2017年秋八年级数学上册15.1轴对称图形2练习题
人教版八年级数学上册《轴对称》测试卷(含答案)
人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
八年级数学(上册)《轴对称图形》经典例题含解析
《第2章轴对称图形》一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或174.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P910.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2二、填空题11.下面有五个图形,与其它图形众不同的是第______个.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=______°.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有______种.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为______.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.《第2章轴对称图形》参考答案与试题解析一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.6.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的三线合一得到BF=FC,根据直角三角形的性质判断A;根据直角三角形的性质判断B;根据三角形内角和定理和等腰三角形的性质判断C,根据直角三角形的性质判断D.【解答】解:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=BC=BF,A不合题意;∵DE=AB,EF=BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE;故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P9【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质分别分析得出即可.【解答】解:由题意可得:当连接P2P3,P4P5,P7P8时,所形成的图形是轴对称图形,当连接P8P9时,所形成的图形不是轴对称图形.故选:D.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题.二、填空题11.下面有五个图形,与其它图形众不同的是第③个.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第①②④⑤个图形是轴对称图形,第③个不是.故答案为:③.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是 4 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9 .【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= 70 °.【考点】轴对称的性质;平行线的判定与性质.【专题】常规题型.【分析】先证明四边形BDEC是菱形,然后求出∠ABD的度数,再利用三角形内角和等于180°求出∠BAD的度数,然后根据轴对称性可得∠BAC=∠BAD,然后求解即可.【解答】解:∵CD与BE互相垂直平分,∴四边形BDEC是菱形,∴DB=DE,∵∠BDE=70°,∴∠ABD==55°,∵AD⊥DB,∴∠BAD=90°﹣55°=35°,根据轴对称性,四边形ACBD关于直线AB成轴对称,∴∠BAC=∠BAD=35°,∴∠CAD=∠BAC+∠BAD=35°+35°=70°.故答案为:70.【点评】本题考查了轴对称的性质,三角形的内角和定理,判断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是40°.【考点】线段垂直平分线的性质.【分析】根据三角形内角和定理求出∠B+∠C的度数,根据线段的垂直平分线的性质得到PA=PB,QA=QC,得到∠PAB=∠B,∠QAC=∠C,结合图形计算即可.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAB+∠QAC=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=40°,故答案为:40°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.【考点】利用轴对称设计图案.【专题】压轴题.【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【解答】解:如图所示:故一共有13做法,故答案为:13.【点评】此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8 .【考点】等腰三角形的性质.【专题】应用题.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.(2)S四边形A1B1C1D1=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2=12﹣1﹣1﹣﹣2=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.【考点】线段垂直平分线的性质.【专题】作图题.【分析】(1)作线段AB的垂直平分线即可;(2)到一个角的两边距离相等的点在这个角的平分线上.那么点P是∠B的平分线和线段AB的垂直平分线的交点.【解答】解:(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴.【点评】用到的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.到一个角的两边距离相等的点在这个角的平分线上.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】开放型.【分析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.【解答】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】连接DE,EF,易证△BDE≌△CFE,可得DE=EF,可证△DGE≌△FGE,可求得∠DGE=∠FGE=90°.【解答】解:连接DE,EF,∵AB=AC,∴∠B=∠C,在△BDE和△CFE中,,∴△BDE≌△CFE(SAS),∴DE=EF,在在△DGE和△FGE中,,∴△DGE≌△FGE(SSS),∴∠DGE=∠FGE,∵∠DGE+∠FGE=180°,∴∠DGE=∠FGE=90°,∴EG⊥DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证DE=EF是解题的关键.26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.【考点】全等三角形的判定与性质;等腰三角形的性质;轴对称的性质.【分析】(1)根据对称得出AD=AD′,根据SSS证△ABD≌△ACD′即可;(2)根据全等得出∠BAD=∠CAD′,求出∠BAC=∠DAD′,根据对称得出∠DAE=∠DAD′,代入求出即可.【解答】(1)证明:∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴AD=AD′,∵在△ABD和△ACD′中,∴△ABD≌△ACD′;(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°,∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.【点评】本题考查了全等三角形的性质和判定、对称的性质的应用,主要考查学生的推理能力,题型较好,难度适中.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【考点】几何变换综合题;平行线的性质;全等三角形的判定与性质;等腰直角三角形;多边形内角与外角.【专题】几何综合题;压轴题.【分析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【点评】本题考查了全等三角形的判定与性质、平行线的性质、等腰直角三角形的判定与性质、多边形的内角与外角等知识,渗透了变中有不变的辩证思想,是一道好题.。
15.1轴对称图形(2)
对称是一种 思想,通过它,人 们毕生追求,并创 造次序、美丽和完 善。 —赫尔曼· 外尔
布置作业
习题16.1 第1
~ 6题
数形结合,利用轴对称找规律 . 如图所示的是在一面镜子里看到的一 个算式,该算式的实际情况是怎样的?
演示
猜字游戏
想一想:一辆汽车的车牌在水中的倒影如 图所示,你能确定该车车牌的号码吗?
镜面、水面与轴对称
.下面的第二个时间可由第一个怎样变换而得到
轴对称图形的还原问题
如图所示,把一个正方形三次对折后沿虚 线 剪下一角,则展开后所得的图形是( ).
关于谁轴对称谁不变
练一练
1.分别写出下列各点关于x轴、y轴对称对 应点的坐标 A(-2,0) , B(2,-3) , C(-4,-2) D(-3,2) , E(0,-1) , F(2,3)
试一试:
一次晚会上,主持人出了一道题目: “如何将 变成一个真正的等 式”,很长时间没有人答出,小兰仅仅拿 出了一面镜子,就很快解决了这道题目, 你知道她是怎样做的吗?
A关于直线l的对称点A′?
A
●
┏ O
●
A′
l
变:如果直线l外有线段AB,那么怎样画出线段 AB关于直线l的对称线段A′B′? B A
● ●
B′
B A A′ l B
B′
●
O
A′
B′ A′ A l
●
l
拓展与操作
如图,画出△ABC关于直线MN的对称图形. 如右图,四边形ABCD与四边形EFGH关于直 线MN的对称,ACBD交于P,怎样找出点P关于 M 直线MN的对称点Q? M H D A′ A E A P Q B′ B B F C G C N C′ 成轴对称的两个图形的任何 N 对应部分也成轴对称
八年级数学上册轴对称解答题综合测试卷(word含答案)
八年级数学上册轴对称解答题综合测试卷(word含答案)一、八年级数学轴对称解答题压轴题(难)1.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,∴MD=ME.在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD=ME,∴△MDB≌△MEF(AAS),∴MB=MF.∵CE∥BD,∴∠FCM=∠BGM.在△FCM和△BGM中,CM=MG,∠CMF=∠GMB,MF=MB,∴△FCM≌△BGM(SAS).∴CF=BG,∠FCM=∠BGM.∴CF//BG,即D、B、G在同一条直线上.在△CFB和△BGC中,CF=BG,∠FCB=∠GBC,CB=BC,∴△CFB≌△BGC(SAS).∴BF=CG.∴MC=12CG=12BF=MB.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.2.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y xy xααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴+y xy xααβ=+⎧⎨=+⎩①②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y xy xαβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.3.再读教材:宽与长的比是5-1约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(1)5;(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22+=22AC BC+=5.12故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=5.AN=AC=1,CD=AD﹣AC=5﹣1.∵BC=2,∴CDBC=512-,∴矩形BCDE是黄金矩形.∵MNDN=215+=512-,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH=5﹣1,宽HE=3﹣5.点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.4.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.5.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA ≌△QBD ,根据全等三角形的性质得到∠BDQ =∠BAC =60°,求出 CD ,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.6.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示:(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC中,当B只有一个度数时,A∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC中,∠A=100°,∴∠A为顶角,∠B为底角,∴∠B=1801002-=40°;变式2: ∵等腰三角形ABC中,∠A= 45°,∴当AB=BC 时,∠B =90°,当AB=AC 时,∠B =67.5°,当BC=AC时∠B =45°;(2)等腰三角形ABC中,设A x∠=,当90°≤x<180°,∠A为顶角,此时,B只有一个度数,当x=60°时,三角形ABC是等边三角形,此时,B只有一个度数,综上所述:90°≤x<180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=B D.连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是___________(拓展延伸)(2)如图2,在Rt△ABC中,∠BAC=90°,AB=A C.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠= ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(22DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠= ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠= 222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
初中数学八年级上册画轴对称图形练习题含答案
初中数学八年级上册画轴对称图形练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 平面直角坐标系中,点P的坐标为(−5, 3),则点P关于y轴的对称点的坐标是()A.(5, 3)B.(−5, −3)C.(3, −5)D.(−3, 5)2. 如图,△ABC的顶点坐标分别为A(4, 4)、B(2, 1)、C(5, 2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3, 5),那么点B的对应点B′的坐标是()A.(0, 3)B.(1, 2)C.(0, 2)D.(4, 1)3. 在下列图形中,只利用没有刻度的直尺将无法作出其对称轴的是()A.矩形B.菱形C.等腰梯形D.正六边形4. 如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(−1,4),将△ABC沿y轴翻折到第一象限,点C的对应点记作C′,则线段CC′的长度为( )A.2B.6C.8D.95. 点(6, 3)关于直线x=2的对称点为()A.(−6, 3)B.(6, −3)C.(−2, 3)D.(−3, −3)6. 在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画( )个.A.5B.6C.7D.87. 如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y=x的对称点C′的坐标为(1, n)(n≠1),若△OAB的面积为3,则k的值为()A.13B.1C.2D.38. 用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()A.①②③④B.②③C.③④D.①②9. 在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(−2,3),先把△ABC右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(−3,2)B.(2,−3)C.(1,−2)D.(−1,2)10. 点P(a+b, 2a−b)与点Q(−2, −3)关于x轴对称,则a=()A.1 3B.23C.−2D.211. 如图,在直角坐标系中,直线n过点(2,0)且平行于y轴,点A、B和C的坐标分别(4,1),(6,2),(3,3).则:(1)在图中作出△ABC关于x轴对称的图形△A1B1C1;归纳:点(x,y)关于x轴对称的点的坐标是________.(2)在图中作出△ABC关于直线n对称的图形△A2B2C2,试猜想(x,y)关于直线n对称的点的坐标是________.12. 已知两点A(−a,5),B(−3,b)关于y轴对称,则a+b=________.13. 若点P(8, 10)关于x=m的对称点为(6, 10),关于直线y=n的对称点为(8, −8),则m+n=________.14. 如图,在平面直角坐标系中,△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线y=−1的对称图形是△A2B2C2,若△ABC上的一点P(x, y)与△A2B2C2上的P2是对称点,则点P2的坐标是________.15. 点M(−3, 2)关于直线x=−1对称的点N的坐标是________,直线MN与x轴的位置关系是________.16. 在如图的正方形网格中有一个三角形ABC,作出三角形ABC关于直线MN的轴反射图形,若网格上最小正方形边长为1,则三角形ABC与它轴反射图形的面积之和是________.17. 如图,已知点A的坐标为(m, 0),点B的坐标为(m−2, 0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为________.18. 如图,请你画出这个图形的一条对称轴.答:________是它的一条对称轴(用图中已有的字母回答)19. 如图,一束光线从点O射出,照在经过A(1, 0)、B(0, 1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为________.20. 点A(a, 3)与点B(−1, b)关于y轴对称,则a+b=________.21. 如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴的对称图形.22. 如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC顶点均在格点上,在建立平面直角坐标系后,点左的坐标为(−6,1)(1)若Rt△ABC以γ轴为对称轴的图形为Rt△A1B1C1,试在图上画出Rt△A1B1C1(2)若Rt△A2B2C2与(1)中的Rt△A1B1C1关于x轴为对称轴,试在图上画出Rt△A2B2C2(3)试在y轴上找一点P,使PA+PC的值最小;(4)归纳与发现:Rt△ABC上的点Q(m,n)通过(1)、(2)的两次连续轴对称变换后的对应点Q n钓坐标为Q′23. 如图,写出△ABC的各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标,并画出△ABC关于y轴对称的△A2B2C2.24. 如图,已知△ABC,请画出△ABC关于y轴对称的图形△A′B′C′并按要求填空.(方格的边长为1)A________,A′________;B________,B′________;C________,C′________.25. 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(−2, 3)、B(−3, 2)、C(−1, 1).请在图中作出△ABC关于y轴对称的△A1B1C1(A、B、C的对应点分别是A1、B1、C1),并直接写出A1、B1、C1的坐标.26. 在平面直角坐标系中,△ABC的位置如图所示,点A的坐标为A(1,2),画出△ABC关于y轴的对称图形△A′B′C′,并写出点B,C的对应点B′,C′的坐标.27. 如图,在9×9的正方形网格中,△ABC的三个顶点在格点上,每个小正方形的边长都是1.(1)建立适当的平面直角坐标系后,点A的坐标为(1, 1),点C的坐标为(4, 2),画出平面直角坐标系,并写出点B的坐标;(2)直线m经过A点且与y轴平行,写出点B,C关于直线m的对称点的坐标;(3)直接写出线段BC上的任意一点P(a, b)关于直线m的对称点P1的坐标.28. 已知△ABC,A(−4,1),B(−1,−1),C(−3,2).(1)请在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)请在同一平面直角坐标系中画出△A1B1C1关于直线m(直线m上各点的横坐标都是1)对称的△A2B2C2,并直接写出点A2,C2的坐标;(3)直接写出△ABC边上一点M(x,y),经过上述两次图形变换后得到△A2B2C2上的对应点M2的坐标.29. 如图,已知△ABC:(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)写出△A1B1C1和△A2B2C2各顶点坐标.30. 如图,已知l是第一、三象限的角平分线,点P与P′关于l对称,已知点P的坐标为(a, b),猜想P′的坐标是什么?并说明你猜想的正确性.31. 如图,A(3,−2),B(3,−6)是某个轴对称图形上的两点,且互为对称点,已知此图形上有另一点C(−2,1).(1)求点C关于该图形对称轴对称的点的坐标;(2)求△ABC的面积.32. 如图,在平面直角坐标系中,△ABC的顶点A(0, 1),B(3, 2),C(1, 4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)写出顶点A1,B1,C1的坐标;(3)若正方形网格中每个小正方形的边长为一个单位长度,求△A1B1C1的面积.33. 如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)如果要使以B,C,D为顶点的三角形与△ABC全等,写出所有符合条件的点D的坐标.34. 已知△ABC和直线m,以直线m为对称轴,画△ABC经轴对称变换后所得的图形.35. 已知△ABC的顶点坐标分别为A(1, 1),B(5, 2),C(2, 5).画出△ABC关于x轴、y轴的轴对称图形,并标出对称图形各顶点的坐标.36. 在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上(小正方形的顶点称为格点),请解答下列问题:(1)作出△ABC关于y轴对称的△A1B1C1,点A1与A,B1与B对应.(2)若点P(x,y)是△ABC内部一点,则△A1B1C1内部的对应点P′的坐标为_▲_.(3)若△ABC平移后得△A2B2C2,点A的对应点A2的坐标为(−1,−1),请在平面直角坐标系中画出△A2B2C2.37. 在3×3的正方形格点图中,△ABC和△DEF是关于某条直线成轴对称的两个格点三角形,现给出了△ABC,在下面的图中画出5个符合条件的△DEF,并画出对称轴.38. 如图,在平面直角坐标系中,△ABC三个顶点坐标分别为A(−1, 6),B(−5, 3),C(−3, 1).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1(其中A1,B1,C1分别是A,B,C 的对应的,不写画法),并写出点A1,B1,C1的坐标;(2)在y轴上求作使四边形ABCD的周长最小的点D.39. 已知点A(a, −5),B(8, b)根据下列要求确定a,b的值(1)A,B两点关于y轴对称;(2)A,B两点关于x轴对称;(3)AB // y轴(4)A,B两点在第二、第四象限的角平分线上.40. 请画出线段AB关于直线MN对称的线段A′B′.参考答案与试题解析初中数学八年级上册画轴对称图形练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】关于x轴、y轴对称的点的坐标【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(−5, 3)关于y轴的对称点的坐标是(5, 3).故选A.2.【答案】A【考点】坐标与图形变化-对称【解析】根据网格结构确定出对称轴,然后找出点B、C的对应点B′、C′的位置,再与点A′顺次连接即可,然后根据平面直角坐标系写出点B′的坐标.【解答】解:如图所示,点B′(0, 3).故选A.3.【答案】A【考点】作图-轴对称变换【解析】根据轴对称的性质对各选项进行逐一判断即可.【解答】解:A、没有刻度尺不能作轴对称,故本选项正确;B、连接菱形的对角线即是对称轴,故本选项错误;C、等腰梯形对称轴是两腰延长线的交点和对角线的交点的连线,故本选项错误;D、连接两个对角线即是对称轴,故本选项错误.故选A.4.【答案】B【考点】轴对称中的坐标变化坐标与图形性质【解析】由点A的坐标为(−1,4),即可求得点C的坐标,又由将△ABC沿y轴翻折到第一象限,即可得点C与C′关于y轴对称,则可求得点C′的坐标,从而求得CC′的长度.【解答】解:如图:∵ 点A的坐标为(−1,4),∴点C的坐标为(−3,1),∵将△ABC沿y轴翻折到第一象限,∴点C的对应点C′的坐标是(3,1),∴ CC′=3−(−3)=6.故选B.5.【答案】C【考点】坐标与图形变化-对称【解析】x=2是一条与y轴平行的直线,关于这条直线对称的两点的纵坐标一定相同,而横坐标的平均数是2.【解答】=2解:设点(6, 3)关于直线x=2的对称点为(x, 3),根据题意得到x+62解得:x=−2因而点(6, 3)关于直线x=2的对称点为(−2, 3).故选C.6.【答案】C【考点】作图-轴对称变换【解析】本题考查了利用轴对称图形作图,熟练掌握网格特点并正确找到对称图形是解题关键,利用网格特点,正确找到对称图形,即可求得答案.【解答】解:如图,最多能画出7个格点三角形与△ABC成轴对称图形.故选C.7.【答案】D【考点】轴对称中的坐标变化反比例函数图象上点的坐标特征【解析】根据对称性求出C点坐标,进而得OA与AB的长度,再根据已知三角形的面积列出n的方程求得n,进而用待定系数法求得k.【解答】解:∵点C关于直线y=x的对称点C′的坐标为(1, n)(n≠1),∴C(n, 1),∴OA=n,AC=1,∴AB=2AC=2.∵△OAB的面积为3,∴1n×2=3,2解得,n=3,∴C(3, 1),∴k=3×1=3.故选D.8.【答案】A【考点】作图-位似变换作图-相似变换作图-轴对称变换【解析】①②③④均可以不用刻度尺上的刻度画对称轴,方法如图所示.【解答】①②③④均可以不用刻度尺上的刻度画对称轴.9.【答案】B【考点】坐标与图形变化-平移轴对称中的坐标变化【解析】此题主要考查了点的坐标的平移变换以及轴对称变换.【解答】解:如图所示:点A的对应点A2的坐标是:(2,−3).故选B.10.【答案】A【考点】关于x轴、y轴对称的点的坐标【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:∵点P(a+b, 2a−b)与点Q(−2, −3)关于x轴对称,∴{a+b=−22a−b=3,解得:{a=13b=−213则a=1.3故选:A.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】(x,−y)(4−x,y)【考点】轴对称中的坐标变化作图-轴对称变换关于x轴、y轴对称的点的坐标【解析】(1)画图题需要认真观察图形,得出结论.(2)根据对称点的性质,即两点到对称轴的距离相等,得出两点的坐标特点. 【解答】解:(1)如图所示,△A1B1C1即为所求;通过观察图形,发现关于x轴对称的两个点的横坐标相同,纵坐标互为相反数,所以点(x,y)关于x轴对称的点的坐标是(x,−y).故答案为:(x,−y).(2)如图所示,△A2B2C2即为所求;设关于直线x=2对称的两个点的坐标分别是(x,y),(x1,y1),根据对称的性质,可知两点到直线的距离相等,∴x−2=2−x1,解得x1=4−x.又∵两对称点的连线垂直直线n,也就是垂直y轴,∴两对称点的连线平行x轴,∴两对称点的纵坐标相同,即y1=y.故答案为:(4−x,y).12.【答案】2【考点】关于x轴、y轴对称的点的坐标【解析】直接利用关于y轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵ 点A(−a,5),B(−3,b)关于y轴对称,∴ a=−3,b=5,则a+b=−3+5=2.故答案为:2.13.【答案】8【考点】坐标与图形变化-对称【解析】根据轴对称的性质列式求出m、n,然后相加计算即可得解.【解答】解:∵点P(8, 10)关于x=m的对称点为(6, 10),∴m=8+6=7,2∵点P(8, 10)关于直线y=n的对称点为(8, −8),∴n=10+(−8)=1,2∴m+n=7+1=8.故答案为:8.14.【答案】(−x, −2−y)【考点】关于x轴、y轴对称的点的坐标坐标与图形变化-对称【解析】利用对称的性质可找出点P关于y轴对称的点P1的坐标,同理可找出点P1关于直线y=−1对称的点P2的坐标,此题得解.【解答】点P(x, y)关于y轴的对称点为P1(−x, y),点P1(−x, y)关于直线y=−1的对称点为P2(−x, −2−y).15.【答案】(1, 2),平行【考点】坐标与图形变化-对称【解析】平面直角坐标系中任意一点,关于直线x=−1的对称点的坐标是纵坐标不变,横坐标的和是−1的2倍.纵坐标相同的点所在的直线与x轴平行.【解答】解:∵点M(−3, 2)与点N关于直线x=−1对称,而−1×2−(−3)=1,∴点M(−3, 2)关于直线x=−1对称的点N的坐标是(1, 2),∵点M与点N的纵坐标相同,∴直线MN与x轴的位置关系是平行.16.【答案】5【考点】作图-轴对称变换【解析】作出△ABC关于直线MN的轴对称图形,根据轴对称的性质,轴反射图形的面积等于△ABC的面积,再根据△ABC的面积等于所在矩形的面积减去四周三个直角三角形求出△ABC的面积,乘以2即可.【解答】解:如图,△A′B′C′为△ABC的轴反射图形,S△ABC=2×3−12×1×2−12×1×2−12×3×1=6−1−1−1.5=2.5,2×2.5=5,所以,△ABC与它轴反射图形的面积之和是5.故答案为:5.17.【答案】(−2, 2)【考点】坐标与图形变化-对称【解析】先根据矩形的性质与轴对称的性质得出AB=C′D,再利用AAS证明△ABE≅△DC′E,得出AE=DE=−m.根据△BOE的面积为4,列出方程12(2−m)(−m)=4,解方程即可.【解答】解:如图,设AE与CC′交于点D.∵点A的坐标为(m, 0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,∴CB=−2m.∵点C,C′关于直线x=m对称,∴CD=C′D,∵ABCD是矩形,AB=CD,∴AB=C′D.又∵∠BAE=∠C′DE=90∘,∠AEB=DEC′,∴△ABE≅△DC′E,∴AE=DE,∴AE=12AD=12BC=−m.∵△BOE的面积为4,∴12(2−m)(−m)=4,整理得,m2−2m−8=0,解得m=4或−2,∵在x轴上方取点C,∴−2m>0,∴m<0,∴m=4不合题意舍去,∵点E的坐标为(m, −m),∴点E的坐标为(−2, 2).故答案为(−2, 2).18.【答案】直线AE【考点】作图-轴对称变换【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:直线AE是这个图形的一条对称轴.故答案为:直线AE.19.【答案】(13, 23)【考点】轴对称中的坐标变化【解析】应先作出点O 及点A 的像,过两个像的直线与直线AB 的交点即为所求点.【解答】解:如图所示,∵ 点O 关于AB 的对称点是O′(1, 1)点A 关于y 轴的对称点是A′(−1, 0)设AB 的解析式为y =kx +b ,∵ (1, 0),(0, 1)在直线上,∴ {k +b =0b =1,解得k =−1, ∴ AB 的表达式是y =1−x ,同理可得O′A′的表达式是y =x 2+12,两个表达式联立,解得x =13,y =23.故答案为:(13, 23).20.【答案】4【考点】关于x 轴、y 轴对称的点的坐标【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(a, 3)与点B(−1, b)关于y 轴对称,得a =1,b =3.a +b =4,故答案为:4.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:△ABC 各顶点的坐标为:A(−3, 2),B(−4, −3),C(−1, −1);△ABC 关于y 轴对称的图形如图中△A 1B 1C 1.【考点】作图-轴对称变换【解析】利用轴对称性质,作出A、B、C关于y轴的对称点,A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1.【解答】解:△ABC各顶点的坐标为:A(−3, 2),B(−4, −3),C(−1, −1);△ABC关于y轴对称的图形如图中△A1B1C1.22.【答案】解:(1)如图所示,△A1B1C1就是所要求画的.(2)如图所示,△A2B2C2就是所要求画的.(3)如图所示,点P就是所要求画的点.(4)Q′(−m,−n)【考点】作图-轴对称变换轴对称——最短路线问题轴对称中的坐标变化【解析】本题考查利用轴对称性质作轴对称图形.先分别作出点A、B、C关于y轴的对称点A1、B1、C1,再连接A1B1、A1C1、B1C1即可.本题考查利用轴对称性质作轴对称图形.先分别作出点A1、B1、C1关于y轴的对称点A2、B2、C2,再连接A2B2、A2C2、B2C2即可.本题考查利用轴对称求最短路程问题.先作点A关于y轴的对称点A1,再连接A1C交y轴于P即可.本题考查轴对称中的坐标变换规律.根据关于y轴对称点的坐标规律是横坐标互为相反相成数,纵坐标不变;关于x轴对称点的坐标变换规律是:横坐标不变,纵坐标互为相反数.解答即可.【解答】解:(1)如图所示,△A1B1C1就是所要求画的.(2)如图所示,△A2B2C2就是所要求画的.(3)如图所示,点P就是所要求画的点.(4)点Q(m,n)关于y轴对称点Q1(−m,n),Q1(−m,n)关于x轴对称点Q′(−m,−n),∴ Rt△ABC上的点Q(m,n)通过(1)、(2)的两次连续轴对称变换后的对应点Q′(−m,−n).故答案为Q′(−m,−n).23.【答案】解:△ABC的各顶点的坐标分别为:A(−3, 2),B(−4, −3),C(−1, −1);所画图形如下所示,其中△A1B1C1的各点坐标分别为:A1(−3, −2),B1(−4, 3),C1(−1, 1).【考点】作图-轴对称变换关于x轴、y轴对称的点的坐标【解析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.【解答】解:△ABC的各顶点的坐标分别为:A(−3, 2),B(−4, −3),C(−1, −1);所画图形如下所示,其中△A1B1C1的各点坐标分别为:A1(−3, −2),B1(−4, 3),C1(−1, 1).24.【答案】(−3, 6),(3, 6),(−1, 5),(1, 5),(−2, 3),(2, 3)【考点】作图-轴对称变换【解析】先作出各点关于x轴的对称点,再顺次连接,由各点在坐标系中的位置写出各点坐标即可.【解答】解:如图所示,由图可知,A(−3, 6),A′(3, 6),B(−1, 5),B′(1, 5),C(−2, 3),C′(2, 3).故答案为:(−3, 6),(3, 6);(−1, 5),(1, 5);(−2, 3),(2, 3).25.【答案】解:如图所示:A1(2, 3)、B1(3, 2)、C1(1, 1).【考点】作图-轴对称变换【解析】根据关于y轴对称的点的坐标变化特点可得A1、B1、C1的坐标,再连接即可.【解答】解:如图所示:A1(2, 3)、B1(3, 2)、C1(1, 1).26.【答案】解:△A′B′C′如图所示,由图象得,点B′的坐标为(−3,4),点C′的坐标为(−4,1).【考点】作图-轴对称变换坐标与图形变化-对称【解析】直接作出图象,再结合图象,写出坐标即可.【解答】解:△A′B′C′如图所示,由图象得,点B′的坐标为(−3,4),点C′的坐标为(−4,1).27.【答案】解:(1)由题意建立平面直角坐标系如图所示,B(3, 4).(2)由(1)中图可知,点B关于直线m的对称点的坐标为B′(−1, 4);点C关于直线m的对称点的坐标为C′(−2, 2).(3)点P(a, b)关于直线m的对称点P1的坐标为P1(2−a, b).【考点】平面直角坐标系的相关概念点的坐标轴对称中的坐标变化【解析】(1)因为点B的坐标为(1, 1),所以点B向下平移1个长度单位,再向左平移1个长度单位,即是坐标原点,再写出点C的坐标即可;(2)根据轴对称的性质即可解决问题;【解答】解:(1)由题意建立平面直角坐标系如图所示,B(3, 4).(2)由(1)中图可知,点B关于直线m的对称点的坐标为B′(−1, 4);点C关于直线m的对称点的坐标为C′(−2, 2).(3)点P(a, b)关于直线m的对称点P1的坐标为P1(2−a, b).28.【答案】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,点A2,C2的坐标分别为(6,−1)和(5,−2).(3)已知M(x,y),第一次变化后,点M1坐标为(x,−y),第二次变化后,点M2坐标为(2−x,−y).【考点】轴对称中的坐标变化作图-轴对称变换关于x轴、y轴对称的点的坐标【解析】此题暂无解析【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,点A2,C2的坐标分别为(6,−1)和(5,−2).(3)已知M(x,y),第一次变化后,点M1坐标为(x,−y),第二次变化后,点M2坐标为(2−x,−y).29.【答案】解:所画图形如下所示:△A1B1C1和△A2B2C2各顶点坐标分别为:A1(−2, −3)B1(−3, −2)C1(−1, −1);A2(2, 3)B2(3, 2)C2(1, 1).【考点】作图-轴对称变换关于x轴、y轴对称的点的坐标【解析】(1)利用轴对称性质,作出A、B、C关于x轴的对称点,A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于x轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y 轴的对称点,A2、B2、C2,顺次连接A2B2、B2C2、C2A2,即得到关于y轴对称的△A2B2C2;(2)根据图形即可写出△A1B1C1和△A2B2C2各顶点坐标.【解答】解:所画图形如下所示:△A1B1C1和△A2B2C2各顶点坐标分别为:A1(−2, −3)B1(−3, −2)C1(−1, −1);A2(2, 3)B2(3, 2)C2(1, 1).30.【答案】解:点P′的坐标为(b, a).理由如下:分别作PA⊥y轴于A,P′B⊥x轴于B,连结OP、OP′,如图,∵点P与P′关于l对称,∴OP=OP′,∠1=∠2,∵l是第一、三象限的角平分线,∴∠1+∠3=∠2+∠4,∴∠3=∠4,在△OAP和△OBP′中{∠OAP=∠OBP′∠3=∠4OP=OP′,∴△OAP≅△OBP′(AAS),∴OA=OB,PA=P′B,而A点坐标为(a, b),∴点P′的坐标为(b, a).【考点】坐标与图形变化-对称【解析】分别作PA⊥y轴于A,P′B⊥x轴于B,连结OP、OP′,如图,根据对称的性质得OP= OP′,∠1=∠2,再根据角平分线定义得∠1+∠3=∠2+∠4,则∠3=∠4,然后利用“AAS”证明△OAP≅△OBP′,则OA=OB,PA=P′B,则易得点P′的坐标为(b, a).【解答】解:点P′的坐标为(b, a).理由如下:分别作PA⊥y轴于A,P′B⊥x轴于B,连结OP、OP′,如图,∵点P与P′关于l对称,∴OP=OP′,∠1=∠2,∵l是第一、三象限的角平分线,∴∠1+∠3=∠2+∠4,∴∠3=∠4,在△OAP和△OBP′中{∠OAP=∠OBP′∠3=∠4OP=OP′,∴△OAP≅△OBP′(AAS),∴OA=OB,PA=P′B,而A点坐标为(a, b),∴点P′的坐标为(b, a).31.【答案】解:(1)∵点A,B互为对称点,又点A的纵坐标为−2,点B的纵坐标为−6,∴对称轴为直线y=−2−6=−4.2设点C(−2,1)关于直线y=−4的对称点为(−2,m),∴1+m=−4,解得m=−9,2∴点C的对称点的坐标为(−2,−9).(2)如图,连接AB,BC,CA.×(−2+6)×(3+2)=10.则S△ABC=12【考点】轴对称中的坐标变化轴对称图形三角形的面积【解析】【解答】解:(1)∵点A,B互为对称点,又点A的纵坐标为−2,点B的纵坐标为−6,∴对称轴为直线y=−2−6=−4.2设点C(−2,1)关于直线y=−4的对称点为(−2,m),∴1+m2=−4,解得m=−9,∴点C的对称点的坐标为(−2,−9).(2)如图,连接AB,BC,CA.则S△ABC=12×(−2+6)×(3+2)=10.32.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)由(1)所画图形可知,A1(0,−1),B1(3,−2),C1(1,−4).(3)S△A1B1C1=3×3−12×3×1−12×2×2−12×3×1=4.【考点】轴对称中的坐标变化三角形的面积作图-轴对称变换【解析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由(1)所画图形可知,A1(0,−1),B1(3,−2),C1(1,−4).(3)S△A1B1C1=3×3−12×3×1−12×2×2−12×3×1=4.33.【答案】解:(1)如图,△A1B1C1即为所求.(2)当△BCD与△BCA关于BC对称时,点D坐标为(0,3);当△BCA与△CBD关于BC的中点对称时,点D坐标为(0,−1);当△BCA与△CBD关于BC的中垂线对称时,点D坐标为当(2,−1).【考点】作图-轴对称变换轴对称中的坐标变化中心对称中的坐标变化【解析】此题暂无解析【解答】解:(1)如图,△A1B1C1即为所求.(2)当△BCD与△BCA关于BC对称时,点D坐标为(0,3);当△BCA与△CBD关于BC的中点对称时,点D坐标为(0,−1);当△BCA与△CBD关于BC的中垂线对称时,点D坐标为当(2,−1).34.【答案】解:如图【考点】作图-轴对称变换【解析】作A、B两点关于m的对应点,再顺次连接A′、B′、C即可.【解答】解:如图35.【答案】解:所作图形如下所示:A1、B1、C1的坐标分别为:(2, −5),(5, −2),(1, −1);A2、B2、C2的坐标分别为:(−2, 5),(−5, 2),(−1, 1).【考点】作图-轴对称变换关于x轴、y轴对称的点的坐标【解析】(1)作出A、B、C关于x轴的对称点,A1、B1、C1,顺次连接A1B1、B1C1、C1A1;(2)作出A、B、C关于y轴的对称点,A2、B2、C2,顺次连接A2B2、B2C2、C2A2.【解答】解:所作图形如下所示:A1、B1、C1的坐标分别为:(2, −5),(5, −2),(1, −1);A2、B2、C2的坐标分别为:(−2, 5),(−5, 2),(−1, 1).36.【答案】解:△A1B1C1、△A2B2C2如图所示.点P′的坐标为(−x, y)【考点】坐标与图形变化-对称【解析】(1)求出点A,B,C关于y轴对称的点A1B1C1的坐标,作出ΔA1B1C1,即可求解;(2)根据题意可知:点P和点.p关于y轴对称,即可求出点P的坐标;(3)根据题意可知:ΔA2B2C2是由△ABC向左平移3个单位长度,向下平移5个单位长度得到的,即可作出ΔA2B2C2【解答】此题暂无解答37.【答案】解:如图所示,△DEF即为所求.【考点】作图-轴对称变换【解析】根据△ABC和△DEF是关于某条直线成轴对称的两个格点三角形,运用轴对称的性质画出图形即可.【解答】解:如图所示,△DEF即为所求.38.【答案】解:(1)如图所示,△A1B1C1即为所求.A(1, 6),B1(5, 3),C1(3, 1).(2)如图所示,D即为所求.【考点】作图-轴对称变换关于x轴、y轴对称的点的坐标【解析】此题暂无解析【解答】解:(1)如图所示,△A1B1C1即为所求.A(1, 6),B1(5, 3),C1(3, 1).(2)如图所示,D即为所求.39.【答案】解:(1)∵点A(a, −5),B(8, b)关于y轴对称,∴a=−8,b=−5;(2))∵点A(a, −5),B(8, b)关于x轴对称,∴a=8,b=5;(3)∵AB // y轴,∴a=8,b为不等于−5的实数;(4)∵A,B两点在第二、第四象限的角平分线上,∴a=5,b=−8.【考点】关于x轴、y轴对称的点的坐标【解析】(1)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答;(2)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答;(3)根据平行于y轴的直线上的点的横坐标相等求解;(4)根据第二四象限角平分线上的点的横坐标与纵坐标互为相反数解答.【解答】解:(1)∵点A(a, −5),B(8, b)关于y轴对称,∴a=−8,b=−5;(2))∵点A(a, −5),B(8, b)关于x轴对称,∴a=8,b=5;(3)∵AB // y轴,∴a=8,b为不等于−5的实数;(4)∵A,B两点在第二、第四象限的角平分线上,∴a=5,b=−8.40.【答案】解:如图所示:线段A′B′即为所求..【考点】作图-轴对称变换【解析】根据线段AB关于直线MN对称的线段A′B′,求出A,B关于直线MN的对称点A′,B′,进而得出即可.【解答】解:如图所示:线段A′B′即为所求..。
初中数学八年级上册轴对称练习题含答案
初中数学八年级上册轴对称练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,球沿图中箭头方向击出后碰到桌子的边缘会反弹,其中∠1叫做入射角,∠2叫做反射线,如果每次的入射角总是等于反射角,那么球最后将落入桌子四个顶角处的球袋中的()A.A号袋B.B号袋C.C号袋D.D号袋2. 下面4个图案,其中是轴对称图形的有()A.4个B.3个C.2个D.1个3. 小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是( )A. B. C. D.4. 下列图案不是轴对称图形的是( )A. B.C. D.5. 从镜子中看到钟的时间是8点25分,正确的时间应是()A.3点45分B.3点35分C.3点30分D.3点25分6. 如图,已知∠AOB=30∘,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点P1,P2,连接OP1,OP2,P1P2,设P1P2交OA于点M,交OB于点N,连接PM,PN.若PM=1,PN=2,MN=3,则OP1的长为()A.4B.5C.6D.77. 一辆汽车车牌如图所示,则在正面看它在马路上水中的倒影为()A.B.C.D.8. 到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点9. 如图,在△ABC 中,∠B =70∘,DE 是AC 的垂直平分线,且∠BAD:∠BAC =1:3,则∠C 的度数为( )A.48∘B.3307º C.46∘D.44∘10. 如图,△ABC 与△A′B′C′关于直线L 成轴对称,则下列结论中错误的是( )A.AB =A′B′B.∠B =∠B′C.AB // A′C′D.直线L 垂直平分线段AA′11. 在平面直角坐标系xOy 中,已知点A(0, 8),点B(6, 8),若点P 同时满足下列条件:①点P 到A ,B 两点的距离相等;②点P 到∠xOy 的两边距离相等.则点P 的坐标为________.12. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =3.1cm ,CD=2.3cm.则四边形ABCD的周长为________.13. 证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等..已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平分线上的一点,∴ ________=________(________).同理可得,PB=________.∴ ________=________(等量代换).∴ ________(到一条线段两个端点距离相等的点,在这条线段的________)∴AB、BC、AC的垂直平分线相交于点P,且________.14. 如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为________度.15. 如图,已知CD垂直平分AB.若AC=4, AD=5,则四边形ADBC的周长是________.AB的长为半径作弧,两弧相16. 如图,已知线段AB,分别以点A和点B为圆心,大于12交于C,D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=________.17. 如图,中,AB的垂直平分线交AC于点M,若,,,则的周长为________cm.18. 如图,在△ABC中,AB=AC, DE是AB的垂直平分线,△BCE的周长为24, BC=10则AB的长为________19. 如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点________.(P1至P4点)20. 如图,在▱ABCD中,按如下顺序作图:①以点A为圆心,AD长为半径画弧,交AB于点F;DF长为半径画弧,两弧交于点G;②分别以点D,点F为圆心,大于12③连接DF,作射线AG,交DC于点E.则四边形ADEF是________形;若AD=5,DF=6,则AE=________.21. 如图,已知:△ABC中,试说明:(1)用尺规作图作出边AB、BC的垂直平分线并相交于点P(要求:不写作法,保留作图痕迹)(2)求证:P在AC的垂直平分线上.22. 如图,在△ABC中,AB>AC.(1)用尺规作图法在AB上找一点P,使得PB=PC.(保留作图痕迹,不用写作法);(2)在(1)的条件下,连结PC,若AB=6,AC=4,求△APC的周长.23. 如图是由三个相同的小正方形组成的图形,请你用三种方法在图中补画一个相同的小正方形,使补画后的四个小正方形所组成图形为轴对称图形.24. 如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入哪一个球袋?说明理由.25. 如图,△ABC中,∠BAC=110∘,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.26. 如图,P为∠AOB内的一点,分别作出点P关于OA、OB的对称点P1、P2,连结P1、P2,交OA于M,交OB于N,若P1P2=13cm,求△MNP的周长?27. 如图,已知△ABC≅△DEF,且A,B,D,E四点在同一直线上,(1)如图1,请你用无刻度的直尺作出线段BE的垂直平分线;(2)如图2,请你用无刻度的直尺作出线段AD的垂直平分线.28. 如图,下面是一些交通标志,你能从中获得哪些信息?29. 已知:直线a1,a2垂直相交于O,于两直线外一点P,求作点P关于直线a1的对称点P′,点P关于直线a2的对称点P″,试证明:OP′=OP″.30. 两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.31. 已知:如图,在Rt△ABC中,∠C=90∘,∠B=30∘,AD平分∠BAC交BC于点D.(1)求证:点D在AB的垂直平分线上;(2)若CD=2,求BC的长.32. 如图,在△ABC中,DE是BC的垂直平分线,垂足为点E,交AB于点D,若CE=5,△ABC的周长为25,求△ADC的周长.33. 如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30∘,求∠MAN的度数;(3)若∠MON=45∘,BM=3,BC=12,求MN的长度.34. 如图,△ABC的周长为20cm,AC的垂直平分线DE交BC于D,E为垂足,若AE= 4cm,△ABD的周长为________cm.35. 指出下列图形中的轴对称图形,并找出它们的对称轴.36. 如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.37. 如图,已知:在△ABC中,AB,BC边上的垂直平分线相交于点P,求证:点P在AC的垂直平分线上.38. 如图所示,已知AB=AC,DB=DC,E是AD延长线上的一点,问:BE与CE相等吗?请说明理由.39. 搜集各国的国旗标志,举出5个以上具有轴对称图形的标志,并画出它们所有的对称轴.40. 指出下列图形中的轴对称图形,是轴对称图形的指出对称轴.参考答案与试题解析初中数学八年级上册轴对称练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】生活中的轴对称现象【解析】根据图形画出图示可直接得到答案.【解答】解:如图所示:球最后将落入桌子四个顶角处的球袋中的C号袋中,故选:C.2.【答案】B【考点】轴对称图形【解析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,观察可知前三个是轴对称图形,第四个不是轴对称图形.故选B.3.【答案】D【考点】镜面对称【解析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左右翻折,即可得到原图象,实际时间为8点的时针关于过12时,6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,而D更接近8点.【答案】A【考点】轴对称图形【解析】此题暂无解析【解答】解:由题A是中心对称图形不是轴对称图形,BCD是轴对称图形.故选A.5.【答案】B【考点】镜面对称【解析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻8点25分与3点35分成轴对称,所以此时实际时刻为3点35分.故选B.6.【答案】【考点】轴对称的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】镜面对称【解析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的图片与A显示的图片成轴对称,所以在正面看它在马路上水中的倒影为A显示的图片.故选A.8.【答案】D【考点】根据:垂直平分线上任意一点,到线段两端点的距离相等.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【解答】到线段两个端点距离相等的点在该线段的垂直平分线上,由此可得出要到三角形三个顶点的距离相等的交点是三条边的垂直平分线的交点.故选:D9.【答案】D【考点】线段垂直平分线的性质【解析】由DE垂直平分AC可得∠DAC=∠DCA;∠ADB是△ACD的外角,故∠DAC+∠DCA=∠ADB又因为∠B=70∘⇒∠BAD=180∘−∠B−∠BAD,由此可求得角度数.【解答】解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x−x=2x,根据题意得:180∘−(x+70∘)=2x+2x,解得x=22∘,∴∠C=∠DAC=22∘×2=44∘.故选:D.10.【答案】C【考点】线段的垂直平分线的性质定理的逆定理轴对称的性质线段垂直平分线的性质【解析】利用轴对称的性质对各选项进行判断.【解答】解:∵△ABC与△A′B′C′关于直线L成轴对称,∴AB=A′B′,∠B=∠B′,直线l垂直平分AA′.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】(3,3)【考点】线段垂直平分线的定义角平分线的定义【解析】性质解答即可.【解答】解:∵点A(0, 8),点B(6, 8),点P到A,B两点的距离相等,∴点P在线段AB的垂直平分线x=3上.∵点P到∠xOy的两边距离相等,∴点P在∠xOy的平分线上,∴点P的坐标为(3, 3).故答案为:(3,3).12.【答案】10.8cm【考点】轴对称的性质【解析】根据轴对称图形的性质得出AB=BC=3.1cm,CD=AD=2.3cm,进而求出即可.【解答】解:∵四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=3.1cm,CD=2.3cm,∴AB=BC=3.1cm,CD=AD=2.3cm,则四边形ABCD的周长为:3.1+3.1+2.3+2.3=10.8(cm).故答案为:10.8cm.13.【答案】解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据线段垂直平分线的性质定理和逆定理即可解答本题.解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.14.【答案】100【考点】轴对称的性质【解析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=30∘,∴∠B=180∘−∠A−∠C=180∘−50∘−30∘=100∘.故答案为:100.15.【答案】18【考点】线段垂直平分线的性质【解析】此题主要考查线段的垂直平分线的性质.【解答】解:∵CD垂直平分AB,若AC=4,AD=5,∴AC=BC=4,AD=BD=5,∴四边形ADBC的周长为AD+AC+BD+BC=18.故答案为:18.16.【答案】5线段垂直平分线的性质作线段的垂直平分线【解析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.【解答】解:由题意得,直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为:5.17.【答案】12【考点】线段垂直平分线的性质【解析】根据线段垂直平分线的性质可得BM=AM=4cm,然后可得△MBC的周长.【解答】:AB的垂直平分线交AC于点M,BM=AM=4cmCM=3cm,BC=5cm∴△MBC的周长为:4+3+5=12(cm)故答案为:12.18.【答案】14【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据“线段垂直平分线的性质定理”即可得到AE=EE,由于△BCE的周长为24,利用线段的等量代换即可得到|AC+BC的值;已知BC的长度,即可得到AC的长度,由于AB=AC,则问题得解.【解答】∼DE是AB的垂直平分线,AE=EE.△BCE的周长为24,BC+BE+CE=BC+AE+CE=BC+AC=24BC=10AC=14.AB=ACAB=1A【答案】P2【考点】生活中的轴对称现象【解析】认真读题,作出点A关于P1P2所在直线的对称点A′,连接A′B与P1P2的交点即为应瞄准的点.【解答】如图,应瞄准球台边上的点P2.20.【答案】菱,8【考点】作线段的垂直平分线菱形的判定与性质【解析】此题暂无解析【解答】解:由①可知,AD=AF,由②可知,GD=GF,所以AE为线段DF的垂直平分线,则DE=EF,设AE与DF交于点O,∵ DE//AF,∴ ∠DEA=∠FAE.在△DOE和△FOA中,{∠DEA=∠FAE,DO=OF,∠DOE=∠FOA,∴ △DOE≅△FOA,∴ DE=AF,∴ 四边形ADEF是菱形;∵ AD=5,DF=6,∴ DO=3,∴ AO=√AD2−DO2=4,∴ AE=8.故答案为:菱;8.三、解答题(本题共计 20 小题,每题 10 分,共计200分)(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.【考点】线段的垂直平分线的性质定理的逆定理作线段的垂直平分线线段垂直平分线的性质【解析】(1)根据垂直平分线的作法得出即可;(2)可用作圆的方法作出线段AB、BC的垂直平分线;因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA=PB=PC 即可.【解答】(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.22.【答案】(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.【考点】作线段的垂直平分线线段垂直平分线的性质【解析】【解答】解:(1)答案如图所示.(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.23.【答案】解:如图所示.【考点】轴对称图形【解析】根据轴对称图形的概念,先确定出不同情况的对称轴,然后补全小正方形即可.【解答】解:如图所示.24.【答案】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.【考点】生活中的轴对称现象【解析】由已知条件,按照反射的原理画图即可得出结论.【解答】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.25.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).【考点】线段垂直平分线的性质【解析】(1)根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,DA=BD,FA= FC,则∠EAD=∠B,∠FAC=∠C,得出∠DAF=∠BAC−∠EAD−∠FAC=110∘−(∠B+∠C)求出即可.(2)由(1)中得出,AD=BD,AF=FC,即可得出△DAF的周长为BD+FC+ DF=BC,即可得出答案.【解答】解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).26.【答案】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.【考点】轴对称的性质【解析】根据轴对称的性质可得PM=P1M,PN=P2N,从而求出△MNP的周长等于P1P2,从而得解.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.27.【答案】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.【考点】作线段的垂直平分线【解析】此题暂无解析【解答】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.28.【答案】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.【考点】生活中的轴对称现象【解析】根据图形中的几个交通标志的轴对称性可以作出判断,答案不唯一.【解答】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.29.【答案】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.【考点】轴对称的性质【解析】作出图形,连接PP′、PP″、OP,根据轴对称的性质可得OP′=OP,OP″=OP,然后证明即可.【解答】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.30.【答案】解:它们的对称轴均为经过两圆圆心的一条直线.【考点】轴对称图形【解析】根据每个圆都是轴对称图形,且对称轴是经过圆心的直线,则两个不是同心圆的圆组成的图形的对称轴是经过两个圆的圆心的直线.【解答】解:它们的对称轴均为经过两圆圆心的一条直线.31.【答案】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.【考点】线段的垂直平分线的性质定理的逆定理含30度角的直角三角形线段垂直平分线的性质【解析】无无【解答】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.32.【答案】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.【考点】线段垂直平分线的性质【解析】由DE是BC的垂直平分线,即可求得BD=CD与BC的值,又由△ABC的周长为25,即可求得AB+AC的值,继而求得△ADC的周长.【解答】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.33.【答案】∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.【考点】线段垂直平分线的性质【解析】(1)根据线段的垂直平分线的性质得到MA=MB,NA=NC,根据三角形的周长公式计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算;(3)根据(2)的解法得到∠MAN=90∘,根据勾股定理列式计算即可.∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.34.【答案】12【考点】线段垂直平分线的性质【解析】此题主要考查了线段的垂直平分线定理,三角形的周长公式,整体代入,解本题的关键是求出AB+BC的值.【解答】解:∵ DE是AC的垂直平分线,∴ AD=CD,AC=2AE,∵ AE=4cm,∴ AC=8cm,∴ △ABC的周长为20cm,∴ AB+BC+AC=20,∴ AB+BC=20−AC=12cm,∴ △ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=12cm,故答案为:12.35.解:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:36.【答案】解:.(答案不唯一).【考点】轴对称图形【解析】结合轴对称图形的概念进行解答即可.【解答】解:.(答案不唯一).37.【答案】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.【考点】线段垂直平分线的性质【解析】因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA是否等于PC即可.【解答】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.38.【答案】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.【考点】轴对称的性质【解析】根据垂直平分线的定义可分别判定:点A在线段BC的垂直平分线上,D点也在线段BC 的垂直平分线上,所以可推出AD是线段BC的垂直平分线.从而求得BE=EC.【解答】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.39.【答案】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.40.【答案】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,即可作出判断.【解答】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:。
人教版八年级数学上册轴对称精选练习题
人教版八年级数学上册轴对称精选练习题在即将学完的人教版八年级上册数学轴对称的知识,教师们需要为同学们准备哪些精选练习题呢?下面是店铺为大家带来的关于人教版八年级数学上册轴对称精选的练习题,希望会给大家带来帮助。
人教版八年级数学上册轴对称精选练习题目一、选择题(共8小题)1.下列各,不是轴对称形的是( )2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是( )A. 上海自来水来自海上B. 有志者事竞成C. 清水池里池水清D. 蜜蜂酿蜂蜜3.下列说法错误的是( )A. 等边三角形有3条对称轴B. 正方形有4条对称轴C. 角的对称轴有2条D. 圆有无数条对称轴4.如是经过轴对称变换后所得的形,与原形相比( )A. 形状没有改变,大小没有改变B. 形状没有改变,大小有改变C. 形状有改变,大小没有改变D. 形状有改变,大小有改变5.观察形…并判断照此规律从左到右第四个形是( )6.把一个形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种形变换(如1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如2)的对应点所具有的性质是( )A. 对应点连线与对称轴垂直B. 对应点连线被对称轴平分C. 对应点连线被对称轴垂直平分D. 对应点连线互相平行7.两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是( )A. 55°B. 60°C. 65°D. 70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )二、填空题(共10小题)9.2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________ .10.写出一个至少具有2条对称轴的形名称_________ .11.在3×3的正方形网格中,已有两个小正方形被涂黑,再将中的一个小正方形涂黑,所得案是一个轴对称形,则涂黑的小正方形可以是_________ (填出所有符合要求的小正方形的标号)12.在轴对称形中,对应点的连线段被_________ 垂直平分.13.下列形中,一定是轴对称形的有_________ ;(填序号)(1)线段 (2)三角形 (3)圆 (4)正方形 (5)梯形.14.如是汽车牌照在水中的倒影,则该车牌照上的数字是_________ .15.(2009•綦江县)请同学们写出两个具有轴对称性的汉字_________ .16.国际奥委会会旗上的案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________ 成轴对称.(请把能成轴对称的曲边四边形标号都填上)17.长方形ABCD中,长BC=a,宽AB=b,(b18.请利用轴对称性,在下面这组形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的形:三、解答题(共5小题)19.判断下列形是否为轴对称形?如果是,说出它有几条对称轴.20.五边形ABCDE是轴对称形,线段AF所在直线为对称轴,找出中所有相等的线段和相等的角.21.l是该轴对称形的对称轴.(1)试写出中二组对应相等的线段:(2)试写出二组对应相等的角:(3)线段AB、CD都被直线l22.如是由两个等边三角形(不全等)组成的形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称形,并且所构成的形有尽可能多的对称轴.画出你所构成的形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数”.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数(两位以上),经过一定的计算,可以变成“回文数”,办法很简单:只要将这个数加上它的逆序数就可以了,若一次不成功,反复进行下去,一定能得到一个回文数,比如:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!(1)你能用上述方法,将下列各数“变”成回文数吗?①237 ②362(2)请写出一个四位数,并用上述方法将它变成回文数.人教版八年级数学上册轴对称精选练习题答案一、选择题(共8小题)1.A2.B3.C4.A5.D6.B7.B8.D二.填空题(共10小题)9. 20011002,20100102(答案不唯一) ;10.矩形;11. 2,3,4,5,712.对称轴;13. (1)(3)(4) ;14. 21678 .; 15. 甲、由、中、田、日等.;16. 1,3,7 ;17. ;18.三.解答题(共5小题)19.解:根据轴对称形的概念:如果一个形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个形叫做轴对称形.则(1)(3)(5)(6)(9)不是轴对称形;(2)(4)有1条对称轴;(7)有4条对称轴;(8)有1条对称轴;(10)有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.(1) AC=BD,AE=BE,CF=DF,AO=BO ;(2) ∠BAC=∠ABD,∠ACD=∠BDC;(3) 垂直平分.22.解:小正三角形再大正三角形的内部,该形有3条对称轴.23.解:( 1)①237+732=969,②362+263=625,(2)1151+1511=2662;。
轴对称测试题及答案初二
轴对称测试题及答案初二一、选择题1. 下列图形中,不是轴对称图形的是:A. 等边三角形B. 正方形C. 圆D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为:A. 对称轴B. 对称线C. 中心线D. 平行线3. 对于轴对称图形,下列说法正确的是:A. 只有一个对称轴B. 可以有多个对称轴C. 没有对称轴D. 以上都不对二、填空题1. 轴对称图形的对称轴是图形上所有点到对称中心的_________。
2. 如果一个图形沿着对称轴对折,两侧的图形完全重合,那么这个图形是_________图形。
三、判断题1. 所有的等腰三角形都是轴对称图形。
()2. 轴对称图形的对称轴可以是曲线。
()四、简答题1. 请简述什么是轴对称图形,并给出一个生活中的例子。
2. 轴对称图形有哪些性质?五、解答题1. 如图所示,△ABC是轴对称图形,对称轴为直线l,求证:AB=AC。
答案:一、选择题1. D2. B3. B二、填空题1. 垂直平分线2. 轴对称三、判断题1. 正确2. 错误四、简答题1. 轴对称图形是指一个图形关于某条直线对称,这条直线被称为对称轴。
例如,蝴蝶的翅膀就是轴对称图形。
2. 轴对称图形的性质包括:对称轴两侧的图形完全重合,对称轴是图形上所有点到对称中心的垂直平分线。
五、解答题1. 证明:由于△ABC是轴对称图形,对称轴为直线l,根据轴对称图形的性质,我们知道对称轴l是线段AB和AC的垂直平分线。
因此,AB和AC到对称轴l的距离相等,即AB=AC。
结束语:通过本测试题的练习,希望同学们能够更好地理解轴对称图形的概念和性质,提高解题能力。
轴对称是几何学中的一个重要概念,它不仅在数学中有广泛的应用,也在自然界和艺术设计中随处可见。
希望大家能够在生活中发现更多的轴对称之美。
八年级数学上册轴对称单元测试题(带详细答案解析)(K12教育文档)
八年级数学上册轴对称单元测试题(带详细答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册轴对称单元测试题(带详细答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册轴对称单元测试题(带详细答案解析)(word版可编辑修改)的全部内容。
(A )(B )(C )(D )第3题第4题(A )(B )(C )(D )八年级数学上册轴对称单元测试题一、选择题(3分×7=21分)1.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )2.如图,有8块相同长方形地砖拼成一个矩形地面,则每块长方形地砖地长和宽分别是( )A .48cm ,12cmB .48cm ,16cmC .44cm ,16cmD .45cm ,15cm 3.如图,在方格纸中有四个图形〈1〉、〈2>、〈3〉、〈4>,其中面积相等的图形是( )A . 〈1〉和<2>B 。
<2>和<3>C . <2〉和〈4>D 。
〈1>和〈4>4.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.5.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有( ) A .1个 B .2个 C .3个 D .4个6.直角三角形三边垂直平分线的交点位于三角形的( )A .形内B .形外C .斜边的中点D .不能确实7.在下列说法中,正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形C .等腰三角形是关于底边中线成轴对称的图形D .一条线段是关于经过该线段中点的直线成轴对称的图形 二、填空题(3分×6=18分)8.王红在电脑中用英文写个人简历时,把其中一句倒排成: , 则正确的英文为____________.9.下列10个汉字:林 上 下 目 王 田 天 王 显 吕,其中不是轴对称图形的是_______;有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________.10.一个汽车车牌在水中的倒影为 ,则该车的牌照号码是______. 11.身高1.80米的人站在平面镜前2米处,它在镜子中的像高______米,人与像第5题60cm ↑↓第2题ABMCNO第13题之间距离为_______米;如果他向前走0.2米,人与像之间距离为_________米. 12.已知等腰三角形的一个角为42°,则它的底角度数_______.13.如图,已知△ABC 中,AC + BC =24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( )A .12B .24C .36D .不确定三、多项选择题:14.下列说法中,不正确的是( )A .等边三角形是轴对称图形,它的三条高是它的对称轴;B .等腰三角形是轴对称;C .关于某一条直线对称的两个三角形一定全等;D .若△ABC 与△A 1B 1C 1关于直线L 对称,那么它们对应边的高、中线、对应角的平分线分别关于L 对称.15.如图所示,Rt △ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E .当∠B =30°时,图中一定相等的线段有( )A .AC =AE =BEB .AD =BDC .CD =DE D .AC =BD四、解答题(第17题10分,其余每小题7分,共73分)16.如图所示,四边形EFGH 是一个矩形的球桌面,有黑白两球分别位于A 、B 两点,试说明怎样撞击B , 才使白球先撞击台球边EF ,反弹后又能击中黑球A ?17.如图所示,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF =BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 理由.18.如图所示,已知Rt △ABC 中,∠C =90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点落在AB 边上的点D .要使点D 恰为AB 的中点,问在图中还要添加什么条件?BACDEFBD第15题A CBD E(直接填写答案)⑴写出两条边满足的条件:______. ⑵写出两个角满足的条件:_____.⑶写出一个除边、角以外的其他满足条件:___________.19.你能根据图中(1)的操作步骤,将一张正方形的纸片剪出图案(2)吗?请简述其图案形成过程.20.已知:如图,△ABC 中,∠C =90°,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E ,求证CT =BE .21.用棋子摆成如图所示的“T "字图案.(1)摆成第一个“T ”字需要___________个棋子,第二个图案需______________个棋子; (2)按这样的规律摆下去,摆成第10个“T ”字需要_______个棋子,第n 个需_______个棋子.(2)(1)ACBMD(1)(2)22.如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.23.如图所示,∠ABC内有一点P,在BA、BC边上各取一点P1、P2,使△PP1P2的周长最小.24.如图所示,∠BAC=105°,若MP和NQ分别垂直平分AB和AC.求∠PAQ的度数.25.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状CABHMBANCQP相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图1);⑵过一条边的四等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法).请你按照上述三个要求,分别在下面两个正方形中给出另外..两种不同的分割方法...........(正确画图,不写画法)1.A (点拨:把球衣上253的号码沿水平方向翻折180°,得到的图案即是他背对镜子时的像.)2.D (点拨:设长方形地砖的长和宽分别为x ㎝,(60-x )㎝,则2x =x +3(60-x ),x =45,60-x =15.)3.A (点拨:设每个小正方形方格面积为1,则图(1)、(2)、(3)、(4)的面积分别为6,6,8,9.)4.D (点拨:图案D 有两条对称轴,其余三个图案都只有一条对称轴.) 5.C (点拨;只有中国建设银行的标志不是轴对称图形.) 6.C .(点拨:直角三角形斜边的中点到三顶点的距离相等.)7.B (点拨:全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的.) 8.“I this year 14 years old , ” (点拨:在这句话的正上方放一面镜子,中文为:“我今年14岁,”.) 9.(点拨:林 上 下 不是轴对称图形 , 天 王 显 吕 这四个字都有1条对称轴, 目 王 有2条对称轴, 田 有4条对称轴.)10. (点拨:只需将倒影沿垂直旋转180°即可,因此该车的牌照号码为:W 5236499.)11.1.8,4,3.6(点拨:根据镜子中的像与物体大小相同,且都到镜子的距离相等.) 12.42°或69°(点拨:这个42°的内角可以为等腰三角形的底角,也可为等腰三角形的顶角.) 13.24. 14.A ,B15.ABC . 5对.因为∠B =30°,AD =BD ,则∠DAB =30°,又因为∠C =90°,∴∠CAD =∠EAD =30°,得CD =DE ,△ACD ≌△AED ,则AC =AE =BE .16.先作出点A 关于台球边EF 的对称点A 1,连结BA 1交EF 于点O .将球杆沿BOA 1图(1)图(2)图(3)图(4)图7-2-8BAFG的方向撞击B球,可使白球先撞击台球边EF,然后反弹后又能击中黑球A.17.如图所示,延长BE到G,使EG=BC,连FG.∵AF=BE,△ABC为等边三角形,∴BF=BG,∠ABC=60°,∴△GBF也是等边三角形.在△BCF和△GEF中,∵BC=EG,∠B=∠G=60°,BF=FG, ∴△BCF≌△GEF,∴CE=DE,又∵FD⊥CE,∴∠FCE=∠FEC(等腰三角形的“三线合一”).18.(1)①AB=2BC或②BE=AE等;(2)①∠A=30°或②∠A=∠DBE等;(3)△BEC≌△AED 等.19.按(1)中提示的方法,连续折叠三次,再用剪刀剪去一个左下方的一个小角即可.20.过T作TF⊥AB于F, 证△ACT≌∠AFT(AAS),△DCE≌△FTB(AAS).21.(1)5, 8; (2)32, 3n+2.22.在CH上截取DH=BH,连结AD,先证△ABH≌△ADH,再证∠C=∠DAC,得到∠B=70°.23.如图,以BC为对称轴作P的对称点M,以BA为对称轴作出P的对称点N,连MN 交BA、BC于点P1、P2.∴△PP1P2为所求作三角形.24.由于MP、NQ分别垂直平分AB和AC,所以PB=PA,QC=QA.所以∠PBA=∠PAB,∠QCA=∠QAC,∠PAB+∠QAC=∠PBA+∠QCA=180-105=75°,∴∠PAQ=105°-75°=30°.25.如图(1)、(2)符合题意,图(3)的四部分面积相等但形状大小不同.图(1)图(2)图(3)25题图23题图。
初二八年级数学《轴对称图形》课后练习题(含答案)
《轴对称图形》课后练习1.如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是( )①②③④A.①②③B.②③④C.③④① D.④①②2.下列图形中,不是轴对称图形的是( )A.有两个角相等的三角形B.有一个角为45º的直角三角形C.有一个内角为30º,一个内角为120º的三角形D.有一个内角为30º的直角三角形3.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.顶角的平分线C.底边的垂直平分线D.腰上的高4.下列图形中,不是轴对称图形的是( )A.角B.等边三角形 C.线段 D.不等边三角形5.正五角星的对称轴的条数是( )A.1条B.2条C.5条 D.10条6.下列图形中有4条对称轴的是( )A.平行四边形B.矩形 C.正方形D.菱形7.下列说法中,正确的是( )A.两个全等三角形组成一个轴对称图形B.直角三角形一定是轴对称图形C.轴对称图形是由两个图形组成的D.等边三角形是有三条对称轴的轴对称图形8.如图,ΔABC和ΔA’B’C’关于直线对称,下列结论中:①ΔABC≌ΔA’B’C’;②∠BAC’≌∠B’AC;③l垂直平分CC’;④直线BC和B’C’的交点不一定在l上,正确的有( )A.4个B.3个 C.2个D.1个9.如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2 = 5cm,则ΔPMN的周长是( )A. 3cm B. 4cm C. 5cm D. 6cm10.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________.14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6AD=5,BC=8,且AB∥DE ,则△DEC 的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.OB20.如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm,∠BEG=60°,求折痕EF的长.22.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.ACDBB CDEA23.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.参考答案:1.B2.D3.C4.D5.C6.C7.D8.B9.C 10.C11.2 12.30°、75°、120°13.4 14.5 15.15 16.4、6 17.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。
八年级数学(上册)《轴对称图形》经典例题含解析
《第2章轴对称图形》一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或174.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P910.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2二、填空题11.下面有五个图形,与其它图形众不同的是第______个.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=______°.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有______种.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为______.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.《第2章轴对称图形》参考答案与试题解析一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.6.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的三线合一得到BF=FC,根据直角三角形的性质判断A;根据直角三角形的性质判断B;根据三角形内角和定理和等腰三角形的性质判断C,根据直角三角形的性质判断D.【解答】解:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=BC=BF,A不合题意;∵DE=AB,EF=BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE;故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P9【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质分别分析得出即可.【解答】解:由题意可得:当连接P2P3,P4P5,P7P8时,所形成的图形是轴对称图形,当连接P8P9时,所形成的图形不是轴对称图形.故选:D.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题.二、填空题11.下面有五个图形,与其它图形众不同的是第③个.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第①②④⑤个图形是轴对称图形,第③个不是.故答案为:③.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是 4 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9 .【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= 70 °.【考点】轴对称的性质;平行线的判定与性质.【专题】常规题型.【分析】先证明四边形BDEC是菱形,然后求出∠ABD的度数,再利用三角形内角和等于180°求出∠BAD的度数,然后根据轴对称性可得∠BAC=∠BAD,然后求解即可.【解答】解:∵CD与BE互相垂直平分,∴四边形BDEC是菱形,∴DB=DE,∵∠BDE=70°,∴∠ABD==55°,∵AD⊥DB,∴∠BAD=90°﹣55°=35°,根据轴对称性,四边形ACBD关于直线AB成轴对称,∴∠BAC=∠BAD=35°,∴∠CAD=∠BAC+∠BAD=35°+35°=70°.故答案为:70.【点评】本题考查了轴对称的性质,三角形的内角和定理,判断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是40°.【考点】线段垂直平分线的性质.【分析】根据三角形内角和定理求出∠B+∠C的度数,根据线段的垂直平分线的性质得到PA=PB,QA=QC,得到∠PAB=∠B,∠QAC=∠C,结合图形计算即可.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAB+∠QAC=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=40°,故答案为:40°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.【考点】利用轴对称设计图案.【专题】压轴题.【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【解答】解:如图所示:故一共有13做法,故答案为:13.【点评】此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8 .【考点】等腰三角形的性质.【专题】应用题.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.(2)S四边形A1B1C1D1=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2=12﹣1﹣1﹣﹣2=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.【考点】线段垂直平分线的性质.【专题】作图题.【分析】(1)作线段AB的垂直平分线即可;(2)到一个角的两边距离相等的点在这个角的平分线上.那么点P是∠B的平分线和线段AB的垂直平分线的交点.【解答】解:(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴.【点评】用到的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.到一个角的两边距离相等的点在这个角的平分线上.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】开放型.【分析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.【解答】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】连接DE,EF,易证△BDE≌△CFE,可得DE=EF,可证△DGE≌△FGE,可求得∠DGE=∠FGE=90°.【解答】解:连接DE,EF,∵AB=AC,∴∠B=∠C,在△BDE和△CFE中,,∴△BDE≌△CFE(SAS),∴DE=EF,在在△DGE和△FGE中,,∴△DGE≌△FGE(SSS),∴∠DGE=∠FGE,∵∠DGE+∠FGE=180°,∴∠DGE=∠FGE=90°,∴EG⊥DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证DE=EF是解题的关键.26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.【考点】全等三角形的判定与性质;等腰三角形的性质;轴对称的性质.【分析】(1)根据对称得出AD=AD′,根据SSS证△ABD≌△ACD′即可;(2)根据全等得出∠BAD=∠CAD′,求出∠BAC=∠DAD′,根据对称得出∠DAE=∠DAD′,代入求出即可.【解答】(1)证明:∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴AD=AD′,∵在△ABD和△ACD′中,∴△ABD≌△ACD′;(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°,∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.【点评】本题考查了全等三角形的性质和判定、对称的性质的应用,主要考查学生的推理能力,题型较好,难度适中.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【考点】几何变换综合题;平行线的性质;全等三角形的判定与性质;等腰直角三角形;多边形内角与外角.【专题】几何综合题;压轴题.【分析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【点评】本题考查了全等三角形的判定与性质、平行线的性质、等腰直角三角形的判定与性质、多边形的内角与外角等知识,渗透了变中有不变的辩证思想,是一道好题.。
八年级数学上册《轴对称》专项测试卷及答案-人教版
八年级数学上册《轴对称》专项测试卷及答案-人教版(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列交通标志是轴对称图形的是( )A.B.C.D.2.如图,△ABD与△AEC都是等边三角形AB≠AC.下列结论中,正确的个数是( )①BE=CD;②∠BOC=60∘;③∠BDO=∠CEO;④若∠BAC=90∘,且DA∥BC,则BC⊥CE.A.1B.2C.3D.43.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE= CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是( )A.1个B.2个C.3个D.4个4. ∠BAC的平分线与BC的垂直平分线相较于点D,ED⊥AB于点E,AB=11,AC= 5,则BE的长为( )A.3B.4C.5D.65.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点D,且另三个锐角顶点A,B,C在同一直线上,若AD=2则AB的长是()A.√3−√2B.√2−1C.0.5D.√3−1 6.下列命题正确的是()A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形7.如图,在矩形ABCD中AB=6,BC=8,过矩形的对称中心O的直线EF,分别与AD、BC交于点E、F且FC=2.若H为OE的中点,连接BH并延长,与AD交于点G,则BG的长为()A.8B.√61C.3√5D.2√13 8.一副三角形板如图放置,DE∥BC,∠C=∠DBE=90°,∠E=45°,∠A=30°则∠ABD的度数为()A.5∘B.15∘C.20∘D.25∘二、填空题(共5题,共15分)9.若点A(a,4)和B(3,b)关于x轴对称,则ab=.10.等腰三角形一腰上的高与另一腰的夹角为30∘,腰长为6,则其底边上的高是.11.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点Aʹ的坐标为.12.若点A(6,−5)关于y轴的对称点是B(m,−5),则m=.13.若等腰三角形的一个角等于120∘,则它的底角为.三、解答题(共3题,共45分)14.如图,在△ABC中AB=AC,∠A=36∘,DE是AC的垂直平分线.(1) 求证:△BCD是等腰三角形.(2) △BCD的周长是a,BC=b求△ACD的周长(用含a,b的代数式表示)15.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1) 如图,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系.(2) 如图,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.16.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1) 如图1,若点O在边BC上,求证:AB=AC;(2) 如图2,若点O在△ABC的内部,求证:AB=AC;(3) 若点O在△ABC的外部,AB=AC成立吗?请画出图表示.参考答案1. 【答案】C2. 【答案】B3. 【答案】D4. 【答案】A5.【答案】D6.【答案】C7.【答案】D8.【答案】B9. 【答案】−1210. 【答案】3或3√311. 【答案】(2,−2√3)12. 【答案】−613. 【答案】30∘14. 【答案】(1) ∵AB=AC,∠A=36∘∴∠B=∠ACB=180∘−∠A2=72∘∵DE是AC的垂直平分线∴AD=DC∴∠ACD =∠A =36∘∵∠CDB 是 △ADC 的外角∴∠CDB =∠ACD +∠A =72∘∴∠B =∠CDB∴CB =CD∴△BCD 是等腰三角形.(2) ∵AD =CD =CB =b ,△BCD 的周长是 a∴AB =a −b∵AB =AC∴AC =a −b∴△ACD 的周长=AC +AD +CD=a −b +b +b =a +b.15. 【答案】(1) ∠BAD =∠CAE .(2) ∠DCE =60∘,不发生变化;理由如下:∵△ABC 是等边三角形,△ADE 是等边三角形∴∠DAE =∠BAC =∠ABC =∠ACB =60∘AB =AC ,AD =AE∴∠ABD =120∘,∠BAC −∠BAE =∠DAE −∠BAE∴∠DAB =∠CAE .在 △ABD 和 △ACE 中{AB =AE,∠DAB =∠CAE,AB =AC,∴△ABD ≌△ACE (SAS )∴∠ACE =∠ABD =120∘.∴∠DCE =∠ACE −∠ACB =120∘−60∘=60∘.16. 【答案】(1) 过点 O 分别作 OE ⊥AB 于 E ,OF ⊥AC 于 F由题意知在 Rt △OEB 和 Rt △OFC 中{OB =OC,OE =OF,∴Rt △OEB ≌Rt △OFC (HL )∴∠ABC =∠ACB∴AB =AC .(2) 过点 O 分别作 OE ⊥AB 于 E ,OF ⊥AC 于 F .由题意知OE =OF ,∠BEO =∠CFO =90∘∵ 在 Rt △OEB 和 Rt △OFC 中{OB =OC,OE =OF,∴Rt △OEB ≌Rt △OFC (HL )∴∠OBE =∠OCF又 ∵OB =OC∴∠OBC =∠OCB∴∠ABC =∠ACB∴AB =AC .(3) 不一定成立,当 ∠A 的平分线所在直线与边 BC 的垂直平分线重合时 AB =AC ,否则 AB ≠AC .示例图略。
轴对称练习题含答案
轴对称练习题13.1.1 轴对称下列图形中,是轴对称图形的是( )3 .如图,△ ABC和4A'B。
关于直线I对称,下列结论中正确的有()①^ABC/△ A'B'C;②/BAC =Z B'A'C;③直线l垂直平分C C;④直线BC和B'C 的交点不一定在直线l上.A. 4个B. 3个C 2个D. 1个第3题图第4题图4 .如图,△ ABC与^A'B。
关于直线l对称,且N A = 105°, Z C = 30°,则N B的度数为()A.25°B.45°C.30°D.20°5 .如图,A ABC关于直线MN对称的三角形的顶点分别为A', B’, C,其中Z A = 90°, A =8cm, A'B=6cm.(1)求AB, A'C的长;(2)求4 A‘B。
的面积.2下列轴对称图形中,对称轴条数是四条的图形是()13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在八^。
中,AB的垂直平分线交AC于点P, PA = 5,则线段PB的长度为()A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD, BC=BD,则有()A. AB与CD互相垂直平分B. CD垂直平分ABC AB垂直平分CD D. CD平分/ACB3.如图,在A ABC中,D为BC上一点,且BC=BD+AD,则点D在线段的垂直平分线上.第3题图第4题图4.如图,在Rt A ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且N CBD =Z ABD,则N A =°.5.如图,在^ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm, △ ADC的周长为11cm,求BC的长.第2课时线段垂直平分线的有关作图1.如图,已知线段/'分别以点A,点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点。
八年级数学上册轴对称练习题附答案
八年级数学上册轴对称练习题附答案八年级数学上册轴对称练习题附答案在学习和工作中,我们都经常看到练习题的身影,做习题有助于提高我们分析问题和解决问题的能力。
什么样的习题才能有效帮助到我们呢?以下是店铺为大家收集的八年级数学上册轴对称练习题附答案,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级数学上册轴对称练习题附答案篇11.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )2.下列说法中错误的是( )A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称能力提升5.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是( )7.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量的存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的性质是( )A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?10.如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案1.A 点拨:只有A图能沿中间竖直的一条直线折叠,左右两边能够重合,故选A.2.C 点拨:虽然关于某条直线对称的两三角形全等,但全等的两三角形不一定关于某条直线对称,因而选C.3.10.5 点拨:先判定出D在AB的垂直平分线上,再根据线段垂直平分线上的点到线段两端点的距离相等可得BD=AD,再求出△BCD 的周长=AC+BC,然后代入数据进行计算即可得解.4.6 点拨:由△ABC与四边形AEDC的周长之差为12,可知BE+BD-DE=12,①由△EDC的周长为24可知CE+CD+DE=24,由DE是BC边上的垂直平分线可知BE=CE,BD=CD,所以BE+BD+DE=24,②②-①,得2DE=12,所以DE=6.5.D 点拨:都是轴对称图形,但图案D有两条对称轴,其余三个图案都只有一条对称轴.6.D 点拨:解决此类问题的基本方法是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形”,从所给的最后图形作轴对称,题目折叠几次,就作几次轴对称,沿两条对角线所在直线画对称轴,只有D适合,故选D.7.B 点拨:因为对称且平移,所以原有的性质已有变化,A,C,D都已不成立,只有B选项正确,故选B.8.解:∵点M是点P关于AO的对称点,∴AO垂直平分MP,∴EP=EM.同理PF=FN.∵MN=ME+EF+FN,∴MN=EP+EF+PF.∵△PEF的周长为15,∴MN=EP+EF+PF=15.9.解:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一张正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形.10.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等).∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∴△ADE≌△FCE(ASA).∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等).∴BE是线段AF的垂直平分线.∴AB=BF=BC+CF.∵AD=CF(已证),∴AB=BC+AD(等量代换).八年级数学上册轴对称练习题附答案篇2一、填一填。
八年级上册数学轴对称测试题精选
八年级上册数学轴对称测试题精选轴对称专题练一、填空:(20%)1、到三角形的三个顶点距离相等的点是这个三角形的垂心交点。
2、等腰三角形是轴对称图形,对称轴是中线。
3、正方形是图形,对称轴是对角线。
4、等边三角形有三条对称轴。
5、圆有无数条对称轴,对称轴是任意直径。
6、有一个角为60度的等腰三角形是等边三角形。
7、有两个角为60度的三角形是等腰三角形。
8、若等腰三角形的一个内角为40度,则其余两角分别为70度。
9、一个正方形有四条对称轴。
10、到三角形三边距离相等的点是这个三角形的外心。
二、选择:(12%)1、下列图形中,是轴对称图形的有()(B)7个2、从镜子中看到这样一串数,那么这串数字应为()(C)18753、从平面镜里看到镜子对面电子钟示数为,这时的实际时刻应该是()(C)10:534、若等腰三角形一边为5,另一边为3,那么它的周长为()(D)11或者13三、1、已知AB=AC,DE垂直平分AB交AC于D、E两点,若AB=12cm,BC=10cm,∠A=49°14'54",求ΔBCD的周长和∠XXX的度数。
解:由于DE是AB的垂直平分线,所以AD=AE=6cm。
又因为∠A=49°14'54",所以∠DAB=∠EAC=20°22'33"。
因此,BD=AD×tan20°22'33"≈2.13cm,CD=BC-BD≈7.87cm。
根据余弦定理,可以求得∠DBC≈51°44',所以ΔBCD的周长≈20.01cm。
2、在ΔABC中,BC的垂直平分线交AC于E,垂足是D,ΔABE的周长是15cm,BD=6cm,求ΔXXX的周长。
解:由于BC的垂直平分线交AC于E,所以AE=EC。
又因为BD=6cm,所以AD=√(AB²-BD²)≈8.49cm。
八年级数学轴对称练习题
八年级上册数学—轴对称练习题1.如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是( )①②③④A.①②③B.②③④C.③④① D.④①②2.下列图形中,不是轴对称图形的是( )A.有两个角相等的三角形B.有一个角为45º的直角三角形C.有一个内角为30º,一个内角为120º的三角形 D.有一个内角为30º的直角三角形3.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线 B.顶角的平分线 C.底边的垂直平分线D.腰上的高4.下列图形中,不是轴对称图形的是( )A.角B.等边三角形 C.线段 D.不等边三角形5.正五角星的对称轴的条数是( )A.1条B.2条C.5条 D.10条6.下列图形中有4条对称轴的是( )A.平行四边形B.矩形C.正方形D.菱形7.下列说法中,正确的是( )A.两个全等三角形组成一个轴对称图形B.直角三角形一定是轴对称图形C.轴对称图形是由两个图形组成的D.等边三角形是有三条对称轴的轴对称图形8.如图,ΔABC和ΔA’B’C’关于直线对称,下列结论中:①ΔABC≌ΔA’B’C’;②∠BAC’≌∠B’AC;③l垂直平分CC’;④直线BC和B’C’的交点不一定在l上,正确的有( ) A.4个B.3个 C.2个D.1个9.如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2= 5cm,则ΔPMN的周长是( )A. 3cm B. 4cm C. 5cm D. 6cm10.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( )A .3cm 或5cmB .3cm 或7cmC .3cmD .5cm二.填空题11.线段轴是对称图形,它有_______条对称轴.12.等腰△ABC 中,若∠A=30°,则∠B=________.13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________.14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________.15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC 的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________. 17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD ,则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.B EC DA A C · ·O B A CD B。