双语离散数学期末考试_2012年春季_试卷A
离散数学期末试题(A)
离散数学期末试题(A)(满分100分)一、单项选择题(共40分,每题4分)1、设集合A={3{4}5 6}选择下列所给答案正确的是()A、{5}∈AB、{{4},5,6}≤AC、{3 4 5 6}≤AD、Φ≤{3{4}}2、由集合运算定义,下列各式正确的是()A、X ≥X U YB、X ≤X n YC、X ≤X U YD、Y ≤X n Y3、设R、R1、R2是集合A、B上的二元关系,则下列表达式正确的是()A、若R1≤R2则R-11≤R-12B、(R1V R2)-1 = R-11n R-12C、(~R)-1 = R-1D、(R1- R2)-1 = R-11+R-124、设集合{1 2 3 4 },A上的关系R={(1 1)(2 3)(2 4)(3 4)}则R具有()A、自反性B、传递性C、对称性D、以上答案都不对5、设命题公式G = (P Q)H = P (Q P)则G与H的关系是()A、G =﹥HB、H =﹥GC、G = HD、以上都不是6、设G、H是一阶逻辑式P是一个谓词G = xp(x)H = xp(x)则一阶逻辑公式G H是()A、恒真的B、恒假的C、可满足的D、前束范式7、下面代数系统中(G、*)中()不是群A、G为整数集合*为加法B、G为偶数集合*为加法C、G为有理数集合*为加法D、G为有理数集合*为乘法8、设б1、б2、б3是三个置换,其中б1=(1 2)(2 3)(1 3)б2 =(2 4)(1 4)б3= (1 3 2 4)则б3=()A、б12B、б1б2C、б22D、б2б19、下列半序集中哪个不是格()A B C D10、G是连通平面图,有5个顶点、6个面,则G的边数为()A、6B、5C、11D、9二、填空题(共20分,每空4分)1、无孤立点的有限有向图有欧拉路的充要条件是。
2、设CB,·,+,-,0,1﹥是布尔代数,a,b,c是集合B中任意元素,则(a,b)+(a,b,c)+ (a , b , c)+ (a , b , c)= 。
《离散数学》考试试卷(试卷库20卷)及答案
《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。
命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。
离散数学期末试题A答案及评分标准
--北京工商大学离散数学试卷(A)答案及评分标准题号 一 二三 四 五 六 七总分得分一、(30分)设A ={1,2,3,4},给定A 上二元关系R 如下:R ={<1,1>, <1,2>, <2,3>, <3,3>, <4,4>}请回答以下各问题:1.写出R 的关系矩阵. (3分)2.画出R 的关系图. (3分)3.求包含R 的最小的等价关系,并写出由其确定的划分. (6分)4.分别用关系矩阵表示出R 的自反闭包r (R )、对称闭包s (R ). (6分)5.求传递闭包t (R ).(写出计算步骤)(6分)6.求R 2的关系矩阵. (3分)7.集合A 上最多可以确定多少个不同的二元关系?说明理由。
(3分)[解] (1)⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000010001000011R M 。
……(3分)(2) ……(3分)(3)法一:直接由等价关系与划分之间的一一对应可知,包含R 的最小等价关系为: {<1, 2>, <1, 3>, <2, 1>,<2, 3>, <3, 1> <3, 2>}∪I A , ……(3分) 对应的划分为{{1, 2, 3},{4}}. ……(6分) 法二:包含R 的最小的等价关系就是tsr (R ), 计算过程如下:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=100001000110001110000100001000011000010001000011)(E M M R R r,100001100111001110000110001100011000010001100011][)()()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+=T R r R r R sr M M M ,3,10001110111011110000110011100111000011001110011)]([)()()]([2≥=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯=k M M M M k R sr R sr R sr R sr 从而,10000111011101111000011101110111100001110111011110000111011101111000011001110011432)]([)]([)]([)()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=R sr R sr R sr R sr R tsr M M M M M即}2,3,1,3,3,2,1,2,3,1,2,1{)(><><><><><><⋃=A I R tsr =包含R 的最小的等价关系, ……(3分) 故其对应的划分为{{1, 2, 3},{4}}. ……(6分) 法三:由于4=A ,包含R 的最小的等价关系就是4131211)()()()()()(----⋃⋃⋃⋃⋃⋃⋃⋃==R R R R R R R R I R rts R tsr A ,计算过程如下:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃100001100101001110000110000100011000010001000011][1TR R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃10000111011101111000011001010011)][(22)(21T R R R R M M M412131)()(33)(10000111011101111000011001010011)][(---⋃⋃⋃==⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=R R R R T R R R R M M M M M 考试纪律承诺本人自愿遵守学校考试纪律,保证以诚信认真的态度作答试卷。
离散数学期末考试试题(配答案)
离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。
2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。
二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。
(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。
(10分)5. 试判断),(≤z 是否为格?说明理由。
(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。
(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。
求证:g f 和都是满射;但不是单射。
(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。
离散数学期末试卷A卷及答案
《离散数学》试卷(A 卷)一、 选择题(共5 小题,每题 3 分,共15 分)1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕⋃)(为(C )。
A 、{1,2}B 、{2,3}C 、{1,4,5}D 、{1,2,3}2、下列语句中哪个是真命题 ( A )A 、如果1+2=3,则4+5=9;B 、1+2=3当且仅当4+5≠9。
C 、如果1+2=3,则4+5≠9;D 、1+2=3仅当4+5≠9。
3、个体域为整数集合时,下列公式( C )不是命题。
A 、)*(y y x y x =∀∀B 、)4*(=∃∀y x y xC 、)*(x y x x =∃D 、)2*(=∃∃y x y x4、全域关系A E 不具有下列哪个性质( B )。
A 、自反性B 、反自反性C 、对称性D 、传递性5、函数612)(,:+-=→x x f R R f 是( D )。
A 、单射函数B 、满射函数C 、既不单射也不满射D 、双射函数二、填充题(共 5 小题,每题 3 分,共15 分)1、设|A|=4,|P(B)|=32,|P(A ⋃B)|=128,则|A ⋂B|=ˍˍ2ˍˍˍ.2、公式)(Q P Q ⌝∨∧的主合取式为 。
3、对于公式))()((x Q x P x ∨∃,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为ˍˍˍ1ˍˍˍ。
4、设A ={1,2,3,4},则A 上共有ˍˍˍ15ˍˍˍˍ个等价关系。
5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。
三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分)1、“这个语句是真的”是真命题。
( F )2、“刚和小强是同桌。
”是复合命题。
( F )3、))(()(r q q p p ∧⌝∧→⌝∨是矛盾式。
( T )4、)(T S R T R S R ⋂⋅⊆⋅⋃⋅。
离散数学期末考试试题(有几套带答案1)
离散数学试题(A卷及答案)一、证明题(10分)1)(P∧(Q∧R))∨(Q ∧R)∨(P ∧R)R证明: 左端(P ∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R((P ∨Q)∨(P∨Q))∧R T∧R(置换)R2)∃x(A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E, ⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S证明:(1) (C∨D)→⌝E(2) ⌝E→(A∧⌝B)(3) (C∨D)→(A∧⌝B)(4) (A∧⌝B)→(R∨S)(5) (C∨D)→(R∨S)(6) C∨D(7) R∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x)) 证明(1)∃xP(x)(2)P(a)(3)∀x(P(x)→Q(y)∧R(x))(4)P(a)→Q(y)∧R(a)(5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)∃x(P(x)∧R(x))(11)Q(y)∧∃x(P(x)∧R(x))五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)证明∵x∈A-(B∪C)⇔x∈A∧x∉(B∪C)⇔x∈A∧(x∉B∧x∉C)⇔(x∈A∧x∉B)∧(x∈A∧x∉C)⇔x∈(A-B)∧x∈(A-C)⇔ x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C)六、已知R、S是N上的关系,其定义如下:R={<x,y>| x,y∈N∧y=x2},S={<x,y>| x,y∈N∧y=x+1}。
2012-2013年离散数学A卷
一、选择题(每小题 2 分,共 20分)1.下列命题为假.命题的是()A.如果2是偶数,那么雪是白的B.如果2是偶数,那么雪是黑的C.如果2是奇数,那么雪是白的D.如果2是奇数,那么雪是黑的2.谓词公式∀x(P(x)∨∃yR(y))→Q(x)中变元x是()A.自由变元B.约束变元C.既不是自由变元也不是约束变元D.既是自由变元也是约束变元3.若个体域为整数域,下列公式中值为真的是()A.∀x∃y(x+y=0)B.∃y∀x(x+y=0)C.∀x∀y(x+y=0)D.⎤∃x∃y(x+y=0)4.设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A.P⊃QB.P⊇QC.Q⊃PD.Q=P5.设A, C, B, D为任意集合,以下命题一定为真的是()A. A∪B= A∪C =>B=CB. A×C= A×B =>B= CC. A∪(B×C) = (A∪B)×(A∪C)D. 存在集合A,使得A ⊆ A ×A6.半群、群及独异点的关系是()A.{群}⊂{独异点}⊂{半群}B.{独异点}⊂{半群}⊂{群}C.{独异点}⊂{群}⊂{半群}D.{半群}⊂{群}⊂{独异点}7.设集合A={1,2,3},下列关系R中不.是等价关系的是()A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C.R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>}8. 函数f:R→R,f(x)= x2-2x+1,则f(x)是()函数。
离散数学考试试题(A卷及答案)
离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。
二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。
解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。
因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。
四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。
解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。
2011-2012离散数学A卷试题
2011-2012学年第一学期《离散数学》期末考试试卷A一、选择题(共6题,每题3分,共18分)1.设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不在室内运动”可符合化为()A.⎤P∧QB.⎤P→QC.⎤P→⎤QD.P→⎤Q2.谓词公式∀x(P(x)∨∃yR(y))→Q(x)中变元x是()A.自由变元B.约束变元C.既不是自由变元也不是约束变元D.既是自由变元也是约束变元3.下列命题中不正确的是()A.x∈{x}-{{x}}B.{x}⊆{x}-{{x}}C.A={x}∪x,则x∈A且x⊆AD.A-B=∅⇔A=B4.设集合}}{,{aAφ=,则下面()是A的幂集:A}}}{{},{,{aaφ B }}}{,{},{},{,{aaφφφC}}}{,{},{},{{aaφφ D }}}{},{,{aφφ5.设集合A={1,2,3},下列关系R中不是等价关系的是()A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C.R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>} 6.(a) (b)(d)(c)A (a )是欧拉图,(b )是哈密顿图B (a )是欧拉图,(c )是哈密顿图C (b )是欧拉图,(d )是哈密顿图D (c )是欧拉图,(d )是哈密顿图 二、填空题(共8题,每题3分,共24分)1.已知256)(,64)(,3===B A P B P A ,则=B , =B A ,=-)(B A P .2. 命题公式r q p B r q p A →⌝∧=∨→=)(),(,它们关系是 A B (填写“⇔⇐⇒,,”). 3 .判别命题公式的类型:q q p∧→⌝)(是 公式.4.中根遍历下图中结点的次序为 .5.设f ∶R →R,f(x)=x+3,g ∶R →R,g(x)=2x+1,则复合函数_________))(g (f =x ,______)x )(f (g = 。
双语离散数学期末考试_2012年春季_试卷A
电子科技大学2011 -2012学年第 2学期期 末 考试 A 卷课程名称: 离散数学 考试形式: 闭卷 考试日期: 2012 年 6 月 日 考试时长:120分钟 课程成绩构成:平时 10 %, 期中 20 %, 实验 0 %, 期末 70 % 本试卷试题由____ _部分构成,共_____页。
I.Multiple Choice (15%)1. (⌝p ∧q)→(p ∨q) is logically equivalent toa) T b) p ∨q c) F d) ⌝ p ∧q ( ) 2. If P(A) is the power set of A, and A = , what is |P(P(P(A)))|?a) 4 b) 24 c) 28 d) 216( ) 3. Which of these statements is NOT a proposition?a) Tomorrow will be Friday. b) 2+3=4.c) There is a dog. d) Go and play with me.( )4. The notation K n denotes the complete graph on n vertices. K n is the simple graph thatcontains exactly one edge between each pair of distinct vertices. How many edges comprise a K 20?a) 190 b) 40 c) 95 d) 380( )5. Suppose | A | = 5 and | B | = 9. The number of 1-1 functions f : A → B isa) 45 b) P (9,5). c) 59 d) 95( )6. Let R be a relation on the positive integers where xRy if x divides y . Whichof the following lists of properties best describes the relation R ?a) reflexive, symmetric, transitive b) reflexive, antisymmetric, transitive c) reflexive, symmetric, antisymmetric d) symmetric, transitive ( )7. Which of the following are partitions of }8,7,6,5,4,3,2,1{=U ?a) }8,7,6,5,4,3{},3,2,1{},1{ b) }8,7,6,5,4,3{},3,2{},1{c) }8,6,5{},3,2{},7,4,1{ d) }8,7,6,5,4{},3,2{},2,1{( ) 8. The function f(x)=3x 2log(x 3+21) is big-O of which of the following functions? a) x 3 b) x 2(logx)3 c) x 2logx d) xlogx ( ) 9.In the graph that follows, give an explanation for why there is no path from a back to a that passes through each edge exactly once.a) There are vertices of odd degree, namely {B,D}. b) There are vertices of even degree, namely {A,C}. c) There are vertices of even degree, namely {B,D}. d) There are vertices of odd degree, namely {A,C}.( ) 10. Which of the followings is a function from Z to R ?a) )1()(-±=n n f . ` b) 1)(2+=x x f . c) x x f =)( d) 11)(2-=n n fII. True or False (10%)( ) 1. If 3 < 2, then 7 = 6. ( ) 2. p ∧ (q ∨ r)≡ (p ∧ q) ∨ r( ) 3. If A , B , and C are sets, then (A -C )-(B -C )=A -B . ( ) 4. Suppose A = {a ,b ,c }, then {{a }} ⊆ P (A ).( ) 5. ()100h x x =+is defined as a function with domain R and codomain R.( ) 6. Suppose g : A → B and f : B → C , where f g is 1-1 and f is 1-1. g must be 1-1? ( ) 7. If p and q are primes (> 2), then p + q is composite .( ) 8.If the relation R is defined on the set Z where aRb means that ab > 0, then R is an equivalence relation on Z .( ) 9. Every Hamilton circuit for W n has length n .( ) 10. There exists a simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.III. Fill in the Blanks (20%)1. Let p and q be the propositions “I am a criminal” and “I rob banks”. Express in simple English the propositi on “if p then q”: .2. P (x ,y ) means “x + 2y = xy ”, where x and y are integers. The truth value of ∃x ∀yP (x ,y ) is .3. T he negation of the statement “No tests are easy.” is .4. If 11{|}i A x x R x i i =∈∧-≤≤ then 1i i A +∞=is .5. Suppose A = {x , y }. Then ()P A is .6. Suppose g : A →A and f :A →A where A ={1,2,3,4},g = {(1, 4), (2,1), (3,1), (4,2)} andf ={(1,3),(2,2),(3,4),(4,2)}.Then fg = . 7.The sum of 2 + 4 + 8 + 16 + 32 + ... + 210 is .8. The expression of gcd(45, 12) as a linear combination of 12 and 45 is .9.There are permutations of the seven letters A,B ,C ,D ,E ,F have A immediately to the left of E .10. If G is a planar connected graph with 18 vertices, each of degree 3, then G has _ __regions. IV. Answer the Questions (32%):1. Determine whether the following argument is valid: p → r q → r q ∨ ⌝r ________∴ ⌝p2. S uppose you wish to prove a theorem of the form “if p then q ”. (a) If you give a direct proof, what do you assume and what do you prove? (b) If you give an indirect proof, what do you assume and what do you prove? (c) If you give a proof by contradiction, what do you assume and what do you prove?3. Prove that A B A B ⋂=⋃ by giving a proof using logical equivalence.4.Suppose f:R→R where f(x) =⎣x/2⎦.(a) If S={x| 1 ≤x≤ 6}, find f(S).(b) If T={3,4,5}, find f-1(T).e the definition of big-oh to prove that5264473n nn+--is O(n3).6.Solve the linear congruence 5x≡ 3 (mod 11).e the Principle of Mathematical Induction to prove that131 1392732nn+-++++...+=for alln≥ 0.8.Draw the directed graph for the relation defined by the matrix1111 0111 0011 0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.V. (6%) Without using the truth table, show that the following are tautologiesa) [⌝p ∧(p ∨q)]→q b) [p ∧(p →q)]→qVI. (6%) Devise an algorithm which will find the minimum of n integers. What is the worst casetime complexity of this algorithm?VII. (5%) Give the definition of a transitive relation, and Prove or disprove that the union oftwo transitive relations is transitive.VIII.(6%) The pseudo-code of Prim’s algorithm is given as following:Procedure Prim(G: connected weighted undirected graph with n vertices)T := a minimum-weight edgefor i := 1 to n 2begine := an edge of minimum weight incident to a vertex in T and notforming a simple circuit in T if added to TT := T with e addedPrint eend {T is a minimum spanning tree of G}(a)Find a minimum spanning tree using Prim’s algorithm given above. For every iterative in for-loop, list theresult for “Print e” statement.(b)Compute the total weight of the spanning tree.。
2012离散数学A卷
3 2 1 ,考试作弊将带来严重后果! 华南理工大学期末考试 《Discrete Mathematics 》 : 1. 考前请将密封线内填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷; 本试卷共4 大题,满分100分, 考试时间120分钟。
. Choose an answer to the following question. (10 x 2’ = 20’) ) B) x > 1.5 D) Help me. is true for all possible assignments of truth values to p q except for which assignment?( ) )p false, q true B )p true, q false )p false, q false D )p true, q true “No Computer Major is taking any courses ” where C(x) is the statement x is a Computer ) A ) B ) C ) D ) (4) Function f is defined as x x x f Z Z f 2)(,:-=→, so f is ( ) A )onto B ) both onto and one-to-one C )one-to-one D ) neither onto nor one-to-one (5) Supposed a binary relation R (Figure 1) on the set A = { 1, 2, 3 }, R is ( ) A) irreflexive, symmetric, non-transitive B) reflexive, antisymmetric, transitive C) irreflexive, antisymmetric, transitive Figure 1. D) reflexive, antisymmetric, non-transitive (6) Which of these arguments is true?( ) A) (P(S), subset of ) is a poset and also total ordered B) (Z +,|) is totally orderedC) The divisibility relation(可整除) “ | ” is a partial ordering on the set of positive integers.(Z+,|) is a poset.D) (N, >=) is well-ordered(7) (A⋃B)-C= ( )A) (A – C) ⋃ B B) (A-C)⋃(B-C)C) A – (B⋃C) D) (A-C)∩(B-C)(8) Which statement is correct?()A) There are 2n 1s and n (n-2) 0s in the adjacency matrix for C n.B) C n is always bipartite .C) Q n has n2n edges and 2n vertices.D) K n has n (n+1)/2 edges and n vertices.(9) How many planar graphs in the following graphs? ( )A) 4 B) 3 C) 2 D) 1(10) Which statement is wrong? ( )A. If a directed graph is strongly connected, it must be an Euler graph.B. A graph with cut edge cannot be an Euler graph.C. If a graph is an Euler graph, it must be a strongly connected graph.D. A graph with cut vertex cannot be a Hamilton graph.2.Fill in the blanks. (10 x 2’ = 20’)(1) If p→q is true, the truth value of p∧q →q is(2) Let C(x): x is a computer. D(x): x is a peripheral equipment. P(x, y): x can communicate with y. Express the sentence “some computers can’t communicate with some peripheral equipment” as a logical expression as______________.(3) Let l be “Lois works late”, let j be “John works late”, and let e be “they willeat at home ”. Express the statement “If Lois or John do not work late, then they will eat at home ”__________________(4)A={ l ,m ,n },B={ a ,b ,c },C={ x ,y ,z }. R :A→B ,S :B→C ,and R={ <l ,b>,<m ,a >,<n ,c> }, S={< a ,y>,<b ,x> ,<c ,y>,<c ,z>}, SоR =______________.(5) A = { ∅, {∅}}, )(A ρ i s t h e p o w e r s e t o f A . )(A ρ=______________.(6) R is the real number domain. For x R ∀∈, ()2f x x =+, ()2g x x =- and ()3h x x =. Hence, ()h g f = _______________.(7) R is “ more than or equal to ” relation on Z ×Z ,then R -1=________.(8) R is the relation “brother or sister ”, xRy represents “x is the brother or sister of y ”, ① irreflexive ② reflexive ③ symmetric ④antisymmetric ⑤ transitive. R has the properties _____.(9) The complete bipartite graph K m, n has ____ cut edges.(10) The sum of the weights of the minimum spanning tree forthe graph in the right hand side is _____.3. Computation and Analysis. (6 x 6’ = 36’)(1) Prove the equivalence of predicate:()()(()())()()()()x y P x Q y x P x y Q y ∀∀→⇔∃→∀(2) Given the premises ⌝A ∨B, ⌝C →⌝B, C →D, how to get the conclusion A →D?(3) Suppose A = {a , b, c, d}, a relation on A is R = {<a, b>, <b, a>, <b, c>, <c, d>}. Please use the zero-one matrix to find the transitive closure of R.0100101000010000R M ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(4)Can the following graph be drawn in one stroke ? Why ?(5) Find out whether G and H are isomorphic. No matter what the judgment is, please give your explanation and argument.(6) Use the ordered rooted tree to represent the expression ((3*x-5*(y↑2))↑5)/(a*((b↑3)-4*c))4.Application of Discrete Mathematics. (4 x 6’ = 30’)(1)Use inference to obtain conclusion from the premises.All the people who like walking do not like driving. Every person likes driving or riding. Some people don’t like riding. Therefore, some people don’t like walking.(2)Suppose R is a reflexive and transitive relation on A. T is also a relation on A, such that:<a,b>∈T <a,b>∈R and <b,a>∈RProve that T is an equivalence relation.(3) 6 people are supposed to accomplish 3 tasks in groups (2 people in one group). The people in the same group should cooperate with each other to accomplish the task. We now know each person could cooperate with at least other 3 people. Is that possible that all the tasks could be accomplished?(4) The roads represented by this graph are all unpaved. The lengths of the roads between pairs of towns are represented by edge weights. Which roads should be paved so that there is path of paved roads between each pair of town so that a minimum road length is paved?。
离散数学期末考试题及答案
离散数学期末考试题及答案1. 题目描述:以下是离散数学期末考试的题目。
请仔细阅读每个问题,并在题后给出相应的答案。
请注意,答案应尽量详细和准确,以确保得分。
1.1 命题与谓词逻辑(20分)1.1.1 什么是命题逻辑?它可以用于解决哪些问题?1.1.2 简要解释谓词逻辑的概念和其在离散数学中的应用。
1.2 集合和图论(30分)1.2.1 定义两个集合的并、交和差的概念。
1.2.2 解释有向图和无向图的区别,并给出一个实际应用中的例子。
1.3 关系和函数(40分)1.3.1 什么是关系?请给出一个实际应用中关系的例子。
1.3.2 定义函数的概念,并解释函数与关系的区别。
1.4 计数原理(20分)1.4.1 简要阐述乘法原理和加法原理的概念,并给出一个应用实例。
1.4.2 什么是排列和组合?请说明它们的应用场景,并给出一个例子。
2. 答案解析:2.1 命题与谓词逻辑1.1.1 命题逻辑是一种数学分支,用于研究命题之间的关系和推理规则。
其应用范围广泛,包括数学、计算机科学、哲学等领域。
1.1.2 谓词逻辑是一种扩展了命题逻辑的逻辑体系,它考虑了命题中的变量、谓词和量词等元素。
在离散数学中,谓词逻辑常用于描述集合、函数和关系等概念。
2.2 集合和图论1.2.1 集合的并(∪)是指将两个或多个集合中的所有元素取出形成一个新的集合;交(∩)指仅包含两个或多个集合中共有的元素;差(-)是指从一个集合中去除另一个集合中的元素。
1.2.2 有向图中,边是具有方向性的;而在无向图中,边是没有方向性的。
例如,在社交网络中,有向图可以表示人与人之间的关注关系,而无向图可以表示人与人之间的好友关系。
2.3 关系和函数1.3.1 关系是集合之间的一种特殊的子集,它描述了元素之间的某种联系。
例如,家族中的血亲关系可以看作是一个关系。
关系可以用图、矩阵等方式表示。
1.3.2 函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
离散数学期末考试试题(有几套带答案)
离散试卷及答案离散数学试题(A 卷及答案)一、证明题(10分) 1)(P ∧(Q ∧R))∨(Q ∧R)∨(P ∧R)R证明: 左端(P ∧Q ∧R)∨((Q ∨P)∧R)((P ∧Q)∧R))∨((Q ∨P)∧R)((P ∨Q)∧R)∨((Q ∨P)∧R)((P ∨Q)∨(Q ∨P))∧R ((P ∨Q)∨(P ∨Q))∧RT ∧R(置换)R2)x(A(x)B(x))xA(x)xB(x) 证明 :x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)二、求命题公式(P ∨(Q ∧R))(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))(P ∧Q ∧R)(P ∨(Q ∧R))∨(P ∧Q ∧R))(P ∧(Q ∨R))∨(P ∧Q ∧R) (P ∧Q)∨(P ∧R))∨(P ∧Q ∧R) (P ∧Q ∧R)∨(P ∧Q ∧R)∨(P ∧Q ∧R))∨(P ∧Q ∧R))∨(P ∧Q ∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6三、推理证明题(10分) 1)C ∨D, (C ∨D) E, E (A ∧B), (A ∧B)(R ∨S)R ∨S证明:(1) (C ∨D) E(2) E (A ∧B) (3) (C ∨D)(A ∧B)(4) (A ∧B)(R ∨S)(5) (C ∨D)(R ∨S)(6) C ∨D (7) R ∨S 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x)(2)P(a) (3)x(P(x)Q(y)∧R(x)) (4)P(a)Q(y)∧R(a)(5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)x(P(x)∧R(x))(11)Q(y)∧x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子科技大学2011 -2012学年第 2学期期 末 考试 A 卷课程名称: 离散数学 考试形式: 闭卷 考试日期: 2012 年 6 月 日 考试时长:120分钟 课程成绩构成:平时 10 %, 期中 20 %, 实验 0 %, 期末 70 % 本试卷试题由____ _部分构成,共_____页。
I.Multiple Choice (15%) ( ) 1. (⌝p ∧q)→(p ∨q) is logically equivalent toa) T b) p ∨q c) F d) ⌝ p ∧q ( ) 2.If P(A) is the power set of A, and A = , what is |P(P(P(A)))|?a) 4 b) 24 c) 28 d) 216( )3.Which of these statements is NOT a proposition? a) Tomorrow will be Friday. b) 2+3=4.c) There is a dog. d) Go and play with me. ( )4. The notation K n denotes the complete graph on n vertices. K n is the simple graph thatcontains exactly one edge between each pair of distinct vertices. How many edges comprise a K 20?a) 190 b) 40 c) 95 d) 380 ( )5. Suppose | A | = 5 and | B | = 9. The number of 1-1 functions f : A → B isa) 45 b) P (9,5). c) 59 d) 95 ( )6. Let R be a relation on the positive integers where xRy if x divides y . Whichof the following lists of properties best describes the relation R ?a) reflexive, symmetric, transitive b) reflexive, antisymmetric, transitive c) reflexive, symmetric, antisymmetric d) symmetric, transitive ( )7. Which of the following are partitions of }8,7,6,5,4,3,2,1{=U ?a) }8,7,6,5,4,3{},3,2,1{},1{ b) }8,7,6,5,4,3{},3,2{},1{c) }8,6,5{},3,2{},7,4,1{ d) }8,7,6,5,4{},3,2{},2,1{( ) 8. The function f(x)=3x 2log(x 3+21) is big-O of which of the following functions? a) x 3 b) x 2(logx)3 c) x 2logx d) xlogx( ) 9.In the graph that follows, give an explanation for why there is no path from a back to a that passes through each edge exactly once.a) There are vertices of odd degree, namely {B,D}. b) There are vertices of even degree, namely {A,C}. c) There are vertices of even degree, namely {B,D}. d) There are vertices of odd degree, namely {A,C}.( ) 10. Which of the followings is a function from Z to R ?a) )1()(-±=n n f . ` b) 1)(2+=x x f .c) x x f =)( d) 11)(2-=n n fII. True or False (10%) ( ) 1. If 3 < 2, then 7 = 6. ( ) 2. p ∧ (q ∨ r)≡ (p ∧ q) ∨ r( ) 3. If A , B , and C are sets, then (A -C )-(B -C )=A -B . ( ) 4. Suppose A = {a ,b ,c }, then {{a }} ⊆ P (A ).( )5. ()h x =is defined as a function with domain R and codomain R.( ) 6. Suppose g : A → B and f : B → C , where f g is 1-1 and f is 1-1. g must be 1-1? ( ) 7. If p and q are primes (> 2), then p + q is composite .( ) 8.If the relation R is defined on the set Z where aRb means that ab > 0, then R is an equivalence relation on Z .( ) 9.Every Hamilton circuit for W n has length n . ( ) 10. There exists a simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.III. Fill in the Blanks (20%)1. Let p and q be the propositions “I am a criminal” and “I rob banks”. Express in simple English the proposition “if p then q”: .2. P (x ,y ) means “x + 2y = xy ”, where x and y are integers. The truth value of ∃x ∀yP (x ,y ) is .3. T he negation of the statement “No tests are easy.” is .4. If 11{|}i A x x R x i i =∈∧-≤≤ then 1i i A +∞=is .5. Suppose A = {x , y }. Then ()P A is .6. Suppose g : A →A and f :A →A where A ={1,2,3,4},g = {(1, 4), (2,1), (3,1), (4,2)} andf ={(1,3),(2,2),(3,4),(4,2)}.Then fg = . 7.The sum of 2 + 4 + 8 + 16 + 32 + ... + 210 is .8. The expression of gcd(45, 12) as a linear combination of 12 and 45 is . 9. There are permutations of the seven letters A,B ,C ,D ,E ,F have A immediately to the left of E .10.If G is a planar connected graph with 18 vertices, each of degree 3, then G has _ __ regions.IV. Answer the Questions (32%):1. Determine whether the following argument is valid: p → r q → r q ∨ ⌝r ________∴ ⌝p2. Suppose you wish to prove a theorem of the form “if p then q ”. (a) If you give a direct proof, what do you assume and what do you prove? (b) If you give an indirect proof, what do you assume and what do you prove? (c) If you give a proof by contradiction, what do you assume and what do you prove?3. Prove that A B A B ⋂=⋃ by giving a proof using logical equivalence.4.Suppose f:R→R where f(x) =⎣x/2⎦.(a) If S={x| 1 ≤x≤ 6}, find f(S).(b) If T={3,4,5}, find f-1(T).e the definition of big-oh to prove that5264473n nn+--is O(n3).6.Solve the linear congruence 5x≡ 3 (mod 11).e the Principle of Mathematical Induction to prove that131 1392732nn+-++++...+=for alln≥ 0.8.Draw the directed graph for the relation defined by the matrix1111 0111 0011 0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.VI.(6%) Devise an algorithm which will find the minimum of n integers. What is the worst case time complexity of this algorithm?VII.(5%) Give the definition of a transitive relation, and Prove or disprove that the union of two transitive relations is transitive.VIII. (6%) The pseudo-code of Prim ’s algorithm is given as following:Procedure Prim (G : connected weighted undirected graph with n vertices) T := a minimum-weight edge for i := 1 to n 2 begine := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T T := T with e addedPrint eend {T is a minimum spanning tree of G }(a) Find a minimum spanning tree using Prim ’s algorithm given above. For every iterative in for-loop, list theresult for “Print e ” statement.(b) Compute the total weight of the spanning tree.。