甘肃省平凉市庄浪县大庄中学2011-2012学年第一学期九年级数学期末试卷(人教版)

合集下载

甘肃省平凉市九年级(上)期末数学试卷

甘肃省平凉市九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案是几种名车标志,其中属于中心对称图形的是()A. 1个B. 2个C. 3个D. 4个2.用配方法解方程x2-8x+11=0,则方程可变形为()A. (x+4)2=5B. (x−4)2=5C. (x+8)2=5D. (x−8)2=53.下列事件为必然事件的是()A. 打开电视机,它正在播广告B. 投掷一枚普通的正方体骰子,掷得的点数小于7C. 某彩票的中奖机会是1%,买1张一定不会中奖D. 抛掷一枚硬币,一定正面朝上4.二次函数y=-(x-3)2+1的最大值为()A. 1B. −1C. 3D. −35.某地区2010年投入教育经费2500万元,预计到2012年共投入8000万元.设这两年投入教育经费的年平均增长率为x,则下列方程正确的是()A. 2500+2500(1+x)+2500(1+x)2=8000B. 2500x2=8000C. 2500(1+x)2=8000D. 2500(1+x)+2500(1+x)2=80006.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A. y=5(x+2)2+3B. y=5(x−2)2+3C. y=5(x−2)2−3D. y=5(x+2)2−37.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A. 55∘B. 70∘C. 125∘D. 145∘8.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. 45∘B. 50∘C. 60∘D. 75∘9.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A. 0.5B. 1C. 2D. 410.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共32.0分)11.现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是______.12.已知点A(2,4)与点B(b-1,2a)关于原点对称,则ab=______.13.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于______度.14.关于x的方程kx2-4x-23=0有实数根,则k的取值范围是______.15.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是______.16.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是______.(结果保留π)17.已知⊙O的半径为10,弦AB的长为10,则弦AB所对的圆周角的度数是______.18.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数为______.(n为正整数)三、解答题(本大题共10小题,共88.0分)19.解方程:(1)x2+4x+2=0(2)x(x-3)=-x+3.20.已知圆锥的侧面展开图是一个半径为12cm,弧长为12πcm的扇形,求这个圆锥的侧面积及高.21.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A,点B和点C的坐标;(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′;(3)在(2)的条件下,求点C旋转到点C′所经过的路线长及线段AC旋转到新位置时所划过区域的面积.22.已知关于x的方程x2+mx+m-2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.23.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?24.一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是______.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=-x+5图象上的概率.25.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.26.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如何提高售价,才能在半月内获得最大的利润?27.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B(1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.28.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:第二、三个图形是中心对称图形的图案,故选:B.根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,关键是找出对称中心.2.【答案】B【解析】解:x2-8x+11=0,x2-8x=-11,x2-8x+16=-11+16,(x-4)2=5.故选:B.把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.本题考查的是用配方法解方程,把方程的左边配成完全平方的形式,右边是非负数.3.【答案】B【解析】解:A.打开电视机,它正在播广告,属于随机事件;B.投掷一枚普通的正方体骰子,掷得的点数小于7,属于必然事件;C.某彩票的中奖机会是1%,买1张不会中奖,属于随机事件;D.抛掷一枚硬币,正面朝上,属于随机事件;故选:B.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下可能发生也可能不发生的事件称为随机事件.本题主要考查了随机事件,解题时注意:必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.4.【答案】A【解析】解:∵二次函数y=-(x-3)2+1是顶点式,∴顶点坐标为(3,1),函数的最大值为1,故选:A.因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),对照求二次函数y=-(x-3)2+1最值.考查了二次函数的性质,顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h,此题考查了学生的应用能力.5.【答案】A【解析】解:设教育经费的年平均增长率为x,则2011的教育经费为:2500×(1+x)2012的教育经费为:2500×(1+x)2.那么可得方程:2500+2500(1+x)+2500(1+x)2=8000.故选:A.增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2010年投入2000万元,预计2012年投入8000万元即可得出方程.本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.6.【答案】A【解析】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(-2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选:A.先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.【答案】C【解析】解:∵∠B=35°,∠C=90°,∴∠BAC=90°-∠B=90°-35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°-∠BAC=180°-55°=125°,∴旋转角等于125°.故选:C.根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.8.【答案】C【解析】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.9.【答案】B【解析】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r-DE=r-0.2,在Rt△OAD中,OA2=AD2+OD2,即r2=0.42+(r-0.2)2,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选:B.根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.本题考查的是垂径定理,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.10.【答案】D【解析】解:开口向下,则a<0,与y轴交于正半轴,则c>0,∵->0,∴b>0,则abc<0,①正确;∵-=1,则b=-2a,∵a-b+c<0,∴3a+c<0,②错误;∵x=0时,y>0,对称轴是x=1,∴当x=2时,y>0,∴4a+2b+c>0,③正确;∵b=-2a,∴2a+b=0,④正确;∴b2-4ac>0,∴b2>4ac,⑤正确,故选:D.根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x轴交点的个数确定解答.本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.11.【答案】-1或4【解析】解:根据题中的新定义将x★2=6变形得:x2-3x+2=6,即x2-3x-4=0,因式分解得:(x-4)(x+1)=0,解得:x1=4,x2=-1,则实数x的值是-1或4.故答案为:-1或4根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x的值.此题考查了解一元二次方程-因式分解法,利用此方法解方程时,首先将方程右边化为0,左边变为积的形式,然后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.【答案】2【解析】解:∵点A(2,4)与点B(b-1,2a)关于原点对称,∴b-1=-2,2a=-4,解得:b=-1,a=-2,则ab=2.故答案为:2.直接利用关于原点对称点的性质得出a,b的值进而得出答案.此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.13.【答案】144【解析】解:由于正多边形的中心角等于36°,360÷36°=10,所以正多边形为正10边形,又因为其外角和为360°,所以其外角为360÷10=36°,其每个内角为180°-36°=144°.故答案为144.根据正多边形的中心角为36°,求出正多边形的边数,再求出其每个外角,即可根据内角和外角的和为180度求出每个内角的度数.本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的中心角和外角、内角混淆.14.【答案】k≥-6【解析】解:当k=0时,-4x-=0,解得x=-,当k≠0时,方程kx2-4x-=0是一元二次方程,根据题意可得:△=16-4k×(-)≥0,解得k≥-6,k≠0,综上k≥-6,故答案为k≥-6.由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.15.【答案】30°【解析】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故答案为:30°.根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.此题考查了切线的性质:圆的切线垂直于经过切点的半径;以及圆周角定理:等弧所对的圆周角等于所对圆心角的一半.16.【答案】16π【解析】解:设AB与小圆切于点C,连结OC,OB.∵AB与小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4.∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.故答案为:16π.设AB与小圆切于点C,连结OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),以及勾股定理即可求解.此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.17.【答案】30°或150°【解析】解:情形一,如图1所示,连接OA、OB,在⊙上任取一点,连接CA,CB,∵AB=OA=OB=10,∴∠AOB=60°,∴∠ACB=∠AOB=30°即弦AB所对的圆周角等于30°;情形二,如图2所示,连接OA,OB,在劣弧上任取一点D,连接AD、OD、BD,则∠BAD=∠BOD,∠ABD=∠AOD,∴∠BAD+∠ABD=(∠BOD+∠AOD)=∠AOB,∵AB的长等于⊙O的半径,∴△AOB为等边三角形,∠AOB=60°,∴∠BAD+∠ABD=30°,∠ADB=180°-(∠BAD+∠ABD)=150°,即弦AB所对的圆周角为150°,故答案为:30°或150°.由⊙O的半径为10,弦AB的长为10,可知弦AB的长恰好等于⊙O的半径,则△OAB是等边三角形,则∠AOB=60°;而弦AB所对的弧有两段,一段是优弧,一段是劣弧;因此本题要分类讨论.本题主要考查了等边三角形的判定和性质、圆周角定理和圆内接四边形的性质,要注意的是弦AB所对的圆周角有两种情况,需分类讨论,以免漏解是解答此题的关键.18.【答案】3n+3【解析】解:∵第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…∴第n个图形有3+3n个圆圈.故答案为:3n+3.由图形可知:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…由此得出第n个图形有3+3n个圆圈.本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式.19.【答案】解:(1)∵x2+4x+2=0∴x2+4x=-2x2+4x+4=2(x-2)2=2x-2=±2x=2+2或x=2-2.(2)∵x(x-3)=-x+3∴x(x-3)+x-3=0(x-3)(x+1)=0解得:x=-1或x=3.【解析】(1)配方法求解可得;(2)因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】解:这个圆锥的侧面积为:12×12×12π=72π(cm2),设底面圆的半径为:r,则2πr=12π,解得:r=6.故这个圆锥的高为:122−62=63(cm).【解析】此题主要考查了圆锥的计算,正确掌握圆锥与展开图对应关系是解题关键.直接利用圆锥侧面积与展开图扇形的关系求出即可,再利用勾股定理得出圆锥的高.21.【答案】解:(1)A(1,3),B(3,3),C(5,1);(2)所作图形如图所示:(3)∵AC=22+42=25,∴点C旋转到C'所经过的路线长l=90π×25180=5π,则线段AC旋转到新位置是划过区域的面积S=90π×20360=5π.【解析】(1)根据直角坐标系的特点写出各点的坐标;(2)分别将点B、C绕点A按逆时针方向旋转90°后得到点B′、C′,然后顺次连接;(3)点C旋转到点C′的轨迹为圆弧,根据弧长公式和扇形的面积求解.本题考查了根据旋转变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.【答案】解:(1)根据题意,将x=1代入方程x2+mx+m-2=0,得:1+m+m-2=0,解得:m=12;(2)∵△=m2-4×1×(m-2)=m2-4m+8=(m-2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.【解析】(1)直接把x=1代入方程x2+mx+m-2=0求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23.【答案】解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积=120°×π×4360∘-12×23×1=433-3【解析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积-三角形OCD的面积,列式计算即可求解.本题考查了扇形面积的计算,切线的性质,本题关键是理解阴影部分的面积=扇形OCD的面积-三角形OCD的面积.24.【答案】14【解析】解:(1)小红摸出标有数3的小球的概率是;故答案为;(2)画树状图为:由列表或画树状图可知,P点的坐标可能是(1,2)(1,3)(1,4)(2,1)(2,3),(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种情况,(3)共有12种可能的结果,其中在函数y=-x+5的图象上的有4种,即(1,4)(2,3)(3,2)(4,1)所以点P(x,y)在函数y=-x+5图象上的概率==.(1)根据概率公式求解;(2)利用树状图展示所有12种等可能的结果数;(3)利用一次函数图象上点的坐标特征得到在函数y=-x+5的图象上的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了一次函数图象上点的坐标特征.25.【答案】解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴AC=AB2+BC2=42.∵CD=3AD,∴AD=2,DC=32.由旋转的性质可知:AD=EC=2.∴DE=CE2+DC2=25.【解析】(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.本题主要考查的是旋转的性质、勾股定理的应用、等腰直角三角形的性质,求得∠DCE=90°是解题的关键.26.【答案】解:设销售单价为x元,销售利润为y元.根据题意,得:y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000=-20(x-35)2+4500,∵-20<0,∴x=35时,y有最大值,最大值为4500,35-30=5,所以,销售单价提高5元,才能在半月内获得最大利润4500元.【解析】设销售单价为x元,销售利润为y元,求得函数关系式,利用二次函数的性质即可解决问题.本题考查了二次函数的应用,解题的关键是学会构建二次函数解决最值问题.27.【答案】(1)证明:连接OC,如图所示:∵AB是⊙的直径,∴∠ACB=90°,即∠1+∠2=90°,∵OB=OC,∴∠2=∠B,又∵∠PCA=∠B,∴∠PCA=∠2,∴∠1+∠PCA=90°,即PC⊥OC,∴PC是⊙O的切线;(2)解:∵PC是⊙O的切线,设半径为x,则在Rt∆POC中:x+42=x2+62解得:x=2.5∴AB=2x=5.【解析】(1)连接OC,由圆周角定理得出∠ACB=90°,得出∠1+∠2=90°,由等腰三角形的性质得出∠PCA=∠2,因此∠1+∠PCA=90°,即PC⊥OC,即可得出结论;(2)由勾股定理求出半径,即可得出直径AB的长.本题考查了切线的判定与性质、等腰三角形的性质、圆周角定理、勾股定理;熟练掌握切线的判定方法,由勾股线定理求出半径是解决问题(2)的关键.28.【答案】解:(1)根据已知条件可设抛物线的解析式为y=a(x-1)(x-5),把点A(0,4)代入上式得:a=45,∴y=45(x-1)(x-5)=45x2-245x+4=45(x-3)2-165,∴抛物线的对称轴是:直线x=3;(2)P点坐标为(3,85).理由如下:∵点A(0,4),抛物线的对称轴是直线x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得4=6k+b0=k+b,解得k=45b=−45,∴y=45x-45,∵点P的横坐标为3,∴y=45×3-45=85,∴P(3,85).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,45t2-245t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=-45x+4,把x=t代入得:y=-45t+4,则G(t,-45t+4),此时:NG=-45t+4-(45t2-245t+4)=-45t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=12AD×NG+12NG×CF=12NG•OC=12×(-45t2+4t)×5=-2t2+10t=-2(t-52)2+252,∴当t=52时,△CAN面积的最大值为252,由t=52,得:y=45t2-245t+4=-3,∴N(52,-3).【解析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x-1)(x-5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2-t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.。

2011-2012第一学期九年级数学期末考试卷

2011-2012第一学期九年级数学期末考试卷

第一学期期末质量检测试卷·九 年 级 数 学·一、选择题(本题共10小题,每小题4分,满分40分) 1.下列计算正确的是+=;B.2+=;C.=321=-=.2.方程x=x(x-1)的根是 A.x=0; B. x=2; C.x 1=0, x 2=1; D.x 1=0, x 2=2.3.下列平面图形中,既是轴对称图形,又是中心对称图形的是4.根据电视台天气预报:无为县明天降雨的概率为80%.对此信息,下列几种说法中正确的是 A.无为县明天一定会下雨; B.无为县明天有80%的地区会降雨; C.无为县明天有80%的时间会降雨; D.无为县明天下雨的可能性比较大.5.如图是小颖同学的眼镜,则两镜片所在两圆的位置关系是 A.外离; B.外切; C.内含; D.内切.6.把一个正五角星绕着中心旋转到与原来重合,至少需要转动的度数是A.36°;B.72°;C.108°;D.144°.7.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是A.第①块;B.第②块;C.第③块;D.第④块. 8.如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为A.264πcm ; B.2112πcm ; C.2144πcm ; D.2152πcm .9.如图,在ΔABC 中,AB=13,AC=5,BC=12,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是 A.125; B.6013; C.5; D.无法确定. 10.如图,从A 地到B 地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A 地到B 地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B 地;B.老鼠先到达B 地;C.猫和老鼠同时到达B 地;D.无法确定. 二、填空题(本题共4小题,每小题5分,满分20分)11.请写出一个无理数,使它与12的积是有理数,这个无理数可以是 .12.挂钟分针的长10cm ,经过45分钟,它的针尖转过的弧长是 cm.13.如图,在10×6的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止⊙B 内切,那么⊙A 由图示位置需向右平移个单位. 14.小华与父母从合肥乘车去无为县米公祠(北宋大书法家米芾故居)参观,车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 .三、(本题共2小题,每小题8分,满分16分)15.计算:0(π1)+-. 16.用配方法解方程:0562=--x x .第5题图第10题图BA第9题图第7题图ACOB第8题图A 第13题图四、(本题共2小题,每小题8分,满分16分)17.⑴计算各次检查中“优等品”的频率,并填入上表; ⑵估计该厂生产的羽毛球“优等品”的概率.18.如图是无为中学某景点内的一个拱门,它是⊙O 的一部分.已知拱门的地面宽度CD=2m ,它的最大高度EM=3m ,求构成该拱门的⊙O 的半径.五、(本题共2小题,每小题10分,满分20分)19.如图所示,点O 、B 坐标分别为(0,0)、(3,0),将△ABO 绕点O 按逆时针方向旋转90°得到△OA 'B ';⑴根据题中条件在图中画出直角坐标系,并画出△OA ′B ′; ⑵点A ′的坐标是 ; ⑶求BB ′的长;20.下图表示的是聪聪从自已家到叔叔家,再到奶奶家的路线图.由图中可以看到:从聪聪家到叔叔家有4条路,从叔叔家到奶奶家有2条路.你能求出从聪聪家到奶奶家始终利用一种交通工具的路线概率吗?请用树状图表示.C DM E第18题图 ·O第20题图航运第19题图六、(本题满分12分)21.某商场购进一种新商品,每件进价是120元,在试销期间发现,当每件商品售价130元时,每天可销售70件,当每件商品售高(或低)于130元时,每涨(或降)价1元,日销售量就减少(或增加)1件.据此规律,请回答: ⑴当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少? ⑵在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价—进价) 七、(本题满分12分) 22.如图,已知在⊙O 中,AC 是⊙O 的直径,AC⊥BD 于F ,∠A=30°.⑴求图中阴影部分的面积; ⑵若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥底面圆的半径. 八、(本题满分14分)23.如图,在平面直角坐标系中,以坐标原点O 为圆心的⊙O 的半径为2-1,直线l :y=-x -2分别与x 轴、y 轴交于A 、C 两点,点B 的坐标为(4,1),⊙B 与x 轴相切于点M. (1)求点A 的坐标及∠CAO 的度数;(2)⊙B 以每秒1个单位长度的速度沿x 轴负方向平移,那么经过多长时间⊙B 与⊙O 第一次相切?(3)在⊙B 移动的同时,直线l 绕点A 顺时针匀速旋转.当⊙B 第一次与⊙O 相切时,直线l 也恰好与⊙B 第一次相切.问:直线AC 绕点A 每秒旋转多少度?第22题图第23题图无为县2011~2012学年度第一学期期末质量检测参考答案·九 年 级 数 学·一、选择题二、填空题11、答案不惟一.如3等. 12、15π. 13、4或6. 14、31.三、15、解:原式=1-332+ =31-. 16、解:配方,得 95962+=+-x x . ()1432=-x .∴ 143±=-x .∴1431+=x , 1432-=x .四、17、⑴从左到右分别是:0.9、0.92、0.91、0.89、0.9.(每空1分)⑵约为0.9. 18、解:连接OC.设⊙O 的半径为xm. ∵ EM ⊥CD , ∴ CM=21CD=1m.在Rt △OCM 中,由OM 2+CM 2=OC 2,得(3-x)2+1=x 2. 解得: x=35. 答:构成该拱门的⊙O 的半径为35m. 五、19、⑴ 图略.(画出直角坐标系2分,画出△OA ′B ′3分)⑵ 点A ′的坐标是(-2,4).⑶ 解:连接BB ′.∵ OB ′=OB=3,∠BOB ′=90°, ∴ BB ′=2233+=32. 20、解:用树状图表示如下:由上图可知,从聪聪家到奶奶家的行走路线共有8种结果,其中始终利用一种交通工具的路线有2种结果:(铁路,铁路)、(公路,公路). ……………………………… 7分所以,从聪聪家到奶奶家始终利用一种交通工具的概率是:4182=.…………… 9分 答:从聪聪家到奶奶家始终利用一种交通工具的路线概率是41.……………… 10分六、21、解:⑴每天销售商品的件数是:70-(170-130)=70-40=30(件).…………… 2分商场获得的日盈利是:30×(170-120)=1500(元).…………………………… 5分答:当每件商品售价定为170元时,每天可销售30件商品,商场获得的日盈利是1500元.⑵设每件商品的销售价定为x 元时,商场日盈利可达到1600元. 根据题意,得(x-120)[70-(x-130)]=1600.化简,得 x 2-320x+25600=0.解得 x 1=x 2=160. 答:每件商品的销售价定为160元时,商场日盈利可达到1600元. 七、22、解:⑴ ∵ ∠A=30°, ∴ ∠BOC=60°. ∴ ∠OBF=90°-60°=30°. ∴ OF=21OB.在Rt △ABF 中,∵ AB=43, ∠A=30°,∴ BF=21AB=23. 在Rt △OBF 中,由OB 2=OF 2+BF 2 得 OB 2=(21OB)2+(23)2.解得 OB=4.又 AC ⊥BD , ∴ ∠BOD=60°×2=120°.∴ S 阴影=ππ31636041202=⋅. 即图中阴影部分面积是π316. ⑵设这个圆锥底面圆的半径为r ,则2πr=1804120⨯⨯π.解得 r=34. 即这个圆锥底面圆的半径为34.八、23、解:⑴当y=0时,x=-2.∴点A 的坐标是(-2,0).∴ OA=2.当x =0时,y =-2. ∴ OB=2.从聪聪家到叔叔家: 从叔叔家 到奶奶家:公路铁路水路航运铁路 铁路 铁路 铁路 公路 公路 公路 公路 (5分)∴ OA=OB.又 ∠AOC=90°. ∴∠CAO=∠ACO=29018000-=45°. ⑵如图,设⊙B 平移t 秒到⊙B 1处与⊙O 第一次相切,⊙B 1与x 轴相切于点N,连接B 1O 、B 1N,则MN=t, OB 1=2, B 1N ⊥AN.……………… 6分 在Rt △OB 1N 中,由勾股定理,得 ON=2121N B OB -=()2212-=1.………… 7分∴MN=4-1=3 即t=3.………………………… 8分(3) 设⊙B 平移到⊙B 1处与⊙O 第一次相切时,直线l 旋转到l '恰好与⊙B 1第一次相切于点P, 连接B 1A 、 B 1P. 则B 1P ⊥AP , ∴B 1P = B 1N.∴∠PAB 1=∠NAB 1.…………………………………………………………………… 10分 ∵OA=OB 1=2, ∴∠AB 1O=∠NAB 1. ∴∠PAB 1=∠AB 1O.∴PA ∥B 1O .…………………………………………………………………………… 12分 在Rt △NOB 1中,∵ON=B 1N , ∴∠B 1ON=450,∴∠PAN=450, ∴∠1= 900.∴直线AC 绕点A 每秒旋转的度数为900÷3=300.………………………………… 14分第23题图。

甘肃省平凉市九年级上学期期末数学试卷

甘肃省平凉市九年级上学期期末数学试卷

甘肃省平凉市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分) (2016九上·苍南期末) 二次函数y=3x2的图象向左平移2个单位,得到新的图象的二次函数表达式是()A . y=3x2+2B . y=(3x+2)2C . y=3(x+2)2D . y=3(x﹣2)23. (2分)如图,在Rt△ACB中,∠ACB=90°,AC=6,BC=8,D,E分别在AC,BC上,且DE=6,以DE为直径的⊙O 交AB于点M,N,则弦长MN的最大值为()A . 2.4B . 4.8C . 5D . 64. (2分)用对称的观点写出函数与具有的一个共同性质()A . 都不具有对称性B . 关于x轴对称C . 关于y轴对称D . 关于原点对称5. (2分)下列说法中,完全正确是()A . 从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大B . 抛掷一枚均匀的硬币,正面一定朝上C . 三条任意长的线段都可以组成一个三角形D . 打开电视机,正在转播足球比赛6. (2分)若一个图形绕着一个定点旋转一个角α(0°<α≤180°)后能够与原来的图形重合,那么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转120°(如图所示),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形个数有()A . 1B . 2C . 3D . 47. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A .B .C .D .8. (2分) (2020八上·绵阳期末) 如图,在Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E,交 AD 于 F,FG∥BC,FH∥AC,下列结论:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG=BC,其中正确结论有()A . ①②③B . ①③④C . ①②③④D . ①②④9. (2分)(2017·沭阳模拟) 如图所示,点P(3a,a)是反比例函数y= (k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A . y=B . y=C . y=D . y=10. (2分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(-1,0),(3,0)两点,则下列说法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1 , y1),B(x2 , y2),C(x3 , y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3 ,其中正确的结论是()A .B .C .D .11. (2分) (2019七上·丹东期中) 碳氢化合物的化学式为:CH ,C H ,C H ,C H ……,观察其化学式的变化规律,则第n个碳氢化合物的化学式为()A . C HB .C HC . C HD . C H12. (2分)小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A . ①B . ②C . ③D . ①和②二、填空题 (共6题;共6分)13. (1分)(2017·五莲模拟) 如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y= 的图象交于B、A两点,则tanA=________.14. (1分)若两个圆的圆心距为1.5,而两个圆的半径是方程4x2﹣20x+21=0的两个实数根,则这两个圆的位置关系是________.15. (1分)(2018·宣化模拟) 如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于________16. (1分)(2010·华罗庚金杯竞赛) 如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB⊥BC,图中阴影是草地,其余是水面。

2011-2012学年九年级(上)期末数学试卷

2011-2012学年九年级(上)期末数学试卷

2011-2012学年九年级(上)期末数学试卷一、选择题:请将唯一正确答案的编号填入答卷中,本题共12题,每题2分,共24分.1.(2分)(2006•邵阳)方程x2﹣2x=0的解是( ) A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=02.(2分)电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观B.减小盲区C.增大盲区D.盲区不变3.(2分)(2005•枣庄)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是( ) A.1B.2C.4D.4.(2分)某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是( ) A.至少有两人生日相同 B.可能有两人生日相同,且可能性较大 C.不可能有两人生日相同 D.可能有两人生日相同,但可能性较小5.(2分)下列四个命题中,假命题的是( ) A.有三个角是直角的四边形是矩形 B.对角线互相垂直平分且相等的四边形是正方形 C.四条边都相等的四边形是菱形 D.顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形6.(2分)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( ) A.4cm B.6cm C.8cm D.10cm7.(2分)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( ) A.B.C.D.8.(2分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( ) A.25°B.30°C.45°D.60°9.(2分)(2006•兰州)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( ) A.()B.()C.()D.()10.(2分)(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是( ) A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)11.(2分)(2005•湘潭)如图,它们是一个物体的三视图,该物体的形状是( ) A.圆柱B.正方体C.圆锥D.长方体12.(2分)(2007•黔东南州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( ) A.都是等腰梯形B.都是等边三角形 C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形二、填空题(每空2分,共14分)13.(2分)(2005•大连)若点(2,1)在双曲线y=上,则k的值为 _________ .14.(2分)请写出一个根为x=1,另一根满足﹣1<x<1的一元二次方程 _________ .15.(2分)(2005•威海)已知双曲线y=经过点(﹣1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,那么b1 _________ b2(选填“>”、“=”、“<”).16.(2分)(2006•曲靖)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为 _________ .17.(2分)某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有 _________ 条鱼.18.(2分)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼3块分别写有“20”、“08”和“北京”的字块.如果婴儿能拼出“2008北京”和“北京2008”,他们就给婴儿奖励.假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率为 _________ .19.(2分)如图,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度α(0°<α<90°),若两正方形重叠部分的面积为,则这个旋转角度为 _________ 度.三、解答题(第20、21每题4分,第22题5分,共13分)20.(4分)解方程:x2﹣2x﹣3=021.(4分)补全右图的三视图:22.(5分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M 处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.四、(第23题6分,第24题6分,共12分)23.(6分)学了一元二次方程后,学生小刚和小明都想出个问题考考对方.下面是他们俩的一段对话:聪明的你能替小刚或小明解决问题吗?(要求任选一人回答)24.(6分)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路.例如,在证明三角形中位线性质定理时,就可以采用下图①的剪拼方式:将三角形转化为平行四边形,使问题得以解决.请你依照图①的方法,在图②和图③中,分别只剪一次,实现下列转化:(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.(要求:作出剪切线,不写作法,画出拼补图形,工具不限.)五、(每题6分,共12分)25.(6分)(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.26.(6分)(附加题)你还记得图形的旋转吗?如图,P是正方形ABCD内一点.PA=1,PB=2,PC=3,将△APB 绕点B按顺时针方向旋转,使AB和BC重合,得△CBP′.求证:(1)△PBP′是等腰直角三角形.(2)猜想△PCP′的形状,并说明理由.六、(每题6分,共12分)27.(6分)(2005•济南)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm2)的反比例函数,其图象如图所示.(1)写出y与s的函数关系式;(2)求当面条粗1.6mm2时,面条的总长度是多少米?28.(6分)(2004•无为县)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?七、(6分)29.(6分)(2005•扬州)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?八、(7分)30.(7分)如图,四边形ABCD是正方形,CE是∠BCD的外角∠DCF的平分线.(如果需要,还可以继续操作、实验与测量)(1)操作实验:将直角尺的直角顶点P在边BC上移动(与点B、C不重合),且一直角边经过点A,另一直角边与射线CE交于点Q,不断移动P点,同时测量线段PQ与线段PA的长度,完成下列表格(精确到0.1cm).PA PQ第一次第二次(2)观测测量结果,猜测它们之间的关系: _________ ;(3)对你猜测的结论是否成立均进行说明理由;(4)当点P在BC的延长线上移动时,继续(1)的操作实验,试问:(1)中的猜测结论还成立吗?若成立,请给出理由;若不成立,也请说明理由.2011-2012学年北师大版九年级(上)期末数学试卷参考答案与试题解析一、选择题:请将唯一正确答案的编号填入答卷中,本题共12题,每题2分,共24分.1.(2分)(2006•邵阳)方程x2﹣2x=0的解是( ) A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=0考点:解一元二次方程-因式分解法.专题:计算题.分析:本题应对方程进行移项,等式右边化为0,即为x2﹣2x=0,提取公因式x,将原式化为两式相乘的形式,x(x﹣2)=0,再根据“两式相乘值为0,这两式中至少有一式值为0”来求解.解答:解:原方程变形为:x2﹣2x=0,x(x﹣2)=0,x1=0,x2=2.故本题选C.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,本题运用的是因式分解法.2.(2分)电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观B.减小盲区C.增大盲区D.盲区不变考点:视点、视角和盲区.分析:电影院呈阶梯或下坡形状可以使后面的观众看到前面,避免盲区.解答:解:电影院呈阶梯或下坡形状是为了然后面的观众有更大的视角范围,减小盲区.故选B.点评:本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.3.(2分)(2005•枣庄)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是( ) A.1B.2C.4D.考点:反比例函数系数k的几何意义.专题:计算题;数形结合.分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=|k|即可求得k的值.解答:解:由于点M是反比例函数y=(k>0)图象上一点,则S△MOP=|k|=1;又由于k>0,则k=2.故选B.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义. 4.(2分)某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是( ) A.至少有两人生日相同 B.可能有两人生日相同,且可能性较大 C.不可能有两人生日相同 D.可能有两人生日相同,但可能性较小考点:可能性的大小.专题:分类讨论.分析:依据可能性的大小的概念对各选项进行逐一分析即可.解答:解:A、因为一年有365天而某学校只有320人,所以至少有两名学生生日相同是随机事件.故本选项错误;B、因为=>50%,所以可能性较大.正确;C、两人生日相同是随机事件,故本选项错误;D、由B可知,可能性较大,故本选项错误.故选B.点评:本题主要考查可能性大小的比较,关键是确定所给事件的类型;随机事件是指在一定条件下,可能发生也可能不发生的事件;概率较小的事件发生的可能性较小.5.(2分)下列四个命题中,假命题的是( ) A.有三个角是直角的四边形是矩形 B.对角线互相垂直平分且相等的四边形是正方形 C.四条边都相等的四边形是菱形 D.顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形考点:命题与定理.分析:根据矩形、正方形、菱形、等腰梯形的判定即可求出答案.解答:解:A、四边形的内角和为360°,正确;B、对角线互相垂直平分且相等的四边形是正方形,正确;C、四条边都相等的四边形是菱形,正确;D、顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形可能是矩形,不正确.故选D.点评:本题综合考查四边形的性质和特点.6.(2分)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( ) A.4cm B.6cm C.8cm D.10cm考点:平行四边形的性质;线段垂直平分线的性质.分析:根据平行四边形的对角线互相平分,可得OA=OC,又因为OE⊥AC,可得OE是线段AC的垂直平分线,可得AE=CE,即可求得△DCE的周长.解答:解:∵四边形ABCD为平行四边形,∴OA=OC;∵OE⊥AC,∴AE=EC;∵▱ABCD的周长为16cm,∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选C.点评:此题主要考查平行四边形的性质和中垂线的性质.7.(2分)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( ) A.B.C.D.考点:几何概率.分析:根据几何概率的求法:镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.解答:解:观察这个图可知:阴影部分占四个小正方形,占总数36个的,故其概率是.故选C.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(2分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( ) A.25°B.30°C.45°D.60°考点:等边三角形的判定与性质.分析:先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.点评:考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.(2分)(2006•兰州)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( ) A.()B.()C.()D.()考点:翻折变换(折叠问题);坐标与图形性质;解直角三角形.专题:计算题.分析:根据折叠的性质,OA=OA1,∠AOB=∠A1OB,从而求出∠A1OD,利用三角函数求出OD、A1D即可解答.解答:解:在Rt△AOB中,tan∠AOB=,∴∠AOB=30°.而Rt△AOB≌Rt△A1OB,∴∠A1OB=∠AOB=30°.作A1D⊥OA,垂足为D,如图所示.在Rt△A1OD中,OA1=OA=,∠A1OD=60°,∵sin∠A1OD=,∴A1D=OA1•sin∠A1OD=.又cos∠A1OD=,∴OD=OA1•cos∠A1OD=.∴点A1的坐标是.故选A.点评:此题主要考查图形对折的特征及点的坐标的求法.10.(2分)(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是( ) A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)考点:反比例函数图象的对称性.专题:计算题.分析:根据关于原点对称的两点横坐标,纵坐标都互为相反数即可解答.解答:解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(2,1).故选A.点评:此题考查了反比例函数图象的对称性,同学们要熟记才能灵活运用.11.(2分)(2005•湘潭)如图,它们是一个物体的三视图,该物体的形状是( ) A.圆柱B.正方体C.圆锥D.长方体考点:由三视图判断几何体.分析:根据题意,正视图与左视图均为三角形,俯视图为圆形故可以看出该几何体为圆锥.解答:解:本题中,圆柱的三视图不可能由三角形,正方体的三视图均为正方形,长方体的三视图不可能由圆和三角形,因此只有圆锥符合条件.故选C.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.12.(2分)(2007•黔东南州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( ) A.都是等腰梯形B.都是等边三角形 C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向上对折,对角顶点对折,沿折痕中点与重合顶点的连线剪开展开可得到两个直角三角形,一个等腰三角形.故选C.点评:本题是剪纸问题,主要考查学生的动手能力及空间想象能力,进行动手操作是正确解答本题的最简单办法. 二、填空题(每空2分,共14分)13.(2分)(2005•大连)若点(2,1)在双曲线y=上,则k的值为 2 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值.解答:解:把点(2,1)代入y=得k=2×1=2.故答案为:2.点评:本题比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点内容.14.(2分)请写出一个根为x=1,另一根满足﹣1<x<1的一元二次方程 x2﹣x=0 .考点:根与系数的关系.专题:开放型.分析:首先在﹣1<x<1的范围内选取x的一个值,作为方程的另一根,再根据因式分解法确定一元二次方程.本题答案不唯一.解答:解:由题意知,另一根为0时,满足﹣1<x<1,∴方程可以为:x(x﹣1)=0,化简,得x2﹣x=0.故答案为x2﹣x=0.点评:本题考查的是已知方程的两根,写出方程的方法.这是需要熟练掌握的一种基本题型,解法不唯一,答案也不唯一.15.(2分)(2005•威海)已知双曲线y=经过点(﹣1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,那么b1 < b2(选填“>”、“=”、“<”).考点:反比例函数图象上点的坐标特征;反比例函数的性质.分析:根据反比例函数的增减性解答.解答:解:把点(﹣1,3)代入双曲线y=得k=﹣3<0,故反比例函数图象的两个分支在第二、四象限,且在每个象限内y随x的增大而增大,∵A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,∴A、B在同一象限,∴b1<b2.故答案为<.点评:本题考查利用反比例函数的增减性质判断图象上点的坐标特征.16.(2分)(2006•曲靖)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为 .考点:规律型:图形的变化类.分析:根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处.解答:解:第n次跳动后,该质点到原点O的距离为.故答案为:.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.17.(2分)某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有 1000 条鱼.考点:利用频率估计概率.专题:应用题.分析:先得到鱼塘中带记号的鱼的频率为=,由此可估计鱼塘中带记号的鱼的概率为,然后根据鱼塘中带记号的鱼有100条可计算出鱼塘里约有鱼的条数.解答:解:∵100条鱼,带记号的鱼有10条,∴估计鱼塘中带记号的鱼的概率==,而鱼塘中带记号的鱼有100条,∴估计该鱼塘里约有鱼的条数=100÷=1000.故答案为1000.点评:本题考查了利用频率估计概率:当事件的概率不易求出时,可根据其中的某事件发生的频率来估计这个事件的概率.18.(2分)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼3块分别写有“20”、“08”和“北京”的字块.如果婴儿能拼出“2008北京”和“北京2008”,他们就给婴儿奖励.假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率为 .考点:概率公式.分析:列举出所有情况,让拼出“2008北京”和“北京2008”的情况数除以总情况数即为所求的概率.解答:解:将3块分别写有“20”、“08”和“北京”的字块,随机排列共3×2=6种情况,能拼出“2008北京”和“北京2008”两种情况即有奖,故婴儿能得到奖励的概率为.点评:明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.19.(2分)如图,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度α(0°<α<90°),若两正方形重叠部分的面积为,则这个旋转角度为 30 度.考点:旋转的性质;三角形的面积;全等三角形的性质;全等三角形的判定;正方形的性质;解直角三角形.分析:设A′D′与CD的交点为E,连接BE;由于A′B=BC,易证得△A′BE≌△CBE,因此两者的面积相等,即可根据△CBE的面积求得CE的值,从而通过解直角三角形求出∠CBE、∠CBA′的度数,进而可求得旋转角的度数.解答:解:设A′D′与CD的交点为E,连接BE.∵A′B=BC,BE=BE,∴Rt△A′BE≌Rt△CBE.(HL)∴∠A′BE=∠EBC,且S△BA′E=S△BCE=.在Rt△BCE中,BC=2,则:S△BCE=×2×CE=,∴CE=.∴tan∠EBC==,即∠EBC=30°.∴∠A′BC=2∠EBC=60°,∠ABA′=90°﹣∠A′BC=30°.故旋转的角度为30°.点评:此题主要考查了旋转的性质、正方形的性质、全等三角形的判定和性质以及三角形的面积、解直角三角形等相关知识,综合性较强.三、解答题(第20、21每题4分,第22题5分,共13分)20.(4分)解方程:x2﹣2x﹣3=0考点:解一元二次方程-因式分解法.专题:计算题.分析:通过观察方程形式,本题可用因式分解法进行解答.解答:解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.点评:熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.21.(4分)补全右图的三视图:考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.解答:解:主视图正确,俯视图与左视图如图所示:点评:此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.22.(5分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M 处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.考点:中心投影.专题:作图题.分析:根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE 的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段MN是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,MN处于视点的盲区.解答:解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,MN处于视点的盲区.(叙述不清,只要抓住要点,酌情给分)点评:本题考查中心投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、(第23题6分,第24题6分,共12分)23.(6分)学了一元二次方程后,学生小刚和小明都想出个问题考考对方.下面是他们俩的一段对话:聪明的你能替小刚或小明解决问题吗?(要求任选一人回答)考点:一元二次方程的解;根与系数的关系.分析:首先选出要解答的问题:小刚.然后根据一元二次方程的解的定义,将x=0代入方程,然后解关于m的方程即可.解答:解:我替小刚解答问题;根据题意,得x=0满足关于x的方程x2+2(m+1)x+m2=0,∴0+0+m2=0,解得m=0;∴0+x2=2(m+1),即x2=2.故小刚的问题中m的值为0,另一个根为2.点评:本题考查了一元二次方程的解、根与系数的关系.一元二次方程的解,即方程的根,一定满足该方程.24.(6分)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路.例如,在证明三角形中位线性质定理时,就可以采用下图①的剪拼方式:将三角形转化为平行四边形,使问题得以解决.请你依照图①的方法,在图②和图③中,分别只剪一次,实现下列转化:(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.(要求:作出剪切线,不写作法,画出拼补图形,工具不限.)考点:作图—应用与设计作图.专题:作图题.分析:(1)过点D垂直于AB边剪下,然后把△ADE向左右移至点A与点B重合即可;(2)取BC的中点E,沿DE剪下,把△DCE绕点E顺时针旋转180°即可.解答:解:如图所示进行剪切并拼接即可.点评:本题考查了应用于设计作图,读懂题目①的信息,并熟练掌握平行四边形与矩形的联系,梯形的问题转化为三角形进行解答的技巧与方法是解题的关键.五、(每题6分,共12分)25.(6分)(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.考点:翻折变换(折叠问题);直角三角形全等的判定.专题:几何综合题.分析:做此题要理解翻折变换后相等的条件,同时利用常用的全等三角形的判定方法来判定其全等.解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.(3分)(2)∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°∴在△ABC和△DBP,,∴△ABC≌△DBP(AAS).(8分)说明:图中与此条件有关的全等三角形还有如下几对:。

2011-2012学年度九年级第一学期期末质量检测(含答案)_

2011-2012学年度九年级第一学期期末质量检测(含答案)_

ADEBC(第3题图)1)1(21=-+a xa 2011—2012学年度第一学期期末质量检测九年级数学试题(时间:120分钟 满分:120分)成绩统计栏题号 一 二 三总分 25 26 27 28 29 得分一、选择题(本题包括20个题,每题3分,共60分。

每题只有一个正确答案,请将选项填入答题框内。

)1.下列方程: ①x 2=0,②21x-2=0, ③22x +3x=(1+2x)(2+x), ④32x-x =0, ⑤32x x-8x+ 1=0中, 一元二次方程的个数是( )A.1个B.2个C.3个D.4个2.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形; ⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是( ). A.①②③ B.①④⑤ C.①②⑤ D.②⑤⑥3. 如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线 于点E ,则下列式子不成立...的是( )A. DE DA = B. CE BD =C. 90=∠EAC °D. EABC ∠=∠24.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC的度数是( ).A.150°B.125°C.135°D.112.5°5.如图,△ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( ) A. 62° B.56° C.60° D.28°6.若关于x 的方程是一元二次方程,则a 的值是()A.0B.-1C. ±1D.17.方程(1)(3)1x x --=的两个根是 ( )A.121,3x x == B.122,4x x ==C.1222,22x x =+=-D.1222,22x x =--=-+8. 一个多边形有9条对角线,则这个多边形有多少条边( )A. 6B. 7C. 8D. 99.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且cos α=0.6,AB=4,则AD 的长为( ) A.320 B.310 C.3 D.31610.点A 、B 、C 都在⊙O 上,若∠AOB=680,则∠ACB 的度数为( ) A 、340 B 、680 C 、1460 D 、340或146011. 如图,菱形ABCD 中,60=∠B °,2=AB ,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A.32B.33C.34D.3题号 1 2 3 4 5 6 7 8 9 10 选项 题号 11 12 13 14 15 16 17 18 19 20 选项九年级数学试题 共8页 第1页九年级数学试题 共8页 第2页得 分 评卷人A(第11题图)BECF D第9题图第4题图第5题图学校__________________ 班级____________ 姓名_____________ 考场_____________ 准考证号______________密 封 线 内 不 要 答 题12.如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C '''的位置.若AC=15cm ,那么顶点A 从开始到结束所经过的路径长为( )A.10πcmB.103πcmC.15πcmD.20πcm13.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12, BD=10,AB=m ,那么m 的取值范围是( ).A 、1<m <11B 、2<m <22C 、10<m <12D 、5<m <614.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm15.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意列出方程为 ( ) A.x(x +1)=1035 B.x(x -1)=1035×2 C.x(x -1)=1035 D.2x(x +1)=103516.如图,已知EF 是⊙O 的直径,把A ∠为60的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边与AB ⊙O 交于点P ,点B 与点O 重合。

2011-2012上学期期末九年级期末试卷(修改)

2011-2012上学期期末九年级期末试卷(修改)

2011-2012学年度上学期期末考试九年级数学试题一、选择题(每小题3分,满分36分)下面每小题给出的四个选项中,只有一个是符合1.下列图形中,既是中心对称图形又是轴对称图形的有A .1个B .2个C .3个D .4个 2.下列根式中属最简二次根式的是A .12+aB .21C .32aD .27 3.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是A .内切B .相交C .外切D .外离4.下列事件中,必然事件是A .同时掷两枚均匀的骰子,朝上一面的点数和为6B .某彩票中奖率为0036,说明买100张彩票,有36张中奖C .打开电视,中央一套正在播放新闻联播D .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大5. 若3是关于x 的方程260x cx ++=的一个根,则c 的值是A .3B . 6C . 5-D .6- 6.下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是A .1)2(2+-=x yB .1)2(2++=x yC .3)2(2--=x yD .3)2(2-+=x y7.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得m CD 30=,在DC 的延长线上找一点A .测得m AC 5=,过点A 作AB ∥DE 交EC 的延长线于B ,测得m AB 6=,则池塘的宽DE 为A .m 25B .m 30C .m 36D .m 408.如图,一圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长为100m ,测得圆周角︒=∠45ACB ,则这个人工湖的直径AD 为A .m 250B .m 2100C .m 2150D .m 22009.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形的上底AD 、下底BC 以及腰AB 均相切,切点分别是D 、C 、E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是A .14B .12C .10D .9 10.如图,点F 是平行四边形ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是 A .AB DF EA ED = B .FB EF BC ED = C .BE BF DE BC = D .AEBCBE BF =11.如图,在中,,将绕点按逆时针方向旋转︒15后得到11C AB ∆,11C B 交AC 于点D ,如果22=AD ,则A B C ∆的周长等于(第7题图) (第8题图) (第9题图)A .6B .C .246+D .326+12.如图所示的二次函数2y ax bx c =++的图象中,小明同学观察得出了下面四条信息:(1)042>-ac b ;(2)1>c ;(3)02<-b a ; (4)0<++c b a . 你认为其中错误..的有 A .1个 B .2个 C .3个 D .4个二、填空题(每小题3分,共21分)请将答案直接写在题中横线上. 13.化简:18=_________.14.若n 12是整数,则正整数n 的最小值是_______________.15.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连 接BC .若∠A =26°,则∠ACB 的度数为 ____________.16.如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :BD = 1:2,则△ADE 与△ABC 的面积比为 .17.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的 增大而增大时,x 的取值范围是 .18.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011 年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2013年底三年共累计投 资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.若设每年市政府投 资的增长率为x ,则根据题意得方程为_____________________________________. 19.如图为抛物线2y ax bx c =++的图象,A 、B 、C 为抛物线与坐标轴的交点,且 OA =OC =1,则a 、b 之间满足的关系是 . 三、解答题(本大题共6小题,共63分解答要求写出文字说 明,证明过程或计算步骤) 20.(本题满分7分)已知关于x 的方程0122=-+kx x .(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求方程的另一根和k 的值. 21.(本题满分10分)在复习《反比例函数》一课时,同桌的小丽和小芳有一个问题观点不一致.小丽认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点(),P m n 的横坐标,第二个数作为点(),P m n 的纵坐标,则点(),P m n 在反比例函数12y x =的图象上的概率一定大于在反比例函数6y x=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点(),P m n 的情形;(2)分别求出点(),P m n 在两个反比例函数的图象上的概率,并说明谁的观点正确.22.(本小题满分10分)如图所示,E 是正方形ABCD 的边AB 上的一点,EF ⊥DE 交BC 于点F .(1)求证:ADE ∆∽BEF ∆;(2)若AE ∶EB =1∶2,求DE ∶EF 的值.AD F(第22题图)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大? 最大面积是多少?24.(本题满分13分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________、D_________________;②⊙D的半径=_____________________(结果保留根号);③求ADC∠的度数(写出解答过程);④若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);⑤若)07(,E,试判断直线EC与⊙D的位置关系并说明你的理由.25.(本题满分13分)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.。

2011-2012学年度第一学期九年级期末数学

2011-2012学年度第一学期九年级期末数学

2011-2012学年度第一学期九年级期末数学试卷一、单项选择题:1.如果a a 2-1)1-22=(,则 A .21<a B .21≤a C .21>a D .21≥a2.已知x =1是方程x 2+b x -2=0的一个根,则方程的另一个根是 A .1 B .2 C .-2 D .-l3.如图是一个旋转对称图形,要使它旋转后能与自身重合,至少应将它绕中心点旋转A .30°B .60°C .120°D .180°4.下列说法中,正确的是 A .到圆心的距离大于半径的点在圆内 B .圆的半径垂直于圆的切线C .圆周角等于圆心角的一半D .等弧所对的圆心角相等5.在平面直角坐标系xoy 中,以点(-3,4)为圆心,4为半径的圆 A .与x 轴相交,与y 轴相切 B .与x 轴相离,与y 轴相交C .与x 轴相切,与y 轴相交D .与x 轴相切,与y 轴相离6.已知相交两圆的半径分别为4和7,则它们的圆心距可能是 A .2 B .3 C .6 D .11 7.下列事件中属于随机事件的是 A .抛出的篮球会落下B .从装有黑球、白球的袋里摸出红球C .367人中有2人是同月同日出生D .买l 张彩票,中500万大奖8.在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有A .4个 B .6个 C .34个 D .36个9.下列函数关系中,可以看做二次函数c bx ax y ++=2(a ≠0)模型的是A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率l %,这样我国人口总数随年份的关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系10.二次函数3-2-2x x y =的图象如下图所示.当y <0时,自变量x 的取值范围是A .-l<x <3B .x <-1C .x >3D .x <-1或x >311.已知:如下图,在∆ABC 中,∠AED=∠B ,则下列等式成立的是 A .DEAD BCDE =B .BDAD BCAE =C .ABAE CEDE =D .ACAE ABAD =12.由二次函数1)3-(22+=x y 可知 A .其图象的开口向下 B .其图象的对称轴为直线x =-3C .其最小值为lD .当x <3时,y 随x 的增大而增大13.如下图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是14.如下图,在矩形ABCD 中,AB=3,BC=4,点P 在BC 边上运动,连接DP ,过点A 作AE ⊥DP ,垂足为E ,设DP=x ,AE=y ,则能反映y 与x 之间函数关系的大致图象是二、填空题 15.1-)21(24-8+=_________________16.∆ABC 的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将∆ABC 绕点B 顺时针旋转到△A′B′C′的位置,且点A′、C′仍落在格点上,则线段AB 扫过的图形面积是__________平方单位(结果保留π)17.如下图,有三个同心圆,由里向外的半径依次是2cm ,4cm ,6cm 将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是_______________18.点A (2,1y )、B (3,2y )是二次函数=y 12-2+x x 的图象上两点,则1y 与2y 的大小关系为1y __________2y (填“>”“<”“=”)19.已知圆锥底面半径为5cm ,母线长为15cm ,那么它的侧面积为_________(结果保留π)20.如下图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD=1。

2011-2012学年度上学期期末考试九年级数学试卷

2011-2012学年度上学期期末考试九年级数学试卷

2011——2012学年度上学期期末考试九年级数学试卷(考试时间120分钟,满分150分)成绩____________________亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 老师一直投给你信任的目光.请认真审题,看清要求,仔细答题,祝你考出好成绩。

一、选择题(每小题4分,共40分)1.2)3( 的计算结果是 ( )A. 3 B . 9 C. 6 D. 232.下列式子中正确的是 ( )=a b =-C. (a b =-2==3.下列事件中,是必然发生的事件的是 ( ) A. 打开电视机,正在播放新闻 B. 父亲的年龄比儿子的年龄大C. 通过长期努力学习,你会成为数学家D. 下雨天,每个人都打着雨伞4.一个袋中装有1个红球,2个白球,3个黄球,它们除颜色外完全相同.小明从袋中 任意摸出1个球,摸出的是白球的概率是 ( )A .61B .31C .21 D .15.下列多边形中,是中心对称图形而不是轴对称图形的是 ( )A 平行四边形B 矩形C 菱形D 正方形6.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是 ( )A .1个B .2个C.3个 D .4个7.一元二次方程0342=+-x x 的根的情况是 ( ) A .有两个相等的实数根 B .无实数根C .有两个不相等的实数根D .无法判断8.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的 度数为 ( ) A .40° B .50° C .60° D .70°9、如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是 ( ) A 、9π B 、27π C 、6π D 、3π10.已知⊙O 和⊙O '的半径分别为5 cm 和7 cm ,且⊙O 和⊙O '相切,则圆心距OO '为 ( )A 、2 cmB 、7 cmC 、12 cmD 、2 cm 或12 cm二、填空题(每小题4分,共20分)11+|y+1|=0,则x 2012+y 2011=_____________. 12、与点P (3,4)关于原点对称的点的坐标为___________. 13.一个直角三角形的两条直角边的长是方程x 2-7x +12=0的两个 根,则此直角三角形的周长为 .14.如图,AB ⊥BC ,DC ⊥BC ,BC 与以AD 为直径的⊙O 相切于点E , AB =9,CD =4,求四边形ABCD 的面积 .15.一顶简易的圆锥形帐篷,帐篷收起来时伞面的长度有4米,撑开后帐篷高2米,则帐篷撑好后的底面直径是______________米.三、解答题(共90分)16.计算题(每题5分,共10分): (1) 322513156⨯÷ (2)21018271375.06-+-17.解方程(每题5分,共10分):(1)22310x x +-= (2)2(4)5(4)x x +=+18.(共6分)已知223+=a ,223-=b ,求代数式223b ab a ++的值.19.(共7分) 已知关于x 的一元二次方程0132=-++m x x (1)如果此方程有两个相等的实数根,试求m 的值;(2)设1x 、2x 使(1)中所得方程的两个根,求1x 2x +1x +2x 的值∙第 14 题图C O EDB A20.(共8分) 随着人民生活水平的不断提高,越来越多的人在城里买了新房,为此某市对商品房的销售进行了如下统计,2009年商品房售出了5000套,2011年售出了7200套.请回答下列问题:(1) 这两年平均每年销售商品房的增长率是多少? (2) 按照此增长率预计2012年将销售多少套房子? 21.(共8分) 三张大小质地完全相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张获得第一个数字后,放回原处,再从桌子上3张中随机抽取第二张,获得第二个数字.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?22.(共6分) 已知平面直角坐标系中三点的坐标分别为:A (4、4),B (-2,2),C (3,0) (1)画出它的以原点O 为对称中心的△A ˊB ˊC ˊ (2)写出 A ˊ,B ˊ,C ˊ三点的坐标。

九年级上册期末数学试卷及标准答案

九年级上册期末数学试卷及标准答案

第14题图BAH DCO 2011-2012学年度第一学期期末考试九年级数学试卷【说明:本试卷共2页,时间:100分钟;满分:120分)】一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,请将正确答案的代号填在题后的括号内) 1. 生活处处皆学问.如图,自行车轮所在两圆的位置关系是( ) A . 外切 B . 内切 C . 外离 D . 内含2. 已知关于x 的一元二次方程x 2+3=4x ,若用配方法解该方程,则配方后的方程是( ) A .(x -2)2=7 B .(x-2)2=1 C .(x+2)2=1 D .(x+2)2=23. 如图,四边形ABC D 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A .A B C D = B .AD BC = C .AC BD =D .A B B C =4. 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( ) A . 最大值 -3 B . 最小值-3 C . 最小值2 D . 最大值25. 在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为41,那么袋中球的总个数为 ( )A . 15个B . 12个C . 9个D . 3个6. 如图,在△ABC 中,AB=BC=2,以AB 为直径的⊙0与BC 相切于点B ,则AC 等于( )A .2B .3C .22D .23 7. 如图,PA 、PB 是⊙O 的切线,切点分别是A 、B ,如果∠P =60°,那么∠AOB 等于( ) A .60° B .90° C .120° D .150°8. 如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于120°,则r 与R 之间的关系是( ) A .R =2r B .R =3r C.R =D .R =4r9. 在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( ) A .与x 轴相切,与y 轴相切 B .与x 轴相切,与y 轴相交 C .与x 轴相交,与y 轴相切 D .与x 轴相交,与y 轴相交10. 一人乘雪橇沿坡比1:3的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系式为s=10t+2t 2,若滑到坡底的时间为4秒,则此人下降的高度为( ) A . 36米 B . 363米 C .72米 D . 183米11.下列四个三角形,与左图中的三角形相似的是( )12. 如图,在△ABC 中,∠B = 90°,AB = BC = 20,三个全等的正方形的对称中心分别是△ABC 的顶点,且它们各边与△ABC 的两直角边平行或垂直.若正方形的边长为x ,且0<x ≤20,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是 ( )二、填空题(每小题3分,共24分. 多动脑筋,相信你一定能填对!) 13. 若反比例函数12m y x-=的图象经过点()35-,,则m= . 14. 如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于 .15. 如图,一个宽为2 cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是 cm . 16. 如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内” 啄食的概率为__ ___.17. 如图1,A B C △是直角三角形,如果用四张与A B C △全等的三角形纸片恰好拼成一个等腰梯形,如图2,那么在R t ABC △第1题图x第6题图第3题图第17题图AC图1图2第8题图第15题图第16题图第7题图第11题图A .B .C .D .18. 若二次函数kxxy++-=22的部分图象如图所示,则关于x的一元二次方程022=++-kxx的一个解31=x,另一个解=2x.19. 如图,已知⊙P的半径为2,圆心P在抛物线221xy=上运动,当⊙P与x轴相切时,圆心P的坐标为________ _.20. 如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次三、解答题(本大题共6个小题,共60分,解答应写出文字说明、证明过程或演算步骤)21.(本小题满分8分)如图,A C是平行四边形A B C D的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A C,为圆心,以大于12A C长为半径画弧,弧在A C两侧的交点分别为P、Q;②连结PQ PQ,分别与AB AC C D,,交于点E O F,,.(2)求证:A E C F=.22、(本小题满分8分)2010年上海世博会某展览馆展厅东面有两个入口A、B,南面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)她从进入到离开共有多少种可能的结果?(用树形图或列表的方法表示所有可能结果)(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?23.(本小题满分10分)如图,以线段AB为直径的⊙O交线段A C于点E,点D是AE的中点,连接OD并延长交⊙O于点M,60B O E∠=°,1cos2C=,BC=(1)求A∠的度数;(2)求证:BC是⊙O的切线;(3)求弧AM的长度.24.(本小题满分10分)如图,已知二次函数cbxxy++-=221的图象经过A(2,0)、B(0,-两点.(1)求这个二次函数的解析式.(2)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC25.(本题满分12分)如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长;(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长.26.(本题满分12分)如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方米60元、80元、40元.(1)如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需要元(2)如果木板边长为1米,设正方形EFCG的边长为x(米)时,墙纸费用为y(元),求y与x的函数关系式;并求出当正方形EFCG的边长为多少时,墙纸费用最省;最省的费用为多少?OBACEMDA B第20题图2010-2011学年度第一学期期末考试九年级数学试卷参考答案一、选择题(本大题共12个小题;每小题3分,共36分)1. C;2.B;3.C;4.A;5. B;6.C;7.C;8.B;9.C ; 10.A; 11.B; 12.C二、填空题(本大题共8个小题;每小题3分,共24分.)13. 8; 14. 3.5 15.10; 16.4π; 17. 23;18. -1; 19.(-2,2)(2,2); 20. 3(注意:19题若填对一个坐标给2分,全对给3分) 三、解答题: 21.解: (1)作图如右 ……………2分 (2)证明:∵四边形A B C D 是平行四边形∴DC ∥ AB ……………3分 ∴∠DCA =∠CAB ……………4分 由(1)可知EF 垂直平分AC ∴AO=OC ……………………6分 又∵∠COF =∠AOE ………………7分 ∴O A E O C F △≌△∴AE=CF …………………………8分 22.解:(1)图略………………5分(2)P(从入口A 进入展厅并从北出口或西出口离开)= 31……8分23.解:(1)∵∠BOE=60° ∴∠A =12∠BOE = 30° ……………2分(2)在△ABC 中 ∵1cos 2C =∴∠C=60° ……………4分又∵∠A =30°∴∠ABC=90°∴A B B C ⊥ ………………5分∴BC 是⊙O 的切线 …………………………………6分(3)∵点D 是AE 的中点 ∴OM ⊥AE …………………………7分∵∠A =30°∴∠AOM=60° …………………………8分 在Rt △ABC 中, tanC=BCAB∵BC =∴ AB= BC tanC=32⨯3=6……………9分 ∴OA=32A B = ∴弧AM 的长 =180360⨯π=π ……………10分24. 解:(1)把A (2,0)、B (0,-6)代入c bx x y ++-=221得:⎩⎨⎧-==++-6022cc b ……………2分解得⎩⎨⎧-==64c b ……………4分∴这个二次函数的解析式为64212-+-=x x y ……………5分(2)∵该抛物线对称轴为直线4)21(24=-⨯-=x ………7分∴点C 的坐标为(4,0)∴224=-=-=OA OC AC …………………………8分 ∴6622121=⨯⨯=⨯⨯=∆OB AC S ABC …………………10分25. 解:(1)由题意可知,抛物线的对称轴为:x=6 ∴设抛物线的解析式为2(6)y a x k =-+ ∵抛物线经过点A (3,0)和C (0,9) ∴90369a k a k +=⎧⎨+=⎩ ………2分解得:1,33a k ==-∴ 21(6)33y x =-- ………4分(2)连接AE∵DE 是⊙A 的切线,∴∠AED=90°,AE=3 ………………………5分 ∵直线l 是抛物线的对称轴,点A ,D 是抛物线与x轴的交点∴AB=BD=3∴AD=6 ……………………………………………………………………6分在Rt △ADE 中,222226327DE AD AE =-=-=∴D E = ……………………………………………………………………8分 (3)当BF ⊥ED 时 ∵∠AED=∠BFD=90°∠ADE=∠BDF ∴△AED ∽△BFD ∴A E A D B F B D =即363B F=∴32B F =………………………………………………………10分当FB ⊥AD 时∵∠AED=∠FBD=90° ∠ADE=∠FDB ∴△AED ∽△FBD ∴A E E DB FB D=即33BF ⨯==∴当△BFD 与EAD △相似时,BF 的长为32………………………12分26.解:(1)220 …………………………………………2分(2)y=60x 2+80×)(x 1121-⨯⨯+40⎥⎦⎤⎢⎣⎡---)(x 121x 12……6分即y=20x 2—20x+60 ………………………………………10分 当x=21时,y 小=55元当正方形EFCG 的边长为21米时,墙纸费用最省;最省的费用为55元.…………………………………12分D QB E ACOPF。

平凉市九年级(上)期末数学试卷含答案

平凉市九年级(上)期末数学试卷含答案

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.以下图形既是轴对称图形,又是中心对称图形的是A. 等腰三角形B. 平行四边形C. 矩形D. 等腰梯形2.抛物线的顶点坐标是A. B. C. D.3.用配方法解一元二次方程,变形正确的是A. B. C. D.4.如图所示,的半径为13,弦AB的长度是24,,垂足为N,则A. 5B. 7C. 9D. 115.当x满足时,方程的根是A. B. C. D.6.小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是A. B.C. D.7.“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司交付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果.预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台.设平均每年的出口增长率为x,可列方程为A. B.C. D.8.如图,线段AB是的直径,点C、D为上的点,过点C作的切线交AB的延长线于点E,若,则等于A.B.C.D.9.如图,过原点,且与两坐标轴分别交于点A、点B,点A的坐标为,M是第三象限内上一点,,则的半径长为A. 5B. 4C. 3D.10.在同一直角坐标系中,函数与的图象可能是A. B.C. D.二、填空题(本大题共8小题,共32.0分)11.一元二次方程化为一般形式是______.12.若点关于原点的对称点是,则ab的值是______.13.用反证法证明命题“若的半径为r,点P到圆心的距离为d,且,则点P在的外部”,首先应假设______.14.将抛物线先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为______.15.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在,估计盒子中小球的个数______.16.点,,均在二次函数的图象上,则,,的大小关系是:______________ .17.若关于x的一元二次方程有两个不相等的实数根,则实数k的取值范围是______.18.如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线,点B的坐标为下面的四个结论:;;;,其中正确的结论是______ 填写序号.三、计算题(本大题共1小题,共10.0分)19.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且将绕点D逆时针旋转,得到.求证:;当时,求EF的长.四、解答题(本大题共8小题,共78.0分)20.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地阴影部分上种植草坪,使草坪的面积为求每条道路的宽.21.已知在中,.用尺规作图,作出的内切圆,与边AC,BC,AB分别切于点D,E,保留作图痕迹;若,,求此内切圆的半径.22.2018年2月16日,著名导演林超贤执导的电影《红海行动》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用摸球的办法决定谁去看电影,规则如下:在一个不透明的袋子里装有编号为1,2,3,4的四个小球除编号外都相同,从中随机摸出一个球,记下数字后放回,再从中摸出一个球记下数字,若两次数字之和大于5,则小亮去,若两次数字之和不大于5,则小丽去.请用列表或画树状图的方法表示出两数和的所有可能结果;分别求出小亮去和小丽去的概率.23.文具店某种文具进价为每件20元.市场调查反映:当售价为每件30元时,平均每星期可售出140件;而当每件的售价涨1元时,平均每星期少售出10件.设每件涨价x元,平均每星期的总利润为y元.写出y与x的函数关系式,并求出自变量的取值范围;如何定价才能使每星期的利润最大?且每星期的最大利润是多少?24.已知:如图,已知的半径为1,菱形ABCD的三个顶点A、B、D在上,且CD与相切.求证:BC与相切;求阴影部分面积.25.如图,一个圆锥的高为,侧面展开图是半圆.求:圆锥的母线长与底面半径之比;求的度数;圆锥的侧面积结果保留.26.九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为,那么他能否获得成功?27.如图,已知抛物线的对称轴为直线,且抛物线经过,两点,与x轴交于点B.若直线经过B、C两点,求直线BC和抛物线的解析式;在抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;设点P为抛物线的对称轴上的一个动点,求使为直角三角形的点P的坐标.答案和解析1.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、不是中心对称图形,是轴对称图形.故选:C.根据轴对称图形与中心对称图形的概念求解.掌握好中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称折叠后可重合,判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.2.【答案】D【解析】解:顶点式,顶点坐标是,抛物线的顶点坐标是.故选:D.直接利用顶点式的特点可写出顶点坐标.主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.3.【答案】C【解析】解:,,,故选:C.根据配方法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.4.【答案】A【解析】【分析】本题考查了垂径定理,勾股定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题根据的半径为13,弦AB的长度是24,,可以求得AN的长,从而由勾股定理可以求得ON的长.【解答】解:由题意可得,,,,,,故选A.5.【答案】D【解析】解:,解得:,方程,,,.故选:D.先求出不等式组的解,再求出方程的解,根据范围即可确定x的值.本题考查解一元一次不等式、一元二次方程的解等知识,熟练掌握不等式组以及一元二次方程的解法是解题的关键,属于中考常考题型.6.【答案】B【解析】解:A、不是圆周角,故本选项不能判断;B、根据的圆周角所对的弦是直径,本选项符合;C、不是圆周角,故本选项不能判断;D、不是圆周角,故本选项不能判断.故选:B.根据的圆周角所对的弦是直径进行判断.此题考查了圆周角定理的推论,即检验半圆的方法,的圆周角所对的弦是直径,所对的弧是半圆.7.【答案】C【解析】解:根据题意:2019年为台.则;故选:C.根据题意得出2018年的台数为台,2019年为台,列出方程即可.此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为;平均降低率问题,在理解的基础上,可归结为.8.【答案】A【解析】解:连接OC,是的切线,,,,.故选:A.连接OC,根据切线的性质可知,再由直角三角形的性质得出的度数,由圆周角定理即可得出结论.本题考查的是切线的性质,熟知圆的切线垂直于经过切点的半径是解答此题的关键.9.【答案】B【解析】解:连接OC,如图所示,,为的直径,,,,,,是等边三角形,的半径.故选:B.连接OC,由圆周角定理可知AB为的直径,再根据可求出的度数,证明是等边三角形,即可得出结果.本题考查了圆周角定理、圆内接四边形的性质、等边三角形的判定与性质;熟练掌握圆内接四边形的性质,证明三角形是等边三角形是解决问题的关键.10.【答案】C【解析】解:A、根据一次函数图象知道,与y轴的交点不是,故选项错误;B、根据二次函数的图象知道,同时与y轴的交点是,但是根据一次函数的图象知道,故选项错误;C、根据图象知道两个函数图象与y轴的交点坐标为,同时也知道,故选项正确;D、根据一次函数图象知道,根据二次函数的图象知道,故选项错误.故选C.假设其中一个图象正确,然后根据图象得到系数的取值范围,然后根据系数的取值范围确定另一个图象的位置,看是否和图象相符即可求解.此题主要考查了二次函数的图象、一次函数的图象与系数的关系,首先根据一次函数的图象得到系数的取值范围,然后利用系数的取值范围确定函数图象的大致位置即可求解.11.【答案】【解析】解:,,.故答案为:;把方程化为的形式即可.此题主要考查了一元二次方程的一般形式是:b,c是常数且特别要注意的条件.这是在做题过程中容易忽视的知识点.在一般形式中叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.【答案】【解析】解:点关于原点的对称点是,,,则ab的值是:.故答案为:.直接利用关于原点对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.13.【答案】若的半径为r,点P到圆心的距离为d,且,则点P在上或内【解析】解:用反证法证明命题“若的半径为r,点P到圆心的距离为d,且,则点P在的外部”,首先应假设:若的半径为r,点P到圆心的距离为d,且,则点P在上或内.故答案为:若的半径为r,点P到圆心的距离为d,且,则点P在上或内.直接利用反证法的基本步骤得出答案.此题主要考查了反证法,正确掌握反证法的解题方法是解题关键.14.【答案】【解析】解:抛物线先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为,即:.故答案为:.根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.15.【答案】30【解析】解:根据题意得,解得,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故答案为:30.根据利用频率估计概率得到摸到黄球的概率为,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.【答案】【解析】【分析】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.根据函数解析式的特点,其对称轴为,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,与关于对称轴对称,可判断.【解答】解:,对称轴为,,在对称轴的右侧,y随x的增大而减小,,,根据二次函数图象的对称性可知,与关于对称轴对称,故,故答案为17.【答案】且【解析】解:关于x的一元二次方程有两个不相等的实数根,且,即,解得且.的取值范围为且,故答案为:且.根据一元二次方程的定义和的意义得到且,即,然后解不等式即可得到k的取值范围.本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.也考查了一元二次方程的定义.18.【答案】【解析】解:抛物线对称轴是直线,点B的坐标为,,,故选项正确;抛物线与x轴有两个交点,,故选项正确;抛物线开口向上,,抛物线对称轴在y轴左侧,,b同号,,故选项错误;当时,此时最小,为负数,故选项正确;故答案为:.利用二次函数对称性以及结合的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断的符号是解题关键.19.【答案】解:证明:逆时针旋转得到,,、C、M三点共线,,,,,,在和中,,≌ ,;设,,且,,,,在中,由勾股定理得,即,解得:,则.【解析】由旋转可得,为直角,可得出,由,得到为,可得出,再由,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出;由第一问的全等得到,正方形的边长为3,用求出EB的长,再由求出BM的长,设,可得出,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.20.【答案】解:设道路的宽为xm,则草坪的长为,宽为,根据题意得:整理得:,解得:,不合题意,舍去.答:每条道路的宽为1米.【解析】将六小块草坪合在一起可得出一个长方形,设道路的宽为xm,则草坪的长为,宽为,根据矩形的面积公式即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【答案】如图即为所求作的图形.如图:连接OD、OE、OF,得正方形ODCE,的内切圆,与边AC,BC,AB分别切于点D,E,F,设此内切圆的半径为r,在中,,,,.,,,解得.答:此内切圆的半径为1.【解析】根据尺规作图作两个角的平分线即可找到内切圆的圆心,进而作出三角形的内切圆;根据切线长定理和勾股定理即可求解.本题考查了尺规作图、切线的性质、三角形的内切圆与内心,解决本题的关键是掌握切线长定理并会运用.22.【答案】解:画树状图如下:两数和的所有可能结果为:2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8共16种.因为两次数字之和大于5的结果数为6,所以小亮获胜的概率,因为两次数字之和小于5的结果数为6,所以小丽获胜的概率.【解析】根据题意画出树状图得出所有等可能的结果数;找出次数字之和大于5的结果数和两次数字之和小于5的结果数,然后根据概率公式计算即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23.【答案】解:答:y与x的函数关系式为.自变量的取值范围是.顶点坐标为,,当时,y有最大值为1440答:定价为32元时,每星期获得的利润最大,最大利润为1440元.【解析】根据销售总利润等于单件利润乘以销售量即可求解;根据二次函数的顶点坐标即可求解.本题考查了二次函数的应用,解决本题的关键是根据销售问题列出等量关系.24.【答案】解:连结OB、OD、OC,是菱形,,,,≌ ,,与相切,,,即,点B在上,与相切.是菱形,,与所对的弧都是,,由知,,,,,阴影扇形【解析】连结OB、OD、OC,只要证明 ≌ ,推出,由CD与相切推出,推出,由此即可证明;根据S阴影扇形计算即可;本题考查菱形的性质、切线的判定和性质、扇形的面积公式等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分割法求阴影部分面积,属于中考常考题型.25.【答案】解:根据题意得,所以,即l::1;,为等边三角形,;在中,,,解得,,圆锥的侧面积【解析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,从而得到l与r的关系;证明为等边三角形得到;先利用勾股定理计算出,则,解得,然后利用扇形的面积公式计算圆锥的侧面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.26.【答案】解:由题意可知,抛物线经过点,顶点坐标是,篮圈中心的坐标是.设抛物线的解析式是,抛物线经过点,,解得:,抛物线解析式为.当时,,篮圈的中心点在抛物线上,能够投中.当时,,能够盖帽拦截成功.【解析】观察函数图象可知:抛物线经过点,顶点坐标是,篮圈中心的坐标是设抛物线的解析式是,根据抛物线上点的坐标利用待定系数法可求出抛物线的解析式,再利用二次函数图象上点的坐标特征验证篮圈中心点是否在抛物线上,此题得解;代入求出y值,由该值小于可得出盖帽拦截成功.本题考查了二次函数的应用、待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:观察函数图象找出点的坐标,利用待定系数法求出抛物线的解析式;代入求出y值.27.【答案】解:依题意得:,解之得:,抛物线解析式为对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为;设直线BC与对称轴的交点为M,则此时的值最小.把代入直线得,,,即当点M到点A的距离与到点C的距离之和最小时M的坐标为;设,又,,,,,若点B为直角顶点,则即:解之得:;若点C为直角顶点,则即:解之得:,若点P为直角顶点,则即:解之得:,;综上所述P的坐标为或或或【解析】先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线,解方程组求出m和n的值即可得到直线解析式;设直线BC与对称轴的交点为M,则此时的值最小.把代入直线得y的值,即可求出点M坐标;设,又因为,,所以可得,,,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数二次函数和一次函数的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。

20112012学年度第一学期九年级期末考试数学

20112012学年度第一学期九年级期末考试数学

2011-2012学年度第一学期九年级期末考试数学科试卷一.选择题(本大题共8小题,每小题4分,共32分) 1.下列根式中,不是..最简二次根式的是 ABCD2.下列图形中,是中心对称图形的是3.将量角器按如图所示的方式放置在三角形纸片上,使点C 在半圆圆心上, 点B 在半圆上,则∠A 的度数约为A .10°B .20°C .25°D .35° 4.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定 A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 5.某城2009年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2011年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是A 、300(1+x )=363B 、300(1+x )2=363 C 、300(1+2x )=363 D 、363(1-x )2=300 6.某中学为庆祝党的生日,,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年 级各有一名同学进入决赛,九年级有两名同学进入决赛,则九年级同学获得前两名的概率是A . 12B .13 C .14 D .167.如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C ,大圆弦AD 交 小圆于点E 和F .为了计算截面(图中阴影部分)的面积,甲、乙、丙三位同学分别用刻度尺 测量出有关线段的长度.甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其中可以算出截面面积的同学是A .甲、乙B .丙C .甲、乙、丙D .无人能算出 8.如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A 点出发, 绕侧面一周又回到A 点,它爬行的最短路线长是A .2πB. C.D .5二.填空题(本大题共5小题,每小题4分,共20分) 9有意义的条件是10.在平面直角坐标系内,点P (-3,2)关于原点对称的点的坐标是 11..同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、能围成一个三角形,则这两个圆的位置关系是 12.已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为____________13.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形 A 2A 1B 2 M 1,对角线A 1 M 1和A 2B 2 交于点M 2;以M 2A 1为对角线作BA第3题图AP 8题A B C D第三个正方形A 3A 1B 3 M 2,对角线A 1 M 2和A 3B 3 交于点M 3;……, 依次类推,这样作的第n 个正方形对角线交点M n 的坐标为 三.解答题(本大题共5小题,每小题7分,共35分) 14.计算:20100(1)|(2-+-15.用适当的方法解方程:22(3)5x x -+=16.已知a ,b ,c 为三角形的三边, 化简222)()()(a c b a c b c b a -++--+-+17. 已知关于x 的一元二次方程x 2-(2k+3) x+k 2+3k+2=0 求证:无论k 为何值时,方程总有两个不相等的实数根. 18.已知在△ABC 中,∠ A=90°,请用圆规和直尺作⊙P ,使圆心P 在AC 上,且与AB 、BC 两边都相切。

2011—2012学年九年级(上)期末数学综合测试卷

2011—2012学年九年级(上)期末数学综合测试卷

FC 2010-2011学年度上学期九年级考试数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分) 1.下列各式属于最简二次根式的是()。

....A B C D 2.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )3.方程0432=++x x 的根的情况是( )A .有两个相等实数根B .有两个不相等实数根C .只有一个实数根D .没有实数根 4.下列事件是必然事件的是( )A .小华明天考数学得满分B .买一张彩票不一定中500万元C .在学校操场上抛出的篮球不会下落D .投掷一枚均匀硬币,正面朝上5.已知两圆的半径分别是一元二次方程01272=+-x x 的两个根,若两圆的圆心距为5,则这两个圆的位置关系是( )A .相交B .内含C .内切D .外切 6. 下列方程中,一元二次方程有( )①2320x x += ②22340x xy -+= ③214x x -= ④21x = ⑤2303xx -+= A . 2个 B .3个 C .4个 D . 5个7. 如图,A 、B 、C 、D 四点都在⊙O 上,若AB OC ⊥,︒=∠70AOC ,则圆周角D ∠的度数等于( )(A )︒70 (B )︒50 (C )︒35 (D )︒208.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将 △BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( ) A 、100B 、150C 、200D 、25A B C D(第7题)B 9.小明和三名女同学和四名男同学一起玩丢手帕游戏,•小 明随意将手帕丢在一名同学的后面,那么这名同学是女同 学的概率是( ) A .0 B .12 C .43.77D ( ) 二、填空题(本大题共6小题,每小题3分,共18分) 11.当x 时,二次根式xx -+-513在实数范围内有意义.12.方程x 2= x 的根是_______________. 13.如图⊙P 的半径为2,圆心P 在函数y=x6(x >0)的图像上运动, 当⊙P与x 轴相切时,点P 的坐标为_________.14.如图,若将△ABC (点C 与点O 重合)绕点O 顺时针旋转90°后得到△A ′B ′C ′,则点A 的对应点A ′的坐标是 ____ . 15.在一次实验中,一个不透明的袋子里放有a 个完全相同的小球,从中摸出5个球做好标记,然后放回袋子中搅拌均匀,任意摸出一个球记下是否有标记再放回袋子中搅拌均匀,通过大量重复模球试验后发现,摸到有标记的球的频率稳定在20%,那么可以 推算出a 大约是 .16.已知,如图所示,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°。

九年级数学期末试题答案

九年级数学期末试题答案

2011—2012学年度第一学期期末考试九年级数学答案(一)、试题内容分布(二)、答案:一、选择题(本大题共8小题,每小题3分,共24分) 1-4 C B C C 5-8 D C D B二、填空题(本大题共8小题,每小题3分,共24分)9.2110.拔苗助长 等 11. -4, 1; 12.1 13.256)1(2892=-x 14.)2,6(),2,6(- 15. π3416.①③④三、(本大题共3小题,每小题6分,共18分)17.解:原式1323-+-= 4分3= 6分18.解:把(-2,5)代入 得25324532)2(2-==--=---b b b 2分 所以:322--=x x y 4分当31≤<x 时 04≤<-y 6分 19.解:作OM 垂直于DE ,连接OD ,则 1分OD=OC=5,DM=EM=4 3分34522=-=CM 5分即直尺的宽度为3 cm 6分四、(本小题共2小题,每小题8分,共16分)20.解:(1)、设黄球有x 个,则2)12(21=++x 2分1=∴x 所以黄球有1个。

3分(2)列表得6分所以共有12种结果,每种结果发生的可能性都相等,两次都摸出红球有2种结果。

61122(==两次都摸出红球)P 8分 21.(1)(-2,3) 2分 (2).图略 5分43360)10(90360)13(9022BOB'AOA'πππ=∙-∙=-=扇形扇形S S S 8分五、(本小题共2小题,每小题9分,共18分)22. 解:(1)把(70,3000)(90,1000)代入一次函数b kx y +=得 2分⎩⎨⎧=+=+100090300070b k b k 1000010010000,100+-=∴=-=∴x y b k 4分 (2)依题意得:)10000100)(60(+--=x x w 6分 元时当值函数开口向下,有最大最大值40000802600000160001002==-=∴-+-=∴W abx x x w所以当售价x 为80元时,每天获得的利润最大,最大值为40000元. 9分23. 解:(1)由题意有22(21)40m m ∆=--≥,2分解得14m ≤.即实数m 的取值范围是14m ≤. 3分 (2)由22120x x -=得1212()()0x x x x +-=. 5分若120x x +=,即(21)0m --=,解得12m =.∵21>41,12m ∴=不合题意,舍去. 7分若120x x -=,即12x x = 0∴∆=,由(1)知14m =.故当22120x x -=时,14m =. 9分六、(本小题共2小题,每小题10分,共20分)24.解:(1)在矩形OABC 中,OA=3,OC=2 ,B 在第四象限,所以B (2,-3)把B 点代入得 233222-=∴-=-+b b322--=x x y 3分对称轴:12=-=abx ,即直线:1=x 4分 (2)如图2,OM=1,CM=a 21,a BC =),121(a a B -+∴ 6分把B 点代入函数得a a a -=-+-+3)121(2)121(28分解得:252,(025221-=<--=a a 舍去)所以边长252-=a 10分25.解:(1)连接OQ ,则OQ ⊥PQOQ=1,OP=2,所以030=∠OPQ 即030=∠BOQ 2分ππ61360130=⋅⋅=BQ l 弧 所以点Q 的运动速度为cm π61/秒. 3分 (2).由(1)可知,当t=1时, △OPQ 为直角三角形所以,如图2,当与Q ’关于x 轴对称时,△OPQ ’为直角三角形 此时0150'=∠BOQπ65'=BQ l 弧,5=t 5分当Q ’(0,-1)或Q ’(0,1)时,090'=∠POQ , 此时6=t 或12=t 即当5=t ,6=t 或12=t 时,△OPQ 是直角三角形. 7分 如图三,当6=t 或12=t 时,直线PQ 与⊙O 相交. 作OM ⊥PQ ,根据等面积法可知: PQ*OM=OQ*OPPQ=522=+OQ OP552=OM 9分 5522=-=OM OP PM 10分 弦长cm PM PN 5522==。

2011—2012学年度九年级第一学期数学期末考试(含答案)

2011—2012学年度九年级第一学期数学期末考试(含答案)

2011—2012学年度第一学期期末考试九年级数学试题卷(后有答题卷)说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟. 2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答的不给分.一、选择题(本大题共8小题,每小题3分,共24分) 1.有意义,则x 的取值范围为( ★ )A.21≥x B. 21≤x C. 21-≥x D. 21-≤x2.下列图形中,是中心对称图形的是( ★ )A .B .C .D . 3.一元二次方程0)1(=-x x 的解是( ★ )A.0=xB.1=xC. 0=x 或1=xD. 0=x 或1-=x 4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ★ )A .51B .31C .85D .835.下列一元二次方程中没有..实数根的是( ★ ) A .0422=-+x x B .0442=+-x x C .0522=--x x D .0432=++x x6. 估算324+的值( ★ )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间7. 将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ★ ).A .221216y x x =--+B .221216y x x =-+-C .221219y x x =-+-D .221220y x x =-+- 8.如图,将半径为8的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB 长为 ( ★ )B(第8题图)第15题C C OC 3A.152B.154C.8D.10二、填空题(本大题共8小题,每小题3分,共24分) 9.如果23=b a ,那么=-bb a ___★__.10.写出一个所描述的事件是不可能事件的成语:__★__.11.二次函数52++=bx x y 配方后为k x y +-=2)2(,则=b __★_,=k __★__. 12.如果关于x 的方程022=+-m x x (m 为常数)有两个相等实数根,那么m =__★__.13、某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x ,则满足x 的方程是__★__.14. 如图:已知⊙P 的半径为2,圆心P 在抛物线1212-=x y 上运动,当⊙P与x轴相切时,圆心P 的坐标为__★_. 15.如图,⊙O 的半径为2,1C 是函数212yx=的图象,2C 是函数212yx=-的图象,3C是函数x y 3=的图象,则阴影部分的面积是 ★ 平方单位(结果保留π).16.如图,Rt △ABC 中0030,90=∠=∠A C ,在AC 边上取点O 画圆使⊙O 经过A 、B 两点,下列结论中:①;②BC AO =;③以O 为圆心,以OC 为半径的圆与AB 相切;④延长BC 交⊙O 与D ,则A 、B 、D 是⊙O 的三等分点.正确的序号是 ★ (多填或错填不给分,少填或漏填酌情给分) . 三、(本大题共3小题,每小题6分,共18分) 17.计算:20110)1(51520)3(3-+---π18. 已知二次函数32-+=bx x y 的图像经过点)5,2(-,请求出这个函数的解析式,并直接写出当自变量31≤<x 时函数值y 的取值范围.题图第16题第1419. 如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D E 、,量出半径cm OC 5=,弦cm DE 8=,求这把直尺的宽度. 四、(本小题共2小题,每小题8分,共16分) 20.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为21.⑴.求袋中黄球的个数;⑵.第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.21. 在如图所示的方格纸中,每个小方格都是边长为1个单位的 正方形,△ABO 的三个顶点都在格点上. ⑴.以O 为原点建立直角坐标系,点B 的坐标为(-3,1), 则点A 的坐标为 ★ ;⑵.画出△ABO 绕点O 顺时针旋转90︒后的△OA 1B 1,并求 线段AB 扫过的面积.五、(本小题共2小题,每小题9分,共18分) 22. 我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y 件与售价x 元之间存在着如下表所示的一次函数关系.⑴.求销售量y 件与售价x 元之间的函数关系式;⑵.设每天获得的利润为w 元,当售价x 为多少时,每天获得的利润最大?并求出最大值.23. 已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . ⑴.求实数m 的取值范围; ⑵.当22120x x -=时,求m 的值.题图第19A B O题图第21六、(本小题共2小题,每小题10分,共20分)24. 如图1:矩形OABC 的顶点A 、B 在抛物线32-+=bx x y 上,OC 在x 轴上,且2,3==OC OA .⑴.求抛物线的解析式及抛物线的对称轴.⑵.如图2,边长为a 的正方形ABCD 的边CD 在x 轴上,A 、B 两点在抛物线上,请用含a 的代数式表示点B 的坐标,并求出正方形边长a 的值.25. 以原点为圆心,cm 1为半径的圆分别交x 、y 轴的正半轴于A 、B 两点,点P 的坐标为)0,2(.⑴.如图一,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动一周,设经过的时间为t 秒,当1=t 时,直线PQ 恰好与⊙O 第一次相切,连接OQ .求此时点Q 的运动速度(结果保留π);⑵.若点Q 按照⑴中的方向和速度继续运动,①当t 为何值时,以O 、P 、Q 为顶点的三角形是直角三角形;②在①的条件下,如果直线PQ 与⊙O 相交,请求出直线PQ 被⊙O 所截的弦长.1图图一图二(备用图)图三(备用图)2图2011—2012学年度第一学期期末考试九年级数学答案(一)、试题内容分布(二)、答案:一、选择题(本大题共8小题,每小题3分,共24分) 1-4 C B C C 5-8 D C D B二、填空题(本大题共8小题,每小题3分,共24分) 9.21 10.拔苗助长 等 11. -4, 1; 12.113.256)1(2892=-x 14.)2,6(),2,6(- 15. π3416.①③④三、(本大题共3小题,每小题6分,共18分)17.解:原式1323-+-= 4分3=6分18.解:把(-2,5)代入 得25324532)2(2-==--=---b b b 2分所以:322--=x x y 4分当31≤<x 时 04≤<-y 6分19.解:作OM 垂直于DE ,连接OD ,则 1分OD=OC=5,DM=EM=4 3分 34522=-=CM 5分即直尺的宽度为3 cm 6分四、(本小题共2小题,每小题8分,共16分)20.解:(1)、设黄球有x 个,则2)12(21=++x 2分1=∴x 所以黄球有1个。

20112012学年度第一学期期末试卷

20112012学年度第一学期期末试卷

2011—2012学年度第一学期期末试卷九年级数学(满分:150分 测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填 入下表相应的空格 )1.下列各组二次根式中,可化为同类二次根式的是A.5和3 B.32和23 C.2和8 D.8和12 2.用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x +=B .2(1)6x -=C .2(2)9x +=D .2(2)9x -= 3. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是 A .15cm B .16cm C .17cm D .16cm 或17cm 4.已知⊙O 1、⊙O 2的半径分别是方程0782=+-x x 的两个根,且O 1O 2=7,则 ⊙O 1、⊙O 2的位置关系是 A .相交B .外切C .外离D .内切5.由二次函数1)3(22+-=x y ,可知A .其图象的开口向下B .其图象的对称轴为直线3-=xC .当3<x 时,y 随x 的增大而增大D .其最小值为1 6.已知四边形ABCD 是平行四边形,则下列结论中不正确的是A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当AC=BD 时,它是正方形 D .当∠ABC=90°时,它是矩形 7.若圆锥侧面积与底面积之比为8:3,则这个圆锥的侧面展开图的圆心角是 A .120˚ B .135˚ C .150˚ D .180˚8.如图,在矩形ABCD 中,AB=6cm ,BC=3cm 。

点P 沿边AB 从A 开始向点B 以1cm/s 的速度移动,同时点Q 沿矩形ABCD 的边按A —D —C —B 顺序以2cm/s 的速度移动,当P 、Q 到达B 点时都停止移动。

下列图象能大致反映△QAP 面积y (cm 2)与移动时间x (s )之间函数关系的是10.若2)1(-a =1-a ,则a 的取值范围是 .11.抛物线322++-=x x y 的顶点坐标是 。

第一学期九年级期末考试数学(试卷)

第一学期九年级期末考试数学(试卷)

1 / 4图2A B CD 图3 2011-2012学年度第一学期期末考试九年级 数学2012.1 说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

2.考生必须在答题卷上按规定作答;答题卷必须保持整洁,不能折叠。

3.答题前,请将自己的学校名、班级、姓名、考生号等信息用规定的笔填涂在答题卷指定的位置上。

4.本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卷选择题答题区内对应题目的答案标号涂黑;非选择题的答案(含作辅助线)必须用规定的笔,写在答题卷指定的答题区内,写在本卷或其他地方无效..。

第一部分(选择题,共36分)一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.sin60°的值是A .21B .23C .1D .32.图1是一个球体的一部分,下列四个选项中是它的俯视图的是3.用配方法解方程642=+x x ,下列配方正确的是A .()2242=+x B .()1022=+x C .()822=+x D .()622=+x4.图2是我们学过的反比例函数图象,它的函数解析式可能是A .x y 2-=B .x y 2=C .2x y -=D .2x y -=5.如图3,已知∠BAD =∠CAD ,则下列条件中不一定能....使 △ABD ≌△ACD 的是A .∠B =∠C B .∠BDA =∠CDAC .AB =ACD .BD =CD 6.过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大A .B .C .图12 / 4图4 AB C D EF 图5 O 小相同,则两辆汽车经过该十字路口全部继续直行的概率为A .91B .31C .21D .32 7.矩形具有而菱形不具有的性质是A .对角线互相平分B .对角线互相垂直C .对角线相等D .是中心对称图形 8.关于二次函数322+-=x y ,下列说法中正确..的是 A .它的开口方向是向上 B .当x <–1时,y 随x 的增大而增大C .它的顶点坐标是(–2,3)D .当x = 0时,y 有最小值是39.如图4,已知A 是反比例函数xy 3=(x > 0)图象上的一个 动点,B 是x 轴上的一动点,且AO=AB .那么当点A 在图象上自左向右运动时,△AOB 的面积A .增大B .减小C .不变D .无法确定10.如图5,已知AD 是△ABC 的高,EF 是△ABC 的中位线,则下列结论中错误..的是 A .EF ⊥AD B .EF=21BC C .DF=21AC D .DF=21AB11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x ,则可列方程为A .()140012002=+x B .()140012003=+x C .()200114002=-x D .()()1400120012002002=++++x x 12.如图6,已知抛物线5621+-=x x :y l 与x 轴分别交于A 、B 两点,顶点为M .将抛物线l 1沿x 轴翻折后再向左平移得到抛物线l 2.若抛物线l 2过点B ,与x 轴的另一个交点为C ,顶点为N ,则四边形AMCN 的面积为A .32B .16C .50D .40 第二部分(非选择题,共64分)二、填空题(每小题3分,共12分。

20112012学年度第一学期期末考试九年级数学

20112012学年度第一学期期末考试九年级数学

2011—2012学年度第一学期期末考试九年级数学试卷命题人:王一峰 审核人:肖双花说明:1.本试卷共4页,满分120分,考试时间120分钟。

2.考生必须在答卷纸上指定区域内作答,在本试卷上和其他位置作答一律无效。

一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸...相应位置上) 1a 的取值范围是-----------------------------( ) A .a >-2 B .a ≥-2 C .a ≠-2 D .a ≤-2 2.已知两圆的半径分别为3和4,若圆心距为7,则这两圆的位置关系是------( ) A .外离 B .外切 C .相交 D .内切3. 抛物线y =x 2+4x +5是由抛物线y =x 2+1经过某种平移得到,-----------( )则这个平移可以表述为A .向左平移1个单位B .向左平移2个单位C .向右平移1个单位D .向右平移2个单位4.如图,⊙O 中,∠AOB =110°,点C 、D 是 AmB⌒上任两点,则∠C +∠D 的度数是( ) A .110° B .55° C .70° D .不确定5. 如图,圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为------------( ) A. 15πcm 2B. 30πcm 2C . 45πcm 2D .60πcm 26.如图,AB 是⊙O 的弦, OC ⊥AB 于点D ,交⊙O 于点C ,若⊙O 的半径为5,CD =2,那么AB 的长为-------------------------------------------------------( ) A .4 B .6 C .8 D .107. 关于x 的一元二次方程22(1)2m x x m m +++-30-=有一个根是0,则m 的值为( ) A .m=3或m=-1 B.m=-3或m= 1 C .m=-1 D .m=38. 如图,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC=90°,OA=1,BC=6。

甘肃省平凉市九年级上学期数学期末考试试卷

甘肃省平凉市九年级上学期数学期末考试试卷

甘肃省平凉市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·涪陵期中) 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A . ﹣1B . 1C . 1或﹣1D . 0.52. (2分) (2017九下·江都期中) 代数式的最小值是()A . -1B . 1C .D . 23. (2分) (2017九上·萝北期中) 如图,已知长方形的长为10cm,宽为4cm,则图中阴影部分的面积为()A . 20cm2B . 15cm2C . 10cm2D . 25cm24. (2分)(2012·丹东) 下列事件为必然事件的是()A . 任意买一张电影票,座位号是偶数B . 打开电视机,正在播放动画片C . 3个人分成两组,一定有2个人分在一组D . 三根长度为2cm,2cm,4cm的木棒能摆成三角形5. (2分) (2017七下·石景山期末) 下列调查中,最适合采用全面调查(普查)的是()A . 了解一批IPAD的使用寿命B . 了解某鱼塘中鱼的数量C . 了解某班学生对国家“一带一路”战略的知晓率D . 了解电视栏目《朗读者》的收视率6. (2分)已知x1 , x2是一元二次方程x2﹣2x=0的两根,则x12+x22的值是()A . 0B . 2C . ﹣2D . 47. (2分)如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A . 相离B . 相切C . 相交D . 相切或相交8. (2分)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A . 6B . 5C . 3D . 29. (2分)已知O为△ABC的内心,∠A=68°,则∠BOC的度数是()A . 136°B . 34°C . 168°D . 124°10. (2分)已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A . 1B . 2C . ﹣1D . 5二、填空题 (共6题;共7分)11. (1分) (2016九上·扬州期末) 已知线段a=2cm、b=8cm,那么线段a、b的比例中项等于________cm..12. (1分)已知下列函数①y=②y=-③y=+2,其中,图象通过平移可以得到函数y=+2x-3的图像的有________ .(填写所有正确选项的序号)13. (1分)(2012·钦州) 某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是________.14. (1分) (2017九上·五华月考) 已知线段AB=20,点C是线段上的黄金分割点(AC>BC),则长是________(精确到0.01) .15. (2分) (2019九上·台安月考) 已知正六边形的外接圆的半径是,则正六边形的周长是________.16. (1分) (2018八下·灵石期中) 如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=________度.三、解答题 (共8题;共53分)17. (5分)解方程:(1) x2=4(2) x2﹣2x﹣2=0(3) x2﹣3x+1=0.18. (10分)(2016·黄石) 如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y= 上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1 , l2于M,N两点.(1)求双曲线C及直线l2的解析式;(2)求证:PF2﹣PF1=MN=4;(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为AB= .)19. (5分)布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省平凉市庄浪县大庄中学2011-2012学年第一学期九年级
数学期末试卷
一、选择题(每小题3分,共18分)
1、下列事件中,是必然发生的事件的是( )
A 、打开电视机,正在播放新闻
B 、父亲的年龄比儿子的年龄大
C 、通过长期努力学习,你会成为数学家
D 、下雨天,每个人都打着雨伞
2、下列各式化简后与x 3的被开方数相同的是( )
A 、xy 3
B 、x 54
C 、x 271-
D 2
48x 3、下列图案都是由字母“m ”经过变形组合而成,其中不是中心对称图形的是( )
4、如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,
则∠DCF 等于( )
A 、80°
B 、50°
C 、40°
D 、20°
5、已知两圆的半径分别为1和4,圆心距为3,
则两圆的位置关系是( )
A 、外离
B 、外切
C 、相交
D 、内切
6、如图,菱形纸片ABCD 的一内角为60°,边长为2,将它绕对
角线的交点O 顺时针旋转90°后到A ′B ′C ′D ′位置,则旋转前后
两个菱形重叠部分多边形的周长为( )
A 、)13(8-
B 、)13(4-
C 、8
D 、)13(4+
二、填空题(每小题3分,共18分)
7、与点P (3,4)关于中心对称的点的坐标为___________;
8、若代数式3
3++x x 有意义,则x __________;
9、方程1)1(-=-x x x 的根为__________;
10、如图,AC 是⊙O 的直径,∠ACB =60°,连结AB ,过A 、B
两点分别作⊙O 的切线,两切线交于点P ,若已知⊙O 的半径为1,
则△PAB 的周长为________;
11、有黑、蓝、红三支颜色的笔和白、绿两块橡皮,任意拿出一支笔
和一块橡皮,则取到红笔、绿橡皮的概率为________;
12、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC
相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,
且∠EPF =40°,则图中阴影部分的面积是__________(结果保留π)
三、解答题(每小题6分,共30分)
13、计算:2
1018271375.06-+- 14、解方程:0)3(2)3(2=-+-x x x 15、计算:3
22513
156⨯÷
16、已知223+=a ,223-=b ,求代数式2
23b ab a ++的值
17、已知关于x 的一元二次方程0132=-++m x x
(1)请选取一个你喜爱的m 的值,使方程有两个不相等的实数根,并说明它的正确性;
(2)设1x 、2x 使(1)中所得方程的两个根,求1x 2x +1x +2x 的值
四、解答题(每小题7分,共28分)
18、北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”,现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子。

(1)小玲从盒子中任取一张,取到卡片欢欢的概率是多少?
(2)小玲从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字。

用列表或画树形图列出小玲取到的卡片的所有可能情况,并求出两次都取到卡片欢欢的概率。

19、如图,∠PAQ是直角,⊙O与AP相切于点T,与AQ交于B、C两点。

(1)BT是否平分∠OBA,说明你的理由;
(2)若已知AT=4,弦BC=6,试求⊙O的半径R。

20、水果店花500元进了一批水果,按40%的利润定价,无人购买。

决定打折出售,但仍无人购买,结果又一次打折后才售完。

经结算,这批水果共盈利67元。

若两次打折相同,每次打了几折?
21、如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式。

五、解答题(第22题8分,第23、24题各9分,共26分)
22.如图,在一个横断面为Rt△ABC的物体中,∠ACB=90°,∠CAB=30°,BC=1米,工人师傅要把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1BC1位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边)。

(1)请直接写出AB、AC的长;
(2)画出在搬动此物的整个过程中,A点所经过的路径,并求出该路径的长度。

23.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O 于点Q,过点Q的⊙O的直线交OA延长线于点R,且RP=RQ
(1)求证:直线QR是⊙O的切线;
(2)若OP=PA=1,试求RQ的长
24.形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC =30°,BC=12cm。

半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。

设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm。

(1)当t为何值时,△ABC的一边所在直线与圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积。

相关文档
最新文档