八年级数学下册18_2特殊的平行四边形18_2_1矩形特色训练题新版新人教版
2022八年级数学下册 第六章 平行四边形综合训练题(新版)北师大版
ADBCEB C A D E第六章 平行四边形一、选择题(每小题3分,共30分)1.下列各条件中,不能判断四边形是平行四边形的是( ) (A )两组对边分别相等 (B )两组对边分别平行(C )一组对边平行且相等 (D )一组对边平行,另一组对边相等 2.下列图形中,是轴对称图形图形,而不是中心对称图形是( ) (A )等边三角形 (B )平行四边形 (C )矩形 (D )菱形3.在△ABC 中,AB=AC=5,D 是BC 上的点,D E ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是( )(A )5 (B )10 (C )15 (D )204.用两块完全相同的直角三角形拼下列图形:①平行四边形 ②矩形 ③菱形 ④ 正方形 ⑤等腰三角形 ⑥等边三角形,一定能拼成的图形是( ) (A )①④⑤ (B )②⑤⑥ (C )①②③ (D )①②⑤ 5.下列命题,错误命题的个数是( )①若一个梯形是轴对称图形,则此梯形一定是等腰梯形;②等腰梯形的两腰的延长线与经过两底中点的直线必交于一点; ③一组对边相等而另一组对边不相等的四边形是梯形;④有两个内角是直角的四边形是直角梯形.(A )1个 (B )2个 (C )3个 (D )4个6.如图1,△ABC 中,AD 是中线,EF 是中位线,则四边形AEDF 一定是 ( ) (A )矩形 (B )菱形 (C )正方形 (D )平行四边形 7.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是( )(A )1∶2∶3∶4 (B )1∶2∶2∶1 (C )2∶2∶1∶1 (D )2∶1∶2∶1 8.如图2,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为 ( )(A )36o (B )9o (C )27o (D )18o9.顺次连结等腰梯形各边中点所得的四边形是( )(A )矩形 (B )菱形 (C )正方形 (D )平行四边形 10.在下面给出的同一种平面图形中,不能进行镶嵌的是( )(A )三角形 (B )四边形 (C )正五边形 (D )正六边形 二、填空题(每小题3分,共12分)11.若n 边形的每一个内角都是120°,则边数n 为 。
特殊平行四边形难题综合训练含参考答案
第五章特殊平行四边形难题综合训练1、正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.162、如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形的边长为.第1题第2题第3题第4题3、如图,平面内4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是1个单位长度,正方形ABCD的4个顶点A、B、C、D都在这些平行线上,其中点A、C分别在直线l1、l4上,该正方形的面积是平方单位.4、如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去…….则四边形A2B2C2D2的周长是;四边形A2013B2013C2013D2013的周长是.5、如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为.6、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2 B.3 C.222D.3第5题第6题第7题第8题7、如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A 、(2,2-)B 、(2,2-)C 、(3,3-)D 、(2,2--)8、如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .下列结论:①点G 是BC 中点;②FG =FC ;③S △FGC =9/10.其中正确的是( ) A .①② B .①③ C .②③ D .①②③9、如图,在正方形ABCD 中,点O 为对角线AC 的中点,过点0作射线OM 、ON 分别交AB 、BC 于点E 、F ,且∠EOF =90°,BO 、EF 交于点P .则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD 的面积等于四边形OEBF 面积的4倍;(3)BE +BF =20A ;(4)AE 2+CF 2=20P ?OB .正确的结论有( )个. A .1 B .2 C .3 D .410、如图,在矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为.11、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N .(1)如图11-1,当点M 在AB 边上时,连接BN .求证:ABN ADN △≌△; (2)如图11-2,若∠ABC =90°,记点M 运动所经过的路程为x (6≤x ≤12).试问:x 为何值时,△ADN 为等腰三角形.12、如图所示,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE DG ,. (1)求证:BE DG =.(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由.CM BN AD(图11-2)CB M AND(图11-1)E FGDA B13、请阅读,完成证明和填空.数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图13-1,正三角形ABC 中,在AB AC 、边上分别取点M N 、,使BM AN =,连接BN CM 、,发现BN CM =,且60NOC ∠=°.请证明:60NOC ∠=°.(2)如图13-2,正方形ABCD 中,在AB BC 、边上分别取点M N 、,使AM BN =,连接AN DM 、,那么AN =,且DON ∠=度.(3)如图13-3,正五边形ABCDE 中,在AB BC 、边上分别取点M N 、,使AM BN =,连接AN EM 、,那么AN =,且EON ∠=度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论. 请大胆猜测,用一句话概括你的发现:.14、ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE .(1)如图(a )所示,当点D 在线段BC 上时.①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立?(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.A A ABB C C CDDO OOM M M NNN E 图13-1图13-2图13-3…15、如图,ABC △中,点O 是边AC 上一个动点,过O 作直线MN BC ∥,设MN 交BCA∠的平分线于点E ,交BCA ∠的外角平分线于点F .(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明,若不是,则说明理由;(3)当点O 运动到何处,且ABC △满足什么条件时,四边形AECF 是正方形? 16、如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1与EF 的长;17、在120ABC =°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A 1△11C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论; (2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由18、在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E . (1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.A G CD BFE 图 ADCBE G图AM EAD BE CF ADBECFAQ D E BP CO19、如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF =90?,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ). (1)若m =n 时,如图,求证:EF =AE ;(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF =AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.(3)若m =tn (t >1)时,试探究点E 在边OB 的何处时,使得EF =(t +1)AE 成立?并求出点E 的坐标.20、形恰.(1)画出拼成的矩形的简图; (2)求x y的值.21、如图所示,在矩形ABCD 中,1220AB AC ==,,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ;对角线相交于点1A ;再以11A B 、1A C 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形11OBB C 、第2个平行四边形111A B C C 和第6个平行四边形的面积.22、如图(22),直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;(2)用含t 的代数式表示MON △的面积1S ;(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S , ①当2t <≤4时,试探究2S 与t 之间的函数关系式; ②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516? 23、如图15,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.24、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:A 1A 2B 2C 2 C 1 B 1O 1 DABC OO M A PN yl mxB OM AP Nyl m xB E P F 图22(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.25、如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF BF EF =+.参考答案1、D2、1043、5或94、2010052355+ 5、156、C 7、A 8、B 9、C 10、5811、(1)证明:∵四边形ABCD 是菱形∴AB =AD ,∠1=∠2又∵AN =AN ∴△ABN ≌△ADN (2)解:∵∠ABC =90°,∴菱形ABCD 是正方形此时,∠CAD =45°. 下面分三种情形:Ⅰ)若ND =NA ,则∠ADN =∠NAD =45°.此时,点M 恰好与点B 重合,得x =6; Ⅱ)若DN =DA ,则∠DNA =∠DAN =45°.此时,点M 恰好与点C 重合,得x =12; Ⅲ)若AN =AD =6,则∠1=∠2,由AD ∥BC ,得∠1=∠4,又∠2=∠3,∴∠3=∠4,从而CM =CN ,易求AC =62,∴CM =CN =AC -AN =62-6, 故x =12-CM =12-(62-6)=18-62 综上所述:当x =6或12或18-62时,△ADN是等腰三角形12、(1)因为ABCD 是正方形,所以BC =CD 。
18_2_1 矩形(第1课时 矩形的性质)【2022春人教八下数学同步精品变式练习】(原卷版)
第十八章平行四边形18.2.1 矩形(第一课时矩形的性质)精选练习一.选择题(共10小题)1.如图,点P是矩形ABCD的对角线上一点,过点P作EF∥BC,分别交AB,CD于E,F,连接PB,PD,若AE=1,PF=3,则图中阴影部分的面积为()A.3 B.6 C.9 D.122.如图所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,则AE的长为()A.3cm B.2cm C.2cm D.cm3.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF等于()A.70°B.60°C.80°D.45°4.一个矩形的两条对角线的一个夹角为60°,对角线长为16cm,则这个矩形较短边的长为()A.2cm B.4cm C.8cm D.16cm5.如图,平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A的坐标为(0,2),顶点B在第二象限.若长方形OABC的面积为6,则点B的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)D.(﹣3,﹣2)6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为()A.16 B.20 C.29 D.347.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为()A.10 B.5 C.2.5 D.2.258.如图,在长方形ABCD中,AB=3,BC=6,对角线AC的垂直平分线分别交AD、AC于点M,N,连接CM,则CM的长为()A.B.C.﹣D.﹣9.如图,在Rt△ABC中,∠ACB=90°,如果CD、CM分别是斜边上的高和中线,那么下列结论不一定成立的是()A.∠ACM=∠BCD B.∠ACD=∠B C.∠ACD=∠BCM D.∠ACD=∠MCD 10.直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6 B.6.5 C.10 D.13二.填空题(共5小题)11.如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF =6,则GH的长为.12.如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.13.如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5cm,则矩形对角线BD的长为cm.14.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,ED平分∠AEC,则DE 长为.15.矩形ABCD中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为.三.解答题(共2小题)16.如图,矩形ABCD的对角线AC与BD相交点O,AC=12,P,Q分别为AO,AD的中点,求PQ的长度.17.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形.(2)若AD=4,AB=2,且MN⊥AC,则DM的长为.。
2020-2021学年八年级数学人教版下册 第18章平行四边形 单元综合培优训练题(附答案)
2020-2021年度人教版八年级数学下册第18章平行四边形单元综合培优训练题(附答案)1.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC平分∠BAD时,四边形ABCD是菱形D.当∠DAB=90°时,四边形ABCD是正方形2.如图,矩形ABCD中,BC>AB,对角线AC、BD交于O点,且AC=10,过B点作BE ⊥AC于E点,若BE=4,则AD的长等于()A.8B.10C.3D.43.如图,在平行四边形ABCD中,AD=6,点E在边AD上,点F在BC的延长线上,且满足BF=BE=8,过点C作CE的垂线交BE于点G,若CE恰好平分∠BEF,则BG的长为()A.2B.3C.4D.24.如图,在正方形ABCD中,M为边BC上的一点,MN⊥BC交BD于点N,连接AM交BD于点E,F为DN中点,连接AF.有下列说法:①BN=BM;②∠BAF=∠AEF;③BE2+DF2=EF2;④AB﹣MN=DF.其中正确的说法有()A.1个B.2个C.3个D.4个5.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=2,AB=6,给出下列结论:①AE=10,②∠COD=45°,③△COF的面积S△COF=6,④CF=BD=2,其中正确的是()A.①②③B.②③④C.①②④D.①③④6.如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则OE的长度是()A.B.5C.3D.7.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.2B.4C.D.28.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则EF+ED的最小值为()A.6B.4C.4D.69.如图,AB⊥AF,EF⊥AF,BE与AF交于点C,点D是BC的中点,∠AEB=2∠B.若BC=8,EF=,则AF的长是()A.B.C.3D.510.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是()A.3B.2C.D.411.矩形ABCD的周长是34cm,对角线相交于O,△AOD与△AOB的周长相差1cm,则AB的长是.12.已知:如图,∠MON=90°,四边形ABCD为矩形,A、B两点分别在射线ON、OM 上,AD=2,AB=4,A、B两点在ON、OM上滑动时,C、D点随之运动,则线段OD 的最大值为.13.如图,▱ABCD中,AB=10cm,AD=15cm,点P在AD边上以每秒1cm的速度从点A 向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,点P到达点D时停止(同时点Q也停止运动),在运动以后,当以点P、D、Q、B为顶点组成平行四边形时,运动时间t为秒.14.如图,在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同的速度在直线DC、CB上移动,连接AE和DF交于P,若AD=6,则线段CP的最小值为.15.如图,在四边形ABCD中,AB⊥BC,对角线AC、BD相交于点E,E为BD中点,且AD=BD,AB=2,∠BAC=30°,则DC=.16.如图,四边形ABCD为正方形,AB为边向正方形外作等边三角形ABE、CE与DB相交于点F,则∠AFD=度.17.如图,点M为正方形ABCD边CD的中点,连接AM、BM,BM交对角线AC于点P,连接PD交AM于点Q,如果AB长为9,那么PQ的长为.18.如图,M为矩形ABCD中AD边中点,E、F分别为BC、CD上的动点,且BE=2DF,若AB=1,BC=2,则ME+2AF的最小值为.19.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的平分线BF交CD于点E,交AC于点F,OF=1,则AB=.20.已知如图,正方形ABCD的边长为4,取AB边上的中点E,连接CE,过点B作BF⊥CE于点F,连接DF.过点A作AH⊥DF于点H,交CE于点M,交BC于点N,则MN =.21.如图,已知正方形ABCD和等边△DCE,点F为CE的中点,AE与DF相交于点G,AG=2.(1)直接写出GE=;(2)求出DG的长;(3)如图,若将题中“等边△DCE”改为“DC=DE的等腰△DCE”,其他条件不变,求出BG+DG的值.22.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H.(1)求EF的长;(2)求△DEF的面积.23.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.24.如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD 的长.25.如图,四边形ABCD是正方形,E、F分别是AB和BC延长线上的点,且AE=CF.(1)求证:△ADE≌△CDF;(2)连接EF,若AB=3,AE=1,求EF的长.26.如图1,菱形ABCD中,∠BAD=60°,点E、F分别是边AB、AD上两个动点,满足AE=DF,连接BF与DE相交于点G.(1)如图2,连接BD,求∠BGD的度数;(2)如图3,作CH⊥BG于H点,求证:2GH=DG+BG.27.如图,平行四边形ABCD中,AC与BD相交于点O,AB=AC,延长BC到点E,使CE =BC,连接AE,分别交BD、CD于点F、G.(1)求证:△ADB≌△CEA;(2)若BD=9,求AF的长.28.已知四边形ABCD是正方形,点P,Q在直线BC上,且AP∥DQ,过点Q作QO⊥BD,垂足为点O,连接OA,OP.(1)如图,点P在线段BC上,①求证:四边形APQD是平行四边形;②判断OA,OP之间的数量关系和位置关系,并加以证明;(2)若正方形ABCD的边长为2,直接写出BP=1时,△OBP的面积.参考答案1.解:①由矩形的判定“对角线相等的平行四边形是矩形”可知,A正确;②由菱形的判定“有一组邻边相等的平行四边形是菱形”可知,B正确;③∵AC平分∠BAD,∴∠DAC=∠CAB,∵CD∥AB,∴∠DCA=∠CAB,∴∠DAC=∠DCA,∴DA=DC,∴平行四边形ABCD是菱形,故C正确;④在平行四边形ABCD中,∵∠DAB=90°,∴平行四边形ABCD是矩形,而不能判定其是正方形,故D错误;故选:D.2.解:∵四边形ABCD是矩形,∴∠BAD=90°,设AD=BC=a,AB=DC=b,∵AC=10,BE⊥AC,BE=4,∴a2+b2=102,又∵S矩形ABCD=2S△ABC∴ab=2××10×4=40,∵BC>AB,解得:a=4,b=2,即AD=4,故选:D.3.解:如图,延长EF,GC两条线相交于点H,过点G作GP∥EF交BC于点P,∵四边形ABCD是平行四边形,∴BC=AD=6,∵BF=BE=8,∴CF=BF﹣BC=2,∵CE平分∠BEF,∴∠GEC=∠HEC,∵CE⊥GC,∴∠ECG=∠ECH=90°,在△ECG和△ECH中,,∴△ECG≌△ECH(ASA),∴CG=CH,∵GP∥EF,∴∠PGC=∠FHC,在△PCG和△FCH中,,∴△PCG≌△FCH(ASA),∴CP=CF=2,∴BP=BF﹣PF=8﹣4=4,∵BF=BE,∴∠BEF=∠BFE,∵GP∥EF,∴∠BGP=∠BEF,∠BPG=∠BFE,∴∠BGP=∠BPG,∴BG=BP=4.故选:C.4.解:①∵四边形ABCD是正方形,∴∠DBC=45°,∵MN⊥BC,∴∠BMN=90°,∴△MNB是等腰直角三角形,∴BM=MN,∴BN=BM;故①正确;②过F作GH⊥BC于H,交AD于G,连接FM、FC,∵AD∥BC,∴GH⊥AD,∵四边形ABCD是正方形,∴AD=BC,∠ADF=∠CDF=45°,∵DF=DF,∴△ADF≌△CDF,∴AF=CF,∵∠FDG=45°,∠FGD=90°,∴△FGD是等腰直角三角形,∴FG=DG=CH,∴Rt△AFG≌Rt△FCH(HL),∴∠F AG=∠CFH,∵MN∥FH∥DC,F是DN的中点,∴MH=CH,∵FH⊥CM,∴FM=FC,∴∠MFH=∠CFH=∠F AG,∵∠AGF=∠F AG+∠AFG=∠MFH+∠AFG=90°,∴∠AFM=90°,∵AF=FC=FM,∴△AFM是等腰直角三角形,∴∠MAF=45°,∵∠BAF=∠BAM+∠MAF=∠BAM+45°,∠AEF=∠BAM+∠ABE=∠BAM+45°,∴∠BAF=∠AEF;故②正确;③∵AD=AB,∠DAB=90°,∴将△AFD绕点A顺时针旋转90°至△ABF',∴△AFD≌△AF'B,∴DF=BF',∠ABF'=∠ADF=45°,AF=AF',∴∠EBF'=45°+45°=90°,∴EF'2=BF'2+BE2=DF2+BE2,∵∠F'AE=∠F'AB+∠BAE=∠F AD+∠BAE=45°=∠EAF,AN=AN,∴△F'AE≌△F AE,∴EF=EF',∴EF2=BE2+DF2;故③正确;④过F作FR⊥CD,垂足为P,使FP=PR,连接DR、RC,∵∠FDP=45°,∴∠DFP=45°,∴FP=PD=PR,∴∠FDR=90°,△FDR是等腰直角三角形,∴FR=DF,∵FR=2FP,CM=2CH=2FP,∴FR=CM,∵AB=CB,BM=MN,∴CM=BC﹣BM=AB﹣BM=AB﹣MN,∴AB﹣MN=DF,故④正确;本题正确的结论有:①②③④,4个故选:D.5.解:①∵EF=2,∴OE=4,∵AO=AB=6,∴AE=AO+OE=6+4=10,故正确;②∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故正确;③作FG⊥CO交CO的延长线于G,则FG=2,∴△COF的面积S△COF=×6×2=6,故正确;④作DH⊥AB于H,CF==2,BH=6﹣2=4,DH=6+2=8,BD==4,故错误.故选:A.6.解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=10,OA=OC=AC=5,OB=OD=BD=5,∴OC=OD,∵∠EDC:∠EDA=1:3,∠EDC+∠EDA=90°,∴∠EDC=22.5°,∠EDA=67.5°,∵DE⊥AC,∴∠DEC=90°,∴∠DCE=90°﹣∠EDC=67.5°,∴∠ODC=∠OCD=67.5°,∴∠ODC+∠OCD+∠DOC=180°,∴∠COD=45°,∴OE=DE,∵OE2+DE2=OD2,∴(2DE)2=OD2=25,∴DE=,故选:D.7.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE.当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=CF.∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=2,AD=1,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=1.∴BP1=.∴PB的最小值是.故选:C.8.解:如图,当点E运动到点E′时,EF+ED的值最小,最小值为EF+DE',在AD边上取AH=2,∵AE′=AE=4,∴=2,∵AD=8,∴=2,∴,∵∠DAE′=∠E′AH,∴△DAE′∽△E′AH,∴=2,∴E′H=DE',∴EF+ED=EF+E′D=EF+E′H=HF,∴EF+ED的最小值为HF的值,∵DH=AD﹣AH=6,DF=DC﹣CF=6,在Rt△DHF中,根据勾股定理,得HF=,故选:A.9.解:∵AB⊥AF,∴∠F AB=90°,∵点D是BC的中点,∴AD=BD=BC,∴∠DAB=∠B,∴∠ADE=∠B+∠BAD=2∠B,∵∠AEB=2∠B,∴∠AED=∠ADE,∴AE=AD,∵BC=8,∴AE=AD=4,∵EF=,EF⊥AF,∴AF===3,故选:C.10.解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB==,∵四边形OABC是矩形,∴AC=OB,∴AC=,故选:C.11.解:由图易得:OB=OD,那么△AOD与△AOB的周长相差1cm其实就是AD与AB相差1cm当AD比AB长1cm时,AD+AB=AB+1+AB=17,AB=8;当AD比AB短1cm时,AD+AB=AB﹣1+AB=17,AB=9.因此AB的长为8或9cm.故AB的长为8或9cm.12.解:如图,取AB的中点E,连接OE、DE、OD,∵OD<OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=4,BC=2,∴OE=AE=AB=2,DE==2,∴OD的最大值为:2+2.故答案为:2+2.13.解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵P在AD上运动,∴t≤,即t≤15,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B﹣C,方程为4t﹣15=15﹣t,解得:t=6;②点Q的运动路线是C﹣B﹣C﹣B,方程为15﹣(4t﹣30)=15﹣t,解得:t=10;③点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣45=15﹣t,解得:t=12;故答案为:6或10或12.14.解:由题意得:AD=CD,DE=FC,∠ADC=∠DCF=90°,∴△DCF≌△ADE(SAS),∴∠DAE=∠FDC,∴∠APD=90°,即:相当于点P始终在以AD为直径的圆上,取AD的中点Q,当Q、P、C三点共线时,PC最小,PC=CQ﹣PQ=﹣3=3﹣3.故:答案是3﹣3.15.解:如图,在EA上取一点K,使得EK=CE,连接DK,BK,延长DK交AB于H.∵DE=EB,CE=EK,∴四边形BCDK是平行四边形,∴CD=BK,DK∥BC,∵BC⊥AB,∴DH⊥AB,∵DA=DB,∴AH=HB=1,∴KA=KB=CD,在Rt△AKH中,AK=AH÷cos30°=,∴CD=,故答案为.16.解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形∴BC=BE,∴∠BEC=15°,∵∠FBE=∠DBA+∠ABE=105°,∴∠BFE=60°,在△CBF和△ABF中,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠F AB=15°+45°=60°.故答案为60.17.解:如图,延长P交BC于H.∵四边形ABCD是正方形,∴AB=CD=AD=BC=9,AB∥CD,AD∥BC,∵DM=CM=4.5,∴PC:P A=CM:AB=1:2,CH:AD=CP:P A=1:2,∴AD=2CH,∴CB=2CH,∴CH=BH=4.5,∵AD=CD,∠ADM=∠DCH,DM=CH,∴△ADM≌△DCH,∴∠DAM=∠CDH,∵∠DAM+∠AMD=90°,∴∠CDH+∠DMA=90°,∴∠DQM=90°,∵DH==,∵DP{PH=AD:CH=2:1,∴DP=DH=3,∵AM=DH=,∴DQ==,∴PQ=PD﹣DQ=,故答案为.18.解:如图,过点M作MH⊥BC于H.设DF=x,则BE=2x.∵四边形ABCD是矩形,∴∠BAD=∠B=∠D=90°,∵MH⊥BC,∴∠MHB=90°,∴四边形ABHM是矩形,∴AM=DM=BH=1,AB=MH=1,∴EH=1﹣2x,∴ME+2AF=+2=+,欲求ME+2AF的最小值,相当于在x轴上找一点Q(2x,0),使得点Q到J(0,4),和K(1,1)的距离之和最小(如下图),作点J关于x轴的对称点J′,连接KJ′交x轴于Q,连接JQ,此时JQ+QK的值最小,最小值=KJ′,∵J′(0,﹣4),K(1,1),∴KJ′==,∴ME+2AF的最小值为,故答案为.19.解:如图作FH∥BC交BD于点H.∵四边形ABCD是正方形,∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°∵FH∥BC,∴∠OHF=∠OBC,∠OFH=∠OCB,∴∠OHF=∠OFH,∴OH=OF=1,FH==,∵BF平分∠OBC,∴∠HBF=∠FBC=∠BFH,∴BH=FH=,∴OB=OC=1+,∴BC=OB=2+.故答案为2+.20.解:如图,延长DF交AB于P.∵四边形ABCD是正方形,∴AD=AB,∠ABN=∠DAP=90°,∵AN⊥DP,∴∠APD+∠P AH=90°,∠ANB+∠P AH=90°,∴∠APD=∠ANB,∴△ADP≌△BAN,∴AN=DP,∵BF⊥EC,∴∠EBF+∠BEF=90°,∠BCE+∠BEC=90°,∴∠EBF=∠BCE,∴tan∠EBF=tan∠BCE=,∵AB=BC,BE=AE,∴tan∠EBF=tan∠BCE=,设EF=a,则BF=2a,CF=4a,∵PE∥DC,∴==,∵CD=4,∴PE=1,∵BE=2,∴PE=PB=1,∴PF=BE=1,AP=3,在Rt△ADP中,DP==5,∴DF=4,BN=AP=3,CN=1,∴DC=DF,∴∠DFC=∠DCF,∵∠BCE+∠DCF=90°,∠FMH+∠DFC=90°,∠FMH=∠NMC,∴∠NCM=∠NMC,∴MN=CN=1.故答案为1.21.解:(1)如图1,连接AC,∵四边形ABCD是正方形,∴∠DAC=45°,∵点F为等边△DCE边CE的中点,∴DF是CE的垂直平分线,∴GE=GC,∵∠ADE=90°+60°=150°,AD=DE,∴∠DAE=∠DEA=15°,∴∠GEC=∠GCE=60°﹣15°=45°,∴GC⊥AE,∴△AGC为直角三角形,∵∠GAC=∠DAC﹣∠DAE=45°﹣15°=30°,AG=2,∴GC=GE=AG=2;故答案为:2;(2)由(1)可得AC=4,则DC=2,在等边△DCE中DF=,在等腰直角△CGE中,由斜边上中线等于斜边的一半得GF=,∴DG=﹣.(3)如图2,过D作DN⊥AE于N,过A作AM⊥AE交GD的延长线于M,∵∠ADN+∠CDN=90°,∠ADN+∠DAN=90°,∴∠DAN=∠CDN,∵AD=DC=DE,∴∠DAN=∠CDN=∠DEA,∵F是CE中点,∴∠CDF=∠EDF,∵∠NDG=∠CDN+∠CDF,∠DGN=∠DEA+∠EDF,∴∠NDG=∠DGN=45°,∴∠M=45°,∴AM=AG,∵∠DAM+∠DAN=90°,∠BAG+∠DAN=90°,∴∠DAM=∠BAG,在△MAD和△GAB中,,∴△MAD≌△GAB(SAS),∴BG=DM,∴BG+DG=DM+DG=MG=AG=×2=2.22.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=;(2)∵AB∥CD,∴∠B=∠ECH,在△BFE和△CHE中,,∴△BFE≌△CHE(ASA),∴EF=EH=,CH=BF=1,∵S△DHF=DH•FH=4,∴S△DEF=S△DHF=2.23.(1)证明:如图①,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH.在△ABG和△AEH中,,∴△ABG≌△AEH(ASA).∴BG=EH,AG=AH.∵∠GAH=∠EAB=60°,∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG;(2)EG=AG﹣BG.如图②,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.∵又AB=AE,∴△ABG≌△AEH.∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG.∴EG=AG﹣BG.24.(1)证明:过C点作CH⊥BF于H点,∵∠CFB=45°∴CH=HF,∵∠ABG+∠BAG=90°,∠FBE+∠ABG=90°∴∠BAG=∠FBE,∵AG⊥BF,CH⊥BF,∴∠AGB=∠BHC=90°,在△AGB和△BHC中,∵∠AGB=∠BHC,∠BAG=∠HBC,AB=BC,∴△AGB≌△BHC,∴AG=BH,BG=CH,∵BH=BG+GH,∴BH=HF+GH=FG,∴AG=FG;(2)方法1、解:∵CH⊥GF,∴CH∥GM,∵C为FM的中点,∴CH=GM,∴BG=GM,∵BM=10,∴BG=2,GM=4,∴AG=4,AB=10,∴HF=2,∴CF=2×=2,∴CM=2,过B点作BK⊥CM于K,∵CK=CM=CF=,∴BK=3,过D作DQ⊥MF交MF延长线于Q,∴△BKC≌△CQD∴CQ=BK=3,DQ=CK=,∴QF=3﹣2=,∴DF==2.25.解:(1)∵正方形ABCD中,∠A=∠BCD=90°,则∠DCF=∠A=90°,AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS);(2)∵AB=BC=3,CF=AE=1,∴BE=3﹣1=2,BF=3+1=4,∴Rt△BEF中,EF===2.26.(1)解:如图2中,∵四边形ABCD是菱形,∴AD=AB,∵∠A=60°,∴△ABD是等边三角形,∴AB=DB,∠A=∠FDB=60°,在△DAE和△BDF中,,∴△DAE≌△BDF,∴∠ADE=∠DBF,∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,∴∠BGD=180°﹣∠BGE=120°.(2)证明:如图3中,延长GE到M,使得GM=GB,连接BD、CG.∵∠MGB=60°,GM=GB,∴△GMB是等边三角形,∴∠MBG=∠DBC=60°,∴∠MBD=∠GBC,在△MBD和△GBC中,,∴△MBD≌△GBC,∴DM=GC,∠M=∠CGB=60°,∵CH⊥BG,∴∠GCH=30°,∴CG=2GH,∵CG=DM=DG+GM=DG+GB,∴2GH=DG+GB.27.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠ABC+∠BAD=180°.又∵AB=AC,∴∠ABC=∠ACB.∵∠ACB+∠ACE=180°,∴∠BAD=∠ACE.∵CE=BC,∴CE=AD,在△ABE和△CEA中,,∴△ADB≌△CEA(SAS).(2)解:∵△ADB≌△CEA,∴AE=BD=9.∵AD∥BC,∴△ADF∽△EBF.∴=.∴=.∴AF=3.28.(1)①证明:∵四边形ABCD是正方形,∴AD∥BC,∵AP∥DQ,∴四边形APQD为平行四边形;②解:结论:OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(2)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=1+2=3,OE=BQ=,∴S△OPB=×1×=②如图2,当P点在B点左侧时,则BQ=2﹣1=1,OE=BQ=,∴S△PBO=×1×=,综上所述,△POB的面积为或.。
八年级下册第十八章矩形的定义和性质
矩形及其性质一、教材分析:本节课是人教版八年级下册18.2《特殊的平行四边形》的第一课时“矩形及其性质”。
这节课是在学生学习了三角形(直角三角形、等腰三角形)、四边形(平行四边形)等有关知识的基础上来学习的,是学习菱形、正方形的基础,起着承前启后的作用。
教科书力求突出矩形性质的探索过程,让学生通过图形变换和简单推理等方法,自主地探索出矩形的有关性质,进一步发展学生的合情推理能力和说理的方法。
二、学情分析:本节课学习,学生在心理上易受到下列因素影响:一是受日常用语的影响,日常生活中的矩形常被称作长方形,容易给学生造成矩形是另一种图形的错误认识。
二是受平行四边形的影响,学生在学习矩形的性质以前,已经学习了平行四边形的性质和判定,对特殊四边形的性质有了一个初步的感知,但有些学生容易将两种图形的性质混淆,因此,在教学中要注意区别,帮助学生抓住图形的本质特征。
三、教学目标:(一)知识与技能了解矩形有关概念,理解并掌握矩形的有关性质及推论。
(二)过程与方法经历探索矩形的概念和性质的过程,在观察、操作和分析的过程中,进一步增进主动探究的意识,体会说理的基本方法。
(三)情感态度价值观培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值。
四、教学重点:掌握矩形的性质,并学会应用。
五、教学难点:理解矩形的特殊性,探究矩形特殊性质。
六、教学过程:(一)创设情境,引出课题今天,我们把这些长方形赋予了一个更加别致的名称-----矩形(多媒体飞入动画展示课题)。
下面让我们一起走进这神奇的矩形世界,去领略矩形的风采。
由一个故事来引入新课,产生学习的兴趣。
(二)合作探究,研究课题。
1、矩形的定义:用多媒体课件展示一组拍摄于生活中的矩形实物:数学课本、课桌、时钟等,提问:这些是平行四边形吗?他们都有什么共同之处呀?看,他们都有一个角是九十度。
多媒体演示:根据平行四边形的不稳定性用几何画板动画演示引导学生观察平行四边形是如何演变为矩形,多媒体动画强调“直角”。
新人教版八年级下册平行四边形单元测试题
人教版八年级数学(下)四边形单元训练题(五一作业)一、选择题(共12小题,每小题3分,满分36分)1.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()第1题图第2题图第3题图A.3 B.6 C.12 D.242.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形3.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm4.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF.你认为()A.仅小明对B.仅小亮对C.两人都对D.两人都不对第4题图第6题图5.在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是() A.矩形 B.菱形 C.正方形D.梯形6.矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为()A.8 B .C.4 D .7.下列命题正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线相等且互相垂直的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.对角线相等的四边形是等腰梯形8.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE第8题图第9题图第10题图9.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm10.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°11.如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,以下四个结论:①∠ABC=∠DCB,②OA=OD,③∠BCD=∠BDC,④S△AOB=S△DOC.其中正确的是()第11题图第12题图第13题图A.①② B.①④ C.②③④D.①②④12.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30° B45°C.60°D.90°二、填空题(共6小题,每小题3分,满分18分)13.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_________cm2.14、如图5,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF 的长是15、如下图,正方形ABCD的边长为8,点M在DC上且DM=2,N是AC上的一动点,求DN+MN 的最小值()。
数学人教版八年级下册平行四边形的性质—平行线间的距离及等面积问题
n m平行四边形的性质—— 平行线间的距离及等面积问题设计人:遵义市第五十三中学 龙文艳一、教材分析:平行线间的距离处处相等是人教版八年级下册第十八章第一节《平行四边形》中平行四边形的性质的一个推论,在等面积问题以及一些相似问题的运用中,这个知识点运用比较广泛,尤其是将一些不便于求解面积的图形问题转化为便于求解的图形问题时,常常会用到这一知识点。
在本教学设计中,我对这堂课进行了教材整合,我将平行线间涉及三角形面积的问题归纳在一起在这一堂课中展示,这样,便于解题方法的总结。
本节课就平行四边形的性质而推导得出平行线间的距离处处相等,然后将涉及这一知识点的相关三角形的面积问题加以整合,在教学过程中,我把对学生的数学转化思想的培养作为重点.二、教学目标:1、让学生在探究归纳中,理解并掌握平行线间距离处处相等的性质;2、通过实例,教会学生运用“平行线间的距离处处相等”来解决一般三角形的面积问题;3、在图形的变换中,体会数学中的转换思想,培养学生的逻辑思维能力.三、教学重难点:重点:将一些不便于求解面积的三角形问题转化为便于求解的三角形问题的方法; 难点:在图形的转化过程中,体会并运用数学几何图形的转化思想.四、教学过程: (一)情境创设:如图,山坡上有两棵树,它们在直线AB 上,你能测量出两棵树距离有多远吗?(二)出示学习目标4、理解并掌握平行线间距离处处相等的性质;5、会运用平行线间距离处处相等解决一般三角形的面积问题;6、在图形的变换中体会数学中的转换思想. (三)自主学习: 1、知识准备:(1)三角形的面积公式是 。
(2)点到直线的距离是指过这个点所作直线的垂线段的 。
(3)两平行线间的距离是指 ,如图,m ∥n ,则直线m 与直线n 之间的距离是 。
(4)平行四边形中,对边 .同时,每一组对边都是另一组对边之间的平行线段,因此上述结论可以这样说:平行线之间的平行线段相等.2、解决情境创设中的问题。
人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)
第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。
人教版数学八年级下册18.1.2第2课时《 三角形的中位线》教案
人教版数学八年级下册18.1.2第2课时《三角形的中位线》教案一. 教材分析《三角形的中位线》是人教版数学八年级下册第18章第一节的一部分,主要内容是让学生掌握三角形的中位线的性质,学会运用中位线解决一些几何问题。
本节课的内容是学生学习几何知识的重要环节,也是进一步学习复杂几何图形的基础。
二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质,对图形的对称性有一定的了解。
但部分学生对图形的直观感知能力较弱,对几何图形的性质理解不够深入。
因此,在教学过程中,需要注重培养学生的观察能力、思考能力和动手操作能力。
三. 教学目标1.让学生掌握三角形的中位线的性质,能熟练运用中位线解决一些几何问题。
2.培养学生的观察能力、思考能力和动手操作能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.三角形中位线的性质。
2.运用中位线解决几何问题。
五. 教学方法1.采用直观演示法,让学生通过观察实物,理解三角形中位线的性质。
2.运用归纳法,引导学生总结三角形中位线的性质。
3.采用练习法,让学生在实践中掌握中位线的运用。
4.小组合作学习,培养学生的团队合作精神。
六. 教学准备1.准备三角形模型、直尺、圆规等教具。
2.设计相关练习题。
七. 教学过程1.导入(5分钟)利用实物模型,引导学生观察三角形的中位线,提出问题:“三角形的中位线有什么性质?它与三角形有什么关系?”2.呈现(10分钟)通过PPT或黑板,展示三角形的中位线的性质,引导学生总结出:三角形的中位线平行于第三边,等于第三边的一半。
3.操练(10分钟)让学生利用直尺、圆规等工具,自己动手画出一个任意的三角形,然后找出它的中位线,并验证中位线的性质。
4.巩固(10分钟)设计一些有关三角形中位线的练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)引导学生思考:如何利用三角形的中位线解决实际问题?例如,在建筑设计中,如何利用中位线保证建筑物的稳定性?6.小结(5分钟)让学生总结本节课所学的知识点,教师进行补充。
新人教版八年级数学下册期中考试卷(完整版)
新人教版八年级数学下册期中考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .154.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C.45357x x++= D.45357x x--=7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.68.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=______度.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、B7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、-2 -33、14、15、46、24三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)略;(2)△ABC 的周长为5.4、略.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
人教版八年级下册数学平行四边形知识点归纳及练习
希望教育 八年级下册平行四边形知识与习题1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( 4.平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形.7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所( A BCD 1234AB CDABDOCCDBAOABDOCA DBCA DBCAD B COAD B CO8.菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( CDAB (1) A BCD O(2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(3)∵ABCD 是矩形 又∵AD=AB∴四边形ABCD 是正方形11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)(12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形 (3)∵ABCD 是梯形且AD ∥BC ∵AC=BD ∴ABCD 四边形是等腰梯形CDBAOA BC D OABC DOCD AB14.三角形中位线定理: 三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理: 梯形的中位线平行于两底,并且等于两底和的一半.公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 练习:一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形。
不同版本教材知识点设置的比较研究—以初中数学平行四边形为例
摘要随着课程改革不断推进,各地出现了各有特点的数学教材,教材的编写者有不同的思路,因此教材在各个方面也会存在一定的差异,同时不同版本的教材对比也有助于教师更好地教学与进行教学研究.通过对人教版、北师大版、苏科版中的“平行四边形”部分进行比较研究,从而帮助对该部分知识点的全面把握,以便更好地把握数学教材内容,优化教学设计.通过文献分析法、对比分析法、统计法、问卷调查法对不同版本初中数学教材从结构、引入、探究及习题设置进行了比较,从而发现三个版本教材的特色以及各自的异同点.通过对此课题的研究,提供一些有益的数学教学建议.关键词平行四边形教材对比人教版北师大版苏科版A comparative study on the set of knowledge points in different editionsof textbooks—— A case study of Parallelogram in junior middle schoolAbstract With the continuous advancement of the curriculum reform, mathematics textbooks with their own characteristics have appeared in various places. The compilers of the textbooks have different ideas, so there are certain differences in various aspects of the textbooks, at the same time, the comparison of different versions of teaching materials is helpful to teachers. This paper makes a comparative study of the "Parallelogram" section in the people s education press, the Beijing Normal University press and the Soviet section press, so as to help us grasp the knowledge points of this section in anall-round way, so as to better grasp the contents of the mathematics teaching materials and optimize the teaching design. Through literature analysis, Comparative Analysis, Statistics and Questionnaire survey, this paper compares the structure, Introduction, exploration and problem setting of different editions of junior middle school mathematics textbooks, thus discovered three edition teaching material's characteristic as well as respective similarities and differences. Through the research on this subject, some useful suggestions on mathematics teaching are provided.Key words Parallelogram textbook comparison People's Education Edition Beijing Normal University Edition Suke edition目录摘要 (II)Abstract (III)引言 (1)1绪论 (1)1.1问题的提出 (1)1.2国内外研究现状 (1)1.2.1国外研究概况 (1)1.2.2国内研究概况 (2)2研究对象、研究维度、研究思路与研究方法 (2)2.1研究对象 (2)2.2研究维度 (2)2.3研究思路 (2)2.4研究方法 (3)3平行四边形内容设置的比较研究 (3)3.1教材内容结构比较 (3)3.2引入的比较 (5)3.3探究活动的比较 (12)3.4习题的比较 (14)4初中不同版本数学教材比较的实证研究 (16)4.1问卷调查对象 (16)4.2问卷调查数据整理 (16)4.3问卷调查数据分析 (17)5结论 (17)5.1三个版本教材的横向比较 (17)5.2三个版本教材的纵向比较 (18)6建议 (18)6.1内容结构方面 (18)6.2引入方式方面 (18)6.3习题设置方面 (19)6.4探究活动方面 (19)结语 (20)参考文献 (21)致谢 (22)附录 (23)引言教育改革的核心是课程改革,课程改革促进了教材的优化 [1]P10.结合不同的地域特点和教育现状,国家支持相关部门编写不同特征的教材,不同教材的编写思路决定了教材在各个方面也会存在一定差异[2]P59-66.目前有很多专家学者对不同版本的初中数学教材进行了对比研究,很多一线教师也在关注不同教材下同一知识点的异同点.目前各种教材是怎样设计的,有什么样的优缺点、异同点,编写意图是什么?这些有待作进一步研究.在实际教学过程中应如何选用和使用教材是值得每一个基础教育工作者思考的问题.作为一名未来从事教育事业的毕业生,我结合自身学习的理论经验和实习期间的实践教学经验,对人民教育出版社[3]P41-67(以下简称人教版)、北京师范大学出版社[4]P135-140(以下简称北师版)、江苏风凰科学技术出版社[5]P56-90(以下简称苏科版)三个版本教材中“平行四边形”的内容进行比较研究,在研究过程中主要运用内容分析和统计分析法,并且结合一定的实践经验,通过对不同教材进行比较,希望可以深入的理解教材,找到不同之处,取长补短,对初中数学教材进行优化与反思.1绪论1.1问题的提出教科书是教师教和学生学的主要载体[6].现如今,越来越多的人去研究教材,新版本的初中数学教材有哪些特点,现在各种教材是怎样设计的,有什么样的优缺点、异同点?这些有待作进一步研究.平行四边形是四边形内容中的重要部分.它在教材中有着呈上启下的作用.研究发现,这部分研究较缺乏,因此,本文通过对三个版本初中数学教材中“平行四边形”部分进行对比研究,分析不同版本教材的特点.1.2 国内外研究现状现在对教材的研究较多,研究的方面也很多,作者搜集了大量的资料,通过分析整理,对国内外已有的教材对比研究现状进行了分析概括.1.2.1国外研究概况近年来,我国教育事业有了很大的发展,因为我们不断与国外教材进行比较研究,比较研究大多是对某一个具体的模块进行具体的分析比较,从而找出国内外教材之间的差异.2002年, Hoyles等学者,借助TIMSS这种手段对多国教材进行有针对性的比较,分析了这些国家的数学教科书与学生的成绩测试以及评价结果,对异同点进行了详细的比较[7]P61-P65;2006年,梁贯成等学者对日本、韩国等国家的教材进行了多方面比较,同时也对比了中澳数学教材中的价值观和中新数学教材的知识架构等等[8]P32-34;2007年,范良火等学者通过对三个国家的初中数学教材内容中的“问题解决步骤的呈现方式”进行比较,发现这三个国家在这方面的异同点,同时也提供了建议[9]P61-75;2013年,曹一鸣等人对不同国家初中数学的数与代数、统计与概率和图形与几何的整体布局进行了比较[10]P29-36。
2019年人教版八下数学《18.2 矩形》同步复习资料(2)
2019年人教版八下数学《18.2 矩形》同步复习资料(1)一.选择题(共10小题)1.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个3.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2B.2C.3D.34.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C.D.45.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,∠AOD=60°,则AB的长为()A.4B.2C.8 D.8【3】【4】【5】6.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.B.C.D.7.如图,在四边形ABCD中,AB⊥BC,AB⊥AD,BD=BC,∠C=60°,如果△DBC的周长为m,则AD的长为()A.B.C.D.8.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF ⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.49.如图所示,四边形ABCD中,点E、F、G、H分别是其边AB、BC、CD、DA的中点,若四边形EFGH是矩形,则下列说法正确的是()A.四边形ABCD是矩形B.四边形ABCD一定是平行四边形C.AC⊥BD D.AC=BD10.如图,在锐角△ABC中,点O是AC边上的一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,下列结论中正确的是()①OE=OF;②CE=CF;③若CE=12,CF=5,则OC的长为6;④当AO=CO时,四边形AECF是矩形.A.①②B.①④C.①③④D.②③④【8】【9】【10】二.填空题(共10小题)11.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,则∠AOB的度数为.12.如图,长方形ABCD中,AB=6,BC=4,在长方形的内部以CD边为斜边任意作Rt△CDE,连接AE,则线段AE 长的最小值是.13.在矩形ABCD中,对角线长为6,有一边长为3,点P为直线AD上一动点(与点A、D不重合),若∠ABP=30°,则DP的长为.14.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,能保证四边形EFGH是矩形.16.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件时,四边形PEMF为矩形.17.如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.【15】【16】【17】18.如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为.19.如图,在△ABC中,AB=AC=7,BC=6,AF⊥BC于F,BE⊥AC于E,D是AB的中点,则△DEF的周长是.20.如图,在四边形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于点E,点G,H分别是AC,BD的中点,若∠BEC=70°,那么∠GHE=度.【18】【19】【20】三.解答题(共10小题)21.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.22.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.23.如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.24.在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F 从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,(1)t取何值时,四边形EFCD为矩形?(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?25.如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.26.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.27.已知:如图,∠BAC=∠BDC=90°,点E在BC上,点F在AD上,BE=EC,AF=FD.求证:EF⊥AD.28.(1)如图1,OB是Rt△ABC斜边上的中线,延长BO到D,使OD=OB,连结DA.利用图1证明:中线OB 等于斜边AC的一半.(2)上面(1)中的结论是一个很重要的定理,利用此定理证明下题:如图2,点E是Rt△ABC的直角边AC上的点,ED⊥AB于D,F是线段BE的中点,连结FC、FD、CD,则有∠FCD=∠FDC.29.如图1,平行四边形ABCD,DE⊥AB.垂足E在BA的延长线上,BF⊥DC,垂足F在DC的延长线上.(1)求证:四边形BEDF是矩形;(2)如图2,若M、N分别为AD、BC的中点,连接EM、EN、FM、FN,求证:四边形EMFN是平行四边形.30.如图,△ABC中,AB=AC,点D、点O别是BC、AC的中点,AE∥BC.(1)求证:四边形ADCE是矩形.(2)若F是CE上一动点,直接写出与四边形ABDF面积相等的三角形和四边形.《18.2 矩形》同步复习资料【2】参考答案与试题解析一.选择题(共10小题)1.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选:B.2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个【解答】解:①矩形是轴对称图形,两组对边的中点的连线所在的直线是它的对称轴,故错误;②两条对角线相等的平行四边形是矩形,故错误;③有两个邻角相等的平行四边形是矩形,故错误;④两条对角线相等且互相平分的四边形是矩形;正确;⑤两条对角线互相垂直平分的四边形是菱形;故错误.3.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2B.2C.3D.3【解答】解:连接CF,如图所示:∵DE是AC的中垂线,∴AF=CF,∠CDE=90°,∴∠ACF=∠A=30°,∴∠CFB=∠A+∠ACF=60°,∵AF=BF,∴CF=BF,∴△BCF是等边三角形,∴CF=BC=2,∠BCF=60°,∴CD=CF•cos30°=,∠BCD=60°+30°=90°,∵BE⊥DF,∴∠E=90°,∴四边形BCDE是矩形,∴四边形BCDE的面积=BC•CD=2×=2;故选:A.4.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C.D.4【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.5.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,∠AOD=60°,则AB的长为()A.4B.2C.8 D.8【解答】解:∵四边形ABCD为平行四边形,∴OD=OB.∵OA=OB,∴OA=OD.又∵∠AOD=60°,∴△AOD为的等边三角形.∴∠ADB=60°.∴tan∠ADB==.∴AB=AD=4.故选:A.6.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.B.C.D.【解答】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即等于,∴AM的最小值是.故选:D.7.如图所示,在四边形ABCD中,AB⊥BC,AB⊥AD,BD=BC,∠C=60°,如果△DBC的周长为m,则AD的长为()A.B.C.D.【解答】解:作DE⊥BC于E,如图所示:∵AB⊥BC,AB⊥AD,∴四边形ABED是矩形,∴AD=BE,∵BD=BC,∠C=60°,∴△BCD是等边三角形,∴BC=BD=CD,BE=BC,∵△DBC的周长为m,∴BC=,∴AD=BE=;故选:B.8.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF ⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4【解答】解:连接AP.∵AB=6,AC=8,BC=10,∴AB2+AC2=36+64=100,BC2=100,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=∠BAC=90°,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF中点,∴AM=EF=AP,当AP⊥BC时,AP值最小,此时S△BAC=×6×8=×10×AP,AP=4.8,即AP的范围是AP≥4.8,∴2AM≥4.8,∴AM的范围是AM≥2.4(即x≥2.4).综上所述,x的取值范围是:2.4≤x<4.故选:D.9.如图所示,四边形ABCD中,点E、F、G、H分别是其边AB、BC、CD、DA的中点,若四边形EFGH是矩形,则下列说法正确的是()A.四边形ABCD是矩形B.四边形ABCD一定是平行四边形C.AC⊥BDD.AC=BD【解答】解:∵点E、F、G、H分别是其边AB、BC、CD、DA的中点,∴四边形EFGH一定是平行四边形,∵AC⊥BD,∴∠HEF=90°,∴四边形EFGH是矩形;故选:C.10.如图,在锐角△ABC中,点O是AC边上的一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,下列结论中正确的是()①OE=OF;②CE=CF;③若CE=12,CF=5,则OC的长为6;④当AO=CO时,四边形AECF是矩形.A.①②B.①④C.①③④D.②③④【解答】解①∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;∴①正确;②当AC⊥BD时,CE=CF;故②错误;③∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;故③错误;④当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.故④正确;故选:B.二.填空题(共10小题)11.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,则∠AOB的度数为60°.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵ED=3BE,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠AOB=60°;故答案为:60°.12.如图,长方形ABCD中,AB=6,BC=4,在长方形的内部以CD边为斜边任意作Rt△CDE,连接AE,则线段AE 长的最小值是2.【解答】解:如图,取CD的中点F,连接AF,当EF最长时则AE最短,则DF=×6=3,在长方形ABCD中,AD=BC=4,由勾股定理得,AF===5,∵F是Rt△CDE斜边CD的中点,∴EF=CD=×6=3,∴AE=AF﹣EF=5﹣3=2,即线段AE长的最小值是2.故答案为:2.13.在矩形ABCD中,对角线长为6,有一边长为3,点P为直线AD上一动点(与点A、D不重合),若∠ABP=30°,则DP的长为2.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠A=90°,AB=3,BD=6=2AB,∴∠ADB=30°=∠ABP,∴DP=BP,BP=2AP,∵AP=AB•tan30°=,∴BP=2,∴DP=2;故答案为:2.14.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证四边形EFGH 是矩形.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.16.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件AB=BC 时,四边形PEMF为矩形.【解答】解:AB=BC时,四边形PEMF是矩形.∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.17.如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.18.如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为.【解答】解:连接CM、CN,由勾股定理得,AB=DE==5,∵△ABC、△CDE是直角三角形,M,N为斜边的中点,∴CM=,CN=,∠MCB=∠B,∠BCD=∠D,∴∠MCN=90°,∴MN=,故答案为:.19.如图,在△ABC中,AB=AC=7,BC=6,AF⊥BC于F,BE⊥AC于E,D是AB的中点,则△DEF的周长是10.【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB=×7=3.5,∵AB=AC,AF⊥BC,∴点F是BC的中点,∵BE⊥AC,∴EF=BC=×6=3,∴△DEF的周长=DE+DF+EF=3.5+3.5+3=10.故答案为:10.20.如图,在四边形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于点E,点G,H分别是AC,BD的中点,若∠BEC=70°,那么∠GHE=20度.【解答】解:连接AH和CH,∵H为BD的中点,∠BAD=∠BCD=90°,∴AH=CH=BD,∵G为AC的中点,∴HG⊥AC,∴∠HGE=90°,∵∠GEH=∠BEC=70°,∴∠GHE=180°﹣90°﹣70°=20°,故答案为:20.三.解答题(共10小题)21.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)解:∵四边形ADCE是矩形,∴AO=EO,∵∠AOE=60°∴△AOE为等边三角形,∴AO=AE=2,∴AC=2OA=4.22.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.【解答】(1)证明:∵CF=BE,∴CF+EC=BE+EC.即EF=BC.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=AB•AF=BF•AE.∴AE===.23.如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.【解答】(1)证明:∵F为BE中点,AF=BF,∴AF=BF=EF,∴∠BAF=∠ABF,∠FAE=∠AEF,在△ABE中,∠BAF+∠ABF+∠FAE+∠AEF=180°,∴∠BAF+∠FAE=90°,又四边形ABCD为平行四边形,∴四边形ABCD为矩形;(2)解:连接EG,过点E作EH⊥BC,垂足为H,∵F为BE的中点,FG⊥BE,∴BG=GE,∵S△BFG=5,CD=4,∴S△BGE=10=BG•EH,∴BG=GE=5,在Rt△EGH中,GH==3,在Rt△BEH中,BE==4=BC,∴CG=BC﹣BG=4﹣5.24.在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F 从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,(1)t取何值时,四边形EFCD为矩形?(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?【解答】解:(1)当DE=CF时,四边形EFCD为矩形,则有6﹣t=10﹣2t,解得t=4,答:t=4s时,四边形EFCD为矩形.(2)①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=4﹣2t,解得t=,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t﹣4,解得t=4,综上所述,t=4或s时,以A、M、E、F为顶点的四边形是平行四边形.25.如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为等边三角形;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.【解答】解:(1)∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,∠CBD=60°.∵点D是AB中点,∴BD=BC,∴△BCD为等边三角形.故答案为:等边三角形.(2)∠DBF的度数不变,理由如下:∵∠ACB=90°,点D是AB中点,∴CD=AB=AD,∴∠ECD=30°.∵△BDC为等边三角形,∴BD=DC,∠BDC=60°.又∵△DEF为等边三角形,∴DF=DE,∠FDE=60°,∴∠BDF+∠FDC=∠EDC+∠FDC=60°,∴∠BDF=∠CDE.在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠DBF=∠DCE=30°,即∠DBF的度数不变.(3)过点E作EM⊥AB于点M,如图所示.在Rt△ABC中,∠A=30°,AC=6,∴AB=2BC,AC==BC=6,∴BC=2,AB=4.∵△DEF为等边三角形,∴∠DEF=60°,∵∠A=30°,∴∠ADE=30°,∴DE=AE,∴AM=AD=×AB=.在Rt△AME中,∠A=30°,AM=,∴AE=2EM,AM==EM,∴EM=1,AE=2,∴DE=2.26.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.【解答】证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,27.已知:如图,∠BAC=∠BDC=90°,点E在BC上,点F在AD上,BE=EC,AF=FD.求证:EF⊥AD.【解答】解:连接AE,DE,∵∠BAC=∠BDC=90°,BE=EC,∴AE=,DE=,∴AE=DE,在△AEF与△DEF中,,∴△AEF≌△DEF(SSS),∴∠AFE=∠DFE=90°,即EF⊥AD.28.(1)如图1,OB是Rt△ABC斜边上的中线,延长BO到D,使OD=OB,连结DA.利用图1证明:中线OB 等于斜边AC的一半.(2)上面(1)中的结论是一个很重要的定理,利用此定理证明下题:如图2,点E是Rt△ABC的直角边AC上的点,ED⊥AB于D,F是线段BE的中点,连结FC、FD、CD,则有∠FCD=∠FDC.【解答】证明:(1)∵OB是Rt△ABC斜边上的中线,∴OA=OC,在△AOD和△COB中,,∴△AOD≌△COB(SAS),∴AD=CB,∠DAO=∠C,又∵∠BAC+∠C=90°,∴∠BAC+∠DAO=90°,即∠DAB=90°=∠ABC,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴AC=BD,又∵BO=BD,∴BO=AC,即Rt△ABC中,中线OB等于斜边AC的一半.(2)∵ED⊥AB,∴∠EDB=90°=∠ACE,又∵F是线段BE的中点,∴Rt△BCE中,CF=BE,Rt△BDE中,DF=BE,∴CF=DF,∴∠FCD=∠FDC.29.如图1,平行四边形ABCD,DE⊥AB.垂足E在BA的延长线上,BF⊥DC,垂足F在DC的延长线上.(1)求证:四边形BEDF是矩形;(2)如图2,若M、N分别为AD、BC的中点,连接EM、EN、FM、FN,求证:四边形EMFN是平行四边形.【解答】证明:(1)∵平行四边形ABCD,∴AB∥CD,∴∠ABF+∠F=180°,∠FDE+∠E=180°,∵DE⊥AB.BF⊥DC,∴∠E=90°,∠F=90°,∴∠ABF=90°,∠FDE=90°,∴四边形BEDF是矩形;(2)∵平行四边形ABCD,四边形BEDF是矩形,∴∠NBF+∠BCF=90°,∠EDM+∠ADC=90°,AD∥BC,AD=BC,BF=DE,∴∠ADC=∠BCF,∴∠NBF=∠MDE,∵M、N分别为AD、BC的中点,∴BN=DM,在△BNF与△DME中∴△BNF≌△DME(SAS),∴EM=FN,同理可得:EN=MF,∴四边形EMFN是平行四边形.30.如图,△ABC中,AB=AC,点D、点O别是BC、AC的中点,AE∥BC.(1)求证:四边形ADCE是矩形.【解答】(1)证明:∵点D、点O别是BC、AC的中点,∴DE∥AB,OD=AB=DE,∴AB=DE,∴四边形ABDE是平行四边形,∴AE∥BC,∵AE∥BC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.。
人教版八下数学课件第18章18.2.2第1课时菱形的性质
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.
特殊平行四边形综合训练题
特殊平行四边形综合训练题一.选择题(共10小题)1.如图,在平面直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).把菱形OABC 绕O点逆时针旋转90°得到菱形OA'B'C',再作菱形OA'B'C'关于点O的中心对称图形OA''B''C'',则点B的对应点B''的坐标是()A.(3,﹣3)B.(1,﹣2)C.(﹣3,3)D.(﹣3,﹣3)2.如图,在矩形ABCD中,对角线AC,BD相交于点O,BE⊥AC于点E,若OC=4,AE =2,则边AB的长是()A.2B.2C.4D.63.矩形ABCD中如右图所示,对角线AC、BD交于点O,E为AB的中点,连接OE,若∠ACD=35°,则∠AOE=()A.35°B.45°C.50°D.55°4.如图所示,增加下列一个条件可以使平行四边形ABCD成为矩形的是()A.∠BAD=∠BCD B.AC⊥BD C.∠BAD=90°D.AB=BC5.下列四个命题中,正确的是()A.对角线相等的四边形是矩形B.有一个角是直角的四边形是矩形C.两组对边分别相等的四边形是矩形D.四个角都相等的四边形是矩形6.如图,菱形ABCD的对角线AC=6,BD=8,则ABCD的周长为()A.4B.4C.20D.407.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为()A.8B.16C.24D.328.张师傅应客户要求加工4个菱形零件.在交付客户之前,张师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是()A.B.C.D.9.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5 cm B.4.8 cm C.4.6 cm D.4 cm10.数学老师用四根长度相等的木条首尾顺次相接制成一个如图1所示的菱形教具,此时测得∠B=60°,对角线AC长为16cm,改变教具的形状成为如图2所示的正方形,则正方形的边长为()A.8cm B.4cm C.16cm D.16cm二.填空题(共6小题)11.如图,菱形ABCD的面积是24,对角线AC=6,则菱形ABCD周长是.12.如图,在长方形ABCD中,AB=8,GC=,AE平分∠BAG交BC于点E,E是BC 的中点,则AG的长为.13.已知四边形ABCD是矩形,且长为6,宽为4,点E在矩形ABCD的边上,∠ABE=45°,则AE的长为.14.顺次连接对角线互相垂直的四边形各边中点所得的四边形一定是.15.如图,Rt△ABC中,∠BAC=90°,AB=4,AC=3,D为BC边上一点,DE⊥AB,DF ⊥AC,垂足分别是E,F,连接EF,则EF最小值为.16.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,AC=6,点E是BC的中点,连接OE,则OE的长为.三.解答题(共9小题)17.如图,四边形ABCD是菱形,对角线AC=16cm,BD=12cm,DH⊥AB于点H.(1)求菱形ABCD的周长;(2)求DH的长.18.如图,A点坐标为(1,4),B点坐标为(1,1),C点坐标为(5,1),D点坐标为(5,4),若点P(4,m﹣1)在长方形ABCD的内部(包含边界).求m的取值范围.19.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动(即沿长方形OCBA的边移动一周).(1)点B的坐标为;当点P移动6秒时,点P的坐标为;(2)在移动过程中,当△OBP的面积等于10时,求点P移动的时间.20.如图,在平行四边形ABCD中,点E是边AB的中点,连接CE并延长CE交DA的延长线于点F,连接AC,BF.(1)求证:四边形AFBC是平行四边形;(2)若∠D=50°,则当∠AEC的度数为°时,四边形AFBC是矩形.21.如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,若AD=3,求DE的长度.22.(1)计算:;(2)如图,在菱形ABCD中,点E,F分别在AB,AD上,且AE=AF,求证:EC=FC.23.如图,在菱形ABCD中,E是对角线AC上的一点.连BE,DE,求证:BE=DE.24.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,F在DE上,且AF=CE=AE,试探索当∠B满足什么条件时,四边形ACEF是菱形?25.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.。
人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(2)
人教新版八年级下学期《第18章平行四边形》单元测试卷一.解答题(共50小题)1.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.2.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE =P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=度.3.如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用).4.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.5.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.6.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.7.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.8.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.9.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG ∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.10.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.11.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.12.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=°和∠AEB=°时,四边形ACED是正方形?请说明理由.13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.14.如图:在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连结CD,BE,(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由(2)在(1)的条件下,当∠A=时四边形BECD是正方形.15.已知:如图,在△ABC中,AB=AC,AD是BC边的中线,AN为△ABC的外角∠CAM 的平分线,CE⊥AN于点E,线段DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)线段DF与AB有怎样的关系?证明你的结论.16.如图,在△ABC中,点O在AB边上,过点O作BC的平行线交∠ABC的平分线于点D,过点B作BE⊥BD交直线OD于点E.(1)求证:OE=OD;(2)当点O在AB的什么位置时,四边形BDAE是矩形?说明理由.17.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.18.探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.19.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.20.如图,正方形ABCD中,E是BD上一点,AE的延长线交CD于F,交BC的延长线于G,M是FG的中点.(1)求证:①∠1=∠2;②EC⊥MC.(2)试问当∠1等于多少度时,△ECG为等腰三角形?请说明理由.21.如图,已知△ABC为等边三角形,CF∥AB,点P为线段AB上任意一点(点P不与A、B重合),过点P作PE∥BC,分别交AC、CF于G、E.(1)四边形PBCE是平行四边形吗?为什么?(2)求证:CP=AE;(3)试探索:当P为AB的中点时,四边形APCE是什么样的特殊四边形?并说明理由.22.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.23.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.24.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.26.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.27.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.28.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE 交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP的值.29.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.30.如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:DE=DF;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.31.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?32.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.33.如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?34.如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD的两个顶点所形成的四边形是平行四边形?35.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?36.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG 以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.37.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t 为何值时,四边形QPBC为矩形?38.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b 满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C 运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.39.在正方形ABCD中,P是CD上的一动点,连接P A,分别过点B、D作BE⊥P A、DF ⊥P A,垂足为E、F.(1)求证:BE=EF+DF;(2)如图(2),若点P是DC的延长线上的一个动点,请探索BE、DF、EF三条线段之间的数量关系?并说明理由;(3)如图(3),若点P是CD的延长线上的一个动点,请探索BE、DF、EF三条线之间的数量关系?(直接写出结论,不需说明理由).40.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.41.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变.(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.42.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP 是腰长为5的等腰三角形时,求点P的坐标.43.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC 所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)44.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.45.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.46.已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).47.如图1,在平面直接坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求点P的坐标.(友情提示:•图2、图3备用,‚不要漏解)48.在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s 的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?49.如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA 方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.50.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE =度.人教新版八年级下学期《第18章平行四边形》2019年单元测试卷参考答案与试题解析一.解答题(共50小题)1.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.【分析】(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.【点评】本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.2.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE =P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=115度.【分析】(1)先证出△ABP≌△CBP,得P A=PC,由于P A=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由P A=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)由△DP A≌△DPC,推出∠DAP=∠DCP,P A=PC,推出P A=PE,推出∠DAP=∠E,推出∠E=∠PCD,由∠DFE=∠CFP,推出∠CPF=∠EDF,由此即可解决问题;【解答】解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AD=DC,∠ADP=∠CDP,DP=DP,∴△DP A≌△DPC,∴∠DAP=∠DCP,P A=PC,∵P A=PE,∴∠DAP=∠E,∴∠E=∠PCD,∵∠DFE=∠CFP,∴∠CPF=∠EDF,∵∠ABC=∠ADC=65°,∴∠CPE=∠EDF=180°﹣∠ADC=115°故答案为115.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等腰三角形的判定和性质,正确寻找全等三角形的条件是解题的关键.3.如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用).【分析】(1)根据四条边都相等的四边形ABCD是菱形证明即可;(2)四边形ABC1D1是平行四边形,根据一组对边平行且相等的四边形是平行四边形判定即可;(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形,此时此时,∠D1BC1=30°,∠D1C1B=90°,C1D1=1,利用在直角三角形中30°角所对的直角边是斜边的一半即可求出点B移动的距离.【解答】解:(1)四边形ABCD是菱形;理由如下:∵△ABD和△BDC都是边长为1的等边三角形.∴AB=AD=CD=BC=DB,∴AB=AD=CD=BC,∴四边形ABCD是菱形;(2)四边形ABC1D1是平行四边形.理由:∵∠ABD1=∠C1D1B=60°∴AB∥C1D1,又∵AB=C1D1,∴四边形ABC1D1是平行四边形(一组对边平行且相等的四边形是平行四边形).(3)四边形ABC1D1有可能是矩形.此时,∠D1BC1=30°,∠D1C1B=90°,C1D1=1∴BD1=2,又∵B1D1=1,∴BB1=1,即点B移动的距离是1.【点评】本题考查了等边三角形的性质、菱形的判定和性质矩形的判定和性质以及直角三角形的性质,掌握特殊平行四边形的判定定理是解此题的关键.4.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.5.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题(2)的关键.6.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.【分析】(1)由平行四边形的性质和已知条件得出∠AEB=∠CBF,∠ABE=∠F=20°,证出∠AEB=∠ABE=20°,由三角形内角和定理求出结果即可;(2)求出DE,由勾股定理求出CE,即可得出结果.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,∴∠AEB=∠CBF,∠ABE=∠F=20°,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠AEB=∠ABE=20°,∴AE=AB,∠A=(180°﹣20°﹣20°)÷2=140°;(2)∵AE=AB=5,AD=BC=8,CD=AB=5,∴DE=AD﹣AE=3,∵CE⊥AD,∴CE===4,∴▱ABCD的面积=AD•CE=8×4=32.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定、勾股定理;熟练掌握平行四边形的性质,证出∠AEB=∠ABE是解决问题的关键.7.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠F AE,根据平行四边形的性质可得∠F AE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO 的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠F AE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=F A,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.8.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.【分析】(1)证明△DAE≌△DCF,根据全等三角形的性质证明;(2)根据全等三角形的性质得到DE=DF,证明DG是EF的垂直平分线,得到DE=EG=GF=GF,证明结论.【解答】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,在△DAE和△DCF中,,∴△DAE≌△DCF,∴AE=CF;(2)四边形DEGF是菱形,∵△DAE≌△DCF,∴DE=DF,∵AE=CF,∴BE=BF,∴DG是EF的垂直平分线,∴GE=GF,∵OG=OD,DG⊥EF,∴ED=EG,∴DE=EG=GF=FD,∴四边形DEGF是菱形.【点评】本题考查的是正方形的性质、菱形的判定、全等三角形的判定和性质,掌握相关的性质定理和判定定理是解题的关键.9.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG ∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS 即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,设EF交BD于O.如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.10.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.【点评】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=90°.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【分析】阅读发现:只要证明∠DFC=∠DCF=∠ADE=∠AED=15°,即可证明.拓展应用:(1)欲证明ED=FC,只要证明△ADE≌△DFC即可.(2)根据∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC即可计算.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.【点评】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.12.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=45°和∠AEB=45°时,四边形ACED是正方形?请说明理由.【分析】(1)首先根据O是CD的中点,可得DO=CO,再证明∠D=∠OCE,然后可利用ASA定理证明△AOD≌△EOC;(2)当∠B=45°和∠AEB=45°时,四边形ACED是正方形;首先证明∠BAE=90°,然后证明AC是BE边上的中线,根据直角三角形的性质可得AC=CE,然后利用等腰三角形的性质证明AC⊥BE,可得结论.【解答】(1)证明:∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA);(2)解:当∠B=45°和∠AEB=45°时,四边形ACED是正方形,∵∠B=45°和∠AEB=45°,∴∠BAE=90°,∵△AOD≌△EOC,∴AO=EO,∵DO=CO,∴四边形ACED是平行四边形,∴AD=CE,∵四边形ABCD是平行四边形,∴AD=BC,∴BC=CE,∵∠BAE=90°,∴AC=CE,∴平行四边形ACED是菱形,∵∠B=∠AEB,BC=CE,∴AC⊥BE,∴四边形ACED是正方形.故答案为:45,45.【点评】此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握邻边相等的矩形是正方形.13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【分析】(1)由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形;(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(2)当△ABC满足∠BAC=90°时,四边形ADCE是正方形.证明:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,。
人教版八年级下册数学第18章 平行四边形 目标二 正方形对角线的性质
中阴影部分的面积等于( )
B
A.1
B.12
C.13
D.14
5 【2021·铜仁】如图,将边长为1的正方形ABCD绕点A 顺时针旋转30°到AB1C1D1的位置,则阴影部分的面
积是_2_-__2_3_3__.
【点拨】 如图,连接 AE.
根据题意可知 AB1=AD=1,∠B1=∠D=90°,
∴OA-AE=OC-CF, 即 OE=OF=4-2=2. ∴四边形 BEDF 为菱形. ∴BE=BF=DE=DF. ∵∠DOE=90°, ∴DE= DO2+EO2= 42+22=2 5. ∴4DE=8 5,即四边形 BEDF 的周长为 8 5.
7 【2020·武威】如图,点M,N分别在正方形ABCD的 边BC,CD上,且∠MAN=45°.把△ADN绕点A顺
时针旋转90°得到△ABE.
(1)求证△AEM≌△ANM;
证明:∵把△ADN绕点A顺时针旋转90°得到△ABE, ∴△ADN≌△ABE. ∴∠DAN=∠BAE,DN=BE,AN=AE. 由题易知E在CB的延长线上. ∵∠DAB=90°,∠MAN=45°, ∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°. ∴∠MAE=∠MAN. 又∵MA=MA,AE=AN, ∴△AEM≌△ANM(SAS).
2 【2020·枣庄】如图,E,F是正方形ABCD的对角线AC 上的两点,AC=8,AE=CF=2,则四边形BEDF的周 长是________.
85
3 【2021·重庆】如图,正方形ABCD的对角线AC,BD 交于点O,M是边AD上一点,连接OM,过点O作 ON⊥OM,交CD于点N.若四边形MOND的面积是1, 则AB的长为( )