整式的乘除题型及典型习题

合集下载

(完整版)整式的乘除题型和典型习题.doc

(完整版)整式的乘除题型和典型习题.doc

整式的乘除题型和典型习题整式乘除一.典型例题分析:一、同底数幂的乘法1. 下面各式的运算结果为a 14 的是()A. a 3 a 4 a 7 aB. ( a)5 ( a)9C.a 8 ( a)6D. a 7 a 72. 化简 ( x y)3 ( y x)2为 ()A . (x y)5B . ( x y) 6C . ( y x)5D . ( y x) 6二、幂的乘方1. 计算x 2 3的结果是()( )A . x 5B . x 5C . x 6D . x 62. 下列各式计算正确的是( )A . ( x n )3n x 4 nB . (x 2 )3 ( x 3 ) 2 2x 6C . (a 3 )n1a 3n 1D. ( a 2 ) 4 a 8a 16三、积的乘方31.3a 4b 2 等于()A . 9a 12b 6B . 27a 7 b 5C. 9a 12b6D . 27a 12b 62. 下列等式,错误的是()A. (x 2 y 3 ) 2 x 4 y 6B. ( xy) 3xy 3C. (3m 2n 2 ) 2 9m 4n 4D. ( a 2b 3 ) 2 a 4b6四、单项式与多项式的乘法 1、计算 (1) 3a(4 a2b 1)( 2) ( x 2x 2xy).( 3x)(3) ( x 3y)(2 y x)( 4) (a b)( a 2 abb 2 )五、乘法公式(平方差公式)1 / 51. 下列式子可用平方差公式计算的式子是()A . (a b)(b a)B. ( x 1)(x 1)C . ( ab)( a b)D . ( x 1)(x 1)2. 计算 ( a b c)(ab c) 等于()A. (a b c)2B2c 2. (a b )C .a 2(b2D. a 2( b2c )c )3. 化简 ( a 1)2(a1) 2的值为( )A .2B . 4C . 4aD . 2a 22乘法公式(完全平方公式)1. 下列各式计算结果是1 m2 n 2 mn 1的是()4A. (mn 1 )2B.( 1mn 1)222C. ( 1 mn 1)2D.( 1 mn 1)2242. 加上下列单项式后,仍不能使4x 2 1 成为一个整式的完全平方式的是()A . 4x 4B . 4xC . 4xD . 4六、同底数幂的除法1. 下列运算正确的是().4A . a 8 a 4 a 2B15C . x 3 x x 3D. ( m)4( m)2 m 22. 下列计算错误的有()① a 6a 2 a 3 ; ② y 5 y 2 y 7 ;③ a 3 a a 2 ; ④ ( x) 4 ( x) 2x 2 ; ⑤ x 8x 5 x 2x .A .4 个B .3个C .2个D .1个七、单项式与多项式的除法1. 下列各式计算正确的是( )2 / 5A.a2 a a a2 B .a2 a a a2C.a2 a a 1 D .a3 a a a32. ( 5a4 15a2 b3 20a3b) ( 5a2 ) .二.跟踪练习一、填空题1、x2x5 , y2 y y y y .2、合并同类项:2 xy2 3xy 2 .3、2383 2n,则 n .4、a b 5 , ab 5 .则a2 b2 .5、3 2x 3 2 x .6、如果4 x2 mxy 9 y2是一个完全平方式, 则 m 的值为.7、a5 a2 a , (2 x )4 (3 x )3 .8、a b 2 2a b .9、21ab2 2 a2c .710、(6 x3 12 x 2 x ) ( 3 x) .11、边长分别为 a 和2a 的两个正方形按如图(I) 的样式摆放,则图中阴影部分的面积为.12.有一块绿地的形状如图所示,则它的面积表达式经化简后结果为______.13.若( x- 3)( x+1) =x 2+ax+b ,则 b a=________ .14.有一块绿地的形状如图所示,则它的面积表达式经化简后结果为______.15.若 x+y=5 , x- y=1,则 xy=________ .16.计算(- 0.25)2006×42006=________ .17. a2- 3a+_______=( a- _______)2.二、选择题12、下列计算结果正确的是()3 / 5A a2 a4 a 8B x x 0C 2xy 22 y2 D a34a74 x13.下列运算结果错误的是()A x y x y x 2 y2 B2a2 b2 a bC x y x y x 2 y2 x 4 y 4D ( x 2)( x 3) x 2 x 614、给出下列各式①11a 2 10a2 1 ,②20 x 10 x 10 20,③ 5b4 4b3 b ,④ 9 y2 10 y2 y2,⑤c c c c 4c ,⑥a2 a2 a2 3a2.其中运算正确有()A3个B4 个 C 5 个D 6 个15.下列各式中,计算结果是a2 3a 40 的是()A a 4 a 10B a 4 a 10C a 5 a 8D a 5 a 816.下列各式计算中,结果正确的是()A x 2 2 x x 2 2B x 2 3 x 2 3 x 2 4C x y x y x 2 y 2D ab c ab c a 2b2 c217. 在下列各式中,运算结果为 1 2xy 2 x 2 y4的是()A 1 xy 2 21 x2 y221 x2 y221 xy 22 B C D18.下列计算中,正确的是()A8x3x 5 B a b5b4 x a b a4C x 1 6 2 3a 5 a32 x 1 x 1 D a19.( a2)3a5的运算结果正确的是()A a13B a11C a21D a620.若x m y n x 3 y x 2 y ,则有()A m 6, n 2B m 5, n 2C m 5, n 0D m 6, n 0三、计算题21.a4 2a 2322 ab 22 35ab. a 3b4 / 523. 12ab 2a 3 a b 2 b 24 . x 5 x 2 25 x 5 .4 325.2xy 2 2 1 xy .26 2 . x yx y x y .327.应用乘法公式进行计算:2006 20082007 2. .四、解答题28.先化简,再求值: 3 x 2 3 x 2 5x x 1 2 12 x 1 ,其中 x .3 29.解方程:( x2)2( x 4)( x 4) (2 x 1)( x 4).五、应用题30.已知: m为不等于0 的数,且1m 1 ,求代数式 m 2 1 2的值.m m31.已知:x2 xy 12 , xy y2 15 ,求x y 2x y x y 的值.32.( 6 分)如图,某市有一块长为( 3a+b)米,宽为( 2a+b)米的长方形地块, ?规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米? ?并求出当 a=3, b=2 时的绿化面积.5 / 5。

整式的乘除(习题及答案)

整式的乘除(习题及答案)

整式的乘除(习题及答案)知识像烛光,能照亮一个人,也能照亮无数的人。

——XXX整式的乘除(题)例1:计算(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)。

操作步骤】1)观察结构划部分:(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)2)有序操作依法则:辨识运算类型,依据对应的法则运算。

第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算。

3)每步推进一点点。

过程书写】解:原式=4x^6y^2·(-2y)+(4x^6y^3-2)/(-2x^2)8x^6y^3+4x^6y^3-24x^6y^3-2巩固练1.①-5a^3b^2·(-ab^2)=5a^4b^4;②(-m)^3·(-2m^2n^2)=2m^4n^2;③(-2x^2)^3·(-3x^3y)^2=36x^7y^6;④3b^3·(-2ac)·(-2ab)^2=12a^2b^7c。

2.①3xy^2·(2xz^2+3x^2y)=6x^2y^3z^2+9x^3y^3;②-4xy·(y^3-2)/2=-2xy·(y^3-2);③(ab^2c-3a^2b)·abc/3=ab^3c^2-3a^3b^2c;④(2ab^2)^2·(2a^2-b)=8a^5b^4-8a^3b^2;⑤-a·(3a^3+2a^2-3a-1)=-3a^4-2a^3+3a^2+a。

3.①(x+3y)(x-3y)=x^2-9y^2;②(a-2b)(a+2b+1)=a^2-4b^2-1;③(-2m-3n)(2m-4n)=-4m^2+2mn+12n^2;④(x+2y)^2=x^2+4xy+4y^2;⑤(a-b+c)(a+b+c)=a^2-b^2+c^2.4.若长方形的长为(4a^2-2a+1),宽为(2a+1),则这个长方形的面积为8a^3-4a^2+2a-1.5.若圆形的半径为(2a+1),则这个圆形的面积为4πa^2+4πa+π。

(完整版)整式的乘除典型例题

(完整版)整式的乘除典型例题

整式的乘除(典型例题)一.幂的运算:1.若 am16,a n8 ,则a m n2.已知a m2,a n5,求值:(1)a m n;( 2)a m 2n。

3.2m3,2n4, 求23m2 n 的值。

4.若是 2x 5 y4, 求4x32y的值。

5.若 a0 ,且a x2, a y3, 则a x y的值为6.已知5x a,5 y b, 求52 x y的值二.对应数相等:1.若 ax a8a3x , 则x=__________ 2. 若24832n , 则n=__________3.若a2 m 1a m a53m , 则m=_________4. 若(a m 1b n 2)(a2n 1b) a5 b3,求m n 的值。

5.若 2x2 y(x m y3xy3 ) 2 x5 y26x3 y n , 求m n 的值。

6.若 ax3m y123x2 y2 n4x6 y8 , 求 2m n a 的值。

7.若2a5,2b3,2c30, 试用a, b表示出c变式: 2a5,2b3,2c45, 试用a,b表示出c8.若 ( x m)2x2x a, 则m=__________a= __________。

9.若a 的值使得x24x a ( x 2)2 1 成立,则a的值为_________。

三.比较大小:(化同底也许同指数)1.在 255 ,344 ,433 ,522中,数值最大的一个是 2. 比较550与 2425的大小变式:比较 85与214的大小四.约分问题(注意符号):1. 计算(3)2011 (1)2012 等于.3计算以下各式( 1)( 0.125)8225(2)(1990)n(2)n 13980五.平方差公式的应用:1. 若是a b 2013,a b 1,那么a2b2___________2.计算以下各式( 1)12312412228999011 2()3.计算: (2x1)(2x1)(4x21)(x4 1 )4. 计算(21)(22 1)(24 1) (2321)165. 计算100299298297222 1 .六.完满平方式( 1)分块应用:1.已知a b5,ab6, 则a2b2的值是2. 若( x y)2M (x y) 2,则M为3.已知 m n10,mn24,求(1)m2n2;(2)(m n) 2的值。

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】【华东师大版】【题型1由整式乘除法求代数式的值】【题型2由整式乘除法求字母的值】【题型3利用整式乘除法解决不含某项问题】【题型4利用整式乘除法解决与某个字母取值无关的问题】【题型5利用整式乘除法解决污染问题】【题型6利用整式乘除法解决误看问题】【题型7整式乘除法的应用】【题型8整式乘除法中的规律问题】【题型9整式乘除法中的新定义问题】【题型10 整式乘除法中的几何图形问题】知识点:整式的乘法、除法1.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.(3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.2.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.3.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.4.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.5.多项式除以单项式多式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.【题型1 由整式乘除法求代数式的值】【例1】(23-24九年级上·安徽铜陵·期中)1.已知210a a +-=,则代数式()()()222a a a a +-++值为 .【变式1-1】(23-24八年级·福建泉州·期中)2.若3a b -=,4ab =-,则()()22a b -+值为 .【变式1-2】(23-24八年级·山东聊城·期中)3.如果()()5612a a -+=,那么2228a a --+的值为 .【变式1-3】(23-24八年级·福建·期中)4.已知2310x x --=,则代数式3102019x x -+值为 .【题型2 由整式乘除法求字母的值】【例2】(23-24八年级·安徽合肥·期中)5.已知(x +a )(x +b )=2x +mx +12,m 、a 、b 都是整数,那么m 的可能值的个数为( )A .4B .5C .6D .8【变式2-1】(23-24八年级·江苏扬州·期中)6.若()()2133x x x mx +-=+-,则m 值是 .【变式2-2】(23-24八年级·浙江杭州·期中)7.不论x 为何值,()()()2222222x x a x ax x a x a x a ++=+++=+++,226()()x x a x kx ++=++,则k = .【变式2-3】(23-24八年级·浙江温州·期中)8.关于x 的整式21A x =+,它的各项系数之和为∶213+=(常数项系数为常数项本身).已知B 是关于x 的整式,最高次项次数为2,系数为1.若(3),B x C C ×+=是一个只含两项的多项式,则B 各项系数之和的最大值为 .【题型3 利用整式乘除法解决不含某项问题】【例3】(23-24八年级·山东聊城·期末)9.已知多项式236M x ax =-+,3N x =+,且MN A =,当多项式A 中不含x 的2次项时,a 的值为( )A .1-B .13-C .0D .1【变式3-1】(23-24八年级·河南商丘·期末)10.已知关于x 的多项式ax b -与232x x ++的乘积的展开式中不含x 的二次项,且一次项系数为5-,则a 的值为( )A .13-B .13C .-3D .3【变式3-2】(23-24八年级·全国·专题练习)11.小万和小鹿正在做一道老师留下的关于多项式乘法的习题:2(32)()x x x a +--.(1)小万在做题时不小心将x a -中的x 写成了2x ,结果展开后的式子中不含x 的二次项,求a 的值;(2)小鹿在做题时将232+-x x 中的一个数字看错成了k ,结果展开后的式子中不含x 的一次项,则k 的值可能是多少?【变式3-3】(16-17八年级·四川成都·期末)12.已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1)分别求m 、n 的值;(2)化简求值:(m +2n +1)(m +2n ﹣1)+(2m 2n ﹣4mn 2+m 3)÷(﹣m )【题型4 利用整式乘除法解决与某个字母取值无关的问题】【例4】(23-24八年级·湖南常德·期中)13.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式6351ax y x y -++-- 的值与x 的取值无关,求a 的值”,通常的解题方法是:把x y 、看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式()365a x y =+-+,所以30a +=,则3a =-.理解应用:(1)若关于x 的多项式()22335m x m x ---的值与x 的取值无关,求m 值;(2)已知()()()213153A x x x y =+--+,2324B x xy -=+,且26A B -的值与x 的取值无关,求y 的值.【变式4-1】(23-24八年级·陕西咸阳·阶段练习)14.已知23A x x a =+-,B x =-,3235C x x =++,若A B C ×+的值与x 的取值无关,当4x =-时,A 的值为( )A .0B .4C .4-D .2【变式4-2】(23-24八年级·四川成都·期中)15.若代数式()()()223236x x m x x ++-+的值与x 的取值无关,则常数m = .【变式4-3】(23-24八年级·浙江金华·期末)16.若代数式()()()2253334x kx xy k x y x ----的值与y 无关,则常数k 的值为( )A .2B .―2C .4-D .4【题型5 利用整式乘除法解决污染问题】【例5】(23-24八年级·贵州遵义·期末)17.小明作业本发下来时,不小心被同学沾了墨水:()()4322222246643x y x y x y x y xy y -+¸-=-+-■,你帮小明还原一下被墨水污染的地方应该是( )A .3218x y -B .3218x y C .322x y -D .3212x y 【变式5-1】(23-24八年级·湖北十堰·期末)18.右侧练习本上书写的是一个正确的因式分解.但其中部分代数式被墨水污染看不清了.(1)求被墨水污染的代数式;(2)若被污染的代数式的值不小于4,求x 的取值范围.【变式5-2】(23-24八年级·全国·课后作业)19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中第一项是338x y -及中间的“¸”,污染后习题形式如下:33(8x y -)¸,小明翻看了书后的答案是“22436x y xy x -+”,你能够复原这个算式吗?请你试一试.【变式5-3】(23-24八年级·上海奉贤·期中)20.小红准备完成题目:计算(x 2x +2)(x 2﹣x ).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x 2+3x +2)(x 2﹣x );(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?【题型6 利用整式乘除法解决误看问题】【例6】(23-24八年级·山东菏泽·期中)21.某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是( )A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式6-1】(23-24八年级·江西萍乡·期中)22.小颖在计算一个整式乘以3ac 时,误看成了减去3ac ,得到的答案是12333--bc ac ab ,该题正确的计算结果应是多少?【变式6-2】(23-24八年级·江西九江·阶段练习)23.已知A B 、均为整式,()()221222A xy xy x y =+--+,小马在计算A B ¸时,误把“¸”抄成了“-”,这样他计算的正确结果为22x y -.(1)将整式A 化为最简形式.(2)求整式B .【变式6-3】(23-24八年级·河南南阳·阶段练习)24.甲、乙二人共同计算一道整式乘法:()()23x a x b ++,由于甲抄错为()()23x a x b -+,得到的结果为261110x x +-;而乙抄错为()()2x a x b ++,得到的结果为22910x x -+.(1)你能否知道式子中的a ,b 的值各是多少?(2)请你计算出这道整式乘法的正确答案.【题型7 整式乘除法的应用】【例7】(23-24八年级·浙江杭州·阶段练习)25.有总长为l 的篱笆,利用它和一面墙围成长方形园子,园子的宽度为a .(1)如图1,①园子的面积为 (用关于l ,a 的代数式表示).②当10030l a ==,时,求园子的面积.(2)如图2,若在园子的长边上开了长度为1的门,则园子的面积相比图一 (填增大或减小),并求此时园子的面积(写出解题过程,最终结果用关于l ,a 的代数式表示).【变式7-1】(23-24八年级·重庆·期末)26.某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【变式7-2】(23-24八年级·黑龙江哈尔滨·期中)27.一家住房的结构如图所示,房子的主人打算把卧室铺上地板,卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果这种地砖的价格为a 元/平方米,地板的价格(10)a -元/平方米,那么购买地板和地砖至少共需要多少元?【变式7-3】(23-24八年级·全国·专题练习)28.某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、2a ;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【题型8 整式乘除法中的规律问题】【例8】(23-24八年级·四川成都·期中)29.观察:下列等式()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-…据此规律,当()()65432110x x x x x x x -++++++=时,代数式20242x -的值为 .【变式8-1】(23-24八年级·广东揭阳·期中)30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年11月份的日历,我们任意用一个22´的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规则,结果为 .(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.【变式8-2】(23-24八年级·福建宁德·期末)31.“九章兴趣小组”开展研究性学习,对两位数乘法的速算技巧进行研究.小明发现“十位相同,个位互补”的两个两位数相乘有速算技巧.例如:()24261002346´=´´+´,结果为624;()42481004528´=´´+´,结果为2016;小红发现“十位互补,个位为5”的两个两位数相乘也有速算技巧.例如:()456510046525´=´´++,结果为2925;()357510037525´=´´++,结果为2625;(1)请你按照小明发现的技巧,写出计算6367´的速算过程;(2)请你用含有字母的等式表示小明所发现的速算规律,并验证其正确性;(3)小颖发现:小红的速算技巧可以推广到“十位互补,个位相同”的两个两位数相乘.请你直接用含有字母的等式表示该规律.友情提示:如果两个正整数和为10,则称这两个数互补.友情提示:如果两个正整数和为10,则称这两个数互补.【变式8-3】(23-24八年级·福建宁德·期中)32.下图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过451天是星期 .……1()a b a b+=+ (222)()2a b a ab b +=++……()3322333a b a a b ab b +=+++……()4a b +=【题型9 整式乘除法中的新定义问题】【例9】(23-24八年级·陕西榆林·期末)33.【问题背景】现定义一种新运算“⊙”对任意有理数m ,n ,规定:()m n mn m n =-e .例如:()1212122=´´-=-e .【问题推广】(1)先化简,再求值:()()a b a b +-e ,其中12a =,1b =-;【拓展提升】(2)若()2p q q p x y x y x y x y =-e e ,求p ,q 的值【变式9-1】(23-24八年级·浙江宁波·期中)34.定义a bad bc c d =-,如131423224=´-´=-.已知21112x A nx x +=-,1111x x B x x +-=-+(n 为常数)(1)若4B =,求x 的值;(2)若A 中的n 满足12222n +´=时,且2A B =+,求3843x x -+的值.【变式9-2】(23-24八年级·湖南株洲·期末)35.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi + (a 、b 为实数)的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:()()()()253251372i i i i -++=++-+=+;()()()()()()2121212212213i i i i i i i ii i+´-=´+´-+´+´-=+-+-=+--=+根据以上信息,完成下列问题:(1)计算:3i , 4i ;(2)计算:()()134i i +´-;(3)计算:23452023i i i i i i ++++++L 【变式9-3】(23-24八年级·内蒙古乌兰察布·期末)36.定义:()L A 是多项式A 化简后的项数,例如多项式223A x x =+-,则()3L A =,一个多项式A 乘多项式B 化简得到多项式C (即C A B =´),如果()()()1L A L C L A ££+.则称B 是A 的“郡园多项式”如果()()L A L C =,则称B 是A 的“郡园志勤多项式”.(1)若2A x =-,3B x =+,则B 是不是A 的“郡园多项式”?请判断并说明理由;(2)若2A x =-,24B x ax =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,则a =_____;(3)若23A x x m =-+,2B x x m =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,求m 的值.【题型10 整式乘除法中的几何图形问题】【例10】(23-24八年级·辽宁辽阳·期中)37.教科书第一章《整式的乘除》中,我们学习了整式的几种乘除运算,学会了研究运算的方法.现定义了一种新运算“Ä”,对于任意有理数a ,b ,c ,d ,规定()(),,a b c d ad bc Ä=-,等号右边是通常的减法和乘法运算.例如:()()1,32,414232Ä=´-´=-.请解答下列问题:(1)填空:()()2,34,5-Ä=______;(2)若()()221,15,2x nx x +-Ä-的代数式中不含x 的一次项时,求n 的值;(3)求()()31,22,3x x x x +-Ä+-的值,其中2410x x -+=;(4)如图1,小长方形长为a ,宽为b ,用5张图1中的小长方形按照图2方式不重叠地放在大长方形ABCD 内,其中5AB =,大长方形中未被覆盖的两个部分(图中阴影部分),设左下角长方形的面积为1S ,右上角长方形的面积为2S .当122320S S -=,求()()2,63,36a b b b a b +-Ä--的值.【变式10-1】(23-24八年级·浙江温州·期中)38.小陈用五块布料制作靠垫面子,其中四周的四块由长方形布料裁成四块得到,正中的一块正方形布料从另一块布料裁得,靠垫面子和布料尺寸简图,如图所示∶(1)用含a ,b 的代数式表示图中阴影部分小正方形的面积.(2)当224592a b +=,48ab =时,求阴影部分面积.【变式10-2】(23-24八年级·广东佛山·期中)39.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm .(1)小长方形的较长边为 cm (用代数式表示);(2)阴影A 的一条较短边和阴影B 的一条较短边之和为(24)x y -+cm ,是 的(填正确/错误);阴影A 和阴影B 的周长值之和与x (填有关/无关),与y (填有关/无关);(3)设阴影A 和阴影B 的面积之和为S 2cm ,是否存在x 使得S 为定值,若存在请求出x 的值和该定值,若不存在请说明理由.【变式10-3】(23-24八年级·上海青浦·期中)40.如图所示,有4张宽为a ,长为b 的小长方形纸片,不重叠的放在矩形ABCD 内,未被覆盖的部分为空白区域①和空白区域②. 2EF GH =(1)用含a、b的代数式表示:AD=______________;AB=______________.(2)用含a、b的代数式表示区域①、区域②的面积;(3)当a=12,92b=时,求区域①、区域②的面积的差.1.2-【分析】由已知得21a a +=,然后对所求式子展开后进行变形,再整体代入计算即可.【详解】解:∵210a a +-=,∴21a a +=,∴()()()()22222242242142a a a a a a a a a +-++=-++=+-=´-=-,故答案为:2-.【点睛】本题考查了整式的混合运算,代数式求值,熟练掌握相关运算法则是解题的关键.2.―2【分析】本题主要考查代数式的值及多项式乘以多项式,熟练掌握各个运算是解题的关键;因此此题先把所求整式进行展开,然后再代值求解即可.【详解】解:∵3a b -=,4ab =-,∴()()22a b -+()24ab a b =+--464=-+-2=-;故答案为:―2.3.28-【分析】本题主要考查了多项式乘以多项式,代数式求值,先根据多项式乘以多项式的计算法则求出218a a --=-,再根据()--+=--+2222828a a a a 进行求解即可.【详解】解:∵()()5612a a -+=,∴2306512a a a -+-=,∴218a a --=-,∴()--+=--+=-´+=-2222828182828a a a a ,故答案为:28-.4.2022【分析】由x 2−3x−1=0,变形x 2=3x+1,利用此等式进行降次,化简整体代入计算即可.【详解】由x 2−3x−1=0,变形x 2=3x+1,x 2-3x=1,x3−10x+2019,=x(3x+1)-10x+2019,=3x2-9x+2019,=3(x2-3x)+2019,=3+2019,=2022.故答案为:2022.【点睛】本题考查代数式的值,关键是把条件等式变形会降次,会整体代入求值.5.C【分析】根据多项式乘多项式的乘法法则,求得a+b=m,ab=12,再进行分类讨论,从而解决此题.【详解】解:(x+a)(x+b)=2x+bx+ax+ab=2x+(a+b)x+ab.∵(x+a)(x+b)=2x+mx+12,∴a+b=m,ab=12.∵m、a、b都是整数,∴当a=1时,则b=12,此时m=a+b=1+12=13;当a=-1时,则b=-12,此时m=a+b=-1-12=-13;当a=2时,则b=6,此时m=a+b=2+6=8;当a=-2时,则b=-6,此时m=a+b=-2-6=-8;当a=3时,则b=4,此时m=a+b=3+4=7;当a=-3时,则b=-4,此时m=a+b=-3-4=-7;当a=12时,则b=1,此时m=a+b=12+1=13;当a=-12时,则b=-1,此时m=a+b=-12-1=-13;当a=6时,则b=2,此时m=a+b=6+2=8;当a=-6时,则b=-2,此时m=a+b=-6-2=-8;当a=4时,则b=3,此时m=a+b=4+3=7;当a=-4时,则b=-3,此时m=a+b=-4-3=-7.综上:m=±13或±8或±7,共6个.故选:C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则、分类讨论的思想是解决本题的关键.6.2-【分析】本题主要考查了多项式乘以多项式,正确计算出22323x x x mx -=+--是解题的关键.根据多项式乘以多项式的计算法则把等式左边去括号得到m 的值即可得到答案.【详解】解:∵()()2133x x x mx +-=+-,∴22333x x x x mx +--=+-,∴22323x x x mx -=+--,∴2m =-.故答案为:2-.7.5【分析】根据多项式乘以多项式的法则展开,求出a 的值以及a 与k 的关系,然后可得答案.本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【详解】∵2222222()()()x x a x ax x a x a x a ++=+++=+++,又∵226()()x x a x kx ++=++,∴22226()x a x a x kx +++=++,2a k \+=,26a =,3a \=,325k \=+=.故答案为:5.8.7【分析】本题考查整式的定义,多项式乘多项式,解二元一次方程.根据题意对整式B 的表述,可设2(x ax b a B =++、b 为待求的常数),计算(3)B x ×+,整理后得到关于x 的三次四项式.由于条件说乘积是只有两项,故有两项的系数为0,需分3种情况讨论计算,列得关于a 、b 的方程组,据此求解即可.【详解】解:B Q 是关于x 的整式,最高次项次数为2,二次项系数为1,\设2b B x ax =++,a 、b 为常数,(3)B x \+2()(3)x ax b x =+++322333x ax bx x ax b=+++++32(3)(3)3x a x a b x b =+++++,Q 乘积是一个只含有两项的多项式,①3030a a b +=ìí+=î,解得:39a b =-ìí=î,239B x x \=-+,各项系数之和为1397-+=;②3030a b +=ìí=î,解得:30a b =-ìí=î,23x B x \=-,各项系数之和为132-=-;③3030a b b +=ìí=î,解得:00a b =ìí=î,2x B \=.各项系数之和为1;∵712>>-;则B 各项系数之和的最大值为7.故答案为:7.9.D【分析】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵()()2=363MN x ax x -++322=36+3918x ax x x ax -+-+()()32336918x a x a x =+-+-+∴()()32336918A MN x a x a x ==+-+-+∵多项式A 中不含x 的2次项时,∴330a -=∴1a =故选D .10.C【分析】本题考查多项式乘以多项式,解二元一次方程组,解题的关键是明确不含x 的二次项,则二次项的系数为0.根据多项式乘以多项式法则进行运算,再将计算结果中,利用二次项系数为零与一次项的系数为5-的要求建立方程组,即可求解.【详解】解:()()232ax b x x -++;3223232ax ax ax bx bx b =++---;()()323322ax a b x a b x b =+-+--;∵多项式ax b -与232x x ++的乘积的展开式中不含二次项,且一次项系数为5-;∴3025a b a b -=ìí-=-î;解得:31a b =-ìí=-î,∴3a =-;故选:C .11.(1)2a =-(2)1k =或6-【分析】本题主要考查多项式乘以多项式,熟练掌握多项式乘以多项式计算法则是解题的关键.(1)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令二次系数为0,即可求出答案,(2)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令一次系数为0,即可求出答案.【详解】(1)解:()()2232x x x a +--42323322x ax x ax x a =-+--+4323(2)32x x a x ax a =+-+-+Q 展开后的式子中不含x 的二次项,20a \+=,解得2a =-;(2)解:①若将232+-x x 中的3看成k ,2(2)(2)x kx x +-+3222224x x kx kx x =+++--32(2)(22)4x k x k x =+++--,Q 展开后的式子中不含x 的一次项,220k \-=,1k \=.②若将232+-x x 中的2-看成k ,2(3)(2)x x k x +++3222362x x x x kx k =+++++325(6)2x x k x k =++++,Q 展开后的式子中不含x 的一次项,60k \+=,解得6k =-.③若指数2看作k ,当0k =时,原式(132)(2)x x =+-+2352x x =+-不符合题意;④若指数2看作k ,当1k =时,原式(32)(2)x x x =+-+2464x x =+-,不符合题意;1k =或6-.12.(1)m 的值为2,n 的值为3(2)2mn +8n 2﹣1;83【分析】(1)先将题目中的式子化简,然后根据()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,可以求得m 、n 的值;(2)先化简题目中的式子,然后将m 、n 的值代入化简后的式子即可解答本题.【详解】解:(1)()()2212x mx x x n ++-+=4x ﹣23x +n 2x +m 3x ﹣2m 2x +mnx +2x ﹣2x +n=4x +(﹣2+m )3x +(n ﹣2m +1)2x +(mn ﹣2)x +n∵()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,∴20210m n m +=ìí+=î﹣﹣,解得23m n =ìí=î,即m 的值为2,n 的值为3;(2)(m +2n +1)(m +2n ﹣1)+(22m n ﹣4m 2n +3m )÷(﹣m )=[(m +2n )+1][(m +2n )﹣1]﹣2mn +42n ﹣2m =2m 2n +()﹣1﹣2mn +42n ﹣2m =2m +4mn +42n ﹣1﹣2mn +42n ﹣2m =2mn +82n ﹣1当m =2,n =3时,原式=2×2×3+8×23﹣1=83.【点睛】本题考查整式的混合运算—化简求值,熟练掌握整式混合运算法则是解题的关键.13.(1)35m =(2)23y =【分析】(1)先去括号,然后合并同类项,结合多项式的值与x 的取值无关,即可求出答案;(2)先把A 进行化简,然后计算26A B -,结合多项式的值与x 的取值无关,即可求出答案.【详解】(1)解:223(35)m x m x ---22335m x m mx=--+2(53)23m x m m =-+-,Q 其值与x 的取值无关,530m \-=, 解得:35m =, 即:当35m =时,多项式223(35)m x m x ---的值与x 的取值无关;(2)解:(21)(31)(53)A x x x y =+--+Q ,2324B x xy -=+,2262[(21)(31)(53)]6(24)3A B x x x y x xy \-=+---+-+222(623153)121824x x x x xy x xy =-+----+-2212826121824x x xy x xy =----+-12826xy x =--4(32)26x y =--;26A B -Q 的值与x 无关,320y \-=,即23y =.【点睛】本题考查了整式的加减乘混合运算,准确熟练地进行计算是解题的关键.14.B【分析】此题主要考查了整式的混合运算无关型题目,代数式求值,首先根据多项式乘多项式的方法,求出A B ×的值是多少,然后用它加上C ,求出A B C ×+的值是多少,最后根据A B C ×+的值与x 的取值无关,可得x 的系数是0,据此求出a 的值,最后代入求值即可.【详解】解:23A x x a =+-Q ,B x =-,3235C x x =++,A B C\×+()()()232335x x a x x x =+--+++3232335x x ax x x =--++++5ax =+,A B C ×+Q 的值与x 的取值无关,2233A x x a x x \=+-=+,当4x =-时,()()24344A =-+´-=,故选:B .15.3【分析】此题考查整式的混合运算,先运算多项式乘以多项式和单项式乘以多项式,然后合并,进而根据与x 的取值无关得到260m -=,解方程即可.【详解】解:()()()()222232366262612262x x m x x x mx x m x x m x m ++-+=+++--=-+,∵代数式的值与x 的取值无关,∴260m -=,解得3m =,故答案为:3.16.A【分析】本题考查整式的四则混合运算,先将题目中的式子化简,然后根据此代数式的值与y 的取值无关,可知关于y 的项的系数为0,从而可以求得k 的值.【详解】解:()()()2253334x kx xy k x y x ----2222225334912kx x y kx y kx x y x =--++-222239612kx y kx x y x =-++-()22236912k x y kx x =-++-∵关于y 的代数式:()()()2253334x kx xy k x y x ----的值与y 无关,∴360k -+=,解得2k =,即当2k =时,代数式的值与y 的取值无关.故选:A.17.B【分析】利用多项式乘单项式的运算法则计算即可求解.【详解】解: ( −4x 2y 2+3xy −y ) • (−6x 2y )=24x 4y 3−18x 3y 2+6x 2y 2,∴■=18x 3y 2.【点睛】本题主要考查的是整式的除法和乘法,掌握法则是解题的关键.18.(1)24x --;(2)4x £-.【分析】(1)根据题意,被墨水污染的代数式=()2()(252236)x x x x ++---,再结合整式的乘法法则及加减法则解题,注意运算顺序;(2)由(1)中结果列一元一次不等式,解一元一次不等式即可解题.【详解】解:(1)由已知可得,()2()(252236)x x x x ++---2224510236x x x x x =-+---+=24x -- ;(2)由已知可得,244x -³-28x ³-解得4x £-.【点睛】本题考查整式的混合运算、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.复原后的算式为()()3322286122x y x y x y xy -+-¸-【分析】先根据被除式的首项和商式的首项可求得除式,然后根据除式乘商式等于被除式求解即可.【详解】解:338x y -Q 对应的结果为:224x y ,\除式为:3322842x y x y xy -¸=-,根据题意得:()()223322243628612x y xy x xy x y x y x y -+×-=-+-,\复原后的算式为()()3322286122x y x y x y xy -+-¸-.【点睛】本题主要考查的是整式的除法和乘法,掌握运算法则是解题的关键.20.(1)43222x x x x +--;(2)1【分析】(1)根据多项式的乘法进行计算即可;(2)设一次项系数为a ,计算()()222x ax x x ++-,根据其结果不含三次项,则结果的三次项系数为0,据此即可求得a 的值,即原题中被遮住的一次项系数.【详解】解:(1)(x 2+3x +2)(x 2﹣x )433223322x x x x x x=-+-+-43222x x x x=+--(2)设一次项系数为a ,()()222x ax x x ++-4332222x x ax ax x x=-+-+-()()432122x a x a x x=+-+--Q 答案是不含三次项的10a \-=1a \=【点睛】本题考查了多项式的乘法运算,正确的计算是解题的关键.21.A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.【详解】解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .22.222-abc a bc【分析】本题主要考查了整式乘法运算,根据一个整数减去3ac ,得到的答案是12333--bc ac ab ,得出这个整式为123333bc ac ab ac --+,然后用3ac 乘这个整式得出结果即可.【详解】解:根据题意得:1233333æö--+ç÷èøac bc ac ab ac12333æö=-ç÷èøac bc ab 222=-abc a bc .故该题正确的计算结果应是222-abc a bc .23.(1)22x y xy --;(2)B xy =-.【分析】(1)根据整式混合运算的运算顺序和运算法则进行化简即可;(2)根据题意可得22A y B x -=-,根据整式混合运算顺序和运算法则进行计算即可;本题主要考查了整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.【详解】(1)()()221222A xy xy x y =+--+,22222222x y xy xy x y =-+--+,22x y xy =--;(2)由题意,得22A yB x -=-由(1)知22A x y xy =--,∴2222x y xy B x y ---=-,∴B xy =-.24.(1)5a =-,2b =-(2)261910x x -+【分析】(1)按照甲、乙两人抄的错误的式子进行计算,得到2311b a -=①,29b a +=-②,解关于①②的方程组即可求出a 、b 的值;(2)把a 、b 的值代入原式求出整式乘法的正确结果.【详解】(1)根据题意可知,甲抄错为()()23x a x b -+,得到的结果为261110x x +-,那么()()()222362361110x a x b x b a x ab x x -+=+--=+-,可得2311b a -=①乙抄错为()()2x a x b ++,得到的结果为22910x x -+,可知()()()222222910x a x b x b a x ab x x ++=+++=-+可得29b a +=-②,解关于①②的方程组,可得5a =-,2b =-;(2)正确的式子:()()22041253265106191x x x x x x x --=+-=+--【点睛】本题主要是考查多项式的乘法以及二元一次方程组,掌握多项式乘多项式运算法则是正确解决问题的关键.25.(1)①()2a l a -;②1200(2)增大;22al a a-+【分析】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.(1)①先用l 和a 的代数式表示出园子的长,再表示出园子的面积;②把100l =,30a =代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.【详解】(1)解:①Q 总长为l ,宽为a ,\园子的长为:()2l a -,\园子的面积为:()2a l a -;故答案为:()2a l a -;②当100l =,30a =时,()222a l a al a -=-230100230=´-´30002900=-´30001800=-1200=;(2)解:Q 园子的宽不变,长增加了,。

整式乘法计算50题(含解析)

整式乘法计算50题(含解析)

整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。

第02讲 整式的乘除法(知识解读+真题演练+课后巩固)(原卷版)

第02讲 整式的乘除法(知识解读+真题演练+课后巩固)(原卷版)

第02讲整式的乘除法1.掌握单项式乘(或除以)单项式,多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算.2.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活的运用运算律进行混合运算。

知识点1:单项式乘单项式单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.知识点2:单项式乘多项式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.知识点3:多项式乘多项式多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.知识点4:单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.知识点5:多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【题型1单项式乘单项式】【典例1】(2023春•青龙县期末)计算2x2y•xy2的结果是.【变式1-1】(2023•长岭县模拟)计算(2x)2(﹣3xy2)=.【变式1-2】(2023春•永定区期末)计算:2(a2)3•(﹣3a2b)=.【变式1-3】(2023春•新城区校级期末)=.【题型2单项式乘多项式】【典例2】(2023春•秦都区期中)计算:3a(2a2﹣4a)﹣2a2(3a+4).【变式2-1】(2023春•青秀区期中)化简:x+2x(x+1)﹣3x(2x﹣5).【变式2-2】(2022春•槐荫区期末)计算:﹣3a(2a﹣4b+2)+6a.【变式2-3】(2022春•平桂区期中)计算:m(m3+m2)﹣m3(m﹣3).【题型3多项式乘多项式】【典例3】(2022秋•惠阳区校级月考)计算:(1)(x﹣3)(x2+4);(2)(3x2﹣y)(x+2y).【变式3-1】(2022秋•兴城市期末)计算:(2a﹣3b)(2a2+6ab+5b2).【变式3-2】(2022秋•南宫市期末)计算:(x﹣2)(x﹣5)﹣x2.【变式3-3】(2023春•沙坪坝区校级期末)计算:(1)(2x2)3﹣6x3(x3+2x2+x).(2)(2x﹣1)(x+4)+(2x+3)(x﹣5).【题型4多项式乘多项式-不存在某项问题】【典例4】(2023春•昭平县期末)已知(x2+mx﹣3)(2x+n)的展开式中不含x2项,常数项是﹣6.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.【变式4-1】(2023春•巨野县期末)(1)若(x2+mx+n)(x2﹣3x+1)的展开式中不含x2和x3项,求m、n的值.(2)求(m+n)(m2﹣mn+n2)的值.【变式4-2】(2023春•温江区校级期中)若(x+m)(x2﹣3x+n)的展开式中不含x项,x2项的系数为﹣1,求n m的值.【变式4-3】(2023春•茶陵县期中)若的积中不含x项与x2项.(1)求p、q的值;(2)求代数式p2022q2023的值.【题型5多项式乘多项式的实际应用】【典例5】(2022秋•松原期末)如图,某小区有一块长为(2a+3b)米,宽为(3a+2b)米的长方形地块,物业公司计划在小区内修一条平行四边形小路,小路的底边宽为a米,将阴影部分进行绿化.(1)用含有a、b的式子表示绿化的总面积S;(2)若a=2,b=4,求出此时绿化的总面积S.【变式5-1】(2023春•绥德县期末)如图,在某高铁站广场前有一块长为2a+b,宽为a+b的长方形空地,计划在中间留两个长方形喷泉池(图中阴影部分),两个长方形喷泉池及周边留有宽度为b的人行通道.(1)求该长方形空地的面积;(用代数式表示)(2)求这两个长方形喷泉池的总面积;(用代数式表示)(3)当a=200,b=100时,求这两个长方形喷泉池的总面积.【变式5-2】(2022秋•晋江市期末)甲、乙两个长方形的边长如图所示,其面积分别记为S1,S2.(1)请通过计算比较S1与S2的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长的和,设该正方形的面积为S3,试说明代数式S3﹣2(S1+S2)的值是一个常数.【变式5-3】(2023春•张店区期中)某学校准备在一块长为(3a+2b)米,宽为(2a+b)米的长方形空地上修建一块长为(a+2b)米,宽为(3a﹣b)米的长方形草坪,四周铺设地砖(阴影部分),(1)求铺设地砖的面积;(用含a、b的式子表示,结果化为最简)(2)若a=3,b=4,铺设地砖的成本为50元/平方米,则完成铺设地砖需要多少元?【典例6】(2022秋•西湖区校级期末)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b).【变式6-1】(2023春•龙泉驿区期末)“以形释数”是利用数形结合思想证明代数问题的一种体现,若干张边长为a的正方形A纸片,边长为b的正方形B纸片,长和宽分别为a与b的长方形C纸片(如图1).(1)小李同学拼成一个宽为(a+b),长为(a+2b)的长方形(如图2),并用不同的方法计算面积,从而得出相应的等式:(a+b)(a+2b)=a2+3ab+2b2(答案直接填写到横线上);(2)如果用这三种纸片拼出一个面积为(2a+b)(a+3b)的大长方形,求需要A,B,C三种纸片各多少张;(3)利用上述方法,画出面积为2a2+5ab+2b2的长方形,并求出此长方形的周长(用含a,b的代数式表示).【变式6-2】(2021秋•罗庄区期末)我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.【题型6单项式除法运算】【典例7】(2023•青岛)计算:8x3y÷(2x)2=.【变式7-1】(2022秋•柳州期末)计算4x2y÷2xy=【变式7-2】(2023春•威宁县期末)计算:﹣28a3÷7a=.【变式7-3】(2023秋•鲤城区校级月考)计算:6a2b÷2ab=.【变式7-4】(2023•城阳区三模)=.【题型7多项式除法运算】【典例8】(2023•丰城市校级开学)先化简,再求值:(12a3﹣6a2+3a)÷3a,其中a=﹣1.【变式8-1】(2023春•济南期中)计算:(ab3﹣2a2b2+ab)÷ab.【变式8-2】(2023春•莲湖区期中)计算:(15x4y2﹣12x2y3﹣3x2)÷(﹣3x2).【变式8-3】(2023春•西安月考)计算:ab(2a3b2c﹣6ab3c2)÷(﹣2ab2c).1.(2023•随州)设有边长分别为a和b(a>b)的A类和B类正方形纸片、长为a宽为b的C类矩形纸片若干张.如图所示要拼一个边长为a+b的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为3a+b、宽为2a+2b的矩形,则需要C类纸片的张数为()A.6B.7C.8D.9 2.(2023•金昌)计算:a(a+2)﹣2a=()A.2B.a2C.a2+2a D.a2﹣2a 3.(2021•兰州)计算:2a(a2+2b)=()A.a3+4ab B.2a3+2ab C.2a+4ab D.2a3+4ab 4.(2020•兰州)化简:a(a﹣2)+4a=()A.a2+2a B.a2+6a C.a2﹣6a D.a2+4a﹣2 5.(2021•凉山州)阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550﹣1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N).又∵m+n=log a M+log a N,∴log a(M•N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log232=,②log327=,③log71=;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log5125+log56﹣log530.1.(2023春•市南区校级期中)小明有足够多的如图所示的正方形卡片A,B和长方形卡片C,如果他要拼一个长为(a+2b),宽为(a+b)的大长方形,共需要C类卡片()A.3张B.4张C.5张D.6张2.(2022秋•新抚区期末)如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b 3.(2023春•裕华区期中)化简x(x﹣2)+4x的结果是()A.x2+6x B.x2﹣2x C.x2﹣6x D.x2+2x 4.(2023春•平湖市期中)计算(a+3b)(a+2b)的结果是()A.a2+5ab+5b2B.a2+5ab+6b2C.a2+5b2D.a2+6b2 5.(2023春•临清市期末)若(x2﹣px+q)(x﹣3)展开后不含x的一次项,则p与q的关系是()A.p=3q B.p+3q=0C.q+3p=0D.q=3p 6.(2023春•承德县期末)若(x﹣3)(x+n)=x2+mx﹣21,则m,n的值分别是()A.4,﹣3B.﹣7,4C.﹣5,18D.4,7 7.(2023春•包河区期中)若关于x的多项式(x2+ax)(x﹣2)展开合并后不含x2项,则a的值是()A.2B.C.0D.﹣2 8.(2023春•漳浦县期中)已知(x﹣1)(x﹣2)=x2+mx+n,则m+n的值为()A.﹣1B.﹣5C.5D.1 9.(2023春•潍坊期中)计算下列各题:(1)x2•(﹣2xy2)3;(2)(2m+1)•.10.(2022秋•河北区期末)计算:(1)a•a5+(a3)2﹣(2a2)3;(2)(2x+1)(x﹣2).11.(2022秋•天河区期末)计算:(2x+1)(x﹣3)12.(2022春•临湘市校级月考)计算:(1)(﹣2a2b)3+8(a2)2•(﹣a2)•(﹣b)3;(2)(x﹣1)(x2+x+1).13.(2022秋•昌吉市校级期末)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)试用含a、b的代数式表示绿化的面积是多少平方米?(2)若a=10,b=8,且每平方米造价为100元,求出绿化需要多少费用?14.(2022秋•衡南县期中)若(x2+mx)(x2﹣3x+n)的展开式中不含x2和x3项,求m和n的值.15.(2022春•揭东区期末)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?16.(2023•桃城区校级模拟)甲、乙两个长方形的边长如图所示(m为正整数),其面积分别为S1,S2.(1)填空:S1﹣S2=(用含m的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由.。

整式的乘除法专题训练(含答案)

整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。

14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。

18.若3x 5y 3 0, 求8x?32y的值。

19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。

5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。

整式的乘除(典型例题)

整式的乘除(典型例题)

整式的乘除(典型例题)1.若 $a=8$,$m+n=16$,则 $a=\frac{m+n}{n}=2$。

2.已知 $2m=3$,$2n=4$,则$23m+2n=23\times3+2\times4=73$。

3.若 $xy^2+5y=4$,则 $xy=\frac{4-5y}{y^2}$。

4.若 $xy=4$,则$\frac{xy^2+x}{y}=\frac{4y+4}{y}=4+\frac{4}{y}$。

5.若 $a>5$,且 $a=2$,$a=3$,则 $ax-y=a^{x-y}=\frac{1}{a^{y-x}}=\frac{1}{a^{3-x}}$。

6.已知 $x^8\cdot3^x=8^3$,则 $x^8=8^3\cdot3^{-x}$,两边取对数得 $8\log x=3\log 8-x\log 3$,解得 $\log x=\frac{3\log 8}{8+\log 3}$。

7.已知 $2a=5$,$2b=3$,$2c=45$,则 $a=\frac{5}{2}$,$b=\frac{3}{2}$,$c=22.5$,所以$c=\frac{5ab}{2}=\frac{75}{4}$。

8.已知 $\frac{x-m}{x^2+x+a}=1$,则 $x^2+(a-m-1)x+m-a=0$,因为 $x^2+4x+4=(x+2)^2$,所以 $a=m+3$。

又因为$x^2+4x+a-3=(x+2)^2+(a-3)$,所以 $a-3=1$,即 $a=4$。

9.$\frac{2011}{3}-\frac{1}{2}(-3)^2=671$。

10.$(1990)\cdot\frac{3980}{(2n+1)(n+1)}=\frac{1990\cdot3 980}{2n^2+3n+1}$。

11.(1) $1232-124\times122=8$;(2) $899\times901+1=$。

12.$\frac{(2x+1)(2x-1)(4x+1)}{(2+1)(2+1)(2+1)}=\frac{(2x+1)(2x-1)(4x+1)}{27}$。

初二整式的乘除必考练习题及答案

初二整式的乘除必考练习题及答案

初二整式的乘除必考练习题及答案乘法练习题:1. 计算下列算式的乘积:a) 5 × 7 =b) 6 × 3 =c) 8 × 4 =d) 9 × 2 =e) 12 × 10 =2. 用竖式计算下列乘法问题:a) 24 × 3 =b) 15 × 6 =c) 27 × 4 =d) 18 × 5 =e) 32 × 12 =3. 用分配律计算下列乘法问题:a) 3 × (5 + 2) =b) 4 × (6 + 1) =c) 2 × (8 + 3) =d) 6 × (9 + 2) =e) 7 × (10 + 6) =除法练习题:1. 计算下列算式的商和余数:a) 14 ÷ 3 = 商____ 余____b) 21 ÷ 4 = 商____ 余____c) 36 ÷ 5 = 商____ 余____d) 47 ÷ 6 = 商____ 余____e) 52 ÷ 7 = 商____ 余____2. 用列竖式计算下列除法问题:a) 56 ÷ 8 = 商____ 余____b) 81 ÷ 9 = 商____ 余____c) 72 ÷ 6 = 商____ 余____d) 96 ÷ 12 = 商____ 余____e) 108 ÷ 9 = 商____ 余____3. 解决下列问题并用整式表达答案:a) Sara家有24个饼干,她打算将它们平均分给3个朋友。

每个朋友能得到多少个饼干?b) 在一个农场里,有36头牛,农民打算将它们平均分配在6个牲口场。

每个牲口场将有多少头牛?以上是初二整式乘除必考练习题及答案。

希望通过这些题目的练习能够提升你的整式的乘除能力。

加油!。

整式的乘除(人教版)(含答案)

整式的乘除(人教版)(含答案)

整式的乘除(人教版)一、单选题(共15道,每道6分)1.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.,故选A.试题难度:三颗星知识点:单项式乘单项式2.下列运算正确的是( )A. B.C. D.答案:C解题思路:A选项应为,故A选项错误;B选项应为,故B选项错误;C选项,故C选项正确;D选项应为,故D选项错误.故选C.试题难度:三颗星知识点:幂的乘方3.下列运算错误的是( )A. B.C. D.答案:B解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.B选项应为,故选B.试题难度:三颗星知识点:单项式乘单项式4.计算的结果是( )A. B.C. D.答案:D解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.,故选D.试题难度:三颗星知识点:单项式乘多项式5.若,则的值是( )A.-15B.15C.-3D.3答案:C解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.故选C.试题难度:三颗星知识点:解一元一次方程6.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×多项式:根据乘法分配律,转化为单×单.然后按照单项式×单项式的运算法则进行计算.故选A.试题难度:三颗星知识点:合并同类项7.计算的结果是( )A. B.C.1D.答案:B解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选B.试题难度:三颗星知识点:整式的除法8.计算的结果是( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选C.试题难度:三颗星知识点:整式的除法9.,括号里所填的代数式为( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.设括号里的代数式为M,∴即括号里面的代数式为.故选C.试题难度:三颗星知识点:整式的除法10.计算的结果是( )A. B.C. D.答案:D解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.故选D.试题难度:三颗星知识点:多项式乘多项式11.下列各式计算结果为的是( )A. B.C. D.答案:C解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.A选项,故A选项错误;B选项,故B选项错误;C选项,故C选项正确;D选项,故D选项错误.故选C.试题难度:三颗星知识点:多项式乘多项式12.若的结果中不含的一次项,则的值是( )A.-2B.2C.-1D.任意数答案:A解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.∵的结果中不含x的一次项∴∴故选A.试题难度:三颗星知识点:多项式乘多项式13.下列式子:①;②;③;④.其中计算不正确的有( )A.3个B.2个C.1个D.0个答案:A解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.①,①不正确;②,②不正确;③,③不正确;④,④正确.故不正确的有①②③,共3个.试题难度:三颗星知识点:积的乘方14.计算的结果是( )A. B.C. D.答案:B解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选B.试题难度:三颗星知识点:整式的除法15.计算的结果是( )A. B.C. D.答案:D解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选D.试题难度:三颗星知识点:整式的除法。

整式的乘除测试题(3套)及答案

整式的乘除测试题(3套)及答案

第一章整式的乘除单元测试卷(一)一、精心选一选(每小题3分,共21分)43 31•多项式xy 2x y 9xy 8的次数是A. 3B. 4C. 5D. 62•下列计算正确的是 ()A. 2x 26x 412x 84 mB . y3mmyy C .x y 2 x 22 , 2y D. 4a 2a33.计算a ba b 的结果是()A. b 2 a 2B.2 ,2a bC. a 22ab b 2D.a 2 2ab b 224. 3a 5a1与 2a 2 3a 4的和为()A. 5a 22a 3 2小B. a 8a3 C.2a3a 52小D. a 8a55.下列结果正确的是()21 A.-1 B. 9 50C.53.7 01D. 2 31398m^n26.右 a b8 6a b,那么m 22n 的值是()A. 10B. 52C. 20D. 327•要使式子9x 225y 2成为一个完全平方式,则需加上( )二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)班级 ____ 姓名 ______ 学号 ________ 得分 ________A. 15xyB. 15xyC. 30xyD. 30xy1•在代数式3xy 2 ,个,多项式有一2m ,6a个。

2a 3 , 12 , 4x yz1 2xy 2 , 中,单项式有 5 3ab2•单项式 5x 2y 4z 的系数是,次数是 。

,413•多项式3ab ab 有项,它们分别是。

54•⑴ x 2 x 5。

34⑵y 3。

23⑶2a b。

⑷x 5y24。

93⑸a a。

⑹ 10 5 2 40z 1 2 635.⑴ mnmn。

⑵x 5 x 5。

3 5⑶(2a b )25 。

⑷ 12x 3小 2y3xy 。

/、m32m6•⑴ aa a。

⑵ 22a 8a242…。

20062 220051 ⑶ x y x y x y。

⑷3。

3三、精心做一做(每题5分,共15分)1. 4x 2 y 5xy 7x5x 2 y 4xy x2 2 32. 2a 23a 2 2a 1 4a 32 ^343.2x y 6x y 8xy 2xy1. X 1 2x 1 x 22. 2x 3y 5 2x 3y 5四、计算题(每题6分,共12分)1五、化简再求值:XX 2y x 12 2x,其中X -,y 25。

整式的乘除测试题练习8套(含答案)

整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。

整式乘除练习题及答案

整式乘除练习题及答案

整式乘除练习题及答案整式乘除是数学中的一个重要概念和技能,它在代数运算中扮演着重要的角色。

掌握整式乘除的方法和技巧,可以帮助我们解决各种实际问题,提高数学运算能力和逻辑思维能力。

以下是一些整式乘除的练习题及其答案,供大家练习和参考。

练习题一:将下列整式相乘并化简。

(3x^2 + 4y)(2x - 5y)解答:首先,我们可以使用分配律来展开整式的乘法。

(3x^2 + 4y)(2x - 5y) = 3x^2 * 2x - 5y * 3x^2 + 4y * 2x - 5y * 4y= 6x^3 - 15x^2y + 8xy - 20y^2所以,答案为6x^3 - 15x^2y + 8xy - 20y^2。

练习题二:将下列整式相除并化简。

(9x^3 - 8y^3)/(3x - 2y)解答:首先,我们可以使用长除法的方法来进行整式的除法运算。

________3x - 2y | 9x^3 + 0x^2 - 8y^3 + 0xy- (9x^3 - 6xy^2)_______6xy^2 - 8y^3 + 0xy- (6xy^2 - 4y^2)_______-4y^2 + 0xy-(-4y^2 + 2y)_______-2y所以,答案为商式为3x^2 + 2y^2 - 2y。

练习题三:将下列整式乘法公式化简。

(x - y)^2解答:我们可以利用乘法公式 (a - b)^2 = a^2 - 2ab + b^2 来展开整式的乘法。

(x - y)^2 = x^2 - 2xy + y^2所以,答案为x^2 - 2xy + y^2。

练习题四:将下列整式除法公式化简。

(x^3 + y^3)/(x + y)解答:我们可以利用除法公式 (a^3 + b^3)/(a + b) = a^2 - ab + b^2 来进行整式的除法。

(x^3 + y^3)/(x + y) = x^2 - xy + y^2所以,答案为商式为x^2 - xy + y^2。

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案

初中数学整式的乘除练习题及参考答案[注意:本文按照练习题格式组织,每题后附有参考答案。

]练习题1:计算以下两个整式的积:(2x + 3)(4x - 5)参考答案1:(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15练习题2:求下列整式的商式:(8x^3 - 10x^2 + 12x) ÷ 2x参考答案2:(8x^3 - 10x^2 + 12x) ÷ 2x = 4x^2 - 5x + 6练习题3:计算以下两个整式的乘积:(3a - 1)(a^2 + a + 2)参考答案3:(3a - 1)(a^2 + a + 2) = 3a^3 + 3a^2 + 6a - a^2 - a - 2 = 3a^3 + 2a^2 + 5a - 2练习题4:求下列整式的商式:(5x^3 - 4x^2 + 3x) ÷ x^2参考答案4:(5x^3 - 4x^2 + 3x) ÷ x^2 = 5x - 4 + 3/x练习题5:计算以下两个整式的乘积:(2y^2 + 3y - 4)(y^2 - 2y + 6)参考答案5:(2y^2 + 3y - 4)(y^2 - 2y + 6) = 2y^4 - 4y^3 + 12y^2 + 3y^3 - 6y^2 + 18y - 4y^2 + 8y - 24 = 2y^4 - y^3 + 2y^2 + 26y - 24练习题6:求下列整式的商式:(6b^3 + 4b^2 - 8b) ÷ 2b参考答案6:(6b^3 + 4b^2 - 8b) ÷ 2b = 3b^2 + 2b - 4练习题7:计算以下两个整式的乘积:(4x - 7)(2x + 5)参考答案7:(4x - 7)(2x + 5) = 8x^2 + 20x - 14x - 35 = 8x^2 + 6x - 35练习题8:求下列整式的商式:(10c^2 - 5c + 3) ÷ c参考答案8:(10c^2 - 5c + 3) ÷ c = 10c - 5 + 3/c练习题9:计算以下两个整式的乘积:(3y^2 - 2)(y^2 + 3y - 1)参考答案9:(3y^2 - 2)(y^2 + 3y - 1) = 3y^4 + 9y^3 - 3y^2 - 2y^2 - 6y + 2 = 3y^4 + 9y^3 - 5y^2 - 6y + 2练习题10:求下列整式的商式:(15a^3 - 10a - 5) ÷ 5a参考答案10:(15a^3 - 10a - 5) ÷ 5a = 3a^2 - 2 - 1/a通过以上的练习题和参考答案,相信你对初中数学整式的乘除运算有了更深入的理解。

整式乘除试题及答案

整式乘除试题及答案

整式乘除试题及答案一、选择题1. 下列哪个选项是整式乘法的运算法则?A. 同底数幂相乘,指数相加B. 同底数幂相除,指数相减C. 幂的乘方,指数相乘D. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘答案:A2. 计算 (2x^2)(3x^3) 的结果是:A. 6x^5B. 6x^6C. 6x^8D. 18x^5答案:A3. 已知 a^2 = 4,那么 a^3 的值是:A. 8B. 16C. 12D. 4答案:A二、填空题4. 计算 (3x^2 - 2x + 1)(2x^2 + 3x - 4) 的结果中,x^4 的系数是_______。

答案:65. 如果 (x+1)(x-1) = x^2 - _______,那么横线上的数字是_______。

答案:1三、解答题6. 计算 (2x^2 - 3x + 1)(3x^2 + 2x - 5) 的乘积,并展开。

答案:6x^4 + x^3 - 13x^3 - 9x^2 + 15x + 2x^2 - 3x - 5 = 6x^4- 11x^3 - 5x^2 + 12x - 57. 已知 (x^2 + 2x)^2 = x^4 + 4x^3 + 4x^2,求 (x^2 + 2x)^3 的值。

答案:(x^2 + 2x)^3 = (x^2 + 2x)(x^4 + 4x^3 + 4x^2) = x^6 +6x^4 + 12x^3 + 8x^2四、应用题8. 一个长方形的长是宽的两倍,如果宽是 x 米,那么面积是 (2x)(x) 平方米。

求当 x = 3 时,长方形的面积。

答案:当 x = 3 时,面积 = 2 * 3 * 3 = 18 平方米9. 一个数的平方是 25,求这个数的立方。

答案:这个数是 5 或 -5,所以立方分别是 125 或 -125。

整式的乘除(习题及答案)

整式的乘除(习题及答案)

整式的乘除(习题)例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =-- 巩固练习1.①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-;④323(2)(2)b ac ab ⋅-⋅-.2.①2223(23)xy xz x y ⋅+=_____________________;②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________;③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________;④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3.①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---;④2(2)x y +;⑤()()a b c a b c -+++.4.若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5.若圆形的半径为(21)a +,则这个圆形的面积为()A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6.①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7.①32(32)(3)x yz x y xy -÷-=____________;②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-.8.计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.思考小结1.老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可.()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】巩固练习1.①445a b ②522m n ③12272x y -④3524a b c -2.①222336+9x y z x y ②428xy xy-+③232321334a b c a b c -④442584a b a b -⑤432323a a a a--++3.①229x y -②2242a b a b-+-③224212m mn n -++④2244x xy y ++⑤2222a b c ac-++4.D5.C6.①223x z ②12③48x y④34x y -⑤22mn 7.①223x z x -+②2246b ab a -+-③222n m --④3222132m n m n m -+-8.①322a c ②7③23a ab+ 思考小结()()a b p q ap aq bp bq ++=+++22()(2)32a b a b a ab b ++=++。

专题1.2 整式的乘除法【十大题型】(举一反三)(北师大版)(解析版)七年级下册

专题1.2 整式的乘除法【十大题型】(举一反三)(北师大版)(解析版)七年级下册

专题1.2整式的乘除法【十大题型】【北师大版】【题型1整式乘法中的求值问题】 (1)【题型2整式乘法中的不含某项问题】 (3)【题型3整式乘法中的错看问题】 (5)【题型4整式乘法中的遮挡问题】 (7)【题型5整式乘法的计算】 (8)【题型6整式乘法的应用】 (10)【题型7整式除法的运算与求值】 (14)【题型8整式除法的应用】 (15)【题型9整式乘法中的新定义】 (19)【题型10整式乘法中的规律探究】 (23)【例1】(x+m)(x﹣n)=x2+ax+7(m,n为整数),则a的值可能是()A.7B.﹣7C.8D.﹣9【分析】根据多项式乘多项式的乘法法则(a+b)(c+d)=ac+ad+bc+bd解决此题.【解答】解:(x+m)(x﹣n)=x2﹣nx+mx﹣mn=x2+(m﹣n)x﹣mn.∵(x+m)(x﹣n)=x2+ax+7(m,n为整数),∴m﹣n=a,﹣mn=7.∴m=1,n=﹣7或m=﹣1,n=7或m=7,n=﹣1或m=﹣7,n=1.∴a=m﹣n=8或﹣8.故选:C.【变式1-1】(2022春•汝州市校级月考)若(5x+2)(3﹣x)=﹣5x2+kx+p,则代数式(k ﹣p)2的值为()A.98B.49C.14D.7【分析】根据多项式乘多项式的法则把等式的左边进行计算后,与等式的右边对比,即可求出k和p的值,进而即可得出答案.【解答】解:∵(5x+2)(3﹣x)=﹣5x2+kx+p,∴15x﹣5x2+6﹣2x=﹣5x2+kx+p,∴﹣5x2+13x+6=﹣5x2+kx+p,∴k=13,p=6,∴(k﹣p)2=(13﹣6)2=72=49,故选:B.【变式1-2】(2022春•诸暨市期末)若A、B、C均为整式,如果A•B=C,则称A能整除C,例如由(x+3)(x﹣2)=x2+x﹣6,可知x﹣2能整除x2+x﹣6.若已知x﹣3能整除x2+kx ﹣7,则k的值为()A.−73B.−23C.43D.23【分析】利用给出的定义进行整式的相关运算,求出k的值.【解答】解:由题意可令(x﹣3)(x+a)=x2+kx﹣7,∴x 2+(a ﹣3)x ﹣3a =x 2+kx ﹣7,∴﹣3a =﹣7,a =73,a ﹣3=k ,k =73−3=−23.故选:B .【变式1-3】(2022春•江都区期中)如果(x +a )(x +b )=x 2+mx ﹣12(其中a ,b 都是整数),那么m 可取的值共有()A .2个B .4个C .6个D .8个【分析】直接利用多项式乘以多项式分析得出答案.【解答】解:∵(x +a )(x +b )=x 2+mx ﹣12,∴当a =1,b =﹣12时,m =﹣11;当a =﹣1,b =12时,m =11;当a =2,b =﹣6时,m =﹣4;当a =﹣2,b =6时,m =4;当a =3,b =﹣4时,m =﹣1;当a =﹣3,b =4时,m =1;故m 的值共6个.故选:C .【题型2整式乘法中的不含某项问题】【例2】(2022秋•黔江区期末)要使(x 2﹣x +5)(2x 2﹣ax ﹣4)展开式中不含x 2项,则a 的值等于()A .﹣6B .6C .14D .﹣14【分析】根据多项式乘以多项式的法则进行展开,然后按照x 的降序排列,使x 的二次项的系数为0即可.【解答】解:(x 2﹣x +5)(2x 2﹣ax ﹣4)=2x 4﹣ax 3﹣4x 2﹣2x 3+ax 2+4x +10x 2﹣5ax ﹣20=2x4﹣(a+2)x3+(a+6)x2+(4﹣5a)x﹣20,∵展开式中不含x2项,∴a+6=0,∴a=﹣6,故选:A.【变式2-1】(2022春•双流区校级期中)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn=﹣5,求﹣4n2+3m的值.【分析】先利用多项式乘多项式法则化简整式,再根据化简后不含有x2项和常数项求出a、m,代入方程an+mn=﹣5求出n,最后求出﹣4n2+3m的值.【解答】解:(ax﹣3)(2x+1)﹣4x2+m=2ax2﹣6x+ax﹣3﹣4x2+m=(2a﹣4)x2+(a﹣6)x+m﹣3.∵化简后不含有x2项和常数项,∴2a﹣4=0,m﹣3=0.∴a=2,m=3.∵an+mn=﹣5,∴2n+3n=﹣5.∴n=﹣1.∴﹣4n2+3m=﹣4×(﹣1)2+3×3=﹣4×1+9=﹣4+9=5.【变式2-2】(2022秋•耒阳市校级月考)已知多项式M=x2+5x﹣a,N=﹣x+2,P=x3+3x2+5,且M•N+P的值与x的取值无关,求字母a的值.【分析】根据多项式与多项式相乘的法则计算,根据题意列出方程,解方程即可.【解答】解:M•N+P=(x2+5x﹣a)(﹣x+2)+(x3+3x2+5)=﹣x3+2x2﹣5x2+10x+ax﹣2a+x3+3x2+5=(10+a)x﹣2a+5,由题意得,10+a=0,解得,a=﹣10.【变式2-3】(2022春•上城区期末)若多项式x2﹣(x﹣a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足()A.a=0且b=0B.a=2b C.ab=0D.�=�2【分析】根据多项式与多项式相乘的法则进行计算,根据题意列出算式,计算即可.【解答】解:x2﹣(x﹣a)(x+2b)+4=x2﹣x2﹣2bx+ax+2ab+4=(a﹣2b)x+2ab+4,∵多项式x2﹣(x﹣a)(x+2b)+4的值与x的取值大小无关,∴a﹣2b=0,即a=2b,故选:B.【题型3整式乘法中的错看问题】【例3】(2022春•潍坊期末)小明在进行两个多项式的乘法运算时,不小心把乘以(x﹣2y)错抄成除以(x﹣2y),结果得到(3x﹣y),则正确的结果是()A.3x2﹣7xy+2y2B.3x2+7xy+2y2C.3x3﹣13x2y+16xy2﹣4y3D.3x3﹣13x2y+16xy2+4y3【分析】直接利用多项式乘多项式运算法则计算得出答案.【解答】解:∵小明在进行两个多项式的乘法运算时,不小心把乘以(x﹣2y)错抄成除以(x﹣2y),结果得到(3x﹣y),∴原式=(3x﹣y)(x﹣2y)=3x2﹣6xy﹣xy+2y2=3x2﹣7xy+2y2,则正确计算结果为:(3x2﹣7xy+2y2)(x﹣2y)=3x3﹣7x2y+2xy2﹣6x2y+14xy2﹣4y3=3x3﹣13x2y+16xy2﹣4y3.故选:C.【变式3-1】(2022春•芦溪县期中)某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?【分析】根据题意首先求出多项式,进而利用单项式乘以多项式运算法则求出即可.【解答】解:∵计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,∴这个多项式为:a2+2a﹣1+2a=a2+4a﹣1,∴正确的计算结果是:﹣2a(a2+4a﹣1)=﹣2a3﹣8a2+2a.【变式3-2】(2022秋•云县期末)在计算(x+a)(x+b)时,甲错把b看成了6,得到结果x2+8x+12;乙错把a看成了﹣a,得到结果x2+x﹣6.你能正确计算(x+a)(x+b)吗?(a、b都是常数)【分析】根据甲的做法求出a的值,根据乙的做法求出b的值,代入原式中计算即可.【解答】解:∵(x+a)(a+6)=x2+(6+a)x+6a=x2+8x+12,∴6+a=8,∴a=2;∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab=x2+x﹣6,∴b﹣a=1,∴b=3,∴(x+a)(a+b)=(x+2)(x+3)=x2+5x+6.【变式3-3】(2022春•河源期末)甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a 的符号,得到的结果是2x 2﹣7x +3,乙漏抄了第二个多项式中x 的系数,得到的结果是x 2+2x ﹣3.(1)求(﹣2a +b )(a +b )的值;(2)若整式中的a 的符号不抄错,且a =3,请计算这道题的正确结果.【分析】(1)按甲乙错误的说法计算得出的系数的数值求出a ,b 的值;(2)将a ,b 的值代入原式求出整式乘法的正确结果.【解答】解:(1)甲抄错了a 的符号的计算结果为:(x ﹣a )(2x +b )=2x 2+(﹣2a +b )x ﹣ab =2x 2﹣7x +3,故:对应的系数相等,﹣2a +b =﹣7,ab =﹣3;乙漏抄了第二个多项式中x 的系数,计算结果为:(x +a )(x +b )=x 2+(a +b )x +ab =x 2+2x ﹣3.故:对应的系数相等,a +b =2,ab =﹣3,∴−2�+�=−7�+�=2,解得:�=3�=−1,∴(﹣2a +b )(a +b )=[(﹣2)×3﹣1](3﹣1)=﹣7×2=﹣14;(2)由(1)可知,b =﹣1正确的计算结果:(x +3)(2x ﹣1)=2x 2+5x ﹣3.【题型4整式乘法中的遮挡问题】【例4】(2022秋•天津期末)在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x (﹣2x 2+3x ﹣1)=6x 3+□+3x ,“□”的地方被墨水污染了,你认为“□”内应填写()A .9x 2B .﹣9x 2C .9xD .﹣9x【分析】根据单项式与多项式相乘的运算法则计算可得出答案.【解答】解:﹣3x (﹣2x 2+3x ﹣1)=6x 3﹣9x 2+3x ,故选:B .【变式4-1】(2022秋•河南月考)今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣7xy(2y﹣x﹣3)=﹣14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□内应填写()A.+21xy B.﹣21xy C.﹣3D.﹣10xy【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.【解答】解:﹣7xy(2y﹣x﹣3)=﹣14xy2+7x2y+21xy.故选:A.【变式4-2】(2022春•江都区期中)今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题3x2y(2xy2﹣xy﹣1)=6x3y3﹣3x3y2﹣3x2y,空格的地方被钢笔水弄污了,你认为横线上应填写﹣3x3y3.【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:∵3x2y(2xy2﹣xy﹣1)=6x3y3﹣3x3y2﹣3x2y,∴横线上应填写﹣3x3y2,故答案为:﹣3x3y2,﹣3x3y2.【变式4-3】(2022秋•岳麓区校级期中)已知x3﹣6x2+11x﹣6=(x﹣1)(x2+mx+n),其中m、n是被墨水弄脏了看不清楚的两处,请求出m2+6mn+9n2的值.【分析】将(x﹣1)(x2+mx+n)展开求得m和n的值后代入代数式即可求得其值.【解答】解:∵x3﹣6x2+11x﹣6=(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n,∴m﹣1=﹣6,n=6,∴m=﹣5,∴m2+6mn+9n2=(﹣5)2+6×(﹣5)×6+9×62=25﹣180+324=169.【题型5整式乘法的计算】【例5】(2022春•冠县期中)计算:(1)(x﹣2y)(x+2y﹣1)+4y2(2)(a 2b )[(ab 2)2+(2ab )3+3a 2].【分析】(1)原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;(2)原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=(x ﹣2y )(x +2y )﹣x +2y +4y 2=x 2﹣4y 2﹣x +2y +4y 2=x 2﹣x +2y ;(2)原式=a 2b (a 2b 4+8a 3b 3+3a 2)=a 4b 5+8a 5b 4+3a 4b .【变式5-1】(2022春•西城区校级期中)求(x ﹣1)(2x +1)﹣2(x ﹣5)(x +2)的值,其中x =﹣2.【分析】根据多项式乘多项式的运算法则把要求的式子进行整理,然后代值计算即可.【解答】解:(x ﹣1)(2x +1)﹣2(x ﹣5)(x +2)=2x 2﹣x ﹣1﹣2(x 2﹣3x ﹣10)=2x 2﹣x ﹣1﹣2x 2+6x +20=5x +19,把x =﹣2代入原式得:原式=5×(﹣2)+19=﹣10+19=9.【变式5-2】(2022秋•长宁区校级期中)12�(4−2�)−2(3﹣2x )(4x +1).【分析】利用单项式乘多项式、多项式乘多项式法则,先算乘方,再加减.【解答】解:原式=12x •4−12x •2x ﹣2(3•4x +3•1﹣2x •4x ﹣2x •1)=2x ﹣x 2﹣2(12x +3﹣8x 2﹣2x )=2x ﹣x 2﹣24x ﹣6+16x 2+4x =15x 2﹣18x ﹣6.【变式5-3】(2022春•海陵区校级月考)计算:(1)﹣3x 2(2x ﹣4y )+2x (x 2﹣xy ).(2)(3x +2y )(2x ﹣3y )﹣3x (3x ﹣2y ).【分析】(1)根据多项式乘多项式,多项式乘单项式进行计算即可;(2)根据多项式乘多项式,多项式乘单项式进行计算即可.【解答】解:(1)原式=﹣6x3+12x2y+2x3﹣2x2y=﹣4x3+10x2y;(2)原式=6x2﹣9xy+4xy﹣6y2﹣9x2+6xy=﹣3x2+xy﹣6y2.【题型6整式乘法的应用】【例6】(2022春•杭州期中)如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+3b),宽为(a+2b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A.2,8,5B.3,8,6C.3,7,5D.2,6,7【分析】由(2a+3b)×(a+2b)=2a2+7ab+6b2,得A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,因此需要A类卡片2张,B类卡片6张,C类卡片7张.【解答】解:长为(2a+3b),宽为(a+2b)的大长方形的面积为:(2a+3b)×(a+2b)=2a2+7ab+6b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片2张,B类卡片6张,C类卡片7张.故选:D.【变式6-1】(2022春•吴江区期末)从前,古希腊一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定【分析】原面积可列式为ab,第二年按照庄园主的想法则面积变为(a+10)(b﹣10),又a>b,通过计算可知租地面积变小了.【解答】解:由题意可知:原面积为ab(平方米),第二年按照庄园主的想法则面积变为(a+10)(b﹣10)=ab﹣10a+10b﹣100=[ab﹣10(a﹣b)﹣100]平方米,∵a>b,∴ab﹣10(a﹣b)﹣100<ab,∴面积变小了,故选:A.【变式6-2】(2022秋•安溪县期中)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是162平方米,求通道的宽度是多少米?【分析】(1)根据通道的面积=两个长方形面积﹣中间重叠部分的正方形的面积计算即可;(2)根据剩余草坪的面积=大长方形面积﹣通道的面积,求得剩余草坪的面积,再根据a=2b,剩余草坪的面积是162平方米,列出方程求解即可.【解答】解:(1)S通道=b(2a+3b)+b(4a+3b)﹣b2=2ab+3b2+4ab+3b2﹣b2=(6ab+5b2)平方米,答:通道的面积共有(6ab+5b2)平方米;(2)S草坪=(4a+3b)(2a+3b)﹣[2b(2a+3b)+b(4a+3b)﹣2b2]=8a2+18ab+9b2﹣(4ab+6b2+4ab+3b2﹣2b2)=8a2+18ab+9b2﹣8ab﹣7b2=8a2+10ab+2b2,∵a=2b,∴8a2+10ab+2b2=8×(2b)2+10×2b•b+2b2=32b2+20b2+2b2=54b2=162,∴b2=3,∴b=±3(负值舍去)(米).答:通道的宽度是3米.【变式6-3】(2022春•莲湖区期末)已知有甲、乙两个长方形,它们的边长如图所示,面积分别为S1,S2.(1)S1与S2的大小关系为:S1<S2.(2)若一个正方形的周长与甲的周长相等.①求该正方形的边长(用含m的代数式表示).②若该正方形的面积为S3,试探究:S3与S2的差(即S3﹣S2)是否为常数?若为常数,求出这个常数,如果不是,请说明理由.【分析】(1)根据长方形的面积公式列式,然后根据整式的混合运算法则进行计算求解;(2)①根据正方形和长方形的周长公式计算求解;②根据正方形和长方形的面积公式列式,然后利用整式的混合运算法则进行计算求解.【解答】解:(1)由题意:S1=(m+2)(m+6)=m2+6m+2m+12=m2+8m+12,S2=(m+5)(m+3)=m2+5m+3m+15=m2+8m+15,∵S1﹣S2=(m2+8m+12)﹣(m2+8m+15)=m2+8m+12﹣m2﹣8m﹣15=﹣3<0,∴S1<S2,故答案为:<,(2)①甲的周长为2(m+2+m+6)=4m+16,∵正方形的周长与甲的周长相等,=�+4,∴正方形的边长为4�+164②由①可得,正方形的面积S3=(m+4)2,∴S3﹣S2=(m+4)2﹣(m2+8m+15)=m2+8m+16﹣m2﹣8m﹣15=1,∴S3与S2的差(即S3﹣S2)是常数,这个常数是1.多项式÷单项式:除法性质.()a b c m a m b m c m多项式÷多项式:大除法.()()x x x x【题型7整式除法的运算与求值】【例7】(2022•襄都区校级开学)先化简,再求值:[(xy +2)(xy ﹣2)﹣2x 2y 2+4]÷xy ,其中x =﹣10,�=125.【分析】先根据平方差公式进行计算,再合并同类项,算除法,最后代入求出答案即可.【解答】解:[(xy +2)(xy ﹣2)﹣2x 2y 2+4]÷xy =(x 2y 2﹣4﹣2x 2y 2+4)÷xy =﹣x 2y 2÷xy =﹣xy ,当x =﹣10,�=125时,原式=﹣(﹣10)×125=25.【变式7-1】(2022春•秀洲区校级月考)若等式(6a 3+3a 2)÷(6a )=(a +1)(a +2)成立,则a 的值为−45.【分析】根据多项式除以单项式,多项式乘以多项式的法则计算,再解关于a 的方程即可求解.【解答】解:(6a 3+3a 2)÷(6a )=(a +1)(a +2)a 2+12a =a 2+3a +2,−52a =2,解得a =−45.故答案为:−45.【变式7-2】(2022春•萧山区月考)若A 与−12��的积为−4�3�3+3�2�2−12��,则A 为()A .﹣8a 2b 2+6ab ﹣1B .−2�2�2+32��+14C .8a 2b 2﹣6ab +1D .2�2�2−32��+1【分析】由题意可得所求的式子为:(−4�3�3+3�2�2−12��)÷(−12��),利用整式的除法的法则进行运算即可.【解答】解:由题意得:(−4�3�3+3�2�2−12��)÷(−12��)=﹣4a 3b 3÷(−12��)+3a 2b 2÷(−12��)−12��÷(−12��)=8a 2b 2﹣6ab +1.故选:C .【变式7-3】(2022·四川·石室佳兴外国语学校七年级阶段练习)已知多项式2x 2﹣4x ﹣1除以一个多项式A ,得商式为2x ,余式为x ﹣1,则这个多项式A =_____.【分析】根据“除式=(被除式-余式)÷商”列式,再利用多项式除单项式,先把多项式的每一项除以单项式,再把所得的商相加,计算即可.【解答】解:由题意可得:A =(2x 2−4x −1)−(x −1)÷2x=(2x 2−5x)÷2x =x −52故答案为:�−52【题型8整式除法的应用】【例8】(2022秋•渝中区校级期中)某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、�2;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【分析】(1)先算出两个长方体的体积,再相加,即可得出配件①的体积,求出棱长为a的正方体体积,即可得出配件②的体积;(2)根据题意列出算式1000a3÷(2×172a3+a3)×30,求出即可.【解答】解:(1)生产配件①需要的原材料的体积是:52a•2a•32a+2a•a•�2=172a3;生产配件②需要的原材料的体积是:a•a•a=a3;(2)根据题意得:1000a3÷(2×172a3+a3)×30=50003(元),答:1000a3体积的这种原材料可使该厂最多获利50003元.【变式8-1】(2022春•抚州期末)如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b【分析】根据长方体纸盒的容积等于底面积乘以高,底面积等于底面长方形的长与宽的乘积可以先求出宽,再计算纸盒底部长方形的周长即可.【解答】解:根据题意,得纸盒底部长方形的宽为4�2���=4a,∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.【变式8-2】(2022春•蜀山区期中)爱动脑筋的丽丽与娜娜在做数学小游戏,两人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为﹣3xy(即A÷B=﹣3xy)(1)若丽丽报的是x3y﹣6xy2,则娜娜应报什么整式?(2)若娜娜也报x3y﹣6xy2,则丽丽能报一个整式吗?若能,则是个什么整式?说说你的理由.【分析】根据A÷B=﹣3xy,可知:(1)B=(x3y﹣6xy2)÷(﹣3xy)=−13x2+2y;(2)A=(x3y﹣6xy2)(﹣3xy)=﹣3x4y2+18x2y3;【解答】解:(1)A=x3y﹣6xy2,∴B=(x3y﹣6xy2)÷(﹣3xy)=−13x2+2y;(2)A=(x3y﹣6xy2)(﹣3xy)=﹣3x4y2+18x2y3;【变式8-3】(2022秋•思明区校级期中)【阅读材料】多项式除以多项式,可用竖式进行演算,步骤如下:①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐(或留出空白);②用被除式的第一项去除除式第一项,得到商式的第一项,写再被除式的同次幂上方;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),从被除式中减去这个积;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算2x5+3x3+5x2﹣2x+10除以x2+1的商式和余式,可以用竖式演算如图.所以2x5+3x3+5x2﹣2x+10除以x2+1的商式为2x3+x+5,余式为﹣3x+5.(1)计算(2x3﹣3x2+4x﹣5)÷(x+2)的商式为2x2﹣7x+18,余式为﹣41;(2)2x4﹣4x3+ax2+7x+b能被x2+x﹣2整除,求a、b的值.【分析】(1)根据整式除法的竖式计算方法,整体进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(2x3﹣3x2+4x﹣5)÷(x+2)=2x2﹣7x+18 (41)故答案为:2x2﹣7x+18,﹣41;(2)由题意得:∵2x 4﹣4x 3+ax 2+7x +b 能被x 2+x ﹣2整除,∴﹣5﹣(a +10)=0,b +2(a +10)=0即:a =﹣15,b =10.【题型9整式乘法中的新定义】【例9】(2022秋•夏津县期中)阅读并解决其后的问题:我们将四个有理数a ,b ,c ,d 写成����|的形式,称它为由有理数a ,b ,c ,d 组成的二阶矩阵,a ,b ,c ,d 为构成这个矩阵的元素,我们定义矩阵的运算为:����|=ad ﹣bc ,对于两个矩阵相加我们定义为:����|+����|=�+��+��+��+�|,下面是两个二阶矩阵的加法运算过程:2−335|+−2−41−1|=2+(−2)(−3)+(−4)3+15+(−1)|=0−744|=0×4﹣4×(﹣7)=28.(1)计算17−562|+−151216−8|+−151216−8的值;(2)计算2�−3�+225�−7|+−2�4�+862�+3|+−2�4�+862�+3.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,去括号合并即可得到结果.【解答】解:(1)根据题中的新定义得:原式=17−15−5+126+162−8=2722−6=2×(﹣6)﹣7×22=﹣12﹣154=﹣166;(2)根据题中的新定义得:原式=2�−3−2��+2+4�+8 2+65�−7+2�+3=−35�+1087�−4=﹣3(7x﹣4)﹣8(5x+10)=﹣21x+12﹣40x﹣80=﹣61x﹣68.【变式9-1】(2022秋•兰陵县期中)定义:若A﹣B=1,则称A与B是关于1的单位数.(1)3与4或2是关于1的单位数,x﹣3与x﹣4是关于1的单位数.(填一个含x的式子)(2)若A=3x(x+2)﹣1,�=2(32�2+3�−1),判断A与B是否是关于1的单位数,并说明理由.【分析】(1)根据关于1的单位数的定义,计算和确定3与x﹣3的单位数;(2)计算A﹣B,根据关于1的单位数的定义判断.【解答】解:(1)因为4﹣3=1,3﹣2=1,所以3与4、2是关于1的单位数.设x﹣3与M是关于1的单位数,即x﹣3﹣M=1,或M﹣(x﹣3)=1所以M=x﹣4或M=x﹣2.故答案为:4或2;x﹣4.(2)A与B是关于1的单位数.∵A﹣B=3x(x+2)﹣1﹣2(32x2+3x﹣1)=3x2+6x﹣1﹣3x2﹣6x+2=1∴A与B是关于1的单位数.【变式9-2】(2022•顺平县二模)如果一个两位数a的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记ω(a),例如:a=13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以ω(13)=4.根据以上定义,回答下列问题:(1)计算:ω(23)=5.(2)若一个“跟斗数”b的十位数字是k,个位数字是2(k+1),且ω(b)=8,则“跟斗数”b=26.(3)若m,n都是“跟斗数”,且m+n=100,则ω(m)+ω(n)=19.【分析】(1)根据题目中“跟斗数”的定义,可以计算出f(23)的值;(2)根据题意,可以得到关于k的方程,从而可以求得k的值,然后即可得到b的值;(3)根据题意,可以表示出m、n,然后即可计算出f(m)+f(n)的值.【解答】解:(1)�(23)=23+3211=5.故答案为:5;(2)∵一个“跟斗数”b的十位数字是k,个位数字是2(k+1),且ω(b)=8,∴[10�+2(�+1)]+[10×2(�+1)+�]11=8,解得k=2,∴2(k+1)=6,∴b=26.故答案为:26;(3)∵m,n都是“跟斗数”,且m+n=100,设m=10x+y,则n=10(9﹣x)+(10﹣y),∴ω(m)+ω(n)=(10�+�)+(10�+�)11+[10(9−�)+(10−�)]+[10(10−�)+(9−�)]11=10�+�+10�+�11+90−10�+10−�+100−10�+9−�11=11�+11�11+209−11�−11�11=x+y+19﹣x﹣y=19.故答案为:19.【变式9-3】(2022•渝中区校级模拟)阅读以下材料:材料一:如果两个两位数ab,cd,将它们各自的十位数字和个位数字交换位置后得到两个完全不同的新数ba,dc,这两个两位数的乘积与交换后的两个两位数的乘积相等,则称这样的两个两位数为一对“有缘数对”.例如:46×96=64×69=4416,所以,46和96是一对“有缘数对”,材料二:在进行一些数学式计算时,我们可以把某一单项式或多项式看作一个整体,运用整体换元,使得运算更简单.例如:计算(x2+3x﹣1)(x2+3x﹣8),令:(x2+3x)=A,原式=(A﹣1)(A﹣8)=A2﹣9A+8=(x2+3x)2﹣9(x2+3x)+8=x4+6x3﹣27x+8解决如下问题:(1)①请任写一对“有缘数对”43和68.②并探究“有缘数对”ab和cd,a,b,c,d之间满足怎样的等量关系.并写出证明过程.(2)若两个两位数(x2+2x+3)(x2﹣2x+4)与(x2﹣2x+5)(x2+2x+5)是一对“有缘数对”,请求出这两个两位数.【分析】(1)①根据ac=bd写出一对“有缘数对”;②根据定义得:(10a+b)(10c+d)=(10b+a)(10d+c),化简得ac=bd;(2)根据定义列等式,化简解方程可得x的值,可得这两个两位数.【解答】解:(1)①∵43×68=2924,34×86=2924,∴43和68是一对“有缘数对”,故答案为:43,68;②“有缘数对”ab和cd,a,b,c,d之间满足:ac=bd,理由是:由题意得:(10a+b)(10c+d)=(10b+a)(10d+c),100ac+10bc+10ad+bd=100bd+10bc+10ad+ac,99ac=99bd,ac=bd;(2)∵两位数(x2+2x+3)(x2﹣2x+4)与(x2﹣2x+5)(x2+2x+5)是一对“有缘数对”,∴(x2+2x+3)•(x2﹣2x+5)=(x2﹣2x+4)•(x2+2x+5),(x2+2x)(x2﹣2x)+5(x2+2x)+3(x2﹣2x)+15=(x2﹣2x)(x2+2x)+5(x2﹣2x)+4(x2+2x)+20,x2+2x﹣2x2+4x﹣5=0,x2﹣6x+5=0,x=1或5,当x=1时,x2+2x+3=6,x2﹣2x+4=3,x2﹣2x+5=4,x2+2x+5=8,当x=5时,x2+2x+3=38,不符合题意,∴这两个两位数分别是63和48.【题型10整式乘法中的规律探究】【例10】(2022春•江都区期中)探究规律,并回答问题:(1)运用多项式乘法,计算下列各题:①(x+2)(x+3)=x2+5x+6;②(x+2)(x﹣3)=x2﹣x﹣6;③(x﹣3)(x﹣1)=x2﹣4x+3;(2)若(x+a)(x+b)=x2+px+q,则p=a+b,q=ab;(3)根据此规律,直接写出以下结果:①(x+5)(x+7)=x2+12x+35;②(t+2)(t﹣1)=t2+t﹣2.【分析】根据多项式与多项式相乘的运算法则计算即可.【解答】解:①(x+2)(x+3)=x2+5x+6;②(x+2)(x﹣3)=x2﹣x﹣6;③(x﹣3)(x﹣1)=x2﹣4x+3;故答案为:x2+5x+6;x2﹣x﹣6;x2﹣4x+3;(2)若(x+a)(x+b)=x2+px+q,则p=a+b,q=ab;故答案为:a+b,ab;(3)①(x+5)(x+7)=x2+12x+35;②(t+2)(t﹣1)=t2+t﹣2.故答案为:x2+12x+35;t2+t﹣2.【变式10-1】(2022春•永丰县期末)探究发现:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.阅读解答:比较20182019×20182016与20182017×20182018的大小.解:设20182017=a,那么20182019×20182016=(a+2)(a﹣1)=a2+a﹣2;20182017×20182018=a2+a.因为a2+a﹣2<a2+a(填<>、或=),所以20182019×20182016<20182017×20182018(填<、>、或=).问题解决:化简求代数式的值.(m+22.2018)(m+14.2018)﹣(m+18.2018)(m+17.2018),其中m=2016.【分析】解:(1)根据a2+a>0,可得a2+a﹣2<a2+a,从而得到20182019×20182016<20182017×20182018即可;(2)设a=m+17.2018,可得(a+5)(a﹣3)﹣(a+3)(a+2),再化简计算即可.【解答】解:由题知:a2+a>0;∴a2+a﹣2<a2+a;∴20182019×20182016<20182017×20182018;故答案为:<;<.设a=m+17.2018,∴原式=(a+5)(a﹣3)﹣a(a+1)=a2+2a﹣15﹣a2﹣a=a﹣15=m+17.2018﹣15=m+2.2018,∵m=2016,∴m+2.2018=2018.2018.【变式10-2】(2022春•包河区期末)探究规律,解决问题:(1)化简:(m﹣1)(m+1)=m2﹣1,(m﹣1)(m2+m+1)=m3﹣1.(2)化简:(m﹣1)(m3+m2+m+1),写出化简过程.(3)化简:(m﹣1)(m n+m n﹣1+m n﹣2+…+1)=m n+1﹣1.(n为正整数,m n+m n﹣1+m n ﹣2+…+1为n+1项多项式)(4)利用以上结果,计算1+3+32+33+…+3100的值.【分析】(1)(2)根据多项式乘多项式的运算法则进行计算即可;(3)根据(1)(2)得出的规律可直接得出答案;(4)根据(3)的出的规律可直接代数进行计算即可.【解答】解:(1)(m﹣1)(m+1)=m2﹣1;(m﹣1)(m2+m+1)=m3﹣1;故答案为:m2﹣1;m3﹣1;(2)(m﹣1)(m3+m2+m+1)=m4+m3+m2+m﹣m3﹣m2﹣m﹣1=m4﹣1;(3)(m﹣1)(m n﹣1+m n﹣2+…m2+m+1)=m n+1﹣1;(4)根据(3)得出的规律可得:1+3+32+33+…+3100=3101−13−1,=3101−12.【变式10-3】(2022春•雅安期末)已知x≠1.观察下列等式:(1﹣x)(1+x)=1﹣x2;(1﹣x)(1+x+x2)=1﹣x3;(1﹣x)(1+x+x2+x3)=1﹣x4;…(1)猜想:(1﹣x)(1+x+x2+x3+…+x n﹣1)=1﹣x n;(2)应用:根据你的猜想请你计算下列式子的值:①(1﹣2)(1+2+22+23+24+25+26)=﹣127;②(x﹣1)(x2022+x2021+x2020+…+x2+x+1)=x2023﹣1.(3)判断2100+299+298+…+22+2+1的值的个位数是几?并说明你的理由.【分析】(1)根据所给的等式,不难得出结果;(2)①利用(1)中的结论进行求解即可;②利用(1)中的结论进行求解即可;(3)先利用(1)的结论进行求解,再判断其个位数即可.【解答】解:(1)∵(1﹣x)(1+x)=1﹣x2;(1﹣x)(1+x+x2)=1﹣x3;(1﹣x)(1+x+x2+x3)=1﹣x4…∴(1﹣x)(1+x+x2+x3+…+x n﹣1)=1﹣x n;(2)①(1﹣2)(1+2+22+23+24+25+26)=1﹣27=1﹣128=﹣127;故答案为:﹣127;(2)②(x﹣1)(x2022+x2021+x2020+...+x2+x+1)=﹣(1﹣x)(1+x+x2+ (x2022)=﹣(1﹣x2023)=x2023﹣1.故答案为:x2023﹣1;(3)1,理由如下:2100+299+298+…+22+2+1=﹣(1﹣2)×(1+2+22+ (2100)=﹣(1﹣2101)=2101﹣1.∵21的个位数是2,22的个位数是4,23的个位数是8,24的个位数是6,25的个位数是2,…∴其个位数以2,4,8,6不断循环出现,∵101÷4=25……1,∴2101的个位数字是2,∴2101﹣1的个位数是1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式乘除
一.典型例题分析:
一、同底数幂的乘法
1、下面各式的运算结果为14a 的就是( )
A 、 347a a a a ⋅⋅⋅
B 、 59()()a a -⋅-
C 、 86
()a a -⋅- D 、 77a a + 2、化简32()()x y y x --为 ( )
A.5()x y -
B.6()x y -
C.5()y x -
D. 6
()y x - 二、幂的乘方 1、计算
23
)x -(的结果就是( ) A.5x - B.5x C.6x - D.6x 2、下列各式计算正确的就是( )
A.34()n n n x x =
B.23326()()2x x x +=
C.3131()n n a a ++=
D.24816()a a a -⋅=-
三、积的乘方
1、 ()3423a b -等于( )
A.1269a b -
B.7527a b -
C.1269a b
D.12627a b - 2、 下列等式,错误的就是( )
A 、64232)(y x y x =
B 、3
3)(xy xy -=-
C 、442229)3(n m n m =
D 、64232)(b a b a =-
四、单项式与多项式的乘法
1、计算 (1)3(421)a a b -+ (2)2
(2).(3)x x xy x -++-
(3)(3)(2)x y y x -+ (4)22()()a b a ab b +-+
五、乘法公式(平方差公式)
1、下列式子可用平方差公式计算的式子就是( )
A.))((a b b a --
B.)1)(1(-+-x x
C.))((b a b a +---
D.)1)(1(+--x x
2、 计算()()a b c a b c -+--等于( )
A 、 2()a b c -+ B.22(a b c --)
C.22a b c --()
D.22a b c -+()
3、 化简22(1)(1)a a +--的值为( )
A.2
B.4
C.4a
D.222a +
乘法公式(完全平方公式)
1、 下列各式计算结果就是2
2114m n mn -+的就是( )
A 、 21()2mn -
B 、 2
1
(1)2mn +
C 、 21(1)2mn -
D 、 2
1(1)4mn -
2、 加上下列单项式后,仍不能使241x +成为一个整式的完全平方式的就是(
)
A.44x
B. 4x
C.4x -
D.4
六、同底数幂的除法
1、下列运算正确的就是( )
A.842a a a ÷=
B.0
415⎛⎫
= ⎪⎝⎭
C.33x x x ÷=
D.422()()m m m -÷--
2、 下列计算错误的有( )①623a a a ÷=; ②527y y y ÷=;
③32a a a ÷=; ④422()()x x x -÷-=-; ⑤852x x x x ÷⋅=.
A.4个
B.3个
C.2个
D.1个
七、单项式与多项式的除法
1、下列各式计算正确的就是( )
A.22a a a a ÷⨯=
B.22a a a a ÷÷=
C.21a a a ÷⨯=
D.33a a a a ÷÷=
2、 42332(51520)(5)a a b a b a --+÷-= 、
二.跟踪练习
一、填空题
1、25x x ⋅= , 2y y y y y ⋅+⋅⋅= .
2、合并同类项:22
23xy xy -= .
3、33282n ⨯=, 则=n .
4、5a b +=, 5ab =. 则22
a b += .
5、()()3232x x -+= .
6、如果2249x mxy y -+就是一个完全平方式, 则m 的值为 .
7、52a a a ÷÷= ,43(2)(3)x x ÷= . 8、()2a b ++ ()2a b =-.
9、222217ab a c ⎛⎫⋅-
= ⎪⎝⎭ . 10、32(612)(3)x x x x -+÷-= .
11、 边长分别为a 与2a 的两个正方形按如图(I)的样式摆放,则图中阴影部分的面积为 .
二、选择题
12、下列计算结果正确的就是( )
A 248a a a ⋅=
B 0x x --=
C ()22224xy x y -=
D ()437a a -=
13.下列运算结果错误的就是( )
A ()()22x y x y x y +-=-
B ()2
22a b a b -=- C ()()()
2244x y x y x y x y +-+=- D 2(2)(3)6x x x x +-=-- 14、给出下列各式①2211101a a -=,②10102020x x
-=,③4354b b b -=, ④222910y y y -=-,⑤4c c c c c ----=-,⑥22223a a a a ++=.
其中运算正确有( )
A 3个
B 4个
C 5 个
D 6个
15.下列各式中,计算结果就是2
340a a --的就是( )
A ()()410a a +-
B ()()410a a -+
C ()()58a a -+
D ()()58a a +-
16.下列各式计算中,结果正确的就是( )
A ()()2222x x x -+=-
B ()()223234x x x +-=-
C ()()22x y x y x y --+=-
D ()()222ab c ab c a b c -+=-
17、 在下列各式中,运算结果为22412xy x y -+的就是( )
A ()221xy -+
B ()2221x y --
C ()2221x y -
D ()221xy --
18.下列计算中,正确的就是( )
A ()()835x x x -÷-=
B ()()544a b a b a b +÷+=+
C ()()()623111x x x -÷-=-
D ()352a a a -÷-=
19. 235()a a ⨯的运算结果正确的就是( )
A 13a
B 11a
C 21a
D 6a
20. 若32m n x y x y x y ÷=,则有( )
A 6,2m n ==
B 5,2m n ==
C 5,0m n ==
D 6,0m n ==
三、计算题
21. ()()2342a a -⋅ 22. ()()()23235ab a b ab ⋅-⋅- 23. 12ab ()⎥⎦⎤⎢⎣⎡+--b b a a 3243
2 24. ()()()2
5255x x x ++-.
25. ()221
23xy xy -÷. 26. ()()()2x y x y x y --+-.
27. 应用乘法公式进行计算:2200620082007.⨯-.
四、解答题
28. 先化简,再求值:()()()()232325121x x x x x +-----,其中31
-=x .
29. 解方程:2(2)(4)(4)(21)(4).x x x x x ++-+=-+
五、应用题
30. 已知:为不等于0的数,且1
1m m -=-,求代数式221
m m +的值.
31.已知:212x xy +=,215xy y +=,求()()()2x y x y x y +-+-的值.。

相关文档
最新文档