小学奥数 6-3-3 工程问题(一).教师版

合集下载

【教师版】小学奥数6-2-6 溶液浓度问题(一).专项练习及答案解析

【教师版】小学奥数6-2-6 溶液浓度问题(一).专项练习及答案解析

1、明确溶液的质量,溶质的质量,溶剂的质量之间的关系2、浓度三角的应用3、会将复杂分数应用题及其他类型题目转化成浓度三角形式来解4、利用方程解复杂浓度问题浓度问题的内容与我们实际的生活联系很紧密,就知识点而言它包括小学所学2个重点知识:百分数,比例。

一、浓度问题中的基本量溶质:通常为盐水中的“盐”,糖水中的“糖”,酒精溶液中的“酒精”等溶剂:一般为水,部分题目中也会出现煤油等溶液:溶质和溶液的混合液体。

浓度:溶质质量与溶液质量的比值。

二、几个基本量之间的运算关系1、溶液=溶质+溶剂2、=100%=100%+⨯⨯溶质溶质浓度溶液溶质溶液三、解浓度问题的一般方法1、寻找溶液配比前后的不变量,依靠不变量建立等量关系列方程2、十字交叉法:(甲溶液浓度大于乙溶液浓度)形象表达:AB =甲溶液质量乙溶液质量B A =甲溶液与混合溶液的浓度差混合溶液与乙溶液的浓度差注:十字交叉法在浓度问题中的运用也称之为浓度三角,浓度三角与十字交叉法实质上是相同的.浓度三角的表示方法如下:::乙溶液质量甲溶液质量z-y x-zy %浓度x 混合浓度z%3、列方程解应用题也是解决浓度问题的重要方法.知识精讲 教学目标溶液浓度问题(一)利用十字交叉即浓度三角进行解题(一)简单的溶液浓度问题【例1】某种溶液由40克食盐浓度15%的溶液和60克食盐浓度10%的溶液混合后再蒸发50克水得到,那么这种溶液的食盐浓度为多少?【考点】溶液浓度问题【难度】2星【题型】解答【解析】两种配置溶液共含食盐40×15%+60×10%=12克,而溶液质量为40+60-50=50克,所以这种溶液的浓度为12÷50=24%.【答案】24%【巩固】一容器内有浓度为25%的糖水,若再加入20千克水,则糖水的浓度变为15%,问这个容器内原来含有糖多少千克?【考点】溶液浓度问题【难度】2星【题型】解答【解析】100100207.51525⎛⎫÷-=⎪⎝⎭。

小学奥数教师版-6-1-6 和差问题(二)

小学奥数教师版-6-1-6 和差问题(二)

6-1-4.和差问题(二)教学目标1.会判断什么样的应用题属于和差问题:已知两个数的和以及两个数的差,要分别求这两个数;2.并掌握和差问题的特性,为以后继续学习和倍、差倍问题做准备;3.总结归纳出解决和差问题的方法,并解决一些实际问题.知识精讲和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。

为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。

知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:(两数的和-两数的差)÷2=较小的数较小的数+两数的差=较大的数(两数的和+两数的差)÷2=较大的数较大的数-两数的差=较小的数例题精讲【例1】学学和思思共有87颗糖果,学学给了思思5颗后,思思比学学还多3颗,原来学学有颗糖果,思思有颗糖果.【考点】复杂的和差问题【难度】3星【题型】填空【关键词】学而思杯,2年级,第7题【解析】学学给了思思5颗后,思思比学学还多3颗,这说明学学比思思多5237⨯-=颗糖果,利用和差问题,思思有877240()-÷=颗糖果,学学有40747+=颗糖果.<考点>和差问题及移多补少问题【答案】学学47颗,思思40颗【例2】有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:原来大、小两个油桶各装油多少千克?【考点】复杂的和差问题【难度】3星【题型】解答【解析】两个油桶都倒出同样多的油后分别还剩9千克和5千克,那么也就是说大桶比小桶多4千克的油,知道这两桶油的和,又找到了这两桶油的差,这道题就变成了典型的和差问题的应用题了.方法一:大桶:244214()+÷=(千克)小桶:14410-=(千克)方法二:小桶:244210()-÷=(千克)大桶:10414+=(千克)【答案】大桶14千克,小桶10千克【例3】小华和小敏共有铅笔25枝,如果小华用去4枝,小敏用去3枝,那么小华还比小敏多2枝,小华和小敏原来各有多少枝铅笔?【考点】复杂的和差问题【难度】3星【题型】解答【解析】如果小华用去4枝,小敏用去3枝,那么小华还比小敏多2枝,这就说明原来小华的铅笔比小敏的铅笔多3枝.找到了这个暗差,这道题就简单了.方法一:小华:253214()+÷=(枝)小敏:14311-=(枝)方法二:小敏:253211()-÷=(枝)小华:11314+=(枝)【答案】小华14块,小敏11块【例4】甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只?【考点】复杂的和差问题【难度】3星【题型】解答【解析】这样想:已知甲、乙两个笼子里小鸡的和是20只,根据甲笼里放入4只,乙笼里取出1只,还剩1只可知,甲、乙两个笼里小鸡只数相差:4+1+1=6(只)解:1.乙笼比甲笼多多少只?4+1+1=6(只)2.甲笼原来有小鸡多少只?(20-6)÷2=14÷2=7(只)3.乙笼里原来有小鸡多少只?20-7=13(只)或(20+6)÷2=13(只)答:甲笼里原有小鸡7只;乙笼里原有小鸡13只。

(教师版)小学奥数6-3-1 牛吃草问题(一).专项检测题及答案解析

(教师版)小学奥数6-3-1 牛吃草问题(一).专项检测题及答案解析

1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值 ④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.模块一、一块地的“牛吃草问题”【例 1】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【答案】19头牛例题精讲 知识精讲教学目标6-1-10.牛吃草问题(一)【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么251015-=天生长的草量为1225241060⨯-⨯=,所以每天生长的草量为60154÷=;原有草量为:()24410200-⨯=.20天里,草场共提供草200420280+⨯=,可以让2802014÷=头牛吃20天.【答案】14头牛【巩固】 牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头牛96天可以把草吃完.【考点】牛吃草问题 【难度】3星 【题型】填空【关键词】湖北省,创新杯,对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么每天新生长的草量为()()103060702460243⨯-⨯÷-=,牧场原有草量为10306016003⎛⎫-⨯= ⎪⎝⎭,要吃96天,需要10160096203÷+=(头)牛. 【答案】20头牛【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为1个单位,则每天生长的草量为:(509587)(97)22⨯-⨯÷-=,原有草量为:509229252⨯-⨯=,(252226)664+⨯÷=(头)【答案】64头牛【例 2】 青青一牧场,牧草喂牛羊; 放牛二十七,六周全吃光。

(完整版)小学奥数-平均数问题(教师版)

(完整版)小学奥数-平均数问题(教师版)

平均数问题把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数【例1】★有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?【解析】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)【小试牛刀】一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?【解析】甲113 丁77【例2】★一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。

求这个班男生有多少人?【解析】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。

全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

【小试牛刀】两组学生进行跳绳比赛,平均每人跳152下。

甲组有6人,平均每人跳140下,乙组平均每人跳160下。

乙组有多少人?【解析】9人【例3】★五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。

小学奥数6 1 1 归一问题 教师版

小学奥数6 1 1 归一问题 教师版

小学奥数6 1 1 归一问题教师版小学奥数6-1-1归一问题教师版统一问题教学目标这堂课主要关注规范化问题。

通过本课程的学习,学生应该了解规范化问题的类型和解决这些问题的一般方法,掌握规范化问题的基本关系,并将这种方法应用到一些实际问题中知识点拨统一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归一化问题可以分为两类:一类是在找到一个单位量后,求出总量,然后用乘法求出结果。

这种问题称为正归一化问题(也称为正归一化);例如,一辆汽车在3小时内行驶150公里。

它在7小时内行驶多少公里?解决这类问题的关键是先求出单元数量,再求出几个单元的数量;另一个是计算股票数量。

计算单位数量后,使用包含除法计算结果。

这类问题称为逆规范化问题(也称为逆规范化问题)。

例如,道路维修团队在6小时内修建了180公里的道路。

根据这个数据,修建240公里的道路需要多少小时?解决这类问题的关键是先确定单位数量,然后确定包含多少个单位?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解决规范化问题的关键是找出单位量的值,然后根据问题中“像这样计算”和“使用相同的速度”等句子的意思,掌握问题中数量的对应关系,列出计算公式并解决问题。

有些问题不能一次解决,但需要两次解决,或结合双倍比例解决。

归一问题的基本关系式:总工作量?单位工作量(单个数量)?拷贝数(标准化)拷贝数?总工作量?每个(单个数量)的工作量(反向标准化)每个(单个数量)的工作量?总工作量?份数例题精讲单元一。

简单规范化问题【例1】某人步行,3小时行15千米,7小时行多少千米?【考点】简单的归一问题【难度】1星【题型】解答15? 3.7.35公里[分析]。

回答:7小时35公里。

【答案】35【合并】一艘船在四小时内航行108公里,并以这种速度继续航行270公里,需要多少小时?【测试地点】简单一题【难度】1星【问题类型】回答【分析】首先找出每小时航行多少公里,然后找出270公里需要多少小时,最后找出需要多少小时。

小学奥数习题版三年级应用题平均数教师版

小学奥数习题版三年级应用题平均数教师版

平均数知识要点直接平均1.“六一”儿童节,小明去儿童乐园玩打靶的游戏,他打了4次,分别得8环,7环,5环,8环,你知道小明平均一次得几环吗?【解析】(法一)求平均一次得几环,要用“总环数÷总次数=平均数”。

由题可知,总次数已知,是4次:只要求出总环数就可以了。

列出综合算式:875847+++÷=()(环)(法二)取一个基本数5,这样,打靶的四次环数分别多了3,2,0,3环,一共多了3238++=(环),这8环平均分给四次打靶的环数,每次分到842÷=(环),再加上基本数5,平均环数为527+=(环)2.用4个同样的杯子装水,水面高度分别是4厘米,5厘米,7厘米,8厘米,这4个杯子水面平均高度是多少厘米?【解析】求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度.即为:457846+++÷=()(厘米).3. 如图是小华五次数学测验成绩的统计图。

小华五次测验的平均分是 分。

图5【解析】 (90+95+85+90+100)÷5=92(分)4. 幼儿园小朋友做红花,小明做了7朵,小红做了9朵,小花和小张合做了12朵。

平均每人做了多少朵?【解析】 四个人一共做了791228++=(朵),平均每人做了2847÷=(朵)5. 中关村三小有15名同学参加跳绳比赛,他们每分钟跳绳的个数分别为93、94、85、92、86、88、94、91、88、89、92、86、93、90、89,求每个人平均每分钟跳绳多少个?【解析】 从他们每人跳绳的个数可以看出,每人跳绳的个数很接近,所以可以选择其中一个数90做为基准数,再找出每个加数与这个基准数的差.大于基准数的差作为加数,如93=90+3,3作为加数;小于基准数的差作为减数,如 87=90-3,3作为减数.把这些差累计起来,用和数的项数乘以基准数,加上累计差,再除以和数的个数就可以算出结果。

六年级下册数学试题-奥数专题训练:工程问题人教版

六年级下册数学试题-奥数专题训练:工程问题人教版

工程问题一、概念(1)工作总量:工作的总量,一般抽象成单位“1”(2)工作时间:工作的时间(3)工作效率:工作的快慢程度,也就是单位时间内完成的工作量二、数量关系(1)工作总量=工作效率×工作时间(2)工作效率=工作总量÷工作时间(3)工作时间=工作总量÷工作效率三、解题技巧(1)一般算术法,涉及的思想方法可能有:代换法、比例法、列表法、方程法(2)方程法【例题1】某工程甲单独干10天完成,乙单独干15天完成,他们合作多少天才可完成全部的工程?1. 1.【练习题1.1】某工程甲单独干20天完成,乙单独干5天完成,他们合作多少天才可完成全部的工程?2. 2.【练习题1.2】某工程甲单独干10天完成,乙单独干15天完成,他们合作多少天才可完成工程的一半?3. 3.【练习题1.3】一条水渠,甲、乙两队合挖需10天完工。

已知乙单独挖需要30天,求问这条水渠由甲队单独挖需多少天?【例题2】一条水渠,甲、乙两队合挖需30天完工。

现在合挖12天后,剩下的乙队单独又挖了24天挖完。

这条水渠由甲队单独挖需多少天?1. 1.【练习题2.1】师徒二人加工一批零件,师傅单独加工要8小时完成,徒弟单独加工要10小时,师傅先加工2小时后,再与徒弟共同加工,还需多少小时?(答案请用分数表示,格式为A/B)2. 2.【练习题2.2】某工程甲队单独做需48天,乙队单独做需36天。

甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。

求乙队在中间单独工作的天数。

3. 3.【练习题2.3】一项工程,甲独做75天完成,乙独做50天完成,在合做过程中,甲中途离开了一些天数,结果整个工程40天才完成。

甲中途离开了几天?【例题3】甲、乙二人同时从两地出发,相向而行。

走完全程甲需60分钟,乙需40分钟。

出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。

甲再出发后多长时间两人相遇?1.2. 1.【练习题3.1】甲、乙二人同时从两地出发,相向而行。

(完整版)小学奥数-不定方程(教师版)

(完整版)小学奥数-不定方程(教师版)

不定方程如$知识梳理]在列方程组解答应用题时,有两个未知数,就需要有两个方程。

有三个未知数,就需要有三个 方程。

当未知数的个数多于方程的个数时, 这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。

不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足 轻重的地位。

而在小学阶段打下扎实的基础,无疑很重要。

不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。

不过, 我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而 且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。

这种 情况也不排除它的取值不止一种。

不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。

如果考虑到题中 以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整 数的分拆有很大关系)。

解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确 求解。

特色讲解]【例1】★求方程5x 2y 27的正整数解。

【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数x 1x 3 x 5 , ,y 11 y 6 y 1【小试牛刀】求方程 4x + 10y = 34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x + 5y = 17, 5y 的个位是0 或5两种情况,2x 是偶数,要想和为17, 5y 的个位只能是5, y 为奇数即可;2x 的个位为2,所以 x 的取值为1、6、11、16……x= 1 时,17-2x = 15, y = 3, x= 6 时,17-2x = 5 , y = 1 , x= 11 时,17 — 2x = 17 — 22,无解 所以方程有两组整数解为:dx 1 x y 3,y【例2】★ 设A , B 都是正整数,并且满足 A11[解析]3A 11B 17 33333A+11B=17,因为 A 、B 为正整数,所以 A=2, B=1, A+B=3【例3】★ ★(北大附中入学考试真题) 14个大、中、小号钢珠共重 100克,大号钢珠每个重 12克,中号每个重 8克,小号每个重 5克。

六年级工程问题(奥数拓展)-应用题-第2讲

六年级工程问题(奥数拓展)-应用题-第2讲

工程问题一、概念(1)工作总量:工作的总量,一般抽象成单位“1”(2)工作时间:工作的时间(3)工作效率:工作的快慢程度,也就是单位时间内完成的工作量二、数量关系(1)工作总量=工作效率×工作时间(2)工作效率=工作总量÷工作时间(3)工作时间=工作总量÷工作效率三、解题技巧(1)一般算术法,涉及的思想方法可能有:代换法、比例法、列表法、方程法(2)方程法典型例题例1.某工程甲单独干10天完成,乙单独干15天完成,他们合作多少天才可完成全部的工程?【练习题1.1】某工程甲单独干20天完成,乙单独干5天完成,他们合作多少天才可完成全部的工程?【练习题1.2】某工程甲单独干10天完成,乙单独干15天完成,他们合作多少天才可完成工程的一半?【练习题1.3】一条水渠,甲、乙两队合挖需10天完工。

已知乙单独挖需要30天,求问这条水渠由甲队单独挖需多少天?例2.一条水渠,甲、乙两队合挖需30天完工。

现在合挖12天后,剩下的乙队单独又挖了24天挖完。

这条水渠由甲队单独挖需多少天?【练习题2.1】师徒二人加工一批零件,师傅单独加工要8小时完成,徒弟单独加工要10小时,师傅先加工2小时后,再与徒弟共同加工,还需多少小时?(答案请用分数表示,格式为A/B)【练习题2.2】某工程甲队单独做需48天,乙队单独做需36天。

甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。

求乙队在中间单独工作的天数。

【练习题2.3】一项工程,甲独做75天完成,乙独做50天完成,在合做过程中,甲中途离开了一些天数,结果整个工程40天才完成。

甲中途离开了几天?例3.甲、乙二人同时从两地出发,相向而行。

走完全程甲需60分钟,乙需40分钟。

出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。

甲再出发后多长时间两人相遇?【练习题3.1】甲、乙二人同时从两地出发,相向而行。

甲走完全程需20分钟,乙需15分钟。

【小升初】小学数学《工程问题专题课程》含答案

【小升初】小学数学《工程问题专题课程》含答案

18.工程问题知识要点梳理一、基本概念1.工程问题:做某件事,制造某种产品,完成某项任务或工程等,都叫做工程问题。

2.工程问题的三个基本量是工作效率、工作时间和工作总量。

(1)工作效率:单位时间内完成的工作量,它是衡量一个人工作快慢的量。

(2)工作时间:完成工作总量所需的时间。

(3)工作总量:完成一项工作的总量。

一般都是把工作总量看做单位“1”。

二、基本数量关系1.一般公式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率甲工效+乙工效=甲乙合作工效之和特别注意:工作量和工作效率都可以直接相加求和,但工作时间不能。

2.巧解工程问题:一般不知道工作总量的时候,我们常常用假设法求解。

我们把工作总量假设为单位“1”,这个巧解方法的公式有:。

(1)一般给出工作时间,工作效率=工作时间(2)一般给出工作效率,就可以知道工作时间为a。

三、基本方法算术方法、比例方法、方程方法。

考点精讲分析典例精讲考点1 简单的工程问题【例1】一件工作,甲单独10天完成,乙单独15天完成,甲乙合做()天完成。

【精析】根据题意,把这件工作总量看作单位“1”,甲的工作效率是,乙的工作效率是,甲、乙的工作效率和是,再用工作总量除以工作效率和就等于合作的工作时间。

【答案】把这件工作总量看作单位“1”,(天)【归纳总结】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,要求甲乙合做需要多少天可以完成,应求出甲乙工作效率和。

考点2 合作工程问题【例2】一件工作,甲、乙合作需4小时完成,甲、丙合作需5小时完成,乙、丙合作需6小时完成,乙单独做这件工作需多少个小时完成?【精析】首先把这件工作看作单位“1”,根据工作效率=工作量÷工作时间,分别求出甲乙、甲丙、乙丙的工作效率,再把它们求和,即可求出三人的工作效率之和的2倍,进而求出三人的工作效率之和是多少;然后用三人的工作效率之和减去甲丙的工作效率,求出乙的工作效率;最后根据工作时间=工作量÷工作效率,用1除以乙的工作效率,求出乙单独做这件工作需多少个小时完成即可。

小学奥数行程问题(教师版)

小学奥数行程问题(教师版)

小学奥数行程问题(教师版)本讲旨在综合训练行程问题,学生需要掌握速度的概念和速度×时间=路程这组数量关系,并应用它去解决问题。

同时,通过本讲,学生将感受到人类创造交通工具的智慧和自然界的多姿多彩。

行程问题常用的解题方法有以下几种:1.公式法:根据常用的行程问题的公式进行求解,需要熟悉公式的原形和各种变形形式,并能够推知需要的条件;2.图示法:在复杂的行程问题中,常用示意图作为辅助工具,包括线段图和折线图,重点在折返、相遇、追及的地点;3.比例法:在只知道和差、比例时,用比例法可求得具体数值;4.分段法:在非匀速即分段变速的行程问题中,通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;5.方程法:在关系复杂、条件分散的题目中,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。

例题1:甲、乙两人分别从相距35.8千米的两地出发,相向而行。

甲每小时行4千米,但每行30分钟就休息5分钟;乙每小时行12千米,则经过2小时19分的时候两人相遇。

解题思路:经过2小时15分钟的时候,甲实际行了2小时,行了8千米,乙则行了27千米,两人还相距0.8千米,此时甲开始休息,乙再行4分钟就能与甲相遇。

所以经过2小时19分的时候两人相遇。

例题2:龟兔赛跑,全程6千米,兔子每小时跑15千米,乌龟每小时跑3千米,乌龟不停的跑,但兔子边跑边玩。

问它们谁胜利了?胜利者到终点时,另一个距离终点还有多远?解题思路:兔子跑1分钟后玩20分钟,跑2分钟后玩20分钟,跑3分钟后玩20分钟……可以发现,兔子每跑1分钟,乌龟就会跑3分钟,因此兔子跑完全程需要2小时,而乌龟需要6小时。

所以兔子胜利了,当兔子到达终点时,乌龟还有4千米的路程未到达终点。

1.乌龟和兔子比赛,乌龟跑完全程需要2小时,兔子边跑边玩,一共跑了20分钟,跑了5千米。

乌龟胜利了,领先兔子1千米。

2.邮递员走了20千米的上坡路和下坡路,共用时9小时。

小学奥数-不定方程(教师版)

小学奥数-不定方程(教师版)

小学奥数-不定方程(教师版)不定方程是解决列方程组应用问题时的一种方法。

当未知数的个数多于方程的个数时,就会出现不定方程。

不定方程也称为丢番图方程,以纪念古希腊数学家丢番图。

在数学研究中,不定方程有着举足轻重的地位。

因此,在小学阶段打下扎实的基础非常重要。

不定方程出现的原因是联立方程的条件不足,因此一般情况下会有无数多个解。

但是,我们需要注意到它的预定义条件,如未知项是自然数,数码不仅是自然数,而且是一位数等等。

题干中也可能给出限制条件,这样就使得不定方程的解得以确定。

然而,这种情况下的解不止一种。

不定方程的解有时比较复杂,有时无法得出方程的解,有时又会出现多个解。

如果考虑到题中的限制范围,会有可能求出唯一的解或几种可能的解。

解答这类方程必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。

例如,求解方程5x+2y=27的正整数解。

因为2y为偶数,27为奇数,所以5x为奇数,即x为奇数。

因此,x可以取1、3、5等奇数,对应的y分别为11、6、1.再例如,求解方程4x+10y=34的正整数解。

因为4与10的最大公约数为2,而2可以整除34,因此两边约去2后,得到2x+5y=17.5y的个位数只能是0或5,而2x的个位数是2,因此x的取值为1、6、11等。

代入方程可得到两组整数解:x=1时,y=3;x=6时,y=1.最后,以一个实际问题为例,假设有14个大、中、小号钢珠共重100克,大号钢珠每个重12克,中号每个重8克,小号每个重5克。

问:大、中、小号钢珠各多少个?这是一个不定方程问题。

设大、中、小号钢珠的个数分别为a、b、c,则可以列出方程12a+8b+5c=100.解方程可得a=2,b=1,c=6,因此大号钢珠有2个,中号有1个,小号有6个。

y≤15)又因为小花狗和波斯猫每次见面都要各自叫两声,所以总共叫声数为4x+3y。

又知总共见面次数为x+y,所以4x+3y=2(x+y),化简得2x=3y,因此x和y必须同时是3的倍数。

人教版六年级数学上册第三单元工程问题 人教版(解析版)

人教版六年级数学上册第三单元工程问题 人教版(解析版)

六年级数学上册典型例题系列之第三单元工程问题(解析版)编者的话:本试题是在《分数除法应用题提高部分》基础上进行编辑总结的,题型主要包括工程问题基础类型题、求合作时间类型题、求单量单独完成时间类型题、工程问题中的请假问题和较复杂的工程问题,共计十三个考点,按编排顺序考点难度由浅及深,考试出现频率逐次降低。

值得注意的是,《工程问题》虽然是小学数学应用题中的一个独立类型,但是在实际教学中大多数教师都在六年级数学上册第三单元分数除法章节进行讲解和练习,因此,编者认为可配合《分数除法应用题提高部分》再行使用,亦可根据学生掌握情况而定,欢迎使用。

【知识点总览】1. 工程问题的意义与工作效率、工作时间、工作总量有关的问题被称为工程问题。

2.工程问题的特征通常把工作总量看作单位“1”,在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

3. 工程问题的解法解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

4.基本数量关系工作效率×工作时间=工作总量,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。

【考点一】工程问题基础题型。

【方法点拨】工程问题的基础题型是主要根据工作总量、工作时间、工作效率三者之间基本数量关系列出算式:工作效率×工作时间=工作总量,工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率。

【典型例题】一项工程,甲队需要20天完成,甲队每天完成这项工程的几分之几? 解析:直接利用公式:工作效率=工作总量÷工作时间列式计算。

1÷20=201 答:略。

【对应练习1】乙队完成一项工程的32需要12天,求乙队的工作效率。

小学奥数 工程问题(一).教师版

小学奥数 工程问题(一).教师版

工程问题(一)教学目标1.熟练掌握工程问题的基本数量关系与一般解法;2.工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3.根据题目中的实际情况能够正确进行单位“1”的统一和转换;4.工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.知识精讲工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲模块一、工程问题基本题型【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成.【答案】12【例 2】一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.【答案】20【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的121,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111122128-=,所以乙单独做28天能完成.【答案】128【例 3】甲乙两名打字员,打字速度一样快,甲30分钟打了A材料的14,乙40分钟打了B 材料的27。

【教师版】小学奥数6-1-18 年龄问题(一).专项练习及答案解析

【教师版】小学奥数6-1-18 年龄问题(一).专项练习及答案解析

1. 掌握用线段图法来分析题中的年龄关系.2. 利用已经学习的和差、和倍、差倍的方法求解年龄问题.知识点说明:一、年龄问题变化关系的三个基本规律:1. 两人年龄的倍数关系是变化的量.2. 每个人的年龄随着时间的增加都增加相等的量;3. 两个人之间的年龄差不变二、年龄问题的解题要点是:1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2.关键:抓住“年龄差”不变.3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式.4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律:1.两人年龄的差是不变的量;2.两个人的年龄增加量是不变的;3.两人年龄的倍数关系是变化的量;年龄问题的解题正确率保证:验算!年龄差不变【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁?【考点】年龄问题 【难度】1星 【题型】解答【解析】 这道题有两种解答方法:方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612+=(岁);妈妈今年36岁,再过6年是(366+)岁,也就是42岁,那时,妈妈比小卉大421230-=(岁). 方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366-)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.列式:36630-=(岁),再过6年,小卉读初中时,妈妈比小卉大30岁.【答案】30岁例题精讲知识精讲教学目标6-1-8.年龄问题(一)【例2】爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?【考点】年龄问题【难度】1星【题型】解答【解析】五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题.爸爸的年龄:726239()(岁)+÷=妈妈的年龄:39633-=(岁)【答案】爸爸39岁,妈妈33岁【例3】姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?【考点】年龄问题【难度】2星【题型】解答【解析】用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394-=(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.弟弟的年龄:(404)218+=(岁).-÷=(岁),姐姐的年龄:18422【答案】弟弟年龄18岁,姐姐22岁【例4】欢欢对乐乐说:“我比你大8岁,2年后,我的年龄是你的年龄的3倍。

(教师版)小学奥数6-1-23 鸡兔同笼问题(三).专项检测题及答案解析

(教师版)小学奥数6-1-23 鸡兔同笼问题(三).专项检测题及答案解析

6-1-9.鸡兔同笼问题(三)教学目标1.熟悉鸡兔同笼的“砍足法”和“假设法”.2.利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.知识精讲一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了。

这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲模块一、多个量的“鸡兔同笼”——鸡兔同笼问题【例1】有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?【考点】鸡兔同笼问题【难度】4星【题型】解答【关键词】假设思想方法【解析】这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为6⨯18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1⨯13=13(对),比实际数少20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).【答案】7只【巩固】希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图7知该标本室里有只蜘蛛。

(教师版)小学奥数6-1-12 差倍问题(三).专项检测题及答案解析

(教师版)小学奥数6-1-12 差倍问题(三).专项检测题及答案解析

1. 掌握差倍问题的基本解法以及相关的年龄等应用题.2. 熟练应用通过图示来表示数量关系.差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题. 差倍问题的特点与和倍问题类似。

解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。

解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量差倍问题的基本关系式:差÷(倍数-1)=1倍数(较小数)1倍数×几倍=几倍数(较大数)或较小数+差=较大数解决差倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系. 年龄问题的和差问题主要利用的年龄差不变。

模块一、年龄与差倍问题【例 1】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?【考点】差倍问题 【难度】2星 【题型】解答【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题.爸爸的年龄:726239()+÷=(岁)妈妈的年龄:39633-=(岁)【答案】爸爸39,妈妈33岁【巩固】 爸爸妈妈现在的年龄和是72岁;六年后,爸爸比妈妈大4岁.今年爸爸妈妈二人各多少岁?【考点】差倍问题 【难度】2星 【题型】解答【解析】 六年后,爸比妈大4岁,即爸妈的年龄差是4岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是4岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是4岁,求二人各是几岁”的和差问题.爸爸年龄:(724)238+÷=(岁),妈妈的年龄:38434-=(岁)所以,爸爸的年龄是38岁,妈妈的年龄是34岁.【答案】爸爸38岁,妈妈34岁例题精讲知识精讲教学目标6-1-6.差倍问题(三)【例2】爸爸今年38岁,佳佳今年2岁,问:几年后,父亲的年龄是佳佳的5倍?【考点】差倍问题【难度】3星【题型】解答【解析】父女年龄差是:38236-=(岁),这个数量是不会变化的,这一点很关键.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁,这36岁是父亲比女儿多的514-=倍所对应的年龄.-=(年),即7年后,父亲的年龄是佳佳的5倍-÷-=(岁),927(382)(51)9【答案】7年后【例3】姐姐今年13岁,弟弟今年9岁,几年后姐弟俩岁数和是40岁?姐姐到时多少岁了?【考点】差倍问题【难度】3星【题型】解答【解析】由题意,姐弟俩今年的年龄和是13922+=(岁),用几年后姐弟俩的岁数和40岁减去今年姐弟俩的年龄和22岁,就得到姐弟俩经过的年数和,即为402218-=(年),最后再除以2,就求出姐弟俩每人经过的年数.经过的年数都是:1829÷=(年).可以求出姐姐的年龄是13922+=用线段图显示数量关系.姐弟俩的年龄差总是1394-=(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.弟弟的年龄:(404)218-÷=(岁),姐姐的年龄:+=(岁).18422【答案】9年后姐弟两个的岁数和是40岁,姐姐到时22岁。

小学奥数行程问题(分类)(教师版)

小学奥数行程问题(分类)(教师版)

知识点拨发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

多人多次相遇和追击问题1.多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:;;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.2、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

小学奥数-工程问题(教师版)

小学奥数-工程问题(教师版)

工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是:工作量=工作效率×时间. 探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.解题关键是把“一项工程”看成1个单位,抓住数量关系:工作效率×工作时间=工作总量,来解答。

要善于利用常见的数学思想方法,如假设法、转化法、代换法等。

工作的先后顺序可以 改变(假设);要善于抓住工作效率之间的关系,并适当将它转化为工作时间和工作量之间的关系,这 样的转化和代换,往往能化难为易。

【例1】★用计算机录入一份书稿,甲单独做10天可以完成,乙单独做15天可以完成。

那么,乙中途休息了 天。

【解析】假设乙中途没有生病休息,那么甲、乙两个人8天完成的工作量为(110+ 115)×8= 43多完成的工作量就是乙休息时干出来的,所以乙休息的天数为 (43-1)÷115=5(天) 【小试牛刀】一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?【解析】解一:甲做了3天,完成的工作量是3193=,乙还需完成的工作量是32311=-,要46132=÷(天)解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是(18- 2×3)÷3= 4(天)解三:甲与乙的工作效率之比是6∶ 9= 2∶ 3.甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天)【例2】★★一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天? 【解析】乙效:50140)3061(=÷-,乙需50天;甲效:751501301=-,甲需75天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题(一)教学目标1.熟练掌握工程问题的基本数量关系与一般解法;2.工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3.根据题目中的实际情况能够正确进行单位“1”的统一和转换;4.工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.知识精讲工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.模块一、工程问题基本题型 【例 1】 一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【考点】工程问题 【难度】1星 【题型】解答【解析】 将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成. 【答案】12【例 2】 一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题 【难度】1星 【题型】解答【解析】 将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成. 【答案】20【巩固】 一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题 【难度】1星 【题型】解答【解析】 将整个工程的工作量看作“1”个单位,那么甲每天完成总量的121,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111122128-=,所以乙单独做28天能完成. 【答案】128【例 3】 甲乙两名打字员,打字速度一样快,甲30分钟打了A 材料的14,乙40分钟打了B 材料的27。

A 、B 两份材料中, (填A 或B )内容多。

【考点】工程问题 【难度】2星 【题型】填空【关键词】走美杯,五年级,初赛【解析】 因为两人速度一样,那么同样的时间内打的字数是一样的,统一两人的时间,甲120分钟可以打完A 材料,乙120分钟可以打B 材料的67,所以B 材料内容多 【答案】B【例 4】 甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了225小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?【考点】工程问题 【难度】2星 【题型】解答【解析】 乙单独加工,每小时加工11181224-= 甲调出后,剩下工作乙需做21184(12)58245-⨯÷=时所以乙每例题精讲小时加工零件84420255÷=(个),则225小时加工2252605⨯=(个),所以乙一共加工零件420+60=480(个).【答案】480【巩固】 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?【考点】工程问题 【难度】2星 【题型】解答【解析】 共做了6天后,原来,甲做 24天,乙做 24天, 现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率是乙的工作效率的16/24=2/3。

如果甲独做,所需时间是33030752+⨯=天如果乙独做,所需时间是23030503+⨯=天;甲或乙独做所需时间分别是75天和50天.【答案】分别是75天和50天【例 5】 4名工人加工455个零件。

开始的4天中有一名工人因事请假1天,结果共加工195个零件。

如果以后无人清假,那么还要 天可以完成任务。

【考点】工程问题 【难度】2星 【题型】解答【关键词】走美杯,决赛,5年级【解析】 每人每天加工零件195÷(4×4-1)=13(个),剩下的零件还需加工(455-195)÷(13×4)=5(天)。

【答案】5天【例 6】 一项工程,甲单独完成需要12天,乙单独完成需要9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?【考点】工程问题 【难度】2星 【题型】解答【解析】 根据题意可知,甲的工作效率为112,乙的工作效率为19,采用鸡兔同笼问题的假设法,可知甲做了111(101)()49912⨯-÷-=天. 【答案】4天【巩固】 一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?【考点】工程问题 【难度】2星 【题型】解答【解析】 方法一:甲的工作效率为120,甲队8天的工作量为128205⨯=,所以乙队15天的工作量为23155-=,乙的工作效率为3115525÷=,所以乙队单独完成这项工作需要25天 方法二:此题可以用代换法解,甲12天工作量等于乙15天工作量,乙的工作效率为甲的45,乙独做的时间为420255÷=(天)。

【答案】25天【例 7】 有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。

甲、乙同时开始各搬运一个仓库的货物。

开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。

则丙帮甲 小时,帮乙 小时。

【考点】工程问题 【难度】2星 【题型】解答【关键词】希望杯,六年级,二试【解析】 整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两个仓库的货物,所以它们完成工作的总时间为111212()67144÷++=小时. 在这段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过. 甲完成的工作量是1217648⨯=,所以丙帮甲搬了71188-=的货物,丙帮甲做的时间为11318144÷=小时,那么丙帮乙做的时间为213113442-=小时. 【答案】132小时【例 8】 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?【考点】工程问题 【难度】2星 【题型】解答【解析】 先对比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出乙的工作效率是甲的34,甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做421283⨯=天因此,乙还要做28+28= 56 (天),乙还需要做 56天. 【答案】56天【例 9】 一项工程,甲队单独完成需40天。

若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成。

如果乙队单独完成此工程,则需______天。

【考点】工程问题 【难度】2星 【题型】解答【关键词】希望杯,六年级,一试【解析】 甲每天完成140,甲乙合作中,甲一共完成201402=,所以乙也一共完成12,乙每天完成160,乙单独做要60天.【答案】60天【例 10】 一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【考点】工程问题 【难度】2星 【题型】解答【解析】 如果将整个工程的工作量看做单位“1”,从条件中我们很容易看出: 甲+乙120=, 乙+丙115=, 乙130=因此不难得到丙的工作效率为111153030-=,因此三个人的工作效率之和为111203012+=,也就是说,三个人合作需要12天可以完成。

本题也可以分别求出甲和丙的工作效率,再将三人的工作效率相加,得到三人合作的总工效.但是这样做比较麻烦,事实上只要将甲乙工效和加上丙的工效就可以了.【答案】12天【巩固】 一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?【考点】工程问题 【难度】2星 【题型】解答【解析】 法一:和上题类似,我们可以有:甲+乙19=, 乙+丙112=, 丙136=不难求得,乙的工作效率为111123618-=,因此甲的工作效率为11191818-=,从而甲丙合作的工作效率为111361812+=, 即甲丙合作12天能完成。

法二:仍然观察上面那三个等式,我们能否不求出每个人的工作效率,而同过整体的运算直接得到“甲 +丙”的值呢?不难发现,我们只要把乙消掉就可以了;因此我们有:()()2++⨯-+=+甲乙丙乙丙甲丙,也就是说:111129361212+=+⨯-=甲丙,所以甲丙合作12天能完成。

【答案】12天【巩固】 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?【考点】工程问题 【难度】2星 【题型】解答【解析】 设这件工作的工作量是1。

甲乙两人合作每天完成136,甲丙两人合作每天完成160,乙丙两人合作每天完成145,甲、乙、丙三人合作每天完成11161()236456018030++÷==减去乙、丙两人每天完成的工作量,甲每天完成111304590-=,甲独做需要119090÷=天 答:甲一人独做需要90天完成. 【答案】90天【巩固】 一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成.那么丙一个人来做,完成这项工作需要多少天?【考点】工程问题 【难度】2星 【题型】解答【解析】 方法一:对于工作效率有:(甲,乙)+(乙,丙)-(丙,甲)=2乙,即18+19-118=1372为两倍乙的工作效率,所以乙的工作效率为13144.而对于工作效率有,(乙,丙)-乙=丙,那么丙的工作效率为19-13144=148那么丙一个人来做,完成这项工作需1÷148=48天。

相关文档
最新文档