函数的是( )A. y=2x-1B. y=x2+C. y=x2(x+3)D. y=x(x+1)2.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A. 3B. ﹣3C. ±3D. 93.二次函数的对称轴是A. 直线B. 直线C. y轴D. x 轴4.二次函数y=(a﹣1)x2(a为常数)的图象如图所示,则a的取值范围为()A. a>1B. a<1C. a>0D. a<05.二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)6.已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A. 2>y1>y2B. 2>y2 >y1C. y1>y2>2D. y2 >y1>27.已知抛物线经过和两点,则n的值为()A. ﹣2B. ﹣4C. 2D. 48.二次函数的图象如图所示,对称轴为直线,下列结论错误的是()A. B. 当时,顶点的坐标为C. 当时,D. 当时,y随x的增大而增大9.已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()A. x1<﹣1<2<x2B. ﹣1<x1<2<x2C. ﹣1<x1<x2<2D. x1<﹣1<x2<210.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A. x1=﹣1,x2=5B. x1=﹣2,x2=4C. x1=﹣1,x2=2D. x1=﹣5,x2=511.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C.D.12.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD 总长为12m,则该梯形储料场ABCD的最大面积是()A. 18m2B. m2C. m2D. m2二、填空题13.某长方形的周长为24cm,其中一边长为xcm(x>0),面积为ycm2,则y与x的关系式为________.14.已知二次函数y=x2,当x>0时,y随x的增大而________(填“增大”或“减小”).15.抛物线y=3(x+2)2﹣7 的对称轴是________.16.抛物线y=-x2+15有最________值,顶点坐标是________.17.二次函数的图象如图所示,若,.则、的大小关系为________ .(填“”、“ ”或“ ”)18.将二次函数y=x2﹣8x+3化为y=a(x﹣m)2+k的形式是________.19.抛物线y=ax2+bx+c经过点A(-3,0)、B(4,0)两点,则关于x的一元二次方程a(x-1)2+c=b-bx的解是________20.如图,抛物线y=ax2和直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1), 则关于x的方程ax2=bx+c的解为________.21.矩形的周长等于40,则此矩形面积的最大值是________.22.为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是________m2.三、解答题23.已知抛物线y=x2﹣(2k﹣1)x+k2﹣k+1的顶点在坐标轴上,求k的值.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2).(1)求抛物线的表达式,并用配方法求出顶点D的坐标;(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.25.在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.26.某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?27.设二次函数的图象的顶点坐标为,且过点,求这个函数的关系式.28.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC 以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ 的面积S的函数关系式,求出t的取值范围.参考答案一、选择题1. D2. B3. C4. B5. A6. A7. B8. D9. A 10. A 11. B 12. C二、填空题13. 14. 增大15. x=﹣2 16. 大;(0,15) 17. < 18. y=(x﹣4)2﹣13 19. 或5 20. 21. 100 22. 300三、解答题23. 解:当抛物线y= x2-(2k-1)x+k2-k+1的顶点在y轴上时,=0,解得,k= ;当抛物线y= x2-(2k-1)x+k2-k+1的顶点在x轴上时,=0,解得,k=2或k=-1,由上可得,k的值是,2或-124. (1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C (0,2),∴,得,∴y=﹣x2﹣x+2=,∴抛物线顶点D的坐标为(﹣1,),即该抛物线的解析式为y=﹣x2﹣x+2,顶点D的坐标为(﹣1,);(2)∵y=,∴该抛物线的对称轴为直线x=﹣1,∵点E是点C关于抛物线对称轴的对称点,点C(0,2),∴点E的坐标为(﹣2,2),当y=0时,0=,得x1=﹣3,x2=1,∴点B的坐标为(1,0),设直线BE的函数解析式为y=kx+n,,得,∴直线BE的函数解析式为y=﹣+ ,当x=0时,y=,设直线BE与y轴交于点F,则点F的坐标为(0,),∴OF=,∵点C(0,2),点E(﹣2,2),∴OC=2,CE=2,∴CF=2﹣=,∴tan∠CEF=,即tan∠CEB的值是.25. (1)∵y=x2-2mx+m2-m+2=(x-m)2-m+2,∴D点的坐标为(m,-m+2). (2)∵抛物线经过点B(1,m),∴m=1-2m+m2-m+2,解得m=3或m=1.(3)根据题意,∵A 点的坐标为(-3,m),B 点的坐标为(1,m),∴线段AB 为y=m(-3≤x≤1),与y=x 2-2mx+m 2-m+2联立得x 2-2mx+m 2-2m+2=0,令y'=x 2-2mx+m 2-2m+2,若抛物线y=x 2-2mx+m 2-m+2与线段AB 只有1个公共点,即函数y'在-3≤x≤1范围内只有一个零点,当x=-3时,y'=m 2+4m+11<0,∵Δ>0,∴此种情况不存在,当x=1时,y'=m 2-4m+3≤0,解得1≤m≤3.26. (1)解:设要想平均每天销售这种童装盈利1200元,那么每件童装应降价x 元, (40﹣x )(20+2x )=1200,解得,x 1=10,x 2=20∵当x =20时,卖出的多,库存比x =10时少,∴要想平均每天销售这种童装盈利1200元,那么每件童装应降价20元;(2)解:设每件童装降价x 元,利润为y 元,y =(40﹣x )(20+2x )=﹣2(x ﹣15)2+1250,∴当x =15时,y 取得最大值,此时y =1250,即每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.27. 解:设这个函数的关系式为, 把点代入 得 , 解得 ,所以这个函数的关系式为28. 解:∵PB=6﹣t ,BE+EQ=6+t ,∴S=PB•BQ= PB•(BE+EQ ) =(6﹣t )(6+t ) =﹣ t 2+18,∴S=﹣t 2+18(0≤t <6). 人教版九年级数学上册第21章一元二次方程单元检测题(有答案)一.选择题(共10小题,每小题3分,共30分)1.若关于x 的函数2(2)y a x x =--是二次函数,则a 的取值范围是( )A .0a ≠B .2a ≠C .2a <D .2a >2.函数243y x x =---图象顶点坐标是( )A .(2,1)-B .(2,1)-C .(2,1)--D .(2,1)3.已知函数2y ax bx c =++的图象如图所示,则函数y ax b =+的图象是( )A .B .C .D .4.二次函数2y ax bx c =++的图象如图所示,则下列结论中错误的是( )A .函数有最小值B .当12x -<<时,0y >C .0a b c ++<D .当12x <,y 随x 的增大而减小5.抛物线2222y ax ax a =+++的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( )A .1(2,0)B .(1,0)C .(2,0)D .(3,0)第4题图 第5题图 第9题图6.已知二次函数21y ax =-的图象经过点(1,2)-,那么a 的值为( )A .2a =-B .2a =C .1a =D .1a =-7.已知抛物线28y x x c =-+的顶点在x 轴上,则c 等于( )A .4B .8C .4-D .168.已知二次函数2(1)(3)y x x m =---(其中m 为常数),该函数图象与y 轴交点在x 轴上方,则m 的取值范围正确的是( )A .3m >B .3m >-C .3m <D .3m <-9.如图所示,中堂中学教学楼前喷水池喷出的抛物线形水柱,水柱喷出的竖直高度()y m 与水平距离()x m 满足2(2)6y x =--+,则水柱的最大高度是( )A .2B .4C .6D .2+10.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .(40)(50010)y x x =--B .(40)(10500)y x x =--C .(40)[50010(50)]y x x =---D .(40)[50010(50)]y x x =---二.填空题(共8小题,每小题3分,共24分)11.若函数27(3)m y m x -=-是二次函数,则m 的值为 .12.抛物线284y x x =+-与直线4x =-的交点坐标是 .13.抛物线2(1)(3)y x x =+-的对称轴是 .14.将223y x x =-+化成2()y a x h k =-+的形式,则y = .15.抛物线2(0)y ax bx c a =++≠,对称轴为直线2x =,且过点(3,0)P ,则a b c ++= .16.已知函数21y x x =--的图象与x 轴的一个交点为(,0)a ,则代数式22019a a -+的值为 .17.如图,抛物线2y ax c =+与直线y mx n =+交于(1,)A p -,(3,)B q 两点,则不等式2ax mx c n ++>的解集是 .18.拱形大桥的示意图如图所示,桥的拱形可近似看成抛物人教版九年级数学上册第22章二次函数单元测试卷含答案一、选择题(共8题;共24分)1.二次函数y=x2-2x+3顶点坐标是()A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2)2.已知抛物线y=(x−4)2-3与y轴交点的坐标是()A. (0,3)B. (0,-3)C. (0,)D. (0,-)3.二次函数y= -的图象如何移动就得到-的图象()A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位4.在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A. y=2(x-1)2-3B. y=2(x-1)2+3C. y=2(x+1)2-3D. y=2(x+1)2+35.已知二次函数的图象如下图所示,则四个代数式,,,中,值为正数的有()A. 4个B. 3个C. 2个D. 1个6.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a ﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A. ①③B. ②③C. ②④D. ③④7.已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;第17题图第18题图②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1B. 2C. 3D. 48.如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A. b2>4acB. ax2+bx+c≥-6C. 若点(-2,m),(-5,n)在抛物线上,则m>nD. 关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(共10题;共30分)9.若抛物线的开口向上,则的取值范围是________.10.抛物线的顶点坐标是________.11.若A(,),B(,),C(1,)为二次函数y= +4x﹣5的图象上的三点,则、、的大小关系是________.12.抛物线与x轴交于点(1,0),(﹣3,0),则该抛物线可设为:________.13.把二次函数y=﹣2x2+4x+3化成y=a(x﹣m)2+k的形式是________.14.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.15.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为________16.二次函数y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,则m=________.17.若二次函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是________.18.抛物线y=ax2+bx+c满足下列条件:(1)4a﹣b=0;(2)a﹣b+c>0;(3)与x轴有两个交点,且两交点的距离小于2.以下有四个结论:①a<0;②c>0;③ac= b2;④ <a<.则其中正确结论的序号是________.三、解答题(共9题;共66分)19.如图,一块矩形草地的长为100m,宽为80m,欲在中间修筑两条互相垂直的宽为x(m)的小路,这时草坪的面积为y(m2).求y与x的函数关系式,并求出x的取值范围.20.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.21.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图像指出当m的函数值大于0的函数值时x的取值范围.22.如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),B两点,交y轴于点D.(1)求点B、点D的坐标,(2)判断△ACD的形状,并求出△ACD的面积.23.某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元.(1)求y与x之间的函数关系式;(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?24.已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G 恰好落在抛物线的对称轴上时,求点G的坐标;(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.25.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 DQ,求点F的坐标.26.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.已知如图,在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在AB上(不同于A、B),将△ANM绕点M逆时针旋转90°得△A1PM(1)画出△A1PM(2)设AN=x,四边形NMCP的面积为y,直接写出y关于x的函数关系式,并求y的最大或最小值.参考答案一、单选题1.B2.C3.C4.C5.A6.D7.C8.C二、填空题9.a>2 10.(0,-1)11.<<12.y=a(x﹣1)(x+3)(a≠0)13.y=﹣2(x﹣1)2+5 14.直线x=2 15.16.17.1 18.①三、解答题19.解:设中间修筑两条互相垂直的宽为x(m)的小路,草坪的面积为y(m2),根据题意得出:y=100﹣80﹣80x﹣100x+x2=x2﹣180x+8000(0<x<80)20.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.21.解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a= ,∴抛物线m的解析式为y= (x﹣3)(x﹣8),即y= x2﹣x+6;函数图像如下:当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.22.解:(1)∵抛物线的顶点坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵与x轴交于点A(3,0),∴0=4a+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3,令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,令x=0,可得y=3∴B点坐标为(﹣1,0),D点坐标为(0,3);(2)∵A(3,0),D(0,3),C(1,4),∴AD==3,CD==,AC==2,∴AD2+CD2=(3)2+()2=20=(2)2=AC2,∴△ACD是以AC为斜边的直角三角形,∴S△ACD=AD•CD=×3×=3.23.解:(1)当30<x≤40时,设此段的函数解析式为:y=kx+b,解得,k=﹣3,b=156∴当30<x≤40时,函数的解析式为:y=﹣3x+156;当40<x≤80时,设此段函数的解析式为:y=mx+n,解得,m=,n=56,∴当40<x≤80时,函数的解析式为:y=;当80<x≤83时,y=16;由上可得,y与x之间的函数关系式是:y=;(2)当30<x≤40时,w=(x﹣28)y=(x﹣28)(﹣3x+156)=﹣3x2+240x﹣4368=﹣3(x﹣40)2+432∴当x=40时取得最大值,最大值为w=432元;当40<x≤80时,w=(x﹣28)y=(x﹣28)()==,∴当x=70时,取得最大值,最大值为w=882元;当80<x≤83时,w=(x﹣28)×16∴当x=83时,取得最大值,最大值为w=880元;由上可得,当x=70时,每日点的销售利润最大,最大为882元,即要使每日的销售利润w最大,每件产品的日销售价应定为70元,此时每日销售利润是882元.24.(1)由A(-3,0)和B(2,0),得:即= ax²+bx+4∴∴∴.(2)易得C(0,4),则BC= .由可对称轴为x= ,则可设点G的坐标为(,,∵点D是BC的中点∴点D的坐标为(,,由旋转可得,DG=DB∴……………∴………∴点G的坐标为(,或(,(3)①当BE为对角线时,因为菱形的对角线互相垂直平分,所以此时D即为对称轴与AC 的交点或对称轴对BC的交点,F为点D关于x轴的对称点,设,∵C(,,A(,,∴,∴,∴,∴当时,,∴D(,,∴F(,;易得∴当时,y=5,∴D(,,∴F(,;②当BE为菱形的边时,有DF∥BEI)当点D在直线BC上时设D(,,则点F(,∵四边形BDFE是菱形∴FD=DB根据勾股定理得,(整理得:=0,解得:,∴F(,或(,II)当点D在直线AC上时设D(,。