《5.1.1相交线》教学目标解析 .docx.1.1相交线》教学目标解析
《5.1.1 相交线》教学设计
《5.1.1 相交线》教学设计一、教材内容分析本节课是人教版七年级下第五章第一节第一课时相交线。
在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会初步几何推理的方法。
在此基础上进一步研究平面内两条相交直线形成的4个角的位置和数量关系,为今后学习几何奠定了基础。
同时也为证明几何题提供了示范作用,本节课对于进一步培养学生的识图能力具有推动作用。
二、学生情况分析1、学生已经初步学习了角的相关内容和一些性质。
2、本课的教学对象是七年级的学生,思维活跃,模仿能力强。
三、教学目标(一)知识与技能1.理解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角。
2.掌握“对顶角相等”的性质。
3.理解“对顶角相等”的初步的几何推理(二)能力目标1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念2.通过分析具体图形得到对顶角,邻补角的概念,发展学生的抽象概括能力(三)情感目标1.通过相交线中有关角的探究,使学生初步认识数学与现实生活的密切联系2.通过师生的共同活动,促使学生在学习活动中培养良好的情感,形成合作交流、主动,参与的意识。
四、教学重点、难点重点:邻补角、对顶角的概念,“对顶角相等‘的性质.难点:“对顶角相等”的性质的探索过程.五、教学方法在教学中我采用启发式,引导学生思考,探究,交流,讲练结合。
教学手段则采用多媒体辅助教学。
六、教学过程(一)创设情境,引入课题教师演示以第五章章首图片为主体的课件.引导学生欣赏图片,找出图片中的相交线,平行线师:虽然图中的桥,电线等都是有限长的,但当我们把它们看成直线时,这些直线有些是相交线,有些是平行线,相交线、平行线都有许多重要性质,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.今天我们先研究直线相交的问题。
从而引入本节课题.(设计意图:让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线,平行线的几何图形。
人教版初中数学七年级下册5.1.1《相交线》教案
《相交线》教案一、设计说明1.内容解析本节课的内容是在学习了直线、射线、线段、角的基础上,进一步研究两条直线的位置关系:相交.由于两条直线的位置关系与它们所成的角有直接的关系,所以我们首先要研究两条直线相交成有公共顶点的四个角的关系,即:对顶角与邻补角.为后面学习垂线、三线八角以及空间里的垂直关系打好基础.然后研究两条直线被第三条直线所截而形成的没有公共顶点的三角的关系,为研究平行线做好准备.对顶角相等的性质是证明角相等的一个重要的依据,并在以后的推理过程中有着广泛的应用.所以要求学生熟练掌握.同时,在教学过程中,要培养学生的识图能力和几何语言的表达能力,从而初步引入几何推理的格式,让学生知道推理要步步有据.2.三维目标(1)知识与技能:①理解邻补角与对顶角的概念.②掌握对顶角的性质.(2)过程与方法:①经历探究对顶角、邻补角的位置关系的过程,建立空间观念.②通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.③通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.(3)情感态度与价值观①通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.②通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.3、重点、难点重点:邻补角与对顶角的概念.对顶角性质与应用.难点:理解对顶角相等的性质的探索.4、课时安排:1课时二、教学过程设计(一)创设情景问题1:观察下图,一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?师生活动:让学生观察,把剪刀的构造想象成两条相交直线.在剪刀剪开纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系.设计意图:通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉.把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题。
人教版七年级数学下册教案 5-1-1 相交线
5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。
人教版数学七年级下册5.1.1《相交线》教学设计
人教版数学七年级下册5.1.1《相交线》教学设计一. 教材分析人教版数学七年级下册5.1.1《相交线》是学生在学习了直线、射线、线段的基础上,进一步研究两条直线的关系。
本节课的主要内容是让学生掌握相交线的定义、性质和特点,并能够运用相交线的知识解决一些实际问题。
教材通过丰富的图形和实例,引导学生探究、发现相交线的特征,培养学生的观察能力、操作能力和抽象思维能力。
二. 学情分析学生在之前的学习中已经掌握了直线、射线、线段的基本知识,对于图形的认识和观察能力也有一定的基础。
但是,对于相交线的概念和性质,学生可能还比较陌生,需要通过实际操作和探究来理解和掌握。
此外,学生可能对于两条直线相交的多种情况分辨不清,需要在教学中进行针对性的指导。
三. 教学目标1.知识与技能:让学生掌握相交线的定义、性质和特点,能够识别和画出相交线。
2.过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、操作能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:相交线的定义、性质和特点。
2.难点:对于两条直线相交的多种情况的理解和判断。
五. 教学方法1.引导探究法:通过提出问题,引导学生观察、操作、思考,从而发现相交线的特征。
2.合作交流法:让学生在小组内进行讨论、分享,培养学生的团队合作意识。
3.实例分析法:通过具体的实例,让学生理解和应用相交线的知识。
六. 教学准备1.教具:多媒体教学设备、黑板、粉笔、直线、射线、线段教具。
2.学具:学生作业本、直线、射线、线段教具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过展示直线、射线、线段的教具,让学生观察并指出哪些是相交线。
学生尝试给出相交线的定义。
3.操练(10分钟)教师给出几个实例,让学生判断哪些是相交线,并说明理由。
人教版七年级数学下册 教案5.1.1 第1课时《相交线》
人教版七年级数学下册教案5.1.1 第1课时《相交线》一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。
本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的观察和动手能力,对于基本的几何概念和性质有一定的了解。
但是,对于相交线的定义和性质可能还比较模糊,需要通过实例和操作来进一步理解和掌握。
三. 教学目标1.了解相交线的定义和性质。
2.能够识别和判断相交线。
3.能够运用相交线的性质解决简单的问题。
四. 教学重难点1.相交线的定义和性质。
2.运用相交线的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作来发现相交线的性质。
2.使用多媒体辅助教学,通过动画和图片来形象地展示相交线的性质。
3.采用小组合作的学习方式,让学生在讨论和交流中加深对相交线性质的理解。
六. 教学准备1.多媒体教学设备。
2.相交线的图片和实例。
3.练习题和作业。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如铁路交叉、道路交汇等,引导学生观察和思考这些实例中的共同特点。
学生可能会发现这些实例都有两条线段或直线相交的情况。
教师进而提问:“什么是相交线?相交线有哪些性质?”从而引出本节课的主题。
呈现(10分钟)教师通过多媒体展示相交线的定义和性质,引导学生观察和理解相交线的概念。
同时,教师可以给出一些实例,让学生判断哪些是相交线,并解释原因。
操练(10分钟)教师给出一些练习题,让学生独立完成。
这些练习题可以包括判断相交线、找出相交线的性质等。
教师可以在学生完成后进行讲解和解析。
巩固(10分钟)教师可以通过一些实际问题来巩固学生对相交线的理解和掌握。
例如,给出一个几何图形,让学生找出其中的相交线,并解释其性质。
拓展(10分钟)教师可以引导学生进一步思考相交线的应用,例如在建筑设计、交通规划等领域中的应用。
5.1.1相交线
O
3
D
A
图中还有对 顶角吗?
观察:1、两条直线相交组成几个小于平角的角?
2、 ∠ 1和∠ 3在位置上有什么关系?
1,有公共顶点 2,两边互为反向延长线
这样的两个角称为互为对顶角
练习:下列图中,∠1与∠2是对顶角吗?为什么?
1 2
1 2
1 2
1
2
(1)
(2)
(3)
(4)
否
是
否
否
观察:∠1和∠2在位置上有什么关系?
D
图1
E
∠1的对顶角是_____________ , ∠BOD
∠1的邻补角是_____________ ∠3、 ∠AOD ,
∠COE ∠2的邻补角是_____________ 。
图2
3、如图3,∠2与∠3为邻补角,
∠1=∠2,则∠1与∠3的关系 为 互补 。
A 1 B
E 3 2 C
D
图3
4、已知两条直线相交成的四个角,其中一个
b a 1 2 4 3
练习:
1、如图1,三条直线AB、CD、
EF两两相交,在这个图形中,有 对顶角_____ 6 对,邻补角____ 12 对. 2、如图2,直线AB、CD 相交于O,OE是射线。则 ∠AOD ∠3的对顶角是_____________ ,
A 1 C O 2 3 B D
A F C E B
三、教法和学法
三、教法和学法: 教法: 叶圣陶先生倡导:解放学生的手,解放学生的脑,解 放学生的时间.根据这一思想及我校初一学生活泼好动 的特点,我采取启发式教学、探究式教学及多媒体辅 助教学 相结合的方法. 学法:以学生分组实践、自主探究、合作交流为主要 形式的探究式学习方法.
初中数学_5.1.1相交线教学设计学情分析教材分析课后反思
相交线第一课时教学设计§5.1.1相交线教材分析本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,这部分内容学生在前两个学段已有所接触,并且学生在上一学期已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。
在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;垂直作为两直线相交的特殊情形,与他有关的概念和结论是学习下一章“平面直角坐标系”的直接基础,本章对垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂直”“垂线段最短”的结论,并给出了点到直线的距离的概念,为学习在平面直角坐标系中确定点的坐标打下基础。
接下来研究两条直线被第三条直线所截的情形,给出了同位角、内错角、同旁内角等概念,为学习平行奠定基础。
在本章中,除了让学生重点掌握以上的基础知识外,还应通过大量的识图和作图训练,来培养学生的图形感,同时,还应在解决问题的过程中注意学生推理能力的培养,这也是教学的难点。
由于本节课的内容较易理解,因此在教学过程中,可尝试利用探究式教学,引导学生自己观察,分析特征,猜想结论,然后推理论证。
§5.1.1相交线【教学目标】1、具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题2、过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.【教学重点与难点】教学重点:重点:邻补角、对顶角的概念,对顶角性质与应用.教学难点:理解对顶角相等的性质的探索【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
(人教版)七年级下册数学配套说课稿:5.1.1《相交线》
(人教版)七年级下册数学配套说课稿:5.1.1 《相交线》一. 教材分析《相交线》是人教版七年级下册数学教材第五章第一节的内容。
本节课的主要内容是让学生了解相交线的概念,掌握相交线的性质,并能够运用相交线的知识解决实际问题。
教材通过引入生活中的实例,引导学生探究相交线的性质,培养学生的观察能力、操作能力和推理能力。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力。
他们对直线、射线等基本概念有一定的了解,但可能对相交线的概念和性质认识不足。
因此,在教学过程中,教师需要通过生动的实例和直观的演示,帮助学生建立清晰的空间观念,引导学生发现相交线的性质,并能够运用这些性质解决实际问题。
三. 说教学目标1.知识与技能:学生能够理解相交线的概念,掌握相交线的性质,并能够运用相交线的知识解决实际问题。
2.过程与方法:学生通过观察、操作、交流和推理,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养合作意识和问题解决能力。
四. 说教学重难点1.重点:相交线的概念和性质。
2.难点:相交线的性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式学习法。
2.教学手段:利用多媒体课件、实物模型、几何画板等直观教具,帮助学生建立空间观念,引导学生发现相交线的性质。
六. 说教学过程1.导入:通过展示生活中的实例,如交叉的道路、相交的线段等,引导学生观察和思考相交线的特点。
2.新课导入:介绍相交线的概念,引导学生通过观察和操作,发现相交线的性质。
3.性质探究:学生分组讨论,每组选取一个相交线模型,观察和记录相交线的性质。
教师引导学生用几何画板进行演示和证明。
4.性质总结:教师引导学生归纳和总结相交线的性质,并给出证明。
5.巩固练习:学生独立完成练习题,教师给予指导和解答。
6.应用拓展:学生分组讨论,运用相交线的性质解决实际问题,如设计图案、计算面积等。
人教版七年级下数学5.1.1相交线教案
二、合作探究探究点1:邻补角与对顶角的概念【找一找】(1)∠1的邻补角是什么?一个角的邻补角一般有几个?(2)∠3的对顶角是什么?图中有几组对顶角?分别把它们找出来.例1.下列各图中,∠1与∠2是对顶角的是()归纳:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.探究点2:邻补角与对顶角的性质问题1:互为邻补角的两个角和是多少度?问题2:你能否利用问题1中的结论推导出互为对顶角的两个角之间具有相等关系?已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3,∠2=∠4.解:例2.(教材P3例1变式)如图,直线a,b相交于点O.(1)若∠1+∠3= 60º,则∠1,∠2,∠3,∠4各个角的度数分别为__________________;(2)若∠2是∠1的 3倍,则∠1,∠2,∠3,∠4各个角的度数分别为________________________;(3)若1:2 = 2: 7 ,则∠1,∠2,∠3,∠4各个角的度数分别为__________________.归纳:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.方法总结:关键是找出图中隐含的角之间的关系,然后利用方程思想解决.在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.例3..如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数..方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.找一找1.如图,直线AB、CD、EF相交,若∠1 +∠5=180°,找出图中与∠1 相等的角.2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.三、课堂练习1.下列各图中,∠1 ,∠2是对顶角吗?2.找出图中∠AOE的邻补角及对顶角,若没有请画出.3.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC, ∠BOE的邻补角;(2)写出∠DOA, ∠EOC的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB的度数.4.(应用题)在下图中,花坛转角按图纸要求这个角(红色标注的角)为135°;施工结束后,要求你检测它是否合格?请你设计检测的方法.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化. 5.如图,直线AB,CD 相交于点O , ∠EOC=70°,OA 平分∠EOC ,求∠BOD 的度数.6.【拓展题】观察下列各图,寻找对顶角(不含平角)A BCD Oa b c A A B B CCD DO OEFG H⑴ 如图a ,图中共有 对对顶角; ⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有10条直线相交于一点,则可形成 对对顶角.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).利用(1)中规律得出答案即可.由(1)得n(n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n(n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征. 四、课堂小结两直线相交归类位置关系名称 数量关系 ∠1和∠2、∠2和∠3、∠3和∠4、 1.有公共顶点 2.有一条公共边3.另一边互为反向延长线邻补角邻补角互 补。
人教版数学七年级下册《5-1-1相交线 》教案
人教版数学七年级下册《5-1-1相交线》教案一. 教材分析《5-1-1相交线》是人教版数学七年级下册的教学内容,本节课主要让学生了解相交线的概念,掌握相交线的性质及运用。
教材通过生活实例引入相交线的概念,让学生在观察、操作、思考的过程中,体会相交线的特征,培养学生的空间观念和逻辑思维能力。
二. 学情分析七年级的学生已经掌握了直线、射线的基本概念,具备了一定的观察和操作能力。
但学生在空间观念方面仍有待提高,因此,在教学过程中,教师要注重引导学生观察、操作,激发学生的思维,让学生在活动中体验和理解相交线的特征。
三. 教学目标1.知识与技能:让学生掌握相交线的概念,了解相交线的性质,并能运用相交线的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作、探究的精神。
四. 教学重难点1.重点:相交线的概念及其性质。
2.难点:相交线在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入相交线概念,激发学生兴趣。
2.观察操作法:引导学生观察、操作,培养学生的空间观念。
3.讨论法:分组讨论,让学生在交流中掌握相交线的性质。
4.练习法:设计适量练习,巩固所学知识。
六. 教学准备1.教具:直尺、圆规、三角板等。
2.学具:每人一套直尺、圆规、三角板。
3.教学课件:相交线的相关图片、动画、练习题等。
七. 教学过程1. 导入(5分钟)教师通过展示生活中常见的相交线现象,如交叉的道路、铁路等,引导学生关注相交线。
提问:“你们在哪里见过这样的线?它们有什么特点?”让学生发表自己的看法。
2. 呈现(10分钟)教师简要介绍相交线的概念,引导学生观察相交线的特征。
同时,利用课件展示相交线的性质,让学生初步认识相交线。
3. 操练(10分钟)教师引导学生用直尺、圆规、三角板等工具,自己画出相交线,并观察、分析相交线的特征。
初中数学_5.1.1相交线教学设计学情分析教材分析课后反思
5.1.1相交线教学设计一、情景导入1、读一读,看一看教师演示多媒体课件。
学生欣赏图片(多媒体投影汕头大桥的图片、围棋的棋盘)。
师生共同总结:同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案;围棋的纵线相互平行,横线相互平行,纵线和横线相交。
这些都给我们以相交线、平行线的形象。
在我们生活的中,蕴涵着大量的相交线和平行线。
那么两条直线相交形成哪些角?这些角又有什么特征?本节我们一起来学习相交线所成的角及它们的关系。
教师板书:5.1.1相交线2、观察剪刀剪纸的过程,引入两条相交直线所成的角教师出示一块纸片和一把剪刀,表演剪刀剪纸过程,提出问题:剪纸时,用力握紧把手, 把手引发了什么变化?进而使剪刀刃也发生了什么变化?3、学生拿出学具观察:两根木条钉在一起,并把他们想象成两条直线,就得到了一个相交线的模型。
形成几个小于平角的角?组成4个角,转动纸板观察4个角的变化情况及变化规律。
教师点评:如果把剪刀的构造、学具,看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及它们的内在规律。
[说明:从学生日常生活经验中发现问题、提出问题,引导学生初步地、概括地了解新的学习任务,为整节课的学习活动提供动力和规划方向。
自然引出本节课题。
]二、探究新知1、认识邻补角和对顶角,探索对顶角性质(1)学生画直线AB、CD相交于点O,并说出图中4个角,教师提问:两两相配共能组成几对角? ∠1和∠2有怎样的位置关系?∠1和∠3有怎样的位置关系?根据不同的位置怎么将它们分类?(2)学生思考并在小组内交流,全班交流.当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:∠1和∠2有一条公共边OC,它们的另一边互为反向延长线.∠1和∠3有公共的顶点O,而是∠1的两边分别是∠2两边的反向延长线.(3)学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.(4)学生根据观察和度量完成下表:步步深入,完成从已知状态到目标状态的转化。
人教版七年级数学下册5.1.1《相交线》说课稿
人教版七年级数学下册5.1.1《相交线》说课稿一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。
本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
在教材中,通过生动的实例和丰富的图片,引导学生认识相交线,理解相交线的性质,并学会运用相交线解决实际问题。
教材内容由浅入深,循序渐进,既注重了知识的传授,又重视了学生的动手实践和合作交流。
二. 学情分析七年级的学生已经掌握了平行线的知识,对于图形的认知和观察能力有一定的基础。
但是,对于相交线的定义和性质,学生可能还存在一定的模糊认识。
此外,学生的空间想象能力和逻辑思维能力还有待提高。
三. 说教学目标1.知识与技能目标:学生能够理解相交线的定义,掌握相交线的性质,并能够运用相交线解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,体验成功,培养自信心和合作精神。
四. 说教学重难点1.教学重点:相交线的定义、性质和应用。
2.教学难点:相交线的性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和启发式教学法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受和动手实践能力。
六. 说教学过程1.导入:通过展示生活中常见的相交线的例子,如交叉的电线、道路等,引导学生思考相交线的特点,激发学生的学习兴趣。
2.新课导入:介绍相交线的定义,引导学生观察和描述相交线的性质。
3.实例分析:通过几何画板展示相交线的性质,让学生直观地感受相交线的特点。
4.小组讨论:学生分组讨论相交线的性质,总结出相交线的性质定理。
5.练习巩固:设计一些相关的练习题,让学生运用所学的知识解决实际问题。
6.课堂小结:引导学生总结本节课所学的知识,巩固对相交线的理解。
人教版七年级下册(新)第五章《5.1.1相交线》教案
1.教学重点
-重点一:理解相交线的定义,掌握两条直线相交形成的四个角及其名称。
-举例:通过观察图形,让学生识别出两条直线相交形成的四个角,即相邻角、对顶角、补角等,并理解这些角的性质。
-重点二:掌握垂直与平行的性质,并能运用这些性质解决实际问题。
-举例:讲解垂直与平行的定义,引导学生通过观察生活中的实例,如墙面与地面的关系,理解这些性质的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-重点三:学会通过画图和推理来分析几何问题,培养几何直观和逻辑思维能力。
-举例:在解决几何问题时,要求学生先画出相应的图形,再运用几何性质进行分析,从而培养他们解决问题的方法。
2.教学难点
-难点一:对顶角和相邻角的区分。
-举例:在讲解对顶角和相邻角时,通过对比记忆,让学生理解这两种角的不同之处,并运用到实际问题中。
人教版七年级下册(新)第五章《5.1.1相交线》教案
部审人教版七年级数学下册教学设计《5.1.1 相交线》2
部审人教版七年级数学下册教学设计《5.1.1 相交线》2一. 教材分析《5.1.1 相交线》这一节的主要内容是介绍相交线的概念以及相交线的性质。
通过这一节的学习,学生能够理解相交线的定义,掌握相交线的性质,并能够运用相交线的性质解决一些简单的问题。
二. 学情分析学生在进入七年级之前,已经学习了直线、射线、线段等基本概念,并对这些概念有一定的理解。
但是,对于相交线的概念和性质,他们可能是第一次接触,因此需要通过实例和活动来帮助他们理解和掌握。
三. 教学目标1.知识与技能:理解相交线的概念,掌握相交线的性质,能够运用相交线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和问题解决能力。
四. 教学重难点1.重点:相交线的概念和性质。
2.难点:相交线的性质的证明和运用。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法。
通过问题引导学生思考,通过实例帮助学生理解,通过小组合作促进学生交流和合作。
六. 教学准备1.准备一些相交线的图片,用于导入和展示。
2.准备一些练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)利用一些相交线的图片,引导学生观察和描述,引出相交线的概念。
2.呈现(10分钟)通过PPT或者黑板,呈现相交线的性质,引导学生思考和理解。
3.操练(10分钟)让学生分组,每组完成一些相交线的练习题,帮助学生巩固和理解相交线的性质。
4.巩固(10分钟)让学生自己尝试解决一些相交线的问题,巩固和运用相交线的性质。
5.拓展(10分钟)引导学生思考相交线在实际生活中的应用,比如道路的设计、建筑物的布局等,帮助学生拓展思维。
6.小结(5分钟)让学生总结一下今天学习的相交线的概念和性质,巩固记忆。
7.家庭作业(5分钟)布置一些相交线的练习题,让学生回家后巩固和复习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《5.1.1相交线》教学目标解析
初稿:丁浩勇(安徽省无为县刘渡中心学校) 修改:夏晓华(安徽省庐江县第三中学) 审校:张永超(合肥市教育局教研室)
1.教学目标
⑴理解对顶角、邻补角的概念.
⑵掌握对顶角相等的性质.
2.教学目标解析
⑴对顶角和邻补角概念的描述要结合图形进行,这样便于学生抓住问题的本质.对顶角是两条相交直线形成的,这是一个前题条件,其中有公共顶点没有公共边(相对)的两个角;邻补角是两个互补的角,它们又有一条公共边,它的名称同时反映了其中的位置关系和数量关系.
⑵对顶角的性质“对顶角相等”是这一节的重点内容,它在以后“几何与图形”知识的学习中经常要用到.这个性质的说理过程开始用“因为…所以…”的形式,从始逐步培养学生规范的推理表达.。