大学物理 第十三章13-6
大学物理课本答案习题 第十三章习题解答
习题十三13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。
已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。
导线框长为a ,宽为b ,求导线框中的感应电动势。
解:无限长直电流激发的磁感应强度为02IB rμ=π。
取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。
取回路的绕行正方向为顺时针。
由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。
通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭ 012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。
13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中(B =0.5T )。
圆形线圈可绕通过圆心的轴O 1O 2转动,转速1600r min n -=⋅。
求圆线圈自图示的初始位置转过题图13-1题图13-2解图13-1/2π时,(1) 线圈中的瞬时电流值(线圈的电阻为R =100Ω,不计自感); (2) 圆心处磁感应强度。
大学物理130
三 了解自感和互感的现象,会计算几何形状简 单的导体的自感和互感.
四 了解磁场具有能量和磁能密度的概念, 会 计算均匀磁场和对称磁场的能量.
五 了解位移电流和麦克斯韦电场的基本概念 以及麦克斯韦方程容
第十三章 电磁感应 电磁场
13-1 电磁感应定律 13-2 动生电动势和感生电动势 13-3 自感和互感 13-5 磁场的能量 磁场能量密度 13-6位移电流 电磁场基本方程的积分形式
第十三章 电磁感应 电磁场
本章教学基本要求
一 掌握并能熟练应用法拉第电磁感应定律和 楞次定律来计算感应电动势,并判明其方向.
大学物理(第四版)课后习题及答案 机械振动
大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t图、v--t 图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、ϕ已知外,ω可通过关系式ω=2π确定。
振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。
解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。
解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。
(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。
大学物理第13章习题解答
引言概述:大学物理第13章是力学的一个重要章节,主要介绍了质点系和刚体的运动学和动力学问题。
习题作为巩固章节知识和培养解决问题能力的重要手段,对于学生的学习具有重要的意义。
本文将对大学物理第13章的习题进行解答,以帮助读者更好地理解和掌握力学的相关知识。
正文内容:1.质点系的运动学问题1.1相对位矢和质心位矢的关系1.2质心速度的计算方法1.3质心加速度的计算方法1.4相对位矢和质心位矢之间的关系1.5相对位矢和质心位矢的运动规律2.质点系的动力学问题2.1质点间相互作用力的计算方法2.2质点系受到的合外力和合内力的关系2.3质点系统的动量守恒定律2.4质点系的动量定理2.5质点系的冲量和动量变化的关系3.刚体的运动学问题3.1刚体的转动轴和转动角速度的关系3.2刚体的几何中心和质心的关系3.3刚体的角速度和线速度的关系3.4刚体的力矩和角加速度的关系3.5刚体的运动规律和动能的计算方法4.刚体的动力学问题4.1刚体的力矩和合外力的关系4.2刚体的力矩定理和动力学定理的关系4.3刚体的动量矩定理4.4刚体的角动量守恒定律4.5刚体的角动量定理和动能定理的关系5.刚体的平衡问题5.1刚体的平衡条件5.2刚体的平衡方程的推导和应用5.3刚体的平衡条件和力矩定理的关系5.4刚体的平衡问题和静力学问题的区别和联系5.5刚体的平衡问题和静态平衡问题的应用总结:大学物理第13章习题解答了质点系和刚体的运动学和动力学问题,并深入探讨了质点系和刚体的平衡问题。
通过解答这些习题,我们可以更好地理解和掌握力学的相关知识,提高解决问题的能力和方法。
同时,我们也应该注重理论与实际结合,将所学的知识应用到实际问题中,不断提高自己的应用能力和创新能力。
希望读者通过本文的阐述,能够对大学物理第13章有更深入的理解,并能够在学习和解题中取得更好的成绩。
大学物理课后习题及答案 第13章
第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。
利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。
*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。
利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。
13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。
光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。
13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。
大学物理第十三章课后答案
习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别 ?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象• 其实质是 由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生. 而干涉则是 由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动 ?答:把单缝沿透镜光轴方向平移时, 衍射图样不会跟着移动. 单缝沿垂直于光轴方向平移时, 衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带 ?对应于单缝衍射第 3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?λ答:半波带由单缝 A 、B 首尾两点向'方向发出的衍射线的光程差用2来划分•对应于第3级明纹和第4级暗纹,单缝处波面可分成 7个和8个半波带. a Sin =(2k • 1) “ =(2 3 ■ 1) “ =7∙.∙由 22 2a Sin -4 ' - 8—213-4 在单缝衍射中,为什么衍射角 ,愈大(级数愈大)的那些明条纹的亮度愈小 ? 答:因为衍射角「愈大则asin「值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公mλasin =(2k 1) (k =1,2,)式 2来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?k ■解:当全部装置浸入水中时,由于水中波长变短,对应asin 「= k ∙ = n ,而空气中为asi n「= k ∙,∙. Si n 「=n Sin ",即「=n :,水中同级衍射角变小,条纹变密.λ如用asin(2k ■ I)2 (k=1,2,…)来测光的波长,则应是光在水中的波长.(因asin‘ 只代表光在水中的波程差)•13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化 ?(1)缝宽变窄;(2)入射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由asin ' =k'知,衍射角「变大,条纹变稀;(2) ,变大,保持a, k不变,则衍射角 「亦变大,条纹变稀; (3) 由正入射变为斜入射时, 因正入射时asin即=k ∙;斜入射时,a(Sin「-Sin^)^k-,保持a ,'不变,则应有 ^ k或k二::k •即原来的k 级条纹现为k级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾 ?怎样说明?λ答:不矛盾•单缝衍射暗纹条件为.asin=k' =2k 2 ,是用半波带法分析(子波叠加问 题)•相邻两半波带上对应点向'方向发出的光波在屏上会聚点一一相消, 而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为dsin a ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别 ?为何光栅衍射的明条纹特别明亮而暗区很宽 ?答:光栅衍射是多光束干涉和单缝衍射的总效果. 其明条纹主要取决于多光束干涉.光强与缝数N 2成正比,所以明纹很亮;又因为在相邻明纹间有 (N -1)个暗纹,而一般很大,故 实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级 ?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即"(a +b)si n d =±k ?* (k =0,1,2,…) a sin W = ±k 九 (^ = 1,2∙…)a +b * k = k H可知,当 a 时明纹缺级.(1)a∙b =2a 时,k = 2,4,6,•…偶数级缺级;(2) a b =3a 时,k=3,6,9,•…级次缺级;⑶ a ∙b =4a , k=4,8,12,∙∙级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问 (1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大 ?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光. 因为各种波长的光在零级明纹处均各自相干加强. ⑵可见光中红光的衍射角最大,因为由(a' b) sin :护=k ‘,对同一 k 值,衍射角 -'.ο13-11 一单色平行光垂直照射一单缝, 若其第三级明条纹位置正好与 6000 A的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为a sin = (2 k 1)2o当人=6000 A 时 k = 2,='X 时,k = 3 重合时'角相同,所以有5 ■ X6000 =4286 o7Ao13-12 单缝宽0.10mm,透镜焦距为50Cm 用^ =5000 A 的绿光垂直照射单缝•求:(1) 位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少 ?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少 ?AλL X = 2 f解:中央明纹的宽度为na-Sin —半角宽度为 na(1)空气中,n=1,所以A5000 汇 10 “J:x =2 0.5厂=5.0 100.10 汉 10ma sin 即=(22 1)-6000=(2 3 ■ 1)1015000 X 10 一 3V - Sin厂=5.0 10 一0.10x10 一rad(2)浸入水中,n=1.33 ,所以有105000 x10一3:^=2 0.50- 3.76 10 _1.33x0.10x10—mI5000 00」° 3V - Sin 3 : 3.7610 一 1.33 X 0.1 X10 一 rad13-13 用橙黄色的平行光垂直照射一宽为 a=0.60mm 的单缝,缝后凸透镜的焦距 f=40.0cm ,观察屏幕上形成的衍射条纹•若屏上离中央明条纹中心 1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?X 1.4 J3.5 10 tan f 4002 0.6 3.5 10 2k 1k = 4 得)-4 = 4700o若-3 = 6000 A ,则P 点是第3级明纹;o若-4 =4700 A ,贝U P 点是第4级明纹.a Sin = (2k 亠 1)-⑶由2可知,当k=3时,单缝处的波面可分成2k 1当k=4时,单缝处的波面可分成2kTo13-14用‘氛=5900A 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 1 a+b = J二o解:500 mm =2.010 mm = 2.010 A由(a ' b )sin ' = k '知,最多见到的条纹级数ka +b 2.0 汇104k max ==fc3.39∣Z-Qkmax^3所以有5900,即实际见到的最高级次为o 13-15 波长为5000A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透解:(1)由于P 点是明纹,故有a sin ' = (2k 1)—2 , k =1,2,3 - ■ 2a sin 2k 1X4.2 X10 °2k 1k =3,得 K =6000 mmoA=7个半波带;=9个半波带.<Pmax 对应的max镜焦距为60cm. 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少?1a +b = ------ =5.0x10~6解: 200 mm 5.0 10 - m(1)由光栅衍射明纹公式X Sin Φ = tan W =— (a +b) sin 申=k k ,因k =1 ,又fX 1(a +b)所以有f这就是中央明条纹的位移值•o13-16 波长九=6000A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在 Sin=0∙20与Sin =0∙30处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;⑶ 在90°> ’ > -90 °范围内,实际呈现的全部级数.解:(1)由(a b) Sin= k,式对应于Sin :1=0∙2° 与Sin ;:2=0∙30 处满足:-Lo0.20 (a b) =2 6000 10 I. 100.30 (a b) =3 600010得 a ∙ b =6.0 10 * m(2)因第四级缺级,故此须同时满足(a ■ b) Sin = k ■a sin = k ,= 1.5 10 "βk解得取=1 ,得光栅狭缝的最小宽度为 1.5 10 m⑶由(a b) Sin = k ■k 土(a ■ b) Sin λπW =—当 2,对应 k = k m aXa +b .66.0 10 k10λ6000 10500010 210 恥 60 10 一X l5.0 10 -⑵对应中央明纹, 2= 6.0 10 一k = 0 =6 Cm正入射时, (a -b) Sin 斜入射时, (a -b)(sin=0二Sin所以 Sin=0日)=0 即Sin 申±sin 日=0Sinl : tanXCP二 30=1 60 10 2 2=3010m = 30Cm因_4 , _ 8缺级,所以在-9°:::「::: 9°范围内实际呈现的全部级数为k = 0, 一1, _2, _3, _5, _6, 一7, _9 共 15 条明条纹(k= 1° 在 k= 9° 处看不到).o13-17 一双缝,两缝间距为 0.1mm ,每缝宽为0.02mm ,用波长为4800A 的平行单色光垂 直入射双缝,双缝后放一焦距为 50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹 的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹 ? 解:(1)中央明纹宽度为 (2)由缺级条件a sin = k '■(a - b) sin = k ■0.1k " = 5k ' 0.02 k =1,2,即k=5,10,15,…缺级V -1.221 .22 5000= 30.5 10 D0.2d4f tan v : f v - 50030 .5 10 一 =1.5.∙.爱里斑半径2mm13-19已知天空中两颗星相对于一望远镜的角距离为 4.84 × 10-6rad ,它们都发出波长为o5500A 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星 ?解:由最小分辨角公式J -1.22 —D5λ5.5j<10D =1.22 — =1 .22- = 13.864.84 10 Cmo13-20已知入射的X 射线束含有从0.95〜1.30A 范围内的各种波长,晶体的晶格常数为 o2.75 A ,当X 射线以45°角入射到晶体时,问对哪些波长的 X 射线能产生强反射? 解:由布喇格公式2d Sin=k'_ 2d Sin 申λ = --------得k时满足干涉相长Qo当 k =1 时,& = m 、s in 45=3.89 A2 2.75 sin 45Λ --1.91 ok =2 时,2AI 。
《大学物理学》习题解答(第13章 稳恒磁场)(1)
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
大学物理课后习题详解(第十三章)中国石油大学
习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此a I B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此rI a I B πμπμ44001==,方向垂直纸面向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。
半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。
所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。
13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。
大学物理13 静电场中的导体和电介质
不是都平行于E
;
有极分子也有位移极化,不过在静电场中主要是取向极化,
但在高频场中,位移极化反倒是主要的了。
34
均匀电介质在静电 场中
E0
–
–
E'
+– +–
E0
+ E' +
– 取向极化
+
P分
–
?
位移极化
+
电介质极化:在外电场作用下,电介质产生一附加电场或电
介质表面出现束缚电荷的现象。
B
上的电荷消失。两球的电势分别为
A
UA
q
4 0
1 R0
1 R1
q R0
U B U R1 U R2 0
R2 R1 q
两球电势差仍为:
UA
UB
q
4 0
1 R0
1 R1
由结果可以看出,不管外球壳接地与否,两球的电势 差恒保持不变。当q为正值时,小球的电势高于球壳;当q 为负值时,小球的电势低于球壳。
3
§1 导体的静电平衡
一. 导体的静电平衡
1. 静电感应现象:
电场一般利用带电导体形成。
有导体存在时电场的性质?
在静电场力作用下,导体中自由电子在电场力的作用下
作宏观定向运动,使电荷产生重新分布的现象。
Ε 0
-
Ε 0
- + -+
E内 0
-
-+
2. 静电平衡状态:
导体内部和表面无自由电荷的定向移动 —称电场和导体之间达到静电平衡
大学物理第十三章
大学物理 电磁学
主要内容
(一)电流和电流密度 欧姆定律
(二)磁场与磁感应强度
(三)毕奥-萨伐尔定律
(四)安培环路定理
(五)与变化电场相联系的磁场
§13-1电流 电流密度 欧姆定律
一、 电流和电流密度
电流—电荷的定向移动
载流子——带电粒子
q dq I lim t 0 t dt
1
E dl 0
L
I R r
i i
L
Ene dl
I dl Ldl S L
J
i
I R r 全电路欧姆定律
§13-2 磁场与磁感应强度
一、 磁力与电荷的运动
磁力的基本现象 演示实验
磁体—磁体
Ba dS Bb dS 0
S
a
S
b
Ba S Bb S 0
Ba Bb
三、磁场的高斯定律
例2、无限长直导线通以电流I,求通过矩形平面的磁 I 通量。已知I、a、b、l以及 B 0 。 2 r 解: dS ldr
I
l
dS
r dr
a
dE dB
E dE B dB
Idl
毕奥-萨伐尔定律
dB
电流元 Idl 在P点产生的磁场:
r
0 Idl er dB 2 4 r
dB
I
P*
r
Idl
0
1 4 10 7 N / A 2 0c 2
真空磁导率
一、毕奥—萨伐尔定律
第13章_稳恒磁场
2
4π
方向:右手螺旋法则
例如:
r
P
B
Id l
r
B
B
B=0
r
Idl
Idl
r
二、毕-萨定律的应用
1、载流直导线的磁场 求距离载流直导线为a 处 一点P 的磁感应强度 B 解
I
Idl
dB =
μ0 Idl sin θ
4π r
2
θ
a
r
B
B = ∫ dB = ∫
μ0 Idl sin θ
4π r2
P
B = ∫ dB =
=
μ0 Iφ
4πR
φ
例如 右图中,求O 点的磁感应强度 解 B1 = 0
2O
R
I
1 3
3μ 0 I B2 = ⋅ = 4πR 2 8R
μ0 I 3π
B3 =
μ0 I
4πR
(cosθ1 − cosθ 2 )
θ1 = π 2
2
O R I
=
μ0 I
4πR
θ2 = π
1 3
B = B1 + B2 + B3
§13-1 磁场
一、磁铁及其特性 人造磁铁
S N
磁感应强度
天然磁铁----磁铁矿(Fe3O4)
N
S
特性: 1)能吸引铁、钴、镍等物质
2)具有两极且同性相斥,异性相吸。 S S S N S N N S S N S N N N
二、电流的磁效应
1820年丹麦物理学家奥斯特发现 演示1) I
结论:1)电流周围具有磁性。
讨论
I
(cosθ1 − cosθ 2 )
B=
大学物理13章习题详细答案
习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。
(2)板B 接地时,两板间的电势差。
[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== B A-Q/2Q/2Q/2Q/2A B -QQ13-4 两块靠近的平行金属板间原为真空。
使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。
保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。
圆柱面B 上带电荷,A 和C 都接地。
求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。
[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=rE 02II 2πελ= AB 0101I BA ln 2d 2d ABA BR Rr r U R R R R πελπελ=-==⎰⎰r E IIIB C 0202II BC ln 2d 2d CB CBR R r r U R R R R πελπελ===⎰⎰r EBC 02A B 01ln 2ln 2R R R R πελπελ= 因此 AB BC 21ln :ln:R R R R =λλ13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。
大学物理(许瑞珍_贾谊明) 第13章答案
第十三章 振动13-1 一质点按如下规律沿x 轴作简谐振动:x = 0.1 cos (8πt +2π/3 ) (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。
解:周期T = 2π/ ω= 0.25 s振幅A = 0.1m初相位φ= 2π/ 3V may = ωA = 0.8πm / s ( = 2.5 m / s )a may = ω2 A = 6.4π2m / s ( = 63 m / s 2)13-2 一质量为0.02kg 的质点作谐振动,其运动方程为:x = 0.60 cos( 5 t -π/2) (SI)。
求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力。
解:(1) )( )25sin(0.3 SI t dt dx v π--==0.3 20x m ma x ω-== (2) 2x m ma F ω-==5.13.052.0,2/ 2N F A x -=⨯⨯-==时13-3 如本题图所示,有一水平弹簧振子,弹簧的倔强系数k = 24N/m ,重物的质量m = 6kg ,重物静止在平衡位置上,设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05m ,此时撤去力F ,当重物运动到左方最远位置时开始计时,求物体的运动方程。
解:设物体的运动方程为:x = A c o s (ωt +φ)恒外力所做的功即为弹簧振子的能量:F ⨯ 0.05 = 0.5 J当物体运动到左方最位置时,弹簧的最大弹性势能为0.5J ,即:1 /2 kA 2 = 0.5 J ∴A = 0.204 mA 即振幅ω2 = k / m = 4 ( r a d / s )2ω= 2 r a d / s按题目所述时刻计时,初相为φ= π∴ 物体运动方程为x = 0.204 c o s (2 t +π) ( SI ) 13-4 一水平放置的弹簧系一小球。
已知球经平衡位置向右运动时,v =100cm ⋅s -1,周期T =1.0s ,求再经过1/3秒时间,小球的动能是原来的多少倍?弹簧的质量不计。
大学物理课后习题及答案第13章
第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。
利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。
*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。
利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。
13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。
光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。
13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。
大学物理第13章
' I
4. 如图,一根载流无限长直导线与一个载流 正三角形线圈在同一个平面内。若长直导线固定 A 不动,则载流三角形线圈将 [ ] A.向着长直导线平移 C.远离长直导线平移 B.转动 D.不动
I1
I2
5.一圆形电流 I1 与一根长直电流 I2 共面,并 与其一直径相重合,如图,两者间绝缘。设长直 电流不动,则圆形电流将[ ] A)绕 I2 旋转 C)向右运动 B)向左运动 D)不动
特例:均匀磁场中的任意 闭合电流所受合力为零。
注:本题是非均匀磁场。 [例3] 一根无限长直导线载有电流 I1 ,它与长为 L、载有电流 I2 的直 导线相互垂直,距离为 d,如图所示。求导线 L 所受磁力。 解:考虑 L 上的电流元 I 2 dr ,它距无限长直 导线为 r 。无限长直导线在该电流元处产生的磁 感强的方向垂直纸面向里,大小为
0 4 107 N/A 2
这是依照 SI 中确定电流强度单位“安培”的方法而得出的。 1948年第九届国际计量大会确定:“安培是一恒定电流,若 保持在处于真空中相距 1 米的两无限长而圆截面可以忽略的平行 直导线内,则这两导线之间产生的力在每米长度上等于 2 107 牛顿。”
dF 0 I 2 dl 2d
D
B
解: F IL B ILB sin IB 2a sin 135 IBa (方向垂直纸面向里)
2.如图,一根载流 I 的导线,被折成长度分别 为 a、b ,夹角为120度的两段,并置于均匀磁场 B 中,若导线的长度为 b 的一段与 B 平行,则 a、b 两段所受的合磁力的大小为[ 3IBa/ 2 ]
5.一圆形电流 I1 与一根长直电流 I2 共面,并 与其一直径相重合,如图,两者间绝缘。设长直 电流不动,则圆形电流将[ C ]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= kλ = (2k + 1)
k = 1,,, 明环 2 3
λ
2
2
k = 0,2, 1,
暗环
r2 由 2e =
R
得:
明环半径: : = r
(2k 1) Rλ 2n2
k = 1,3, 2,
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
kRλ 暗环半径: r = n2
说明
பைடு நூலகம்
k = 0,2, 1,
第十三章 光的干涉
§13-6 劈尖的干涉 13解:
牛顿环
(1)棱边处为第一条暗纹中心,相邻暗纹对应膜 厚差为λ/2,则第四条暗纹中心对应膜厚为3λ/2, 即e4= 3λ/2,θ 很小时
l A sin θ = l Aθ = e4
所以
e4 3λ 5 θ= = = 4.8 × 10 rad l A 2l A
kRλ 得
rk = kRλ
rk +5 = (k + 5) Rλ
r 2k r 2 k +5 λ= = kR (k + 5) R 以 rk = 4mm ,rk +5 = 6mm ,λ = 589.3nm代入上式
k=4, R=6.79m
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
例题4
在如图所示的牛顿环装置中,把平凸透镜和 平 玻 璃 ( 折 射 率 均 为 n1=1.50 ) 之 间 得 空 气 (n2=1.00)改换成水(n3=1.33),求第k级暗环半 径的相对改变量 (rk rk′ ) 。
§13-6 劈尖的干涉 13一、劈尖的干涉
牛顿环
两块玻璃之间形成一劈尖型的空气膜,简称 劈尖。θ 称为劈尖角。两玻璃片的交线称为棱边。
1 2
n1 k
θ
l
k+1
θ ek
e (a)
A
n2
ek+1
n
1
(b)
劈尖的干涉
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
平行单色光垂直入射,令i=0
δ = 2e n 2 n sin i +
第十三章 光的干涉
§13-6 劈尖的干涉 13二、牛顿环 根据几何关系
牛顿环
o′
R
r = R ( R e)
2 2
2
A B O 计算牛顿环半径用图
= 2R e e ≈ 2R e
2
r
n2
e
第十三章 光的干涉
§13-6 劈尖的干涉 13明暗环条件:
牛顿环
2 n2 e + 2 n2 e +
λ λ
2
λ l1 = = 2n2 sin θ 2θ
第十三章 光的干涉
λ
§13-6 劈尖的干涉 13-
牛顿环
液体劈尖时,相邻明纹间距为 l2 =
λ
′ 2n2 sin θ
≈
λ
′ 2n2θ
1 λ (1 ) ′ n2 而 l = l1 l2 = (2θ )
1 λ (1 ) 6 ×10 7 (1 1 ) ′ n2 1.4 rad θ= = 2l 2 × 0.5 × 10 3 = 1.7 × 10-4 rad
§13-6 劈尖的干涉 13三、干涉现象的应用
牛顿环
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
第十三章 光的干涉
rk
n1
n2 n1
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
解:空气膜时牛顿环暗纹半径为 :
rk = kRλ
充水后第k级暗环半径为:
kRλ rk′ = ′ n2
因此可得:
n1
n2 n1
rk rk′ = rk
kRλ kRλ ′ n2 kRλ
1 = 1 = 13.3% 1.33
第十三章 光的干涉
所以A处为明纹——第3级明纹。 (3)棱边处为暗纹,A处为第三级明纹,所以棱边 到A处共呈现3条明纹,3条暗纹。
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
例题2
折射率为1.60的两块标准平面玻璃之间形成一个 劈尖(劈尖角 θ 很小)。用波长λ=600nm的单色光 垂直入射,产生等厚干涉条纹。例如在劈尖内充满 n=1.40的液体时的相邻明纹间距比劈尖内是空气时的 间距缩小l=0.5mm,那么劈尖角θ 应是多少? 解:空气劈尖情况下相邻明纹间距为
λ
§13-6 劈尖的干涉 13-
牛顿环
例题1
用波长为500nm(1nm=10-9m)的单色光垂直照射 到由两块光学平玻璃构成的空气劈尖上。在观察反 射光的干涉现象中,距劈尖棱边l=1.56cm的A处是从 棱边算起的第四条暗纹中心。 (1)求此空气劈尖的劈尖角 (2)改用600nm的单色光垂直照射到此劈尖上仍观 察反射光的干涉条纹,A处是明纹还是暗纹? (3)在第(2)问的情形从棱边到A处的范围内共有 ( ) 几条明纹?几条暗纹?
r与环的级次的平方根成正比, r越大分布越密。 透射光的牛顿环与反射光牛 顿环互补。所以透射光牛顿环 中心为一亮斑。
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
例题3
用钠光灯的黄色光观察牛顿环时,测得第k 级 暗 环 的 半 径 rk=4mm, 第 k+5 级 暗 环 的 半 径 rk+5=6mm。已知钠黄光波长 λ = 589.3nm, 求所用平 凸透镜的曲率半径R和k为第几暗环? 解:根据牛顿环的暗环公式 r =
l sin θ = ek +1 ek
l=
λ
2n2 sin θ
≈
λ
2n2θ
第十三章 光的干涉
§13-6 劈尖的干涉 13对空气劈尖n2=1
牛顿环
2e + 2e +
λ λ
2 2
= kλ = (2k + 1)
k = 1,2 ,3,
λ
2
k = 1,2,3,
λ l= ≈ 2 sin θ 2θ
第十三章 光的干涉
2 2 1
λ
λ
2
暗纹 明纹
= 2 n2 e +
λ
2
=
(2k + 1)
2
kλ
k = 1,, 2
同一厚度e对应同一级条纹——等厚干涉
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
设l为相邻两条明纹或暗纹间的间距
2n2 ek +
λ
2
= kλ
2n2 ek +1 +
又
λ
2
= (k + 1)λ
λ ek +1 ek = 2n2
第十三章 光的干涉
§13-6 劈尖的干涉 13-
牛顿环
3λ 3 × 500 (2)由上问可知 e4 = = nm = 750nm 2 2 对于 λ ′ = 600nm 的光,连同附加光程差,在A处
两反射光的光程差为
δ = 2e4 +
λ′
2
与λ ′的比为
2e4 1 2 × 750 1 1 + = + = 2 .5 + = 3 λ′ 2 600 2 2