动态规划法解0-1背包问题
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
实验报告--动态规划法解0-1背包问题
注意:红色的部分需要用自己的代码或内容进行替换。
湖南涉外经济学院实验报告实验课程:算法设计与分析实验项目:动态规划法解0-1背包问题姓名班级学号学院专业实验地点分组组号实验时间年月日星期一第12 节指导老师【实验目的和要求】1. 理解动态规划算法的原理和基本要素;2.要求用动态规划法求解0-1背包问题;3.要求交互输入背包容量,物品重量数组,物品价值数组;4. 要求显示结果。
【系统环境】操作系统:Windows XP 操作系统开发工具:VC++6.0英文企业版开发语言:C ,C++【实验原理】1、问题描述给定n 种物品和一背包。
物品i 的重量是wi ,其价值为vi ,背包的所能够容纳的重量为c 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品i 装入背包多次,也不能只装入物品i 的一部分。
2、实验原理0-1背包问题具有最优子结构性质,可以据此定义递归关系,建立递归方程,并以自底向上的方式计算最优值,根据计算最优值时的得到的信息,构造最优解。
设所给0-1背包问题的子问题的最优值m(i,j),即m(i,j)是背包重量为j ,可选物品为i ,i+1,…,n-1时的最优值。
由最优子结构性质,可以计算出m(i,j)的递归式如下:i i i i w j w j j i m v w j i m j i m j i m <≤≥⎩⎨⎧++-++=0),1(}),1(),,1(max{),( 11100),1(---<≤≥⎩⎨⎧=-n n n w j w j v j n m 【实验任务与步骤】1、实验步骤(1)完成函数Knapsack,得到子问题的最优值数组。
(2)完成函数Traceback,根据最优值构造最优解。
(3)编写主函数,调用Knapsack和Traceback和进行测试,并进行输出。
2、源程序代码// 此处为解决问题的完整源程序,要求带注释,代码必须符合书写规范。
动态规划——01背包问题
动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
分支界限方法01背包问题解题步骤
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
(完整版)01背包问题
01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。
为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。
对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。
同理,c2=0,b2=3,a2=6。
对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。
[汇总]蛮力法、动态规划法、回溯法和分支限界法求解01背包问题
[汇总]蛮力法、动态规划法、回溯法和分支限界法求解01背包问题一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
C注:0/1背包问题:给定种物品和一个容量为的背包,物品的重量ni是,其价值为,背包问题是如何使选择装入背包内的物品,使得装入背wvii 包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100 //最多可能物体数 struct goods //物品结构体{int sign; //物品序号int w; //物品重量int p; //物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w); }int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++) X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1; //装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0; //不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]) { Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n); //输入物品种数printf("背包容量C: ");scanf("%d",&C); //输入背包容量for (int i=0;i<n;i++) //输入物品i的重量w及其价值v {printf("物品%d的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("] 装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:n蛮力法求解0/1背包问题的时间复杂度为:。
蛮力法、动态规划法 求解01背包问题
else
v[i][j]=v[i-1][j];
}
else v[i][j]=v[i-1][j];
}
return v[n][m];
}
int main()
{
int m,n;int i,j;
cout<<"请输入背包的承重量:"<<endl;
2)复杂度分析:2n
2、动态规划法
1)基本思想:Dynamic programming is a technique for solving problems with overlapping subproblems.The function:
V(i,0)=V(0,j)=0;(1)
V(i-1,j)j<w
if (cur_weight <= capacity && cur_value > max_value) {
max_value = cur_value;
}
return;
}
c[d] = 0;
MFKnapsack(capacity, values, weights, c,
d + 1, max_value);
cout << MFKnapsack(capacity, values, weights, n) << endl;
return 0;
}
(2)Dynamic Programming
#include<iostream.h>
#include<string.h>
int v[10][100];//对应每种情况的最大价值
实验项目三 用蛮力法、动态规划法和贪心法求解背包问题
实验项目三 用蛮力法、动态规划法和贪心法求解0/1背包问题实验目的1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同;2、对0-1背包问题的算法设计策略对比与分析。
实验内容:0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。
在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。
根据问题的要求,有如下约束条件和目标函数:于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。
背包的数据结构的设计:typedef struct object{int n;//物品的编号int w;//物品的重量int v;//物品的价值}wup;wup wp[N];//物品的数组,N 为物品的个数int c;//背包的总重量1、蛮力法蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。
蛮力法的关键是依次处理所有的元素。
用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法:⎪⎩⎪⎨⎧≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1)∑=ni i i x v 1max (式2)void force(int a[16][4])//蛮力法产生4个物品的子集{int i,j;int n=16;int m,t;for(i=0;i<16;i++){ t=i;for(j=3;j>=0;j--){m=t%2;a[i][j]=m;t=t/2;}}for(i=0;i<16;i++)//输出保存子集的二维数组{for(j=0;j<4;j++){printf("%d ",a[i][j]);}printf("\n");}}以下要依次判断每个子集的可行性,找出可行解:void panduan(int a[][4],int cw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0{int i,j;int n=16;int sw,sv;for(i=0;i<16;i++){sw=0;sv=0;for(j=0;j<4;j++){sw=sw+wp[j].w*a[i][j];sv=sv+wp[j].v*a[i][j];}if(sw<=c)cw[i]=sv;elsecw[i]=0;}在可行解中找出最优解,即找出可行解中满足目标函数的最优解。
用蛮力法、动态规划法和贪心法求解0 1背包问题
printf("\n");
}
}
以下要依次判断每个子集的可行性,找出可行解:
voidpanduan(inta[][4],intcw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0
{
int i,j;
int n=16;
int sw,sv;
for(i=0;i<16;i++)
用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法:void force(int a[][4])//蛮力法产生4个物品的子集
{
int i,j;
int n=16;
int m,t;
for(i=0;i<16;i++)
{t=i;
for(j=3;j>=0;j--)
{
m=t%2;
a[i][j]=m;
t=t/2;
}
}
for(i=0;i<16;i++)//输出保存子集的二维数组
{
for(j=0;j<4;j++)
{
printf("%d",a[i][j]);
i++;
}
return maxprice;
}
#include<stdio.h>
#include<stdlib.h>
动态规划求解01背包问题
动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
0-1背包问题-贪心法和动态规划法求解
实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
动态规划01背包问题
01 背包问题的时间复杂度为 O(nW),空间复杂度为 O(nW)。
• 选择放入第 i 个物品。此时,背包的剩余容量为 j-w[i], 所以 f[i][j] = f[i-1][j-w[i]] + v[i]。 • 不选择放入第 i 个物品。此时,f[i][j] = f[i-1][j]。
综上所述,状态转移方程为:
f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i])
01 背包问题是一种经典的动态规划问题,其目的是在限制条 件下,使得背包内的物品价值最大。
在 01 背包问题中,每种物品都有其体积和价值。同时,背 包也有一定的容量限制。问题的目标是在不超过背包容量的 前提下,使得背包内物品的价值最大。
为了解决 [j]表示前 i 个物品放入一个容量为 j 的背包可以获得的最大价值。然后,我们考虑第 i 个物品的 选择情况,其中有两种情况:
0-1背包问题动态规划详解及代码
0/1 背包问题动态规划详解及C代码动态规划是用空间换时间的一种方法的抽象。
其关键是发现子问题和记录其结果。
然后利用这些结果减轻运算量。
比如01背包问题。
/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为P1,P2,...,Pn.若每种物品只有一件求旅行者能获得最大总价值。
输入格式:M,NW1,P1W2,P2......输出格式:X*/因为背包最大容量M未知。
所以,我们的程序要从1到M一个一个的试。
比如,开始任选N 件物品的一个。
看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。
怎么能保证总选择是最大价值呢?看下表。
测试数据:10,33,44,55,6c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。
加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。
总的最佳方案是5+4为9.这样.一排一排推下去。
最右下放的数据就是最大的价值了。
(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#include<stdio.h>int c[10][100];/*对应每种情况的最大价值*/int knapsack(int m,int n){int i,j,w[10],p[10];printf("请输入每个物品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%d,%d",&w[i],&p[i]);for(i=0;i<10;i++)for(j=0;j<100;j++)c[i][j]=0;/*初始化数组*/for(i=1;i<=n;i++)for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上背包剩下的空间能放的物品的价值*//*大于上一次选择的最佳方案则更新c[i][j]*/c[i][j]=p[i]+c[i-1][j-w[i]];elsec[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;printf("请输入背包的承重量,物品的总个数:\n");scanf("%d,%d",&m,&n);printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n");return 0;}。
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
0-1背包问题之动态规划法_-
1.5 无后效性原则
所谓无后效性原则,指的是这样一种性质:
某阶段的状态一旦确定,则此后过程的演变不 再受此前各状态及决策的影响。也就是说,“未来与 过去无关”,当前的状态是此前历史的一个完整总结, 此前的历史只能通过当前的状态去影响过程未来的演 变。具体地说,如果一个问题被划分各个阶段之后, 阶段 I 中的状态只能由阶段 I+1 中的状态通过状态 转移方程得来,与其他状态没有关系,特别是与未发 生的状态没有关系,这就是无后效性。
2.
组合问题中的动态规划法
2.1 2.2 0/1背包问题 最长公共子序列问题
2.1 0/1背包问题
给定 n 种物品和一个背包, 物品i的重量是wi,其价值为 v i ,背包的容量为 C 。背包 问题是如何选择装入背包的 物品,使得装入背包中物品 的总价值最大 ? 如果在选择 装入背包的物品时,对每种 物品 i 只有两种选择:装入 背包或不装入背包,即不能 将物品 i 装入背包多次,也 不能只装入物品 i 的一部分, 则称为0/1背包问题。
可以用动态规划法求解的问题除了能够分解为相互重叠的 若干子问题外,还要满足最优性原理(也称最优子结构性 质),这类问题具有如下特征:该问题的最优解中也包含 着其子问题的最优解。在分析问题是否满足最优性原理时, 通常先假设由问题的最优解导出的子问题的解不是最优的, 然后再设法说明在这个假设下可构造出比原问题最优解更 好的解,从而导致矛盾。 动态规划法利用问题的最优性原理,以自底向上的方 式从子问题的最优解逐步构造出整个问题的最优解。应用 动态规划法设计算法一般分成三个阶段: (1)分段:将原问题分解为若干个相互重叠的子问题; (2)分析:分析问题是否满足最优性原理,找出动态规划 函数的递推式; (3)求解:利用递推式自底向上计算,实现动态规划过程。
0-1背包问题的近似算法
0-1背包问题的近似算法0-1背包问题的近似算法对问题特点和算法思想做一些整理如下:这类问题其实很有意思,做数学和做计算机的人都会研究,而且我这里将要提到的论文都是做计算机的人所写的。
问题简述0-1 Knapsack Problem (0-1背包问题,下面简称KP)和Subset Sum Problem (子集合加总问题,下面简称SSP)是经典的NP完全问题。
两个问题简要描述如下:KP:有n个物品要放入背包,第i个物品的价值为ci,占据体积为vi,背包的总容积为V,要选择一部分物品放入背包,使得他们的总价值最大。
对应的优化问题是maxxi∑ci∗xis.t.∑vi∗xi≤V,xi∈{0,1}这里xi代表是否选取第i个物品进背包,等于1就代表放入背包,等于0代表不放入背包。
SSP: 给一个集合{c1,c2,…,cn},还有一个目标值V,问能否选出一个子集,使得子集中元素求和刚好等于V。
我们一般考虑的是他的另一种表述方式:选出一个子集,使得子集中元素求和不超过V,且尽量大。
对应的优化问题是maxxi∑ci∗xis.t.∑ci∗xi≤V,xi∈{0,1}这里xi代表是否选入子集,等于1就是选入子集,等于0就是不选入子集。
SSP是KP的特殊情况,也即当ci=vi的时候,KP退化为SSP,从问题式子上看,也完全一样了。
尽管如此,研究了KP不代表就不用研究SSP了,后面会说明这一点。
精确算法与近似算法这两个问题都有很简单的动态规划算法可以精确求解,但可惜算法的时间复杂度是伪多项式的,也即和V相关,但V不是问题输入数据的规模,n才是。
在ACM竞赛等算法比赛中,经常会遇到一些问题属于KP的变种,而伪多项式算法也就足够了。
由于网上资料很多,而且难度不大,这里就不详细介绍了。
如果你不知道,请你搜索“动态规划求解0-1背包问题”。
这里我们更关心多项式近似算法,也即PTAS(Polynomial Time Approximation Scheme),也即对任意给定的ϵ,算法可以在关于n的多项式时间内求得一个解,且该解和真实最优解的最多相差ϵ倍。
用动态规划法与回溯法实现0-1背包问题的比较
m ≯ “ f
√f ) =
i
() 1 . 2
,时,时间复杂度为长O(n*数),长关 系 。此 时的需要对于状态空 间和决策 间 的维 数 的增 呈 指2 增计 算和存储量 计 算 时 间 和存 储 量 过 大 。 空
回溯 法 : 溯 法 需 要 为 问 题 定 义 一 个 解 空 间, 个 解 空 间必 须 至 回 这
O 1背包 问题 : 定 1种物 品 和一 背 包 。物 品 i 一 给 3 . 的重 量 是 W i其 价 。
将 第 i 物 品 装 入 背包 。 个
可 以 用树 的形 式 将 解 空 间 表 达 出来 。树 中从 第 i 到第 i1层 的 层 + 边 上 的 值 表示 解 向量 中 X 的取 值 , 假 定 第 i 的左 子 树 描 述 第 i i 并 层 个
,
∑魄, {
4
总结
的 最 优值 为 m(,) 即 m(,) 背 包 容 量 为 j 可 悬 着 物 品 为 i+ ij , ij是 , , i 动态规划算法求解背包问题时对子过程用枚举法求解。 而且 约 束 l… . , , o 1 包 问题 的最 优 值 。 n时 - 背 由于 。 1背 包 问 题 的最 优 子 结 构 性 一 条件越多, 决策 的搜 索 范 围越 小 , 求解 也 越 容 易 。但 是对 于规 模 较 大 的 质 , 以建 立 计 算 m(, 的 如下 递 归 式 : 可 i) j 问 题 它 并 不 是 一 个 理想 的 算 法 。从 二 维 数 组 m『1 1 以 看 出当 c 2 n『 可 c >n
【 摘
武汉
4 07 ) 3 0 3
要 】- 背包问题是运筹学 中的著名问题 。 01 也是计算机 算法中的一个经典问题 。 本文采用动态规 划法和 回溯法对该问题进行求解 , 对
0-1背包问题的递归方法
0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。
定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。
递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。
1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。
代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。
背包问题的各种求解方法
背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。
因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。
则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。
如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。
这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。
1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。
则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。
由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。
因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。