高二期中试题
2022~2023年高二期中考题(天津市部分区)
选择题“文变染乎世情,兴废系乎时序”。
改革开放40年来,文学总是能敏锐感应社会生活种种动向,并也在这种审美反应中及时更新自己。
这说明A.文化发展具有相对独立性B.文化能够转化为物质力量C.文化是人类社会实践的产物D.—定的文化决定—定的社会【答案】C【解析】C:改革开放40年来,文学总是能敏锐感应社会生活种种动向,并也在这种审美反应中及时更新自己。
这说明文化是人类社会实践的产物,C正确。
AB:材料强调的是文化的产生,没体现文化发展具有相对独立性,也没体现文化能够转化为物质力量,排除AB。
D:该选项夸大了文化的作用,排除D。
故本题选C。
选择题“家风好,就能家道兴旺、和顺美满;家风坏,难免殃及子孙、贻害社会。
”家庭是我们的生活共同体,是人生的第—个课堂,良好家风的熏陶对于孩子的健康成长尤为重要。
这表明A.人的精神活动离不开物质活动B.良好的家庭环境对孩子成长起决定作用C.家庭教育对孩子成长有潜移默化的作用D.良好家风对展示国家的实力具有独特作用【答案】C【解析】A:材料强调的是文化对人的影响,没体现人的精神活动离不开物质活动,排除A。
B:良好的家庭环境对孩子成长有着重要影响,但不起决定作用,B 错误。
C:良好家风的熏陶对于孩子的健康成长尤为重要,这表明家庭教育对孩子成长有潜移默化的作用,C正确。
D:该选项夸大了良好家风对国家的作用,排除D。
故本题选C。
选择题近年来,我国积极推进“互联网+现代农业”,加快构建现代农业产业体系、生产体系、经营体系,不断提高农业创新力、竞争力和全要素生产率,加快实现由农业大国向农业强国转变。
这表明①文化是人们根据自己的需要创造的②文化与经济相互影响、相互交融③文化在经济发展中的作用越来越突出④文化作为重要精神力量,同时也是物质力量A. ①②B. ③④C. ②③D. ①④【答案】C【解析】①:文化是人类社会实践的产物,人不能根据自己需要随意创造文化,①错误。
②③:题目中,我国积极推进“互联网+现代农业”,不断提高农业创新力、竞争力和全要素生产率,加快实现由农业大国向农业强国转变。
高二语文期中考试题及答案
高二语文期中考试题及答案一、选择题(每题2分,共20分)1. 下列词语中,加点字的读音全部正确的一项是:A. 箴言(zhēn)恣意(zì)踌躇(chóu)B. 蹉跎(cuō)缄默(jiān)旖旎(yǐ)C. 蹉跎(cuō)缄默(jiān)旖旎(nǐ)D. 箴言(zhēn)恣意(zì)踌躇(chú)2. 下列句子中,没有语病的一项是:A. 他不仅学习好,而且品德高尚。
B. 由于他刻苦学习,因此成绩优异。
C. 这篇文章的中心思想是歌颂劳动人民的勤劳和智慧。
D. 我们要注意防止不再发生类似的错误。
3. 下列句子中,使用了比喻修辞手法的一项是:A. 他像一只猛虎下山,勇往直前。
B. 他的心情像天气一样变化无常。
C. 她的声音如同泉水般清澈。
D. 他的行为让人难以捉摸。
4. 下列句子中,使用了拟人修辞手法的一项是:A. 春风又绿江南岸。
B. 太阳从东方升起。
C. 月亮悄悄地爬上了树梢。
D. 星星在夜空中闪烁。
5. 下列句子中,使用了排比修辞手法的一项是:A. 他勤奋学习,刻苦钻研,成绩优异。
B. 春天来了,万物复苏,大地回春。
C. 他热爱生活,热爱工作,热爱学习。
D. 他喜欢音乐,喜欢运动,喜欢阅读。
6. 下列句子中,使用了设问修辞手法的一项是:A. 我们为什么要学习?B. 学习是为了什么?C. 学习是为了提高自己。
D. 我们应该热爱学习。
7. 下列句子中,使用了反问修辞手法的一项是:A. 难道我们不应该热爱学习吗?B. 学习难道不是为了提高自己吗?C. 我们应该热爱学习。
D. 学习是为了提高自己。
8. 下列句子中,使用了夸张修辞手法的一项是:A. 他跑得比兔子还快。
B. 他学习非常认真。
C. 他的成绩很好。
D. 他非常热爱学习。
9. 下列句子中,使用了反复修辞手法的一项是:A. 他热爱学习,热爱学习,热爱学习。
B. 学习,学习,再学习。
C. 他热爱学习,热爱工作,热爱生活。
2024高二数学期中考试题及答案
2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
北京市2023-2024学年高二上学期期中数学试题含答案
北京市2023—2024学年第一学期期中阶段练习高二数学(答案在最后)2023.11班级____________姓名____________学号____________本试卷共3页,共150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.已知(1,3),(3,5)A B --,则直线AB 的斜率为()A.2 B.1C.12D.不存在【答案】A 【解析】【分析】由斜率公式,可求出直线AB 的斜率.【详解】由(1,3),(3,5)A B --,可得35213AB k --==--.故选:A.2.圆222430x y x y +-++=的圆心为().A.(1,2)-B.(1,2)- C.(2,4)- D.(2,4)-【答案】A 【解析】【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标.【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=,所以圆心为(1,2)-,故选:A3.一个椭圆的两个焦点分别是()13,0F -,()23,0F ,椭圆上的点P 到两焦点的距离之和等于8,则该椭圆的标准方程为()A.2216428x y += B.221167x y += C.221169x y += D.22143x y +=【答案】B 【解析】【分析】利用椭圆的定义求解即可.【详解】椭圆上的点P 到两焦点的距离之和等于8,故28,4a a ==,且()13,0F -,故2223,7c b a c ==-=,所以椭圆的标准方程为221167x y +=.故选:B4.任意的k ∈R ,直线13kx y k -+=恒过定点()A.()0,0 B.()0,1 C.()3,1 D.()2,1【答案】C 【解析】【分析】将直线方程整理成斜截式,即可得定点.【详解】因为13kx y k -+=,即()31y k x =-+,所以直线13kx y k -+=恒过定点()3,1.故选:C.5.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A.相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D6.过点1,22P ⎛⎫- ⎪⎝⎭的直线l 与圆2214x y +=有公共点,则直线l 的倾斜角取值范围是()A.π5π,26⎡⎤⎢⎥⎣⎦ B.2π,π3⎡⎫⎪⎢⎣⎭C.π22π,3⎡⎤⎢⎥⎣⎦D.5π,π6⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】利用直线与圆的位置关系及倾斜角与斜率的关系计算即可.【详解】易知圆的半径为12,圆心为原点,当倾斜角为π2时,即直线l 方程为12x =-,此时直线l 与圆相切满足题意;当斜率存在时,不妨设直线l方程为122y k x ⎛⎫=++ ⎪⎝⎭,则圆心到其距离为12d =≤,解不等式得33k ≤-,所以直线l 的倾斜角取值范围为π5π,26⎡⎤⎢⎥⎣⎦故选:A7.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出当12l l //时实数的值,再利用集合的包含关系判断可得出结论.【详解】当12l l //时,()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时,直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //;当4a =时,直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //.因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件.故选:A.8.如图,在平行六面体1111ABCD A B C D -中,12AA AD AB ===,2BAD π∠=,113BAA A AD π∠=∠=,则11AB AD ⋅=()A.12B.8C.6D.4【答案】B 【解析】【分析】根据空间向量加法的运算性质,结合空间向量数量积的运算性质和定义进行求解即可.【详解】()()21111111AB AD AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+ 211110222228,22AB AD ⇒⋅=+⨯⨯+⨯⨯+= 故选:B9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点()2,0A ,()1,2B ,且AC BC =,则△ABC 的欧拉线的方程为()A.240x y --=B.240x y +-=C.4210x y ++=D.2410x y -+=【答案】D 【解析】【分析】由题设条件求出AB 垂直平分线的方程,且△ABC 的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得20212AB k -==--,且AB 中点为3(,1)2,∴AB 垂直平分线的斜率112AB k k =-=,故垂直平分线方程为131()12224x y x =-+=+,∵AC BC =,则△ABC 的外心、重心、垂心都在垂直平分线上,∴△ABC 的欧拉线的方程为2410x y -+=.故选:D10.曲线33:1C x y +=.给出下列结论:①曲线C 关于原点对称;②曲线C 上任意一点到原点的距离不小于1;③曲线C 只经过2个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A.①② B.②C.②③D.③【答案】C 【解析】【分析】将(),x y --代入,化简后可确定①的真假性.对x 分成0,0,01,1,1x x x x x <=<<=>等5种情况进行分类讨论,得出221x y +≥,由此判断曲线C 上任意一点到原点的距离不小于1.进而判断出②正确.对于③,首先求得曲线C 的两个整点()()0,1,1,0,然后证得其它点不是整点,由此判断出③正确.【详解】①,将(),x y --代入曲线33:1C x y +=,得331x y +=-,与原方程不相等,所以曲线C 不关于原点对称,故①错误.②,对于曲线33:1C x y +=,由于331y x =-,所以y =,所以对于任意一个x ,只有唯一确定的y和它对应.函数y =是单调递减函数.当0x =时,有唯一确定的1y =;当1x =时,有唯一确定的0y =.所以曲线C 过点()()0,1,1,0,这两点都在单位圆上,到原点的距离等于1.当0x <时,1y >,所以221x y +>>.当1x >时,0y <,所以221x y +>>.当01x <<时,01y <<,且()()()()223322221110x y x y x y x x y y -+=+-+=-+-<,所以221x y +>>.综上所述,曲线C 上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线C 过点()()0,1,1,0,这是两个整点.由331x y +=可得()331x y -=-,当0x ≠且1x ≠时,若x 为整数,31x -必定不是某个整数的三次方根,所以曲线C 只经过两个整点.故③正确.综上所述,正确的为②③.故选:C【点睛】本小题主要考查根据曲线方程研究曲线的性质,属于中档题.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.已知空间()2,3,1a = ,()4,2,b x =- ,a b ⊥ ,则b =_____.【答案】【解析】【分析】根据空间向量的垂直,根据数量积的坐标表示,建立方程,结合模长公式,可得答案.【详解】由a b ⊥ ,且()2,3,1a = ,()4,2,b x =- ,则860a b x ⋅=-++=r r ,解得2x =,故b =r.故答案为:12.已知过点(0,2)的直线l 的方向向量为(1,6),点(,)A a b 在直线l 上,则满足条件的一组,a b 的值依次为__________.【答案】1;8【解析】【分析】根据方向向量设出直线l 的方程,再由点(0,2)求出其方程,从而得出62b a =+,即可得出答案.【详解】直线l 的方向向量为(1,6),可设直线l 的方程为60x y C -+=因为点(0,2)在直线l 上,所以2C =,即直线l 为620x y -+=所以620a b -+=,即62b a =+可取1a =,则8b =故答案为:1;813.在正方体ABCD A B C D -''''中,E 是C D ''的中点,则异面直线DE 与AC 所成角的余弦值为______.【答案】10【解析】【分析】利用正方体的特征构造平行线,利用勾股定理及余弦定理解三角形即可.【详解】如图所示,取A B ''的中点F ,易得//AF DE ,则FAC ∠或其补角为所求角,不妨设正方体棱长为2,则,3,AF FC FC AC '====,由余弦定理知:222cos 210AF AC FC FAC AF AC +-∠==⋅,则FAC ∠为锐角,即异面直线DE 与AC 所成角.故答案为:1010.14.将一张坐标纸对折,如果点()0,m 与点()()2,22m m -≠重合,则点()4,1-与点______重合.【答案】()1,2--【解析】【分析】先求线段AB 的中垂线方程,再根据点关于直线对称列式求解即可.【详解】已知点()0,A m 与点()2,2B m -,可知线段AB 的中点为1,122mm M ⎛⎫-+ ⎪⎝⎭,且212AB mk m -==--,则线段AB 的中垂线的斜率1k =,则线段AB 的中垂线方程为1122m m y x ⎛⎫⎛⎫-+=--⎪ ⎪⎝⎭⎝⎭,即20x y -+=,设点()4,1-关于直线20x y -+=的对称点为(),a b ,则114412022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得12a b =-⎧⎨=-⎩,所以所求点为()1,2--.故答案为:()1,2--.15.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a,b垂直的向量;(ii )a,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯= ;②AB AD AD AB ⨯=⨯;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是______________.【答案】①③④【解析】【分析】由新定义逐一核对四个选项得答案.【详解】解: ||||||sin902214AB AD AB AD ⨯=︒=⨯⨯=,且1AA 分别与,AB AD 垂直,∴1AB AD AA ⨯= ,故①正确;由题意,1AB AD AA ⨯= ,1AD AB A A ⨯=,故②错误;AB AD AC +=,∴11|()|||41AB AD AA AC AA +⨯=⨯=⨯= 且1()AB AD AA +⨯ 与DB 共线同向, 1||2418AB AA ⨯=⨯⨯= ,1AB AA ⨯ 与DA 共线同向,1||2418AD AA ⨯=⨯⨯= ,1AD AA ⨯ 与DB共线同向,11||AB AA AD AA ∴⨯+⨯= 11AB AA AD AA ⨯+⨯ 与DB共线同向,故③正确;11()||||||sin90cos022416AB AD CC AB AD CC ⨯=⨯⨯︒⨯︒=⨯⨯=,故④成立.故答案为:①③④.三、解答题:本大题共6题,共85分.解答应写出文字说明、演算步骤或证明过程,并把答案...写在答题纸中相应位置上............16.在平面直角坐标系中,已知(3,9),(2,2),(5,3)A B C -,线段AC 的中点M ;(1)求过M 点和直线BC 平行的直线方程;(2)求BC 边的高线所在直线方程.【答案】(1)3170x y -+=(2)30x y +=【解析】【分析】(1)根据(3,9),(2,2),(5,3)A B C -,求得点M 的坐标,和直线直线BC 的斜率,写出直线方程;(2)根据13BC k =,得到BC 边的高线的斜率,写出直线方程;【小问1详解】解:因为(3,9),(2,2),(5,3)A B C -,所以()1,6M ,13BC k =,所以过M 点和直线BC 平行的直线方程为()1613y x -=-,即3170x y -+=;【小问2详解】因为13BC k =,所以BC 边的高线的斜率为-3,所以BC 边的高线所在直线方程()933y x -=-+,即30x y +=17.如图,在边长为2的正方体1111ABCD A B C D -中,E 为线段1BB 的中点.(1)求证:1//BC 平面1AED ;(2)求点1A 到平面1AED 的距离;(3)直线1AA 与平面1AED 所成角的正弦值.【答案】(1)证明见解析(2)43(3)23【解析】【分析】(1)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得点1A 到平面1AED 的距离;(3)利用空间向量法可求得直线1AA 与平面1AED 所成角的正弦值.【小问1详解】证明:在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,故四边形11ABC D 为平行四边形,则11//BC AD ,因为1BC ⊄平面1AED ,1AD ⊂平面1AED ,因此,1//BC 平面1AED .【小问2详解】解:以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,2A 、()0,2,1E 、()12,0,2D ,所以,()10,0,2AA = ,()12,0,2AD = ,()0,2,1AE = ,设平面1AED 的法向量为(),,n x y z = ,则122020n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取2z =-,可得()2,1,2n =- ,所以,点1A 到平面1AED 的距离为143AA n d n⋅== .【小问3详解】解:因为11142cos ,233AA n AA n AA n ⋅<>===⨯⋅ ,因此,直线1AA 与平面1AED 所成角的正弦值为23.18.已知圆C 的圆心在直线20x y -=上,且与x 轴相切于点()1,0.(1)求圆C 的方程;(2)若圆C 直线:0l x y m -+=交于A ,B 两点,____,求m 的值.从下列三个条件中任选一个补充在上面问题中并作答:条件①:圆C 被直线l 分成两段圆弧,其弧长比为2:1;条件②:2AB =;条件③:90ACB ∠=︒.【答案】(1)()()22124x y -+-=(2)答案见解析【解析】【分析】(1)利用几何关系求出圆心的坐标即可;(2)任选一个条件,利用选择的条件,求出圆心到直线的距离,然后列方程求解即可.【小问1详解】设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =.又 圆C 与x 轴相切于点()1,0,1a ∴=,2b =,则02r b =-=.∴圆C 圆心坐标为()1,2,则圆C 的方程为()()22124x y -+-=【小问2详解】如果选择条件①:120ACB ∠=°,而2CA CB ==,∴圆心C 到直线l 的距离1cos 60d CA =⨯= ,则1d ==,解得1m +或1+.如果选择条件②和③:AB =,而2CA CB ==,∴圆心C 到直线l 的距离d =,则d ==,解得1m =-或3.如果选择条件③:90ACB ∠=︒,而2CA CB ==,∴圆心C 到直线l 的距离cos 45d CA ⨯== ,则d ==,解得1m =-或3.19.如图,四棱锥P ABCD -中,AD ⊥平面ABP ,,90,2,3,BC AD PAB PA AB AD BC m ∠=︒==== ,E 是PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若二面角C AE D --的余弦值是33,求m 的值;(3)若2m =,在线段A 上是否存在一点F ,使得PF CE ⊥.若存在,确定F 点的位置;若不存在,说明理由.【答案】(1)证明见解析(2)1(3)不存在,理由见解析【解析】【分析】(1)推导出⊥BC 平面PAB .,AE BC AE PB ⊥⊥.由此能证明AE ⊥平面PBC ;(2)建立空间直角坐标系A xyz -,利用向量法能求出m 的值;(3)设()()0,0,03F t t ≤≤,当2m =,()0,0,2C ,()()2,0,,1,1,2PF t CE ==-- ,由PF CE ⊥知,0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,从而在线段AD 上不存在点F ,使得PF CE ⊥.【小问1详解】证明:因为AD ⊥平面PAB ,BC AD ∥,所以⊥BC 平面PAB ,又因为AE ⊂平面PAB ,所以AE BC ⊥.在PAB 中,PA AB =,E 是PB 的中点,所以AE PB ⊥.又因为BC PB B = ,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC .【小问2详解】因为AD ⊥平面PAB ,,AB PA ⊂平面PAB ,所以,AD AB AD PA ⊥⊥,又因为PA AB ⊥,所以如图建立空间直角坐标系A xyz -.则()()()()()()0,0,0,0,2,0,0,2,,1,1,0,2,0,0,0,0,3A B C m E P D ,则()0,2,AC m = ,()1,1,0AE = ,设平面AEC 的法向量为 =s s .则00AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩ 即200y mz x y +=⎧⎨+=⎩,令1x =,则1y =-,2z m =,故21,1,n m ⎛⎫=- ⎪⎝⎭.因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,又AE PB ⊥,,,AD AE A AD AE ⋂=⊂平面AED ,所以PB ⊥平面AED .又因为()2,2,0PB =- ,所以取平面AED 的法向量为()2,2,0PB =-所以cos ,3n PB n PB n PB⋅== ,3=,解得21m =.又因为0m >,所以1m =;【小问3详解】结论:不存在.理由如下:证明:设()()0,0,03F t t ≤≤.当2m =时,()0,0,2C ,()()2,0,,1,1,2PF t CE =-=-- ,由PF CE ⊥知0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,所以在线段AD 上不存在点F ,使得PF CE ⊥.20.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.(1)求a 的值及MON △的面积;(2)若圆C 与x 轴交于,A B 两点,点Q 是圆C 上异于,A B 的任意一点,直线QA 、QB 分别交:4l x =-于,R S 两点.当点Q 变化时,以RS 为直径的圆是否过圆C 内的一定点,若过定点,请求出定点;若不过定点,请说明理由.【答案】(1)12,2MON a S =-=(2)()4-【解析】【分析】(1)先确定直线OP 的方程,联立直线方程求得P 点坐标,利用垂径定理及两直线垂直的斜率关系计算可得a ,再根据点到直线的距离公式、弦长公式计算求面积即可;(2)设QA 方程,含参表示QB 方程,求出,R S 坐标,从而求出以RS 为直径的圆的方程,利用待定系数法计算即可.【小问1详解】由题知:直线OP 方程为13y x =-,则由113y x y x =--⎧⎪⎨=-⎪⎩,得到3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即31,22P ⎛⎫- ⎪⎝⎭, 点P 为线段MN 的中点,MN PC ∴⊥,即1021132MN PC k k a -⋅=-⨯=-+,2a ∴=-,即圆心−2,0;C ∴到直线=1y x --距离为2d ==,MN ∴==,又O 到直线=1y x --的距离为22,MN 边上的高为22.11222MON S ∴=⨯= .【小问2详解】由上可知()()3,0,1,0A B --,不妨设直线QA 的方程为()3y k x =+,其中0k ≠,在直线QA 的方程中,令4x =-,可得()4,R k --,因为QA QB ⊥,则直线QB 的方程为()11y x k =-+,在直线QB 的方程中,令4x =-,可得3y k =,即点34,S k ⎛⎫- ⎪⎝⎭,则线段RS 的中点为234,2k F k ⎛⎫-- ⎪⎝⎭,半径平方为2232k k ⎛⎫+ ⎪⎝⎭,所以,以线段MN 为直径的圆的方程为()2222233422k k x y k k ⎛⎫⎛⎫-+++-= ⎪ ⎪⎝⎭⎝⎭,即()2223430k x y y k -++--=,由()2430031x y x ⎧+-=⎪=⎨⎪-<<-⎩,解得40x y ⎧=-+⎪⎨=⎪⎩,因此,当点Q 变化时,以RS 为直径的圆恒过圆C内的定点()4-+.21.已知{}1,2,,n S = ,A S ⊆,{}12,T t t S =⊆,记{}(),1,2i i A x x a t a A i ==+∈=,用X 表示有限集合X 的元素个数.(1)若4n =,12A A =∅ ,分别指出{}1,2,3A =和{}1,2,4A =时,集合T 的情况(直接写出结论);(2)若6n =,12A A =∅ ,求12A A ⋃的最大值;(3)若7n =,4A =,则对于任意的A ,是否都存在T ,使得12A A =∅ 说明理由.【答案】(1){}1,4(2)10(3)不一定存在,理由见解析【解析】【分析】(1)由已知得12t t a b -≠-,其中,a b A ∈,当{}1,2,3A =时,12t t ,相差3;由此可求得T ,当{}1,2,4A =时,同理可得;(2)若6n =,12A A =∅ ,{}123456S =,,,,,,当{}2,3,4,5,6A =时,则12t t ,相差5,所以{}1,6T =,A 中至多有5个元素,所以12,A A 也至多有5个元素,求出12,A A 得出结果;(3)举反例{}1,2,5,7A =和{}{}1,2,3,4,1,6A T ==,根据题意检验即可说明.【小问1详解】若12A A =∅ ,则12t t a b -≠-,其中,a b A ∈,否则12t a t b +=+,12A A ⋂≠∅,若4n =,当{}1,2,3A =时,211-=,312-=,所以121,2t t -≠,则1t ,2t 相差3,因为1,2,3,4S =,{}12,T t t S =⊆,所以{}1,4T =;当{}1,2,4A =时,211-=,422-=,413-=,所以121,2,3t t -≠,因为1,2,3,4S =,{}12,T t t S =⊆,所以T 不存在;【小问2详解】若6n =,12A A =∅ ,{}123456S =,,,,,,当A S =时,211-=,514-=,523-=,716-=,72=5-,752-=,所以A S ≠,121,2,3,4,5t t -≠,所以T 不存在;所以A 中至多有5个元素;当{}2,3,4,5,6A =时,321-=,422-=,523-=,624-=,所以121,2,3,4t t -≠,则1t ,2t 相差5,所以{}1,6T =;{}(),1,2i i A x x a t a A i ==+∈=,所以{}1345,6,7A =,,,{}28910,11,12A =,,,{}12345,6,7,8910,11,12A A = ,,,,.因为A 中至多有5个元素,所以1A ,2A 也至多有5个元素,所以12A A ⋃的最大值为10.【小问3详解】不一定存在,理由如下:例如{}1,2,5,7A =,则211-=514-=,523-=,716-=,72=5-,752-=,则1t ,2t 相差不可能1,2,3,4,5,6,这与{}{}12,1,2,3,4,5,6,7T t t =⊆矛盾,故不都存在T ;例如{}{}1,2,3,4,1,6A T ==,不妨令121,6t t ==,则{}{}122,3,4,5,7,8,9,10A A ==,满足12A A =∅ .【点睛】关键点点睛:对于新定义问题,要充分理解定义,并把定义进行转化为已知的知识点或结论,方便解题.。
广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题
深圳中学2023-2024学年度第一学期期中考试试题年级:高二科目:数学注意事项:答案写在答题卡指定的位置上,写在试题卷上无效。
选择题作答必须用2B 铅笔,修改时用橡皮擦干净。
一、单项选择题(每小题只有一个答案符合题意,共8小题,每小题5分,共40分)1.在等差数列{}n a 中,4820a a +=,712a =,则4a =( ) A .4B .5C .6D .82.在等比数列{}n a 中,若52a =,387a a a =,则{}n a 的公比q =( )A B .2C .D .43.已知两条直线1l :350x y +−=和2l :0x ay −=相互垂直,则a =( ) A .13B .13−C .3−D .34.已知椭圆C 的一个焦点为(1,0,且过点(,则椭圆C 的标准方程为()A .22123x y +=B .22143x y +=C .22132x y +=D .22134x y +=5.在等比数列{}n a 中,24334a a a =,且652a a =,则{}n a 的前6项和为( ) A .22B .24C .21D .276.已知F 是双曲线C :2213x y −=的一个焦点,点P 在C 的渐近线上,O 是坐标原点,2OF PF =,则△OPF 的面积为( )A .1B C D .127.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为()1,0F c −、()2,0F c ,若椭圆C 上存在一点P ,使得12PF F ∆的内切圆的半径为2c,则椭圆C 的离心率的取值范围是( ) A .30,5B .40,5C .3,15D .4,158.已知双曲线C :22221x y a b−=(0a >,0b >),点B 的坐标为()0,b ,若C 上的任意一点P 都满足PB b ≥,则C 的离心率取值范围是( )A .B .+∞C .(D .)+∞二、多项选择题(共4小题,每小题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分)9.已知等差数列{}n a 的前n 项和为n S ,51a =,则( ) A .222a a +=B .371a a =C .99S =D .1010S =10,已知圆M :22430x y x +−+=,则下列说法正确的是( ) A .点()4,0在随M 内 B .圆M 关于320x y +−=对称CD .直线0x −=与圆M 相切11.已知双曲线22221x y a b−=(0a >,0b >)的右焦点为F ,过点F 且斜率为k (0k ≠)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥( )A .23BCD 12.若数列{}n a 满足121a a ==,12n n n a a a −−=+(3n ≥),则称该数列为斐波那契数列.如图所示的“黄金螺旋线”是根据斐波那契数列画出来的曲线.图中的长方形由以斐波那契数为边长的正方形拼接而成,在每个正方形中作圆心角为90°的扇形,连接起来的曲线就是“黄金螺旋线”.记以n a 为边长的正方形中的扇形面积为n b ,数列{}n b 的前n 项和为n S .则下列说法正确的是( ):A .821a =B .2023a 是奇数C .24620222023a a a a a ++++=D .2023202320244s a a π=⋅三、填空题(共4小题,每空5分,共20分)13.数列{}n a 的通项公式n a =,若9n S =,则n = .14.已知直线l :y x =被圆C :()()22231x y r −+−=(0r >)截得的弦长为2,则r = . 15.已知椭圆C :22221x y a b+=(0a b >>)的左、右两焦点分别是1F 、2F ,其中122F F c =.椭圆C 上存在一点A ,满足2124AF AF c ⋅=,则椭圆的离心率的取值范围是 .16.已知A ,B 分别是椭圆E :22143x y +=的左、右顶点,C ,D 是椭圆上异于A ,B 的两点,若直线AC ,BD的斜率1k ,2k 满足122k k =,则直线CD 过定点,定点坐标为 .四、解答题(共6小题,17题10分,18-22题12分)17.在平面直角坐标系xOy 中,圆1C :()2214x y ++=与圆2C :()22310x y +−=相交于P ,Q 两点. (1)求线段PQ 的长;(2)记圆1C 与x 轴正半轴交于点M ,点N 在圆2C 上滑动,求2MNC ∆面积最大时的直线MN 的方程. 18.已知等差数列{}n a 的前n 项和为n S ,13a =,{}n b 为等比数列,且11b =,0n b >,2210b S +=,53253S b a =+,*n N ∈. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T .19.已知半径为3的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4370x y −+=相切. (1)求圆的方程;(2)设直线420ax y a −+−=与圆相交于A ,B 两点,求实数a 的取值范围;(3)在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点()3,1P −?若存在,求出实数a 的值;若不存在,请说明理由.20.在平面直角坐标系xOy 中,圆1O :()2221x y ++=,圆2O :()2221x y −+=,点()1,0H ,一动圆M 与圆1O 内切、与圆2O 外切. (1)求动圆圆心M 的轨迹方程E ;(2)是否存在一条过定点的动直线l ,与(1)中的轨迹E 交于A 、B 两点,并且满足HA ⊥HB ?若存在,请找出定点;若不存在,请说明理由.21.已知等差数列{}n a 的前n 项和为n S ,且44a =,数列{}n b 的前n 项之积为n T ,113b =,且()n n S T =.(1)求n T ; (2令nn na cb =,求正整数n ,使得“11n n n c c c −+=+”与“n c 是1n c −,1n c +的等差中项”同时成立; (3)设27n n d a =+,()()112nn nn n d e d d +−+=,求数列{}n e 的前2n 项和2n Y .22.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点为1F 、2F,12F F =P 为椭圆C 上异于长轴端点的一个动点,O 为坐标原点,直线1PF ,PO ,2PF 分别与椭圆C 交于另外三点M ,Q ,N ,当P 为椭圆上顶点时,有112PF F M =.(1)求椭圆C 的标准方程; (2)求12POF POF PQMPQNs s s s ∆∆∆∆+的最大值。
2022-2023学年河南省驻马店市高二下学期期中数学试题【含答案】
2022-2023学年河南省驻马店市高二下学期期中数学试题一、单选题1.等比数列的前项和为,且,, 成等差数列,若,则{}n a n n S 14a 22a 3a 11a =4s =A .7B .8C .15D .16【答案】C【详解】试题分析:由数列为等比数列,且成等差数列,所以,即,因为,所以,解得:,根据等比数列前n 项和公式.【解析】1.等比数列通项公式及前n 项和公式;2.等差中项.2.已知能够被15整除,则的一个可能取值是( )202274a +a A .1B .2C .0D .1-【答案】D【分析】利用二项展开式写出,由展开式可知需要能被15整除,结合选项可得答案.202274a +1a +【详解】,()20220202212021220202021202220222022202220222022751C 75C 75C 75C 75C a a-+=-+-⋅⋅⋅-++75能够被15整除,要使原式能够被15整除,则需要能被15整除,将选项逐个检验可知的1a +a 一个可能取值是,其他选项均不符合题意,1-故选:D3.已知,若直线:与直线:平行,则它们之间的距离为a<01l 210ax y ++=2l ()140x a y ++-=( )A B C D 【答案】A【分析】根据题意结合两直线平行求得,再代入两平行线间距离公式运算求解.2a =-【详解】若直线:与直线:平行,则,解得1l 210ax y ++=2l ()140x a y ++-=()120a a +-=或,1a =2a =-当时,直线:与直线:平行;1a =1l 210x y ++=2l 240x y +-=当时,直线:与直线:平行;2a =-1l2210x y --=2l 40x y --=综上所述:若直线与直线平行,则或.1l2l 1a =2a =-∵,则,此时直线:,直线:,a<02a =-1l2210x y --=2l 2280x y --=故直线、之间的距离.1l 2ld 故选:A.4.“中国剩余定理”又称“孙子定理”,1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于同余的问题.现有这样一个问题:将正整数中能被3除余1且被2除余1的数按由小到大的顺序排成一列,构成数列,则( ){}n a 10a =A .55B .49C .43D .37【答案】A【分析】由条件写出通项公式,即可求解.【详解】正整数中既能被3除余1且被2除余1的数,即被6除余1,那么,有.()11665n a n n =+-⨯=-1055a =故选:A5.设抛物线的焦点为F ,准线为l ,P 是抛物线上位于第一象限内的一点,过P 作l 的垂线,26y x =垂足为Q ,若直线QF 的倾斜角为,则( )120︒PF =A .3B .6C .9D .12【答案】B【分析】根据几何图形,结合抛物线的定义的性质,即可判断.【详解】依题意,,,,π3QFH ∠=3HF =QH =6QF =又,,则为等边三角形,有,PF QP =π3PQF ∠=PQF △6PF =故选:B6.我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则平均降雨量是(注:平均降雨量等于盆中积水体积除以盆口面积)( )A .寸B .2寸C .寸D .3寸5373【答案】C【分析】由题意求得盆中水的上地面半径,代入圆台体积公式求得水的体积,除以盆口面积得答案.【详解】如图,由题意可知,天池盆上底面半径为18寸,下底面半径为6寸,高为18寸.积水深9寸,水面半径为寸,∴1(186)122+=则盆中水的体积为(立方寸).221π9(612612)756π3⨯⨯++⨯=平地降雨量等于(寸.∴2756π7π183=⨯)故选:C .7.已知定义域为的函数的导函数为,且,若,则()0,+∞()f x ()f x '()()0xf x f x '-<()54f =的解集为( )()54f x x<A .B .C .D .()0,4()4,+∞()5,+∞()0,5【答案】C【分析】根据给定不等式构造函数,借助导数确定函数的单调性,再解不等式作()()0xf x f x '-<答.【详解】令,,因为,则,()()f x g x x =()0,+x ∞∈()()0xf x f x '-<()()2()0xf x f x g x x '-'=<因此函数在上单调递减,则,解得,()g x ()0,∞+()45()4()(5)5f x f x x g x g x <⇔<⇔<5x >所以的解集为.()54f x x<()5,+∞故选:C8.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列称为“斐波那契数列”,若是“斐波那契数{}n a 列”,则的值为( ).()()()222132243354a aa a a a a a a ---⋅⋅⋅()2202020222021a a a -A .B .1C .D .21-2-【答案】B【解析】由已知数列的特点依次求出,,,的值,发现这些数依次为2132a a a -2243a a a -2354a a a -⋅⋅⋅,进而可求出答案1,1,1,1,1,1---⋅⋅⋅⋅【详解】由题设可知,斐波那契数列为:{}n a 1,1,2,3,5,8,⋅⋅⋅⋅⋅⋅其特点为:前两个数为1,从第三个数起,每一个数都等于它前面两个数的和,由此可知:,213221211a a a =⨯-=-,232241321a a a =⨯-=--,235422531a a a =⨯-=-,452263851a a a -=⨯-=-,22020202220211a a a -=-则()()()222132243202020222021a a a a a a a a a --⋅⋅⋅⋅⋅⋅-.()1010101011=⨯-1=故选:B.二、多选题9.袋中装有除颜色外完全相同的3个红球和6个白球,从袋中一次抓出2个球,记事件A =“两球同色”,事件B =“两球异色”,事件C =“至少有一红球”,则( )A .事件A 与事件B 是对立事件B .事件A 与事件B 是相互独立事件C .D .()()P A P B =()712P C =【答案】ACD【分析】由对立事件的定义可判断A 选项;利用独立事件的定义可判断B 选项;由古典概型的概率公式求解判断C 选项;利用组合计数原理结合古典概型的概率公式可判断D 选项.【详解】对于A 选项,由对立事件的定义可知,事件A 、B 互为对立事件,A 对;对于B 选项,,,,显然,故B 不正确;()0P AB =()0P A >()0P B >()()()P A P B P AB ≠对于C 选项,,,所以,故C 正确;()223629C C 1C 2P A +==()113629C C 1C 2P B ==()()P A P B =对于D 选项,,故D 正确,()1120363629C C C C 7C 12P C +==故选:ACD .10.函数f (x )=b (x -a )2(x -b )的图象可以是()A .B .C .D .【答案】BC【分析】首先根据解析式确定零点类型,再结合图象,判断选项.【详解】由函数解析式可知,是不变号零点,是变号零点,a b A.由图可知,变号零点是0,则,则,不成立,故A 错误;0b =()0f x =B.由图可知,变号零点小于0,不变号零点为0,则,此时,当,0,0b a <=()()2f x b x b x =-x b <,当,,当时,,满足图象,故B 正确;()0f x >0b x <<()0f x <0x >()0f x <C.由图可知,,,当时,,当时,0b a >>()()()2f x b x b x a =--x a <()0f x <a x b <<,当时,,满足图象,故C 正确;()0f x <x b >()0f x >D.由图可知,,,当时,,与图象不符,所以D 错误.0a b <<()()()2f x b x b x a =--x a <()0f x >故选:BC11.在平行六面体中,已知,1111ABCD A B C D -1111,60AB AD AA A AB A AD BAD ∠∠∠======则下列说法错误的是( )A .为中点,为中点,则与为异面直线E 11C D F 11B C DE BFB .线段1A C C .为中点,则平面M 1AA 1A C BDMD .直线与平面1A C ABCD 【答案】ABD【分析】利用棱台的定义判断A ,利用空间向量的数量积运算律求解B,利用线面平行的判定定理判断C ,利用线面角的定义判断D.【详解】对于A ,如图,连接, 为中点,为中点,,,EF DE BF E 11C DF 11B C由图可知,且11,,22EC DC FC BC ////11,,22EC DC FC BC ==设则重合,11,,DE CC G BF CC H ⋂=⋂=111,C G C H CC G H ==⇒即与相交,故A 错误;DE BF 对于B ,因为,1111,60AB AD AA A AB A AD BAD ∠∠∠====== 所以,22211AB AD AA === 11111cos 60,2AB AD AB AA AD AA ︒⋅=⋅=⋅=⨯⨯= 所以222111()A A C AB AA C AD ==+- 222111222AB AD AA AB AD AB AA AD AA =+++⋅-⋅-⋅ 1111112,=+++--=所以故B 错误;21A C = 因为为中点,连接交于点,M 1AA AC BD O 再连接,,,OM BM DM 则在中,,1△ACA 1A C OM∥平面,平面,1A C ⊄BDM OM ⊂BDM 所以平面,C 正确;1A C BDM 对于D:在平行六面体中,1111ABCD A B C D -四边形是菱形,则,ABCD AC BD ⊥又,()11110BD AA AD AB AA AD AA AB AA ⋅=-⋅=⋅-⋅= 所以,平面,1BD AA ⊥11,,AC AA A AC AA ⋂=⊂1ACA 所以平面,BD ⊥1ACA 又因为平面,BD ⊂ABCD 所以平面平面,1ACA ⊥ABCD 过点作于点,1A 1A P AC ⊥P 平面平面,1ACAABCD AC =平面所以平面,1A P ⊂1,ACA 1A P ⊥ABCD 所以直线与平面所成角为,1A C ABCD 1A CA ∠AC AB =+= 所以,22211AA A C AC+=所以,所以,故D 错误;11AA A C⊥11sin AA A CA AC ∠==故选:ABD.12.已知直线l :y =kx +m 与椭圆交于A ,B 两点,点F 为椭圆C 的下焦点,则下列结22:134x y C +=论正确的是( )A .当时,,使得1m =k ∃∈R ||||3FA FB +=B .当时,,1m =k ∀∈R ||2FA FB +> C .当时,,使得1k =m ∃∈R 11||||2FA FB +=D .当时,,1k =m ∀∈R 6||5FA FB +≥【答案】BCD【分析】对于A ,将直线的方程与椭圆方程联立,求出的取值范围,可求得的取值l ABFA FB+ 范围,可判断A 选项;求出线段中点的轨迹方程,可求得的取值范围,可判断B 选项;AB FA FB+ 将直线的方程与椭圆方程联立,利用弦长公式结合可求得的取值范围,可判断C l 0∆>FA FB+ 选项;求出线段中点的轨迹方程,可求得的最小值,可判断D 选项.AB FA FB+【详解】在椭圆中,,,,C 2a =b 1c =由题意可得,上焦点记为,()0,1F -()01F ,'对于A 选项,设点、,()11,A x y ()22,B x y 联立可得,2214312y kx x y =+⎧⎨+=⎩()2234690k x kx ++-=,()()22236363414410k k k ∆=++=+>由韦达定理可得,,122634kx x k +=-+122934x x k =-+()2212134k k +==+,[)2443,434k =-∈+所以,,故A 错误;(]484,5FA FB a AB AB +=-=-∈对于B 选项,设线段的中点为,AB (),M x y 由题意可得,两式作差可得,22112222134134x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩22221212034x x y y --+=因为直线的斜率存在,则,所以,,AB 12x x ≠121212122423y y y y y k x x x x x -+⋅=⋅=--+整理可得,又因为,消去可得,其中,43ky x =-1y kx =+k 224330x y y +-=0y >所以,,()()()()11221212,1,1,22,22FA FB x y x yx x y yx y +=+++=+++=+所以,FA +== ,故B 正确;2=>对于C 选项,当时,直线的方程为,即,1k =l y x m =+x y m =-联立可得,224312x y m x y =-⎧⎨+=⎩22784120y my m -+-=,解得()()2226428412162130m m m ∆=--=->m <<由韦达定理可得,,1287my y +=2124127m y y -=,11222y y ===+同理,所以,,222y FB =+ 124444427y y mFA FB ⎛++=+=+∈ ⎝ 因为,所以,当时,,使得,故C 正确;11442⎛∈ ⎝1k =m ∃∈R 112FA FB +=对于D 选项,设线段的中点为,AB (),M x y 由B 选项可知,,即,即,121212122423y y y y y x x x x x-+⋅==--+43y x=-430x y +=由可得的横坐标的取值范围是,22434312y x x y ⎧=-⎪⎨⎪+=⎩x =M ⎛ ⎝而点到直线的距离为,F 430xy +=35d ==由可得,当且仅当点时,430314x y y x +=⎧⎪⎨=-⎪⎩1225x ⎛=∈ ⎝1216,2525M ⎛⎫- ⎪⎝⎭取最小值,故D 正确.FA FB+ 65故选:BCD【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.三、填空题13.已知直线与曲线相切,则m 的值为______.32y x m =-1ln 2y x x =+【答案】1【分析】求出函数的导数,设切点为,利用导数的几何意义求出切点坐标,代1ln 2y x x =+00(,)x y 入切线方程,即可求得答案.【详解】由题意,可得,1ln 2y x x=+112y x '=+直线与曲线相切,设切点为,32y x m =-1ln 2y x x=+00(,)x y 则,则,00113,122x x +=∴=00011ln 22y x x =+=即切点为,将该点坐标代入,可得,1(1,)232y x m =-1m =故答案为:114.某校高二学生一次数学诊断考试成绩(单位:分)服从正态分布,从中抽取一X ()2110,10N 个同学的数学成绩,记该同学的成绩为事件,记该同学的成绩为事件,ξ90110ξ<≤A 80100ξ<≤B 则在事件发生的条件下事件发生的概率______.(结果用分数表示)A B ()P B A =附参考数据:;;()0.68P X μσμσ-<≤+=()220.95P X μσμσ-<≤+=.()330.99P X μσμσ-<≤+=【答案】2795【分析】计算出和,然后利用条件概率公式可得出的值.()P AB ()P A ()()()P AB P B A P A =【详解】由题意可知,,事件为,,,110μ=10σ=AB 90100ξ<≤902μσ=- 100μσ=-所以,()()()901002P AB P P ξμσξμσ=<≤=-<≤-,()()220.950.682722200P X P X μσμμσμσσ-<≤+-=+=-<≤-=,()()()()95901102222200P A P P P X ξμσξμμσμσ=<≤=-<≤=-≤+=<由条件概率公式得,故答案为.()()()27200272009595P AB P B A P A ==⋅=2795【点睛】本题考查条件概率的计算,同时也考查了正态分布原则计算概率,解题时要将相应的3σ事件转化为正态分布事件,充分利用正态密度曲线的对称性计算,考查计算能力,属于中等题.15.函数的最小值为______.()|1|ln f x x x=--【答案】0【分析】求出函数定义域,对分段去绝对值,当时,分析函数的单调性;当时,利用x 01x < 1x >导数分析函数的单调性并求最小值,即可得到的最小值.()f x 【详解】解:函数的定义域为.()|1|ln f x x x=--(0,)+∞当时,,此时函数在上为减函数,01x < ()1ln f x x x=--()f x (]0,1当时,,1x >()|1|ln 1ln f x x x x x=--=--则,所以在上单调递增,11()10x f x x x -'=-=>()f x ()1,+∞在上是连续函数,()f x (0,)+∞当时,单调递减,当时,单调递增.∴(]0,1x ∈()f x ()1,x ∈+∞()f x 当时取得最小值为.∴1x =()f x ()()min 111ln10f x f ==--=故答案为:0.16.已知函数,数列满足,给出下列两个()[)32(0),1,f x x mx m x ∞=-+>∈+{}n a (),N n a f n n +=∈条件:①函数是递减函数;②数列是递减数列.试写出一个满足条件②但不满足条件①()f x {}n a 的函数的解析式:__________.()f x ()f x =【答案】(答案不唯一,均可)322x x -+37,23m ⎛⎫∈ ⎪⎝⎭【分析】若函数是递减函数,则恒成立,由此可得不是递减函数的条件为()f x ()0f x '≤()f x ,后结合任意,函数,,可得满足题意的的范围.32m >1n ≥N n +∈()()1f n f n +<m 【详解】若函数是递减函数,则在恒成立.()f x ()0f x '≤[)1,x ∞∈+则.()m 2in 333320222x x f x x mx m m ⎛⎫'=-+≤⇒≤⇒≤= ⎪⎝⎭则若在上不是递减函数,可得;()f x [)1,x ∞∈+32m >数列是递减数列,等价于对任意,函数,,{}n a 1n ≥N n +∈()()1f n f n +<又,,则在上单调递减.()233f x x x m ⎛⎫'=-- ⎪⎝⎭213m >()f x 23,m ⎛⎫+∞ ⎪⎝⎭则可使满足:,则取即可满足②,不满足①.m ()()2233731482312mm m m m f f ⎧<<⎧⎪⇒⇒<<⎨⎨->-⎩⎪>⎩2m =故答案为:(答案不唯一,均可)322x x -+37,23m ⎛⎫∈ ⎪⎝⎭四、解答题17.已知函数,.()()322113f x x ax a x b =-+-+(),R a b ∈(1)若为的极小值点,求的值;1x =()f x a (2)若的图象在点处的切线方程为,求在区间上的最大值.()y f x =()()1,1f 30x y +-=()f x []2,4-【答案】(1)0a =(2)8【分析】(1)求导,根据导数判断极值情况,进而确定参数值;(2)求导,根据导数的几何意义可得切线方程,进而确定参数值及最值情况.【详解】(1),()()322113f x x ax a x b =-+-+则,()2221f x x ax a '=-+-为的极小值点,1x = ()f x ,解得或,()2120f a a '∴=-=0a =2当时,,0a =()21f x x '=-令,解得,()210f x x '=-=1x =±x(),1-∞-1-()1,1-1()1,+∞()f x '+0-+()f x 单调递增极大值单调递减极小值单调递增此时是的极小值点;1x =()f x 当时,,2a =()243f x x x =-+'令,解得或,()2430f x x x '=-+=1x =3x =x(),1-∞1()1,33()3,+∞()f x '+0-+()f x 单调递增极大值单调递减极小值单调递增此时是的极大值点,不成立;1x =()f x 所以;0a =(2)在上,()()1,1f 30x y +-=,()12f ∴=在上,()1,2∴()y f x =,21213a a b=-+-+∴又,()11f '=-,21211a a ∴-+-=-解得,,1a =83b =,,()321833f x x x ∴=-+()22f x x x '=-令,解得或,()220f x x x '=-=0x =2x =x[)2,0-0()0,22(]2,4()f x '+0-+()f x 单调递增极大值单调递减极小值单调递增,,,,()803f =()423f =()24f -=-()48f =所以函数在区间上的最大值为.()f x []2,4-818.已知数列,满足:,,.{}n a {}n b 1121a b +=1342n n n b a a +=-13224nn n a b b +=-(1)求证:数列是等比数列;{}2n n a b +(2)若___________(从下列三个条件中任选一个),求数列的前项和.①;②{}n a n n S 1121a b -=;③.218b =-2221a b -=【答案】(1)证明见解析(2)2122n n n S +=-【详解】(1)证明:因为,1133,24224n n n n n n b a a a b b ++=-=-所以,()113312242242n n n n n n n n b a a b a b a b +++=-+-=+所以,112122n n nn a b a b +++=+又因为,所以数列是首项为1公比为的等比数列;1121a b +={}2nn a b +12(2)由(1)知,1122n n n a b -+=又因为,1133224224n n n n n n n nb a a b a b a b ++-=--+=-所以数列为常数列.{}2n n a b -若选条件①或③,均可得,21n n a b -=所以,所以.1122n n a =+2122nn n S +=-若选②,因为,所以,又因为,2113,2824nn n a b b b +=-=-11311244b a -=-1121a b +=所以,所以,所以,所以.111,0a b ==1121a b -=1122n n a =+2122nn n S +=-19.已知四棱锥中,平面,,,,P ABCD -PA ⊥ABCD AD BC ∥BC AB ⊥12AB AD BC ==,BD =PD =(1)求直线与平面所成角的正弦值;PC PBD (2)线段上是否存在一点M ,使得平面?若存在,请指出点M 的位置;若不存在,请PB CM ⊥PBD 说明理由.【答案】(1)49(2)不存在点M ,理由见解析【分析】(1)求出相关线段的长,建立空间直角坐标系,求得相关点坐标,求得平面的一个法PBD 向量,根据空间角的向量求法,即可求得答案;(2)假设存在满足条件的点M ,表示出其坐标,利用向量的垂直列出方程,根据方程解的情况可得出结论.【详解】(1)因为,BC ⊥AB ,所以AD ⊥A B .AD BC ∥又因为,,所以 .12AB AD BC ==BD =1,2AB AD BC ===因为平面,平面,平面,PA ⊥ABCD AB ⊂ABCD AD ⊂ABCD所以.又.,PA AB PA AD ⊥⊥PD =2PA ==以A 为坐标原点,以所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,,,AB AD AP则,,,.(1,0,0)B (1,2,0)C (0,1,0)D (0,0,2)P所以,,.(1,2,2)PC =-(1,1,0)BD =- (1,0,2)BP =- 设平面的法向量为,PBD (,,)n x y z =则,即,得,00BD n BP n ⎧⋅=⎪⎨⋅=⎪⎩020x y x z -+=⎧⎨-+=⎩12y x z x =⎧⎪⎨=⎪⎩令,可得平面的一个法向量为.2x =PBD (2,2,1)n =设直线与平面所成的角为,,PC PBD θπ[0,]2θ∈则,4sin |cos ,9PC n θ=〈〉= 所以直线与平面所成角的正弦值为.PC PBD 49另解:如图,连接AC .因为,BC ⊥AB ,所以AD ⊥AB .AD BC ∥因为,,所以.12AB AD BC ==BD =1,2AB AD BC ===因为BC ⊥AB ,所以AC ==因为平面,平面,平面,平面,PA ⊥ABCD AB ⊂ABCD AC ⊂ABCD AD ⊂ABCD 所以.,,PA AB PA AC PA AD ⊥⊥⊥因为,所以,2PA ==3PC ==PB ==所以,.1322PBDS ==△1121122BCD S BC AB =⨯⨯=⨯⨯=△设点C 到平面的距离为h ,PBD 由,得,即,解得.P BDC C PBD V V --=1133BCD PBD PA S h S ⨯⨯=⨯⨯△△11321332h ⨯⨯=⨯⨯43h =设直线 与平面所成的角为,,则.PC PBD θπ[0,2θ∈4sin 9h PC θ==所以直线与平面所成角的正弦值为.PC PBD 49(2)不存在点M ,理由如下:假设存在满足条件的点M (如图).可设,,所以,(,0,2)BM BP λλλ==-[0,1]λ∈(1,0,2)M λλ-所以.(,2,2)CM λλ=--又由(1)知为平面的一个法向量,所以,(2,2,1)n = PBD CM n ∥即,无解.22221λλ--==所以线段PB 上不存在满足条件的点M .另解:不存在点M ,理由如下:假设存在满足条件的点M ,由平面,平面,平面,得,且,CM ⊥PBD PB ⊂PBD BD ⊂PBD CM PB ⊥CM BD ⊥因为平面,平面,所以.PA ⊥ABCD BC ⊂ABCD PA BC ⊥因为,且,平面,平面,BC AB ⊥PA AB A = PA ⊂PAB AB ⊂PAB 所以平面.又平面,所以.BC ⊥PAB PB ⊂PAB BC PB ⊥若存在满足条件的点M ,则点M 必与点B 重合.又与不垂直,所以线段上不存在满足条件的点M .BC BD PB 20.区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术.区块链作为构造信任的机器,将可能彻底改变整个人类社会价值传递的方式,2018年至2022年五年期间,中国的区块链企业数量逐年增长,居世界前列.现收集我国近5年区块链企业总数量相关数据,如表:年份20182019202020212022编号x12345企业总数量y (单位:千个)2.1563.7278.30524.27936.224(1)根据表中数据判断,与(其中e =2.71828…为自然对数的底数),哪一个回归方y a bx =+e dxy c =程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由)(2)根据(1)的结果,求关于的回归方程;(结果精确到小数点后第三位)y x 附:线性回归方程中,,ˆˆˆybx a =+1221ˆni ii nii x y nxybxnx ==-=-∑∑ˆˆay bx =-参考数据:,,,ln z y = 5140.457i i i x z ==∑52155i i x ==∑5511113, 2.19655i i i i x x z z ======∑∑(3)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛,比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司就获得此次信息化比赛的“优胜公司”.已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,请通过计算说明,哪两个公司进行首场比赛时,甲133512公司获得“优胜公司”的概率最大?【答案】(1)适宜e dxy c =(2)0.7520.060ˆe x y -=(3)甲公司获得“优胜公司”的概率最大【分析】(1)根据增加速度逐渐变快即可得解;(2)对两边取自然对数,得,转化为线性相关,再利用最小二乘法求出线性e dxy c =ln ln y c dx =+回归方程,再转化为关于的回归方程即可;y x (3)对于首场比赛的选择分A :甲与乙先赛;B :甲与丙先赛;C :丙与乙先赛,三种情况讨论,分别求出对应概率,即可得出结论.【详解】(1)根据表中数据可知增加的速度逐渐变快,所以回归方程适宜预测未来几年我国区块链企业总数量;e dxy c =(2)对两边取自然对数,得,e dxy c =ln ln y c dx =+令,得,ln ,ln ˆˆˆ,z y a c b d === z a bx =+ 由于,,,5140.457i i i x z ==∑52155i i x ==∑5511113, 2.19655i i i i x x z z ======∑∑则,12221540.45753 2.1960.75255535ˆni ii nii x y x zb xx ==-⋅-⨯⨯==≈-⨯-∑∑,ˆˆ 2.1960.75230.060a z bx =-=-⨯=-∴关于的回归直线方程为,z x ˆ0.7520.060zx =-则关于的回归方程为;y x 0.7520.060ˆe x y -=(3)对于首场比赛的选择有以下三种情况:A :甲与乙先赛;B :甲与丙先赛;C :丙与乙先赛,由于在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,133512则甲公司获胜的概率分别是,131311113113()111353523325345P A ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯⨯+-⨯-⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,31311331139()111535325523525P B ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯-⨯+-⨯⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1311131()12532355P C ⎛⎫=-⨯⨯+⨯⨯=⎪⎝⎭由于,913125455>>∴甲与丙两公司进行首场比赛时,甲公司获得“优胜公司”的概率最大.21.过点的动直线与双曲线交于两点,当与轴平行时,()4,2l ()2222:10,0x y E a b a b -=>>,M N l x与轴平行时,MN =l y MN =(1)求双曲线的标准方程;E (2)点是直线上一定点,设直线的斜率分别为,若为定值,求点的坐P 1y x =+,PM PN 12,k k 12k k P 标.【答案】(1)22144x y -=(2)()3,4P 【分析】(1)根据与坐标轴平行的情况可得双曲线上的点的坐标,代入双曲线方程即可求得结果;l(2)方法一:由三点共线可整理得到,代入双曲线方程可整理得到()()12124121x x y y λλλλ⎧=+-⎪⎨=+-⎪⎩,结合两点连线斜率公式可化简得到22122y x λ=-+,根据为常数可构造方程求得,进而得到()()()022002002022001231212223422x y x x x y x x x x y x x x k k ⎛⎫-+-- ⎪-+⎝⎭=⋅-⎛⎫-+-+- ⎪⎝⎭12k k 0x 点坐标,验证可知符合题意;P 方法二:设,与双曲线方程联立可得一元二次方程,根据该方程的根可()():420MN y k x k =-+≠化简得到,同理可得()()()()2220001024241x k x k x x x x --+-=---⎡⎤⎣⎦,由此可化简得到()()()()222220001022441y k k y k k y y y y -+--=---,由为常数可构造方程求得点坐标,验证可知()()()()2220012222012816448164168y k y k y y k k x x k x k x -++-+-+=-+-+-++-12k k P 当直线斜率为和斜率不存在时依然满足题意,由此可得结论.MN 0【详解】(1)由题意可知:双曲线过点,,()2222:10,0x y E a b a b-=>>()2±(4,±将其代入方程可得:,解得:,222284116121a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩2244a b ⎧=⎨=⎩双曲线的标准方程为:.∴E 22144x y -=(2)方法一:设,()()1122,,,M x y N x y 点与三点共线,, ()4,2,M N 12122244y y x x --∴=--(其中,),,()()12124422x x y y λλ⎧-=-⎪∴⎨-=-⎪⎩R λ∈0λ≠()()12124121x x y y λλλλ⎧=+-⎪∴⎨=+-⎪⎩,又,()()222241214x y λλλλ⎡⎤⎡⎤∴+--+-=⎣⎦⎣⎦22224x y -=整理可得:,()()2212420x y λλλλ--+-=当时,,,不合题意;1λ=12x x =12y y =当时,由得:,1λ≠222420x y λλλ-+-=22122y x λ=-+设,则,()00,P x y 001y x =+()()102012102011y x y x k k x x x x -+-+∴⋅=⋅--()()()22220202202220222211243222y y x x x y x y x x x y x x ⎛⎫-+--++ ⎪-+⎝⎭=⋅-⎛⎫-+--+ ⎪⎝⎭,()()()0220020020220031212223422x y x x x y x x x x y x x x ⎛⎫-+-- ⎪-+⎝⎭=⋅-⎛⎫-+-+- ⎪⎝⎭若为定值,则根据约分可得:且,解得:;12k k 000121x x x --=-00114222x x x --=--03x =当时,,此时;03x =()3,4P 22122226441322x y k k x y --=⋅=--当时,为定值.∴()3,4P 124k k =方法二:设,直线,()()()112200,,,,,M x y N x y P x y ()():420MN y k x k =-+≠由得:,()22424y k x x y ⎧=-+⎨-=⎩()224240x k x ⎡⎤--+-=⎣⎦为方程的两根,12,x x ()224240x k x ⎡⎤--+-=⎣⎦,()()()()222124241x k x k x x x x ⎡⎤∴--+-=---⎣⎦则,()()()()2220001024241x k x k x x x x --+-=---⎡⎤⎣⎦由得:,()42y k x =-+24y x k -=+由可得:,22244y x k x y -⎧=+⎪⎨⎪-=⎩222440y y k -⎛⎫+--= ⎪⎝⎭同理可得:,()()()()222220001022441y k k y k k y y y y -+--=---则()()()()()()()()()()201020102122121211k y y y y y y y y k k x x x x k x x x x -----==-----()()2222002200244424y k k y k x k x -+--=--+-⎡⎤⎣⎦,()()()()2220222012816448164168y k y k y y x x k x k x -++-+-+=-+-+-++-若为定值,则必有,12k k 22000022000012816448164168y y y y x x x x -+--+==-+--+-解得:或或,0034x y =⎧⎨=⎩00x y ⎧=⎪⎪⎨⎪=⎪⎩00x y ⎧=⎪⎪⎨⎪=⎪⎩又点在直线上,点坐标为;P 1y x =+∴P ()3,4当直线斜率为时,坐标为,若,MN 0,M N ()2±()3,4P此时;124k k ==当直线斜率不存在时,坐标为,若,MN ,M N (4,±()3,4P此时;124k k ==综上所述:当时,为定值.()3,4P 124k k =【点睛】思路点睛:本题考查直线与双曲线中的定点定值问题的求解,本题求解的基本思路是能够利用直线与双曲线相交的位置关系确定两交点横纵坐标所满足的等量关系,进而通过等量关系化简所求的,根据为常数来构造方程求得定点的坐标.12k k 12k k 22.已知函数.()ln 2R af x x a x =+-∈()(1)讨论的单调性;()f x (2)若方程有两个不同的实数根,求的取值范围.()2af x ax x =+a 【答案】(1)答案见解析(2)510,2e ⎛⎫ ⎪⎝⎭【分析】(1)对求导,分类讨论和时的正负,即可得出的单调性;()f x 0a ≤0a >()f x '()f x (2)解法一:“方程有两个不同的实数根”等价于“函数有两个零()2af x ax x =+()2ln 2g x x ax =--点”.对求导,讨论的单调性和最值,即可得出答案;解法二:由方程得()g x ()g x ()2a f x ax x =+,转化为与的图象有两个交点,对求导,得出的单调性和2ln 2x a x -=()2ln 2x k x x -=y a =()k x ()k x最值即可得出答案.【详解】(1)由条件知,,()2211x af x a x x x -⎛⎫'=-+= ⎪⎝⎭0x >当时,在上恒成立,所以在单调递增.0a ≤()0f x ¢>()0,∞+()f x ()0,∞+当时,令,得,令,得,0a >()0f x '<x a <()0f x ¢>x a >所以在上单调递减,在上单调递增.()f x ()0,a (),a +∞(2)解法一:由方程得,“方程有两个不同的实数根”()2a f x ax x =+2ln 20x ax --=()2a f x ax x =+等价于“函数有两个零点”.()2ln 2g x x ax =--,.()21122ax g x ax x x -='=-0x >①当时,,在上是增函数,最多只有一个零点,不符合题意;0a ≤()0g x '>()g x ()0,∞+②当时,由得0a >()0g x '=x =当时,,在上单调递增,当,在0x <<()0g x '>()g x ⎛ ⎝x>()0g x '<()g x 上单调递减.⎫+∞⎪⎭(ⅰ)若,则,最多只有一个零点;512e a ≥()502gx g ≤=≤(ⅱ)若,且,,512e a ≤52e 1>>0g >()120g a =--<所以在区间内有一个零点.()g x ⎛⎝令函数,则,.()ln 1h x x x =-+()11h x x '=-0x >当时,,在上是增函数;01x <<()0h x '>()h x ()0,1当时,,在上是减函数.1x >()0h x '<()h x ()1,+∞所以,故.()()10h x h ≤=ln1x x ≤-所以,又,1111ln 21230g a a a a ⎛⎫=--<--=-< ⎪⎝⎭1a>所以在区间内有一个零点.()gx 1a ⎫⎪⎭综上可知:当时,有两个零点,即方程有两个不同的实数根,5102e a <<()g x ()2a f x ax x =+故a 的取值范围为.510,2e ⎛⎫ ⎪⎝⎭解法二:由方程得.()2af x ax x =+2ln 2x a x -=设函数,则,.()2ln 2x k x x -=()()24312ln 252ln x x x x x k x x x ⋅---=='0x >令,得,设,()0k x '=52e x =520ex =则当时,,当时,,00x x <<()0k x '>0x x >()0k x '<所以在上单调递增,在上单调递减,()k x ()00,x ()0,x +∞所以的极大值也就是最大值为,()k x ()0512e k x =且当,x 趋近于0时,趋近于负无穷,当趋近于正无穷时,,且趋近于0x >()k x x ()0k x >()k x 0.方程有两个不同的实数根,转化为直线与的图象有两个交点,()2af x ax x =+y a =()y k x =结合函数图象可知a 的取值范围是.510,2e ⎛⎫ ⎪⎝⎭。
北京市2023-2024学年高二上学期期中语文试题含答案
2023北京高二(上)期中语文(答案在最后)2023.11.610:30-12:30本试卷共8页,100分。
考试时长120分钟。
考生务必将答案作答在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡上交,自己保存试卷,以备讲评之用。
一、本大题共4小题,共9分。
阅读下面材料,完成下面小题。
材料一:汉以后,先秦诸子百家中,唯有儒、道两家长期共存,互相竞争,互相吸收,形成中国传统文化中一条纵贯始终的基本发展线索。
在中国传统文化的多元成分中,儒家和道家是主要的两极,形成鲜明的对立和有效的互补。
两者由于处处相反,因而能够相辅相成,给予整个中国传统文化以深刻的影响。
儒家的人生观,以成就道德人格和救世事业为价值取向,内以修身,充实仁德,外以济民,治国平天下,这便是内圣外王之道。
其人生态度是积极进取的,对社会现实强烈关切并有着历史使命感,以天下为己任,对同类和他人有不可自已的同情,“己所不欲,勿施于人”,“己欲立而立人,己欲达而达人”,“达则兼济天下,穷则独善其身”,不与浊俗同流合污,在生命与理想发生不可兼得的矛盾时,宁可杀身成仁,舍生取义,以成就自己的道德人生。
道家的人生观,以超越世俗人际关系网的羁绊,获得个人内心平静自在为价值取向,既反对心为形役,逐外物而不反,又不关心社会事业的奋斗成功,只要各自顺任自然之性而不相扰,必然自为而相因,成就和谐宁静的社会。
其人生态度消极自保,以免祸全生为最低目标,以各安其性命为最高目标。
或隐于山林,或陷于朗市,有明显的出世倾向。
儒家的出类拔萃者为志士仁人,道家的典型人物为清修隐者。
儒道两家的气象不同,大儒的气象似乎可以用“刚健中正”四字表示,就是道德高尚、彬彬有礼、从容中道、和而不同等,凡事皆能观研深究,以求合理、合时、合情,可谓为曲践乎仁义,足以代表儒家的态度。
道家高士的气象似可用“涵虚脱俗”四字表示,就是内敛不露、清静自守、质朴无华、超然自得等,富于诗意,富于山林隐逸和潇洒超脱的风味。
安徽省蚌埠市2023-2024学年高二上学期期中数学试题含解析
蚌埠2023-2024学年第一学期期中检测试卷高二数学(答案在最后)一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若直线l 的一个方向向量为(-,求直线的倾斜角()A.π3B.π6C.2π3D.5π6【答案】C 【解析】【分析】求出直线斜率,进而求出直线倾斜角即得.【详解】直线l 的一个方向向量为(-,则直线l 斜率为,所以直线l 的倾斜角为2π3.故选:C2.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,已知PA a = ,PB b = ,PC c = ,12PE PD = ,则BE = ()A.131222a b c -+B.111222a b c-+C.131222a b c ++D.113222a b c -+【答案】A 【解析】【分析】利用空间向量加法法则直接求解.【详解】连接BD ,如图,则()()()1111122222BE BP BD PB BA BC PB PA PB PC PB =+=-++=-+-+-()11131131222222222PB PA PB PC PA PB PC a b c=-+-+=-+=-+故选:A .3.已知点A 与点(1,2)B 关于直线30x y ++=对称,则点A 的坐标为A.(3,4) B.(4,5)C.(4,3)-- D.(5,4)--【答案】D 【解析】【分析】根据对称列式求解.【详解】设(),A x y ,则123052224(1)11x y x y y x ++⎧++=⎪=-⎧⎪∴⎨⎨-=-⎩⎪⋅-=-⎪-⎩,选D.【点睛】本题考查关于直线对称点问题,考查基本分析求解能力,属基础题.4.在一平面直角坐标系中,已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为()A.27 B.41C.17 D.35【答案】D 【解析】【分析】平面直角坐标系中已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角后,通过向量的数量积转化求解距离即可.【详解】解:平面直角坐标系中已知()1,6A -,()2,6B -,沿x 轴将坐标平面折成60°的二面角后,作AC ⊥x 轴,交x 轴于C 点,作BD ⊥x 轴,交x 轴于D 点,则6,3,6,AC CD DB === ,AC CD CD DB ⊥⊥ ,,AC DB的夹角为120°∴AB AC CD DB =++ ,222222212+2+2=6+3+6266452AB AC CD DB AC CD CD DB AC DB =+++⋅⋅⋅-⨯⨯⨯= 35AB ∴=,即折叠后A ,B 两点间的距离为35.故选:D .【点睛】本题考查与二面角有关的立体几何综合题,解题时要认真审题,注意数形结合思想的合理运用.5.如果实数x ,y 满足()2222x y -+=,则yx的范围是()A.()1,1- B.[]1,1- C.()(),11,-∞-⋃+∞ D.(][),11,-∞-⋃+∞【答案】B 【解析】【分析】设yk x =,求y x的范围救等价于求同时经过原点和圆上的点(),x y 的直线中斜率的范围,结合图象,易得取值范围.【详解】解:设yk x=,则y kx =表示经过原点的直线,k 为直线的斜率.如果实数x ,y 满足22(2)2x y -+=和yk x=,即直线y kx =同时经过原点和圆上的点(),x y .其中圆心()2,0C ,半径2r =从图中可知,斜率取最大值时对应的直线斜率为正且刚好与圆相切,设此时切点为E则直线的斜率就是其倾斜角EOC ∠的正切值,易得2OC =,CE r ==可由勾股定理求得OE ==,于是可得到tan 1CEk EOC OE =∠==为y x的最大值;同理,yx的最小值为-1.则yx的范围是[]1,1-.故选:B.6.抛物线214x y =的焦点到双曲线22221(0,0)x y a b a b -=>>的渐近线的距离是2,则该双曲线的离心率为()A.B.C.2D.233【答案】A 【解析】【分析】先求得抛物线的焦点,根据点到直线的距离公式列方程,求得22b a =,由此求得双曲线的离心率.【详解】抛物线214x y =即24y x =的焦点坐标为()1,0,双曲线22221(0,0)x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=,所以点()1,0到直线0bx ay ±=的距离为22=,则22b a =,则双曲线的离心率为c e a =====故选:A7.直线()2200ax by a b a b +--=+≠与圆2220x y +-=的位置关系为()A.相离 B.相切C.相交或相切D.相交【答案】C 【解析】【分析】利用几何法,判断圆心到直线的距离与半径的关系,判断直线与圆的位置关系即可.【详解】由已知得,圆2220x y +-=的圆心为(0,0),所以圆心到直线()2200ax by a b a b +--=+≠.因为222ab a b ≤+,所以()()2222a b a b+≤+≤,所以直线与圆相交或相切;故选:C .8.在正方体1111ABCD A B C D -中,点P 在1AC 上运动(包括端点),则BP 与1AD 所成角的取值范围是()A.ππ,43⎡⎤⎢⎥⎣⎦ B.π0,2⎡⎤⎢⎥⎣⎦C.ππ,62⎡⎤⎢⎥⎣⎦D.ππ,63⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】建立空间直角坐标系,设1AB =,则,01λ≤≤,利用1c s o BC BP =,,即可得出答案.【详解】设BP 与1AD 所成角为θ,如图所示,不妨设1AB =,则()0,0,0B ,()0,1,0A ,()10,1,1A ,()11,0,1C ,()111,0,1AD BC == ,()1,0,0BC = ,()11,1,1AC =-.设1AP AC λ= ,则()1,1,BP BA AC λλλλ=+=-,01λ≤≤.所以111c ·o s BC BPBC BP BC BP==⋅,当0λ=时,10cos BC BP = ,,此时BP 与1AD 所成角为π2,当0λ≠时,1c os BC BP =,,此时10cos 1BC BP <≤,,当且仅当1λ=时等号成立,因为cos y x =在π02x ⎡⎤∈⎢⎥⎣⎦,上单调递减,所以1π0,2BC BP ⎡⎫∈⎪⎢⎣⎭ ,,综上,π0,2θ⎡⎤∈⎢⎥⎣⎦.故选:B .二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.下列说法正确的有()A.若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B.直线32y ax a =-+过定点()32,C.过点()21-,斜率为的点斜式方程为)12y x +=-D.斜率为2-,在y 轴截距为3的直线方程为23y x =-±.【答案】ABC 【解析】【分析】由直线y kx b =+过一、二、四象限,得到斜率0k <,截距0b >,可判定A 正确;由把直线方程化简为()()320a x y -+-+=,得到点()32,都满足方程,可判定B 正确;由点斜式方程,可判定C 正确;由斜截式直线方程可判定D 错误.【详解】对于A 中,由直线y kx b =+过一、二、四象限,所以直线的斜率0k <,截距0b >,故点()k b ,在第二象限,所以A 正确;对于B 中,由直线方程32y ax a =-+,整理得()()320a x y -+-+=,所以无论a 取何值点()32,都满足方程,所以B 正确;对于C 中,由点斜式方程,可知过点()21-,斜率为的点斜式方程为)12y x +=-,所以C 正确;由斜截式直线方程得到斜率为2-,在y 轴上的截距为3的直线方程为23y x =-+,所以D 错误.故选:ABC .【点睛】本题主要考查了直线的方程的形式,以及直线方程的应用,其中解答中熟记直线的点斜式的概念及形式,以及直线的斜率与截距的概念是解答的关键,着重考查推理与运算能力,属于基础题.10.关于空间向量,以下说法正确的是()A.若直线l 的方向向量为()1,0,3e = ,平面α的法向量为22,0,3n ⎛⎫=- ⎪⎝⎭ ,则直线l α∥B.已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C.若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面D.两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线【答案】BCD 【解析】【分析】计算得到e n ⊥,l α∥或l ⊂α,A 错误,若,,a b a c +r r r r 共面,则,,a b c 共面,不成立,故B 正确,化简得到23PA PB PC =--,C 正确,若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确,得到答案.【详解】()22,0,22031,0,3e n ⎛⎫=-=-+= ⎪⎝⎭⋅⋅ ,故e n ⊥ ,故l α∥或l ⊂α,A 错误;若,,a b a c +r r r r共面,设()()b a a c a c λμλμμ=++=++ ,则,,a b c 共面,不成立,故{},,a b m 也是空间的基底,B 正确;111632OP OA OB OC =++ ,则()()()111632OA OP OB OP OC OP -+-+- 1110632PA PB PC =++=,即23PA PB PC =--,故P ,A ,B ,C 四点共面,C 正确;若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确.故选:BCD.11.已知平面α的法向量为()1,2,2n =-- ,点()2,21,2A x x +为α内一点,若点()0,1,2P 到平面α的距离为4,则x 的值为()A.2 B.1C.3- D.6-【答案】AD【解析】【分析】利用向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,代入相关数值,通过解方程即可求解.【详解】解:由向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,又 ()()22,(,20,2,0)122,1,x x AP x x →+--==-,()1,2,2n =--24AP n x x →→∴⋅=+,||3n ==由点()0,1,2P 到平面α的距离为4,有2443x x+=解得2x =或6x =-故选:AD【点睛】本题考查的是点面距离的计算问题,核心是会利用向量法中点到平面的距离公式,考查运算求解能力,属于基础题.12.已知双曲线C 经过点6,12⎛⎫ ⎪ ⎪⎝⎭,且与椭圆22Γ:12x y +=有公共的焦点12,F F ,点M 为椭圆Γ的上顶点,点P 为C 上一动点,则()A.双曲线CB.sin 3MOP ∠>C.当P 为C 与Γ的交点时,121cos 3F PF ∠= D.||PM 的最小值为1【答案】ACD 【解析】【分析】根据题意中的点求出双曲线方程,结合离心率的定义即可判断A ;根据双曲线的渐近线,结合图形即可判断B ;根据椭圆与双曲线的定义,结合余弦定理计算即可判断C ;由两点距离公式,结合二次函数的性质即可判断D.【详解】A :由题意,12(1,0),(1,0)F F -,设双曲线的标准方程为222221,11x y a a a-=<-,将点,1)2代入得212a =,所以双曲线方程为2211122x y -=,得其离心率为22c e a ===,故A 正确;B :由A 选项的分析知,双曲线的渐近线方程为y x =±,如图,π4MON ∠=,所以π3π44MOP <∠<,得sin 12MOP <∠≤,故B 错误;C :当P为双曲线和椭圆在第一象限的交点时,由椭圆和双曲线的定义知,1212PF PF PF PF +=-=12,22PF PF ==,又122F F =,在12F PF △中,由余弦定理得222121212121cos 23PF PF F F F PF PF PF +-∠==⋅,故C 正确;D :设00(,)P x y ,则22001,(0,1)2x y M -=,所以PM ==,当012y =时,min1PM =,故D 正确.故选:ACD.三、填空题(本大题共4小题,共20.0分)13.若空间向量(,2,2)a x =和(1,1,1)b = 的夹角为锐角,则x 的取值范围是________【答案】4x >-且2x ≠【解析】【分析】结合向量夹角公式、向量共线列不等式来求得x 的取值范围.【详解】依题意04211a b a bx x ⎧⋅=>⎪⋅⎪⇒>-⎨⎪≠⎪⎩ 且2x ≠.故答案为:4x >-且2x ≠14.已知0a >,0b >,直线1l :()110a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为__________.【答案】8【解析】【分析】根据两条直线的一般式方程及垂直关系,求出a ,b 满足的条件,再由基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即12a =,14b =时等号成立,所以21a b+的最小值为8.故答案为:8.15.直线30x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2232x y -+=上,则ABP 面积的取值范围______.【答案】[]6,12【解析】【分析】由题意求得所以()30A -,,()0,3B -,从而求得AB =,再根据直线与圆的位置关系可求得点P 到直线30x y ++=距离h ⎡∈⎣,再结合面积公式即可求解.【详解】因为直线30x y ++=分别与x 轴,y 轴交于A ,B 两点,所以()30A -,,()0,3B -,因此AB =.因为圆()2232x y -+=的圆心为()3,0,半径r =,设圆心()3,0到直线30x y ++=的距离为d ,则3033222d ++==>,因此直线30x y ++=与圆()2232x y -+=相离.又因为点P 在圆()2232x y -+=上,所以点P 到直线30x y ++=距离h 的最小值为32222d r -=-=,最大值为32242d r +=+=,即22,42h ⎡⎤∈⎣⎦,又因为ABP 面积为13222AB h h ⨯⨯=,所以ABC 面积的取值范围为[]6,12.故答案为:[]6,1216.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC 的顶点()4,0-A ,()0,4B ,其欧拉线方程为20x y -+=,则顶点C 的坐标可以是_________【答案】()2,0或()0,2-【解析】【分析】设(,)C x y ,依题意可确定ABC ∆的外心为(0,2)M ,可得出,x y 一个关系式,求出ABC ∆重心坐标,代入欧拉直线方程,又可得出,x y 另一个关系式,解方程组,即可得出结论.【详解】设(,),C x y AB 的垂直平分线为y x =-,ABC 的外心为欧拉线方程为20x y -+=与直线y x =-的交点为(1,1)M -,∴22||||10,(1)(1)10MC MA x y ==++-=①由()4,0-A ,()0,4B ,ABC 重心为44(,)33x y -+,代入欧拉线方程20x y -+=,得20x y --=②由①②可得2,0x y ==或0,2x y ==-.故答案为:()2,0或()0,2-.【点睛】本题以数学文化为背景,考查圆的性质和三角形的外心与重心,考查逻辑思维能力和计算能力,属于较难题.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.已知圆M 的圆心为()2,3,且经过点()5,1C -.(1)求圆M 的标准方程;(2)已知直线:34160l x y -+=与圆M 相交于,A B 两点,求AB .【答案】(1)()()222325x y -+-=(2)AB =【解析】【分析】(1)根据条件求出圆M 的半径,再结合圆心坐标求出标准方程即可;(2)求出圆心M 到直线l 的距离,再由垂径定理求出||AB .【小问1详解】因为圆M 的圆心为(2,3),且经过点(5,1)C -,所以圆M 的半径5r MC ===,所以圆M 的标准方程为()()222325x y -+-=.【小问2详解】由(1)知,圆M 的圆心为()2,3,半径=5r ,所以圆心M 到直线l 的距离2d =,所以由垂径定理,得AB ===.18.已知ABC 的顶点()3,2A ,边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=.(1)求顶点,B C 的坐标;(2)求ABC 的面积.【答案】(1)B 的坐标为()8,7,C 的坐标为()1,3(2)152【解析】【分析】(1)设(),B a b ,(),C m n ,由题意列方程求解即可得出答案.(2)先求出AB 和直线AB 所在的方程,再由点到直线的距离公式求出边AB 上的高,即可求出ABC 的面积.【小问1详解】设(),B a b ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以2903238022a b a b --=⎧⎪⎨++-⨯+=⎪⎩,解得87a b =⎧⎨=⎩,即B 的坐标为()8,7.设(),C m n ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以3802132m n n m -+=⎧⎪-⎨=-⎪-⎩,解得13m n =⎧⎨=⎩,即C 的坐标为()1,3.【小问2详解】因为()()3,2,8,7A B,所以AB ==因为边AB 所在直线的方程为237283y x --=--,即10x y --=,所以点()1,3C 到边AB的距离为2=,即边AB上的高为2,故ABC的面积为115222⨯=.19.已知直三棱柱111ABC A B C -,侧面11AA C C 是正方形,点F 在线段1AC 上,且13AF =,点E 为1BB 的中点,1AA =,1AB BC ==.(1)求异面直线CE 与BF 所成的角;(2)求平面CEF 与平面11ACC A 夹角的余弦值.【答案】(1)90(2)21【解析】【分析】(1)利用直棱柱的结构特征,结合线面垂直的性质,建立空间直角坐标系,利用直线与直线所成角的向量求法,计算得结论;(2)分别求出两个平面的法向量,利用平面与平面所成角的向量求法,即可得到结果.【小问1详解】因为侧面11AA C C 是正方形,1AA =,1AB BC ==,所以BA BC ⊥,因为三棱柱111ABC A B C -直三棱柱,所以1BB ⊥面ABC ,而BC ,BA ⊂平面ABC ,因此1BB BC ⊥,1BB BA ⊥,所以BC ,BA ,1BB 两两垂直.以B 为坐标原点,BC ,BA ,1BB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如下图:因此()100C ,,,()000,,B ,()010A ,,,(1102C ,,而点E 为1BB 的中点,所以2002E ⎛⎫ ⎪ ⎪⎝⎭,,,因为F 在线段1AC 上,所以设()()1,201AF AC λλλλλ==-≤≤ ,因此(),12BF BA AF λλλ=+=- ,因为13AF = ()()222123λλλ+-+=解得16λ=,因此152,,666BF ⎛⎫= ⎪ ⎪⎝⎭ ,即152,,666F ⎛⎫ ⎪ ⎪⎝⎭,因为21,0,2CE ⎛⎫=- ⎪ ⎪⎝⎭,所以11066CE BF ⋅=-+= ,因此异面直线CE 与BF 所成的角为90 .【小问2详解】设平面CEF 的法向量为()1n x y z = ,,,而552,,666CF ⎛⎫=- ⎪ ⎪⎝⎭,因此由1100n CE n CF ⎧⋅=⎪⎨⋅=⎪⎩ 得2025520666x z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩,取2z =得1x =,35y =,所以13125n ⎛= ⎝ ,,是平面CEF 的一个法向量,设平面11ACC A 的法向量为()2222n x y z = ,,,()110AC =- ,,,(112AC =- ,,,因此由22100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ 得020x y x y z -=⎧⎪⎨-+=⎪⎩,取1x =得1y =,0z =,所以()2110n = ,,是平面11ACC A 的一个法向量.设平面CEF 与平面11ACC A 夹角为θ,则02πθ≤≤,因此121212cos cos ,n n n n n n θ⋅==31521+==,所以平面CEF 与平面11ACC A 夹角的余弦值为24221.20.已知双曲线C的焦点坐标为()1F,)2F ,实轴长为4,(1)求双曲线C 的标准方程;(2)若双曲线C 上存在一点P 使得12PF PF ⊥,求12PF F △的面积.【答案】(1)2214x y -=;(2)1.【解析】【分析】(1)由题可知,c a 的值即可求出双曲线C 的标准方程;(2)由双曲线的定义及面积公式即可求出.【详解】(1)设双曲线方程为22221(0,0)x y a b a b-=>>,由条件知c =,24a =,∴2,1a b ==,∴双曲线C 的方程为2214x y -=.(2)由双曲线的定义可知,124PF PF -=±.∵12PF PF ⊥,∴22212420PF PF c +==,即21212()220PF PF PF PF ⨯-+=∴122PF PF ⋅=,∴12PF F △的面积12112122S PF PF =⋅=⨯=.21.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,2PA PB AD ===,4BC =.(1)若PB 的中点为E ,求证://AE 平面PCD ;(2)若PB 与底面ABCD 所成的角为60︒,求PC 与平面PBD 的所成角的余弦值.【答案】(1)证明见解析(2)80535【解析】【分析】(1)取PC 的中点F ,连接,EF DF .先证明四边形ADFE 是平行四边形,即可得出//DF AE ,然后即可证明线面平行;(2)先证明PO ⊥平面ABCD ,即可得出60PBA ∠=︒.然后建立空间直角坐标系,得出点以及向量的坐标,求出平面PBD 的法向量,根据向量求得PC 与平面PBD 的所成角的正弦值,进而求得余弦值.【小问1详解】如图1,取PC 的中点F ,连接,EF DF ,,E F 分别为,PB PC 的中点,∴//EF BC ,且122EF BC ==.//AD BC 且2AD =,//EF AD ∴且2EF AD ==,∴四边形ADFE 是平行四边形,//DF AE ∴.AE ⊄ 平面PCD ,DF ⊂平面PCD ,∴//AE 平面PCD .【小问2详解】若O 是AB 中点,取CD 中点为G ,连结OG .,O G 分别是,AB CD 的中点,∴//OG BC .AB BC ⊥,∴OG AB ⊥.由底面ABCD 为直角梯形且//AD BC ,2PA PB AD ===,4BC =.PA PB =,∴PO AB ⊥.由侧面PAB ⊥底面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂面PAB ,∴PO ⊥平面ABCD ,P ∴在平面ABCD 的投影在直线AB 上.又PB 与底面ABCD 所成的角为60︒,PB ∴与底面ABCD 所成角的平面角60PBA ∠=︒,∴PAB 为等边三角形,2AB PA ==.以O 为原点,分别以,,OB OG OP 所在的直线为,,x y z 轴,如图2建空间直角坐标系,则()1,0,0B ,()1,4,0C ,()1,2,0D -,(3P ,则(3BP =- ,(1,2,3PD =- ,(1,4,3PC = .设平面PBD 的法向量(),,n x y z =r,则00n BP n PD ⎧⋅=⎪⎨⋅=⎪⎩,即020x x y ⎧-+=⎪⎨-+-=⎪⎩,取x =,得)n = ,∴cos ,35n PC n PC n PC ⋅==r uu u r r uu u r r uu u r .设PC 与平面PBD 的所成角为θ,则sin cos ,35n PC θ== . π0,2θ⎡⎤∈⎢⎥⎣⎦,∴cos 0θ≥∴cos 35θ==,PC ∴与平面PBD的夹角的余弦值为35.22.已知抛物线C :()220y px p =>的焦点为F ,斜率为1的直线l 经过F ,且与抛物线C 交于A ,B 两点,8AB =.(1)求抛物线C 的方程;(2)过抛物线C 上一点(),2P a -作两条互相垂直的直线与抛物线C 相交于MN 两点(异于点P ),证明:直线MN 恒过定点,并求出该定点坐标.【答案】(1)24y x=(2)证明见解析【解析】【分析】(1)根据条件,得到直线l 方程为2p y x =-,设1122(,),(,)A x y B x y ,联立抛物线方程,根据抛物线的弦长求得p ,即得答案;(2)求得a 的值,设直线MN 的方程为x my n =+,联立抛物线方程,得根与系数的关系,利用PM PN ⊥,得到32(1)n m -=-或32(1)n m -=--,代入直线方程,分离参数,求得定点坐标,证明结论.【小问1详解】设1122(,),(,)A x y B x y ,由题意知(,0)2p F ,则直线l 方程为2p y x =-,代入()220y px p =>,得22304p x px -+=,280p ∆=>,∴123x x p +=,由抛物线定义,知1||2p AF x =+,2||2p BF x =+,∴12348AB AF BF x x p p p p =+=++=+==,∴2p =,∴抛物线的方程为24y x =.【小问2详解】证明: (),2P a -在抛物线24y x =上,∴242),1(a a =∴=-,由题意,直线MN 的斜率不为0,设直线MN 的方程为x my n =+,设3344(,),(,)M x y N x y ,由24y x x my n⎧=⎨=+⎩,得2440y my n --=,则216160m n '∆=+>,且34344,4y y m y y n +==-,又23434)242(x x m y y n m n +=++=+,22234344334()()()x x my n my n m y y mn y y n n =++=+++=,由题意,可知PM PN ⊥,PM PN ∴⊥,故3434(1)(1)(2)(2)0PM PN x x y y +⋅=+--+= ,故()3434343412()40x x x x y y y y -++++++=,整理得2246850n m n m --++=,即22(3)4)(1n m -=-,∴32(1)n m -=-或32(1)n m -=--,即21n m =+或25n m =-+.若21n m =+,则21(2)1x my n my m m y =+=++=++,此时直线MN 过定点(1,2)-,不合题意;若25n m =-+,则()2525x my n my m m y =+=-+=-+,此时直线MN 过定点(5,2),符合题意,综上,直线MN 过异于P 点的定点(5,2).【点睛】方法点睛:直线和抛物线的位置关系中,证明直线过定点问题,一般是设出直线方程,利用根与系数的关系化简,求得参数之间的关系式,再对直线分离参数,求得定点坐标,进而证明直线过定点.。
2022-2023学年山东省泰安市高二上学期期中考试数学试题(解析版)
2022-2023学年山东省泰安市高二上学期期中考试数学试题一、单选题1.经过()1A ,()3,1B -两点的直线的倾斜角为( )A .π6B .π3C .2π3D .5π6【答案】D【分析】利用倾斜角与斜率关系即可求解.【详解】因为直线经过()1A ,()3,1B -,则直线斜率为k ==α,则()tan 0,ααπ=∈,此时5π6α=. 故选:D2.若()2,4,1a =-与()2,,1b m =-共线,则m =( ) A .-4 B .-2C .2D .4【答案】A【分析】依题意可得b a λ=,即可得到方程组,解得即可. 【详解】解:因为()2,4,1a =-与()2,,1b m =-共线,所以b a λ=,即()()2,,12,4,1m λ-=-,即2241m λλλ-=⎧⎪=⎨⎪=-⎩,解得14m λ=-⎧⎨=-⎩. 故选:A3.已知圆M 的方程为222410x y x y ++-+=,则圆心M 的坐标为( ) A .1,2 B .1,2C .()2,4-D .()2,4-【答案】B【分析】先化成标准式,即得圆心坐标.【详解】()()22222410124++-+=∴++-=x y x y x y , 因此圆心坐标为()1,2-M . 故选:B.4.两条平行直线l :3460x y -+=与l :3490x y --=间的距离为( )A .13B .35C .3D .5【答案】C【分析】直接利用两条平行直线间的距离公式求解即可. 【详解】两条平行直线1l :3460x y -+=与2l :3490x y --=1535==. 故选:C .5.已知平面α的一个法向量为()1,2,2n =--,点()0,1,0A 为α内一点,则点1,0,1P 到平面α的距离为( ) A .4 B .3 C .2 D .1【答案】 D【分析】利用空间向量的数量积以及点到面的距离向量求法即可求解. 【详解】因为()1,1,1AP =-,()1,2,2n =--, 所以1223AP n ⋅=-++=,143n =++=, 则点P 到平面α的距离1nAP n d ⋅==.故选:D6.已知圆M :()2224x y -+=内有点()3,1P ,则以点P 为中点的圆M 的弦所在直线方程为( ) A .20x y +-= B .20x y --= C .40x y +-= D .20x y -+=【答案】C【分析】由圆M 的标准方程得出圆心和半径,连接PM ,作PM 的垂线,交圆M 于A ,B 两点,以点P 为中点的圆M 的弦即为AB ,求出直线MP 的斜率,利用两直线垂直关系,则可求出直线AB 的斜率,用点斜式方程即可求出直线AB .【详解】由圆M 的标准方程()2224x y -+=,可知圆心()2,0M ,半径2r =,如图,连接MP ,作MP 的垂线,交圆M 于A ,B 两点,以点P 为中点的圆M 的弦即为AB , 10132MP k -==-,MP AB ⊥ 11ABMPk k ∴=-=-所以直线AB 的方程为:()113y x -=--,整理得40x y +-=, 故选:C.7.已知a ,b 为两条异面直线,在直线a 上取点1A ,E ,在直线b 上取点A ,F ,使1AA a ⊥,且1AA b ⊥(称1AA 为异面直线a ,b 的公垂线).已知12A E =,3AF =,5EF =,132AA =,则异面直线a ,b 所成的角为( )A .6πB .3π C .23π D .56π 【答案】B【分析】由题可设异面直线a ,b 所成的角为θ,利用向量可得cos θ的值,即求. 【详解】设异面直线a ,b 所成的角为θ,(0,]2πθ∈∵1AA a ⊥,且1AA b ⊥,12A E =,3AF =,5EF =,132AA = ∴11EF EA A A AF =++∴2222111111222EF EA A A AF EA A A A A AF EA AF =+++⋅+⋅+⋅∴1cos 2θ=±,又(0,]2πθ∈∴3πθ=.故选:B.8.若直线0kx y k ++=与曲线212y x x =+-仅有一个公共点,则实数k 的取值范围是( ) A .{}11,03⎡⎫--⎪⎢⎣⎭B .{}11,03⎛⎫--⋃ ⎪⎝⎭C .141,33⎡⎤⎧⎫--⋃-⎨⎬⎢⎥⎣⎦⎩⎭D .141,33⎛⎤⎧⎫--⋃-⎨⎬ ⎥⎝⎦⎩⎭【答案】D【分析】首先确定曲线的形状,然后结合直线恒过定点考查临界情况结合图像即可确定实数k 的取值范围.【详解】曲线212y x x =+-即22(1)20(1)x y x y +--=,即22(1)(1)1(1)x y y -+-=,表示(1,1)M 为圆心,1r =为半径的圆的上半部分, 直线0kx y k ++=即(1)y k x =-+恒过定点(1,0)-, 作出直线与半圆的图象,如图,考查临界情况:当直线过点(0,1)时,直线的斜率1k -=,此时直线与半圆有两个交点, 当直线过点(2,1)时,直线的斜率13k -=,此时直线与半圆有1个交点, 当直线与半圆相切时,圆心(1,1)M 到直线0kx y k ++=的距离为1,且0k ->, 211k =+,解得:43k =-,(0k =舍去). 据此可得,实数k 的取值范围是14(1,]33⎧⎫---⎨⎬⎩⎭.故选:D .二、多选题9.已知()1,2A ,()3,4B -,()2,0C -,则( ) A .直线0x y -=与线段AB 有公共点 B .直线AB 的倾斜角大于135︒C .ABC 的边BC 上的高所在直线的方程为470x y -+=D .ABC 的边BC 上的中垂线所在直线的方程为480x y ++= 【答案】BC【分析】A 选项,画出图像即可看出有无交点;B 选项用先用直线斜率公式求出斜率,再比较倾斜角与135︒的大小;C 选项ABC 的边BC 上的高所在直线过点A ,且斜率和直线BC 的斜率乘积为1-,用点斜式写出边BC 上的高所在直线;D 选项ABC 的边BC 上的中垂线经过BC 的中点,且斜率和直线BC 的斜率乘积为1-,从而利用点斜式写出中垂线所在直线的方程; 【详解】如图所示:所以直线0x y -=与线段AB 无公共点,A 错误;因为421312AB k -==---1>-,所以直线AB 的倾斜角大于135︒,B 正确. 因为4432BC k ==--+,且边BC 上的高所在直线过点A , 所以ABC 的边BC 上的高所在直线的方程为12(1)4y x -=-,即470x y -+=,C 正确,因为线段BC 的中点为5,22⎛⎫- ⎪⎝⎭,且直线BC 的斜率为40432-=--+, 所以BC 上的中垂线所在直线的方程为15242y x ⎛⎫-=+ ⎪⎝⎭,即28210x y -+=,故D 错误. 故选:BC.10.已知直线l :1ax by +=,圆C :221x y +=,点(),M a b ,则( ) A .若M 在圆上,直线l 与圆C 相切 B .若M 在圆内,直线l 与圆C 相离 C .若M 在圆外,直线l 与圆C 相离 D .若M 在直线l 上,直线l 与圆C 相切【答案】ABD【分析】根据点与圆的位置关系,得,a b 的关系,即可确定直线l 与圆C 的关系来判断A ,B ,C 选项;根据点与直线的位置关系,得得,a b 的关系,即可确定直线l 与圆C 的关系来判断D 选项. 【详解】解:圆C :221x y +=,圆心()0,0C ,半径1r =对于A ,若M 在圆上,则221MC a b r =+==,圆心到直线l 的距离为:221111d r a b -====+,则直线l 与圆C 相切,故A 正确;对于B ,若M 在圆内,则221MC a b =+<,圆心到直线l 的距离为:2211d r a b-=>=+,则直线l 与圆C 相离,故B 正确;对于C ,若M 在圆外,则221MC a b =+>,圆心到直线l 的距离为:2211d r a b-=<=+,直线l 与圆C 相交,故C 错误;对于D ,若M 在直线l 上,则221a b +=,圆心到直线l 的距离为:221111d r a b -====+,则直线l与圆C 相切,故D 正确. 故选:ABD.11.如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD ,12AB AA ==.以O 为坐标原点,建立如图所示的空间直角坐标系,则( )A .(12,0,2OB =B .1AC ⊥平面1OBBC .平面1OBB 的一个法向量为()0,1,1n =-D .点B 到直线1A C 3【答案】BCD作答.【详解】依题意, ABCD 是正方形, AC BD ⊥,AC 与BD 的交点O 为原点,12AB AA ==,在给定的空间直角坐标系中,)()()(1,,0,,B C A A ,而()112,AB AB ==,则点1B,(12,OB =,故A 错误;()2,0,0OB=,(12,OB =,设平面1OBB 的法向量(),,n x y z =,则12020n OB x n OB x ⎧⋅==⎪⎨⋅==⎪⎩, 令1y =,得()0,1,1n =-,故C 正确;()10,2,22AC n =-=,即1A C ⊥平面1OBB ,故B 正确; (10,AC =,(12,0,A B =,1111A B AC d A C⋅==,B 到1AC 的距离221h A B d =-==故D 正确故选:BCD12.古希腊著名数学家阿波罗尼奥斯(约公元前262-前190)发现:平面内到两个定点A ,B 的距离之比为定值()1λλ≠的点的轨迹是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼奥斯圆,简称阿氏圆.在平面直角坐标系xOy 中,已知()1,0A -,()2,0B ,动点C 满足12CA CB=,直线l :10mx y m -++=,则( )A .直线l 过定点()1,1-B .动点C 的轨迹方程为()2224xy ++= C .动点C 到直线l 1D .若直线l 与动点C 的轨迹交于P ,Q 两点,且PQ =,则1m =- 【答案】ABD【分析】设(,)C x y , 由题意求出点C 的轨迹以及轨迹方程, 利用直线与圆的位置关系, 依次判断四个选项即可.【详解】对于A, 直线l :10mx y m -++=,(1)10m x y +-+=,101101x x y y +==-⎧⎧⇒⎨⎨-+==⎩⎩,直线l 过定点()1,1-,故选项A 正确;对于B,设(,)C x y ,因为动点C 满足||1||2CA CB =,所以 12=, 整理可得2240x y x ++=, 即22(2)4x y ++=,所以动点C 的轨迹是以(2,0)N -为圆心,2r =为半径的圆, 动点C 的轨迹方程为22(2)4x y ++=,故选项B 正确;对于 C, 当直线l 与MN 垂直时, 动点C 到直线l 的距离最大, 且最大值为2故选项C 错误; 对于D, 记圆心N 到直线l 的距离为d ,则d =因为 ()222||4PQ r d =-,则 ()2248r d -=,因为 2r =,所以 d =即=解得 1m =-, 故选项D 正确.故选: ABD.三、填空题13.已知直线1l :210x y +-=,2l :210x ay +-=,若1l ∥2l ,则a 的值是________. 【答案】4【分析】由两直线平行可得1221A B A B =,代入相关数据计算即可. 【详解】解:因为1l ∥2l , 所以224a =⨯=. 故答案为:4.14.写出过()4,0M ,()0,4N 两点,且半径为4的圆的一个标准方程:________. 【答案】2216x y +=(或()()224416x y -+-=)【分析】设所求圆的标准方程为:()()2216x a y b -+-=,代入M ,N 两点的坐标求解即可. 【详解】解:设所求圆的标准方程为:()()2216x a y b -+-=,则有()()2222416416a b a b ⎧-+=⎪⎨+-=⎪⎩, 解得00a b =⎧⎨=⎩或44a b =⎧⎨=⎩,所以所求圆的标准方程为:2216x y +=或()()224416x y -+-=. 故答案为:2216x y +=或()()224416x y -+-=.15.在中国古代数学著作《就长算术》中,鳖臑(biēnào )是指四个面都是直角三角形的四面体.如图,在直角ABC ∆中,AD 为斜边BC 上的高,3AB =,4AC =,现将ABD ∆沿AD 翻折AB D '∆,使得四面体AB CD '为一个鳖臑,则直线B D '与平面ADC 所成角的余弦值是______.【答案】916【分析】作'B M CD ⊥于交CD 于M ,可证明'B M ⊥平面ACD ,则'B DM ∠即为B D '与平面ADC 的夹角.根据线段关系即可求解.【详解】作'B M CD ⊥于交CD 于M因为,'AD CD AD DD ⊥⊥ 且'CD DD D ⋂= 所以AD ⊥平面'DB C 而AD ⊂平面ACD所以平面ACD ⊥平面'DB C又因为平面ACD 平面'DB C DC =,且'B M CD ⊥所以'B M ⊥平面ACD则'B DM ∠即为B D '与平面ADC 的夹角 因为直角ABC ∆中,3AB =,4AC =所以5BC ===341255AB AC AD BC ⨯⨯===则165DC ===所以169'555DB BC DC =-=-= 在直角三角形'B DC 中,9'95cos 'cos '16165DB B DM B DC DC ∠=∠=== 故答案为:916【点睛】本题考查了空间几何体中直线与平面的夹角求法,直线与平面垂直关系的判定,对空间想象能力和计算能力要求较高,属于中档题.16.已知()111,,a x y z =,()222,,b x y z =,且2a =,3b =,6a b ⋅=-,则111222x y z x y z ++=++________.【答案】23-【分析】由2a =,3b =,6a b ⋅=-,可得向量a 与b 平行,且23=-a b ,从而可得结果. 【详解】∵||2a =,||3b =,6a b ⋅=-,所 以23cos ,6,,[0,π],,πa b a b a b ⨯⨯<>=-<>∈∴<>=. ∴ 向量a 与b 平行,且23=-a b , 所以1112222(,,)(,,)3x y z x y z =-,所以1223x x =-. ∴1112221223x y x x z z x y +==-+++.故答案为:23-.四、解答题17.已知直线1l :112y x =-,2l :y kx b =+,且12l l ⊥. (1)求k 的值; (2)若直线1l 与2l 的交点的直线y x =上,求直线2l 的方程.【答案】(1)2k =-(2)26y x =--【分析】(1)根据两直线垂直的条件即可求解;(2)联立两直线方程求出交点坐标,代入直线2l 的方程即可求解.【详解】(1)直线1l 的斜率为12,直线2l 的斜率为k .因为12l l ⊥,所以112k ⨯=-, 故2k =-.(2)由题意可知:联立两直线方程可得:112y x y x⎧=-⎪⎨⎪=⎩,解得22x y =-⎧⎨=-⎩. 将点()2,2--代入2l 的方程得()()222b -=-⨯-+,解得6b =-,所以直线2l 的方程为26y x =--.18.已知()1,3,4A ,()1,5,4B -,()1,2,1C -.(1)求,AB BC ;(2)求AC 在BC 上的投影向量.【答案】(1)2π3(2)()0,2,2--【分析】(1)由向量夹角余弦公式,分别计算向量数量积和向量的模,再根据夹角范围,确定夹角的值. (2)根据投影向量定义分别计算两个向量的数量积和模,再求出向量BC 的同方向单位向量,计算即可得到投影向量.【详解】(1)解:因为()2,2,0AB =-,()0,3,3BC =--,所以6AB BC ⋅=-,22AB =,32BC =,所以61cos ,23222AB BC AB BC AB BC ⋅-===-⨯⋅. 因为0,πAB BC ≤≤,所以2π,3AB BC =. (2)因为()2,1,3AC =---,()0,3,3BC =--,所以1227cos ,71432AC BC ==⨯. 因为220,,22BCBC ⎛⎫=-- ⎪ ⎪⎝⎭, 所以AC 在BC 上的投影向量为()2722cos ,140--722=0,2,2BC AC AC BC BC ⎛⎫=⨯⋅ ⎪ ⎪⎝⎭⋅--,,.19.如图,在平行六面体1111ABCD A B C D -中,4AB AD ==,15AA =,1160DAB BAA DAA ∠=∠=∠=︒,M ,N 分别为11D C ,11C B 中点.(1)求1AC 的长;(2)证明:1MN AC ⊥.【答案】(1)1113AC(2)证明见解析.【分析】(1)设AB a =,AD b =,1AA c =,将1AC 用,,a b c 表示出来,根据向量的模长公式即可得到结果.(2)将1,MN AC ,分别用,,a b c 表示出来,根据10MN AC ⋅=,即可证明1MN AC ⊥.【详解】(1)设AB a =,AD b =,1AA c =,则4a b ==,5c =,8a b ⋅=,10a c b c ⋅=⋅=,111122MN MC C N a b =+=- 11AC AB BC CC a b c =++=++.因为()22AC a b c =++()2222a b c a b b c c a =+++⋅+⋅+⋅ ()222445281010=+++++113=,所以1AC (2)证明:因为()11122MN AC a b a b c ⎛⎫⋅=-⋅++ ⎪⎝⎭ 22211112222a c ab bc =+⋅--⋅ 2211114104102222=⨯+⨯-⨯-⨯ 0=,所以1MN AC ⊥.20.已知圆M :()()222125x y -+-=,圆N :2214520x y x my +--+=,过圆M 的圆心M 作圆N 的切线,切线长为5.(1)求m 的值,并判断圆M 与圆N 的位置关系;(2)过圆N 的圆心N 作圆M 的切线l ,求l 的方程.【答案】(1)4m =,圆M 与圆N 相交(2)7x =或125940x y +-=,【分析】(1)先用配方法确定圆N 的圆心和半径,然后根据切线长公式计算出m 的值,再根据圆心距和半径之间的大小关系判断位置关系;(2)过圆外一点可作圆的两条切线,在我们求解的过程中需要对直线的斜率是否存在进行讨论.【详解】(1)由题意知,()2,1M ,7,2m N ⎛⎫ ⎪⎝⎭,圆N 的半径N r ==, 由勾股定理得2225N MN r =+,即()2222212721522m m ⎛⎫-⎛⎫-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 解得4m =.所以()()22722126MN =-+-=,1N r =,6M N r r +=,4M N r r -=.因为M N M N r r MN r r -<<+,所以圆M 与圆N 相交;(2)当l 的斜率不存在时,l 的方程为7x =.检验知满足相切.当l 的斜率存在时,设l 的方程为()27y k x -=-,即720kx y k --+=,因为l 与圆M 相切,所以2217251k k k --+=+,解得125k =-, 所以l 的方程为()12275y x -=--,即125940x y +-=. 综上所述,l 的方程为7x =或125940x y +-=,21.如图,圆柱上,下底面圆的圆心分别为O ,1O ,该圆柱的轴截面为正方形,三棱柱111ABC A B C 的三条侧棱均为圆柱的母线,且1306AB AC OO ==,点P 在轴1OO 上运动.(1)证明:不论P 在何处,总有1BC PA ⊥;(2)当P 为1OO 的中点时,求平面1A PB 与平面1B PB 夹角的余弦值.【答案】(1)证明见解析11【分析】(1)证明线面垂直,进而证明线线垂直;(2)利用空间向量的坐标运算方法求面面角的余弦值.【详解】(1)证明:连接AO 并延长,交BC 于M ,交圆柱侧面于N .因为AB AC =,OB OC =,所以AOB AOC △≌△,所以BAM CAM ∠=∠,所以ABM ACM ≌,所以M 为BC 中点,所以OA BC ⊥.又在圆柱1OO 中,1AA ⊥平面ABC ,BC ⊂平面ABC ,1AA BC ⊥,1AO AA A =,1,AO AA ⊂平面11AOO A ,所以BC ⊥平面11AOO A .因为不论P 在何处,总有1PA ⊂平面11AOO A ,所以1BC PA ⊥.(2)设11(0)OO AA AN a a ===>,则AB AC ==. 在ABC 中,5cos 6AC AM AC CAM AC a AN =∠=⨯=, 则13OM a =.所以CM BM =. 如图,建立空间直角坐标系1O xyz -,其中11//B C x 轴,y 轴是11B C 的垂直平分线, 则110,,02A a ⎛⎫- ⎪⎝⎭,11,,0)3B a,1,,3B a a ⎫⎪⎪⎝⎭,10,0,2P a ⎛⎫ ⎪⎝⎭, 所以155(,,)66A B a a =,111(0,,)22A P a a =,1(0,0,)B B a =,111(,,)632B P a a =--. 设平面1APB 的一个法向量为(),,m x y z =,则50611022ay az ay az ++=⎨⎪+=⎪⎩,取1x =,得(1,5,m =. 设平面1BPB 的一个法向量为(),,n b c d =,则011032ad ac ad =⎧⎪⎨-+=⎪⎩,取2b =,得()2,5,0n =-. 设平面1A PB 与平面1B PB 的夹角为θ,则 11cos |cos ,|||||11m nm n m n θ⋅=<>==,所以平面1A PB 与面1B PB 夹角(锐角)的余弦值为1111.22.已知线段AB 的端点B 的坐标是()6,4,端点A 的运动轨迹是曲线C ,线段AB 的中点M 的轨迹方程是()()22421x y -+-=.(1)求曲线C 的方程;(2)已知斜率为k 的直线l 与曲线C 相交于异于原点O 的两点,,E F 直线,OE OF 的斜率分别为1k ,2k ,且122k k =.若BD EF ⊥,D 为垂足,证明:存在定点Q ,使得DQ 为定值.【答案】(1)()2224x y -+=(2)证明见解析【分析】(1)利用中点坐标公式以及求轨迹方程的方法求解;(2)利用韦达定理结合题意求解.【详解】(1)设(),A x y ,00(,)M x y ,由中点坐标公式得006,242x x y y +⎧=⎪⎪⎨+⎪=⎪⎩. 因为点M 的轨迹方程是()()22421x y -+-=,所以2264(4)(2)122x y ++-+-=, 整理得曲线C 的方程为()2224x y -+=.(2)设直线l 的方程为y kx m =+,()11,E x y ,()22,F x y ,120x x ≠,由22(2)4y kx m x y =+⎧⎨-+=⎩,得222(1)2(2)0k x km x m ++-+=, 所以1222(2)1km x x k -+=-+,21221m x x k=+,所以()()()221212121212121212kx m kx m k x x km x x m y y k k x x x x x x +++++=== 222222(2)41121km km m k k k m mk -++=+=+=+, 所以4m k =,且0∆>即2224(2)4(1)0km k m --+>,即2440m km +-<,所以直线l 的方程为()4y k x =+,即直线l 过定点()4,0P -. 因为BP 为定值,且BDP △为直角三角形,BP 为斜边, 所以当点Q 是BP 的中点时,1||2QD BP =为定值. 因为()6,4B ,()4,0P -,所以由中点坐标公式得()1,2Q . 所以存在定点()1,2Q 使得DQ 为定值.。
浙江省宁波市鄞州中学2023-2024学年高二下学期期中考试数学试题
浙江省宁波市鄞州中学2023-2024学年高二下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|1A x x =<-或}3x ≥,{}|10B x ax =+≤,若B A ⊆,则实数a 的取值范围为( )A .1|13a a ⎧⎫-≤<⎨⎬⎩⎭B .1|13a a ⎧⎫-≤≤⎨⎬⎩⎭C .{|1a a <-或}0a ≥D .1|03a a ⎧-≤<⎨⎩或}01a <<2.已知0.20.3a =,0.30.2b =,0.3log 0.2c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .b a c <<C .c b a <<D .c<a<b3.下列四个命题中,是假命题的是( ) A .x ∀∈R ,且10,2x x x≠+≥ B .x ∃∈R ,使得212x x +≤C .若x >0,y >02xyx y+ D .若52x ≥,则24524x x x -+-的最小值为14.已知()sin()f x x ωφ=+(0)>ω满足()14f π=,503f π⎛⎫= ⎪⎝⎭且()f x 在5,46ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( ) A .127B .1817C .617D .30175.“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发,引一组平行线,从上往下每条线上各数之和依次为1,1,2,3,5,8,13,L ,则下列选项不正确的是( )A .在第9条斜线上,各数之和为55B .在第()5n n ≥条斜线上,各数自左往右先增大后减小C .在第n 条斜线上,共有()2114nn +--个数D .在第11条斜线上,最大的数是37C6.已知函数(()(1)ln f x a x x =+⋅,则在同一个坐标系下函数()f x a -与()f x 的图像不可能是( )A .B .C .D .7.若定义在R 上的函数()f x 满足()()4()2f x x f f ++=,()21f x +是奇函数,11()22f =则( )A .17111()22k f k =-=-∑B .1711()02k f k =-=∑C .171117()22k kf k =-=-∑D .171117()22k kf k =-=∑ 8.设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --+--≤恒成立,则实数k 的最大值为( ) A .12B .24C.D.二、多选题9.甲、乙两人进行围棋比赛,共比赛()*2n n N∈局,且每局甲获胜的概率和乙获胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为()P n ,则( )A .1(2)8P =B .11(3)32P =C .221()122n nn C P n ⎛⎫=- ⎪⎝⎭D .()P n 的最大值为1410.函数2()cos 2cos 1f x x x x ωωω=+-(01ω<<)的图象如图所示,则( )A .()f x 的最小正周期为2πB .)3π(2y f x =+是奇函数C .π()cos 6y f x x =+的图象关于直线π12x =对称D .若()y f tx =(0t >)在[]0,π上有且仅有两个零点,则1117[,)66t ∈11.对于[]0,1x ∈,()f x 满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤,恒有()()12f x f x ≤.则( )A .10011011002i i f =⎛⎫=⎪⎝⎭∑ B .112624f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤ ⎪⎝⎭三、填空题12.函数()()π2cos sin2R 4f x x x x ⎛⎫=-+∈ ⎪⎝⎭的值域为.13.已知函数()32f x x x ax b =-++有2个零点1,0-,()()2f x g x x=,若关于x 的不等式()x x g e ke ≥在[]1,0-上有解,则k 的取值范围是.14.已知正实数,,a b c 满足1b c +=,则28181ab a bc a +++的最小值为.四、解答题15.已知ABC V 中,内角,,A B C 所对的边分别为,,a b c ,且满足sin sin sin A c bB C b-=+.(1)若π3C =,求B ; (2)求a cb+的取值范围. 16.已知函数π()sin()4f x x ω=-在区间3π[0,]2上恰有3个零点,其中ω为正整数.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向左平移π4个单位得到函数()g x 的图象,求函数()()()g x F x f x =的单调区间.17.浙江省是第一批新高考改革省份,取消文理分科,变成必考科目和选考科目.其中必考科目是语文、数学、外语,选考科目由考生在思想政治、历史、地理、物理、化学、生物、技术7个科目中自主选择其中3个科目参加等级性考试.为了调查学生对物理、化学、生物的选考情况,从镇海中学高三在物理、化学、生物三个科目中至少选考一科的学生中随机抽取100名学生进行调查,他们选考物理、化学、生物的科目数及人数统计如表:(1)从这100名学生中任选2名,求他们选考物理、化学、生物科目数相等的概率; (2)从这100名学生中任选2名,记X 表示这2名学生选考物理、化学、生物的科目数之差的绝对值,求随机变量X 的数学期望;(3)学校还调查了这100位学生的性别情况,研究男女生中纯理科生大概的比例,得到的数据如下表:(定文同时选考物理、化学、生物三科的学生为纯理科生)请补齐表格,并说明依据小概率值0.05α=的独立性检验,能否认为同时选考物理、化学、生物三科与学生性别有关. 参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.附表:18.已知函数()()e 1e 1x x a f x a +=∈-R 为奇函数.(1)求a 的值;(2)设函数()ln sin g x x x =+,i .证明:()y g x =有且只有一个零点;ii .记函数()y g x =的零点为0x ,证明:()0e 1sin e 1f x +>-. 19.若存在常数k ,b 使得函数()F x 与()G x 对于给定区间上的任意实数x ,均有()()F x kx b G x ≥+≥,则称y kx b =+是()y F x =与()y G x =的隔离直线.已知函数()21f x x x =-+,()1112g x x x ⎛⎫=-+ ⎪⎝⎭.(1)在实数范围内解不等式:()()f x g x ≥;(2)当0x >时,写出一条()y f x =与()y g x =的隔离直线的方程并证明.。
河南省洛阳市2023-2024学年高二上学期期中考试语文试题(含答案)
洛阳市2023—2024 学年第一学期期中考试高二语文试卷(本试卷共10页,23 小题,满分150分。
考试用时150 分钟。
)注意事项:Ⅰ、答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
将条形码贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、现代文阅读(35 分)(一)现代文阅读Ⅰ(本题共5 小题,19分)阅读下面的文字,完成1~2题。
习近平总书记在党的二十大报告中指出,“弘扬以伟大建党精神为源头的中国共产党人精神谱系,用好红色资源,深入开展社会主义核心价值观宣传教育,深化爱国主义、集体主义、社会主义教育,着力培养担当民族复兴大任的时代新人”。
包括伟大建党精神、长征精神、延安精神、抗战精神、抗美援朝精神、焦裕禄精神、抗洪精神、抗疫精神等在内的中国共产党人精神谱系,是我们党的宝贵精神财富,是上好“大思政课”的鲜活素材、融通课堂教学与实践教学的有效媒介。
依托中国共产党人精神谱系相关学术成果和实践教学基地,通过课堂叙事式教学、平台情景式教学、基地体验式教学、网络延展式教学的“四位一体”立体化实践教学模式,将中国共产党人精神谱系全面融入高校思政课实践教学,能够使广大青年学生深刻领悟中国共产党人精神谱系的丰富内涵和时代意义,激励他们继承优良传统、赓续红色血脉,将志气、骨气、底气固化为信仰、转化为信念、强化为信心。
弘扬中国共产党人精神谱系重在实效性,实现课堂叙事式教学、平台情景式教学、基地体验式教学、网络延展式教学的相互渗透、有机融合、功能互补,有效整合校内校外、课内课外、线上线下等教育教学资源,不断增强思政课的思想性、理论性和亲和力、针对性。
湖北省武汉市2023-2024学年高二上学期期中数学试题含解析
2023-2024学年度上学期高二期中检测数学试题(答案在最后)时限:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若1,,AB a AD b AA c ===,则BM = ()A.1122-+ a b c B.1122++a b c C.1122--+ a b cD.1122a b c-++ 【答案】D 【解析】【分析】利用空间向量的线性运算进行求解.【详解】1111111111111()()()22222BM BB B M BB A D A B AA AD AB c b a a b c =+=+-=+-=+-=-++.故选:D2.平面内到两定点(6,0)A -、(0,8)B 的距离之差等于10的点的轨迹为()A.椭圆B.双曲线C.双曲线的一支D.以上选项都不对【答案】D 【解析】【分析】根据动点满足的几何性质判断即可.【详解】因为(6,0)A -、(0,8)B ,所以10AB ==,而平面内到两定点(6,0)A -、(0,8)B 的距离之差等于10的点的轨迹为一条射线.故选:D3.“4k >”是“方程22(2)50x y kx k y +++-+=表示圆的方程”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据()22250x y kx k y +++-+=表示圆得到2k <-或4k >,然后判断充分性和必要性即可.【详解】若()22250x y kx k y +++-+=表示圆,则()222450k k +--⨯>,解得2k <-或4k >,4k >可以推出()22250x y kx k y +++-+=表示圆,满足充分性,()22250x y kx k y +++-+=表示圆不能推出4k >,不满足必要性,所以4k >是()22250x y kx k y +++-+=表示圆的充分不必要条件.故选:A.4.已知椭圆22:141x y C k +=+的离心率为12,则实数k 的值为()A.2B.2或7C.2或133D.7或133【答案】C 【解析】【分析】利用椭圆的标准方程、椭圆的离心率公式分析运算即可得解.【详解】由题意,椭圆22:141x y C k +=+,则10k +>,且14k +≠,由离心率12c e a ===,解得:2234b a =,若椭圆的焦点在x 轴上,则221344b k a +==,解得:2k =;若椭圆的焦点在y 轴上,则224314bak ==+,解得:133k =;综上知,2k =或133.故选:C.5.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆的一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知112BF F F ⊥,153F B =,124F F =.若透明窗DE 所在的直线与截口BAC 所在的椭圆交于一点P ,且1290F PF ∠=︒,则12PF F △的面积为()A.2B.C.D.5【答案】D 【解析】【分析】由椭圆定义12||||6PF PF +=,根据1290F PF ∠=︒,结合勾股定理可得可得12||||F P P F ⋅的值,则即可求12F PF △的面积.【详解】由112BF F F ⊥,15||3F B =,12||4F F =,得213||3BF =,则椭圆长轴长122||||6a F B F B =+=,由点P 在椭圆上,得12||||26PF PF a +==,又1290F PF ∠=︒,则2222121212121216||||||(||||)2||||362||||F F PF PF PF PF PF PF PF PF =+==+-=-,因此12||||10PF PF ⋅=,所以12F PF △的面积为121||||52PF PF ⋅=.故选:D6.已知圆221:()(3)9C x a y -++=与圆222:()(1)1C x b y +++=外切,则ab 的最大值为()A.2B.C.52D.3【答案】D 【解析】【分析】利用两圆外切求出,a b 的关系,再利用基本不等式求解即得.【详解】圆221:()(3)9C x a y -++=的圆心1(,3)C a -,半径13r =,圆222:()(1)1C x b y +++=的圆心2(,1)C b --,半径21r =,依题意,1212||4C C r r =+=,于是222()24a b ++=,即22122224a b ab ab ab ab =++≥+=,因此3ab ≤,当且仅当a b =时取等号,所以ab 的最大值为3.故选:D7.如图所示,三棱锥A BCD -中,AB ⊥平面π,2BCD BCD ∠=,222BC AB CD ===,点P 为棱AC 的中点,,E F 分别为直线,DP AB 上的动点,则线段EF 的最小值为()A.24B.2C.104D.2【答案】B 【解析】【分析】根据给定条件,建立空间直角坐标系,利用空间向量建立EF 的函数关系求解即可.【详解】三棱锥A BCD -中,过C 作Cz ⊥平面BCD ,由π2BCD ∠=,知BC CD ⊥,以C 为原点,直线,,CD CB Cz 分别为,,x y z 建立空间直角坐标系,如图,由AB ⊥平面BCD ,得//AB Cz ,则1(0,0,0),(1,0,0),(0,2,0),(0,2,1),(0,1,)2C D B A P ,令1(1,1,)(,,22t DE tDP t t t ==-=- ,则(1,,)2tE t t -,设(0,2,)F m ,于是||2EF = ,当且仅当33,224t t m ===时取等号,所以线段EF的最小值为2.故选:B8.已知12,F F 分别为椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,椭圆E 上存在两点,A B 使得梯形12AF F B 的高为c (c 为该椭圆的半焦距),且124AF BF =,则椭圆E 的离心率为()A.3B.45C.5D.56【答案】C 【解析】【分析】根据124AF BF =,可得12AF BF ∥,则1AF ,2BF 为梯形12AF F B 的两条底边,作21F P AF ⊥于点P ,所以2PF c =,则可求得1230PF F ∠=︒,再结合124AF BF =,建立,,a b c 的关系即可得出答案.【详解】如图,由124AF BF =,得12//AF BF ,则1AF ,2BF 为梯形12AF F B 的两条底边,作21F P AF ⊥于点P ,则21F P AF ⊥,由梯形12AF F B 的高为c ,得2PF c =,在12Rt F PF 中,122F F c =,则有1230PF F ∠=︒,1230AF F ∠=︒,在12AF F △中,设1AF x =,则22AF a x =-,22221121122cos30AF AF F F AF F F =+-︒,即()22224a x x c -=+-,解得2132AF x ==,在12BF F △中,21150BF F ∠=︒,同理222BF =,又124AF BF =324a c +=,即32a c =,所以离心率5c e a ==.故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.直线:10l x y -+=与圆22:()2(13)C x a y a ++=-≤≤的公共点的个数可能为()A.0B.1C.2D.3【答案】BC 【解析】【分析】根据给定条件,求出圆心到直线l 距离的取值范围,即可判断得解.【详解】圆22:()2C x a y ++=的圆心(,0)C a -,半径2r =当13a -≤≤时,点(,0)C a -到直线l 的距离2]22d ==,因此直线l 与圆相切或相交,所以直线l 与圆C 的公共点个数为1或2.故选:BC10.下列四个命题中正确的是()A.过点(3,1),且在x 轴和y 轴上的截距互为相反数的直线方程为20x y --=B.过点(1,0)且与圆22(1)(3)4x y ++-=相切的直线方程为51250x y +-=或1x =C.若直线10kx y k ---=和以(3,1),(3,2)M N -为端点的线段相交,则实数k 的取值范围为12k ≤-或32k ≥D.若三条直线0,0,3x y x y x ay a +=-=+=-不能构成三角形,则实数a 所有可能的取值组成的集合为{1,1}-【答案】BC 【解析】【分析】利用直线截距式方程判断A ;求出圆的切线方程判断B ;求出直线斜率范围判断C ;利用三条直线不能构成三角形的条件求出a 值判断D.【详解】对于A ,过点(3,1)在x 轴和y 轴上的截距互为相反数的直线还有过原点的直线,其方程为13y x =,A 错误;对于B ,圆:C 22(1)(3)4x y ++-=的圆心(1,3)C -,半径2r =,过点(1,0)斜率不存在的直线1x =与圆C 相切,当切线斜率存在时,设切线方程为(1)y k x =-2=,解得512k =-,此切线方程为51250x y +-=,所以过点(1,0)且与圆22(1)(3)4x y ++-=相切的直线方程为51250x y +-=或1x =,B 正确;对于C ,直线10kx y k ---=恒过定点(1,1)P -,直线,PM PN 的斜率分别为()()211131,312312PN PM k k ----====----,依题意,PM k k ≤或PN k k ≥,即为12k ≤-或32k ≥,C 正确;对于D ,当直线0,3x y x ay a +=+=-平行时,1a =,当直线0,3x y x ay a -=+=-平行时,1a =-,显然直线0,0x y x y +=-=交于点(0,0),当点(0,0)在直线3x ay a +=-时,3a =,所以三条直线0,0,3x y x y x ay a +=-=+=-不能构成三角形,实数a 的取值集合为{}113-,,,D 错误.故选:BC11.已知椭圆2225:1092x y C k k ⎛⎫+=<< ⎪⎝⎭的两个焦点分别为12,F F ,点P 是椭圆C 上的动点,点Q 是圆22:(2)(4)2E x y -+-=上任意一点.若2||PQ PF +的最小值为4则下列说法中正确的是()A.k =B.12PF PF ⋅的最大值为5C.存在点P 使得12π3F PF ∠= D.2||PQ PF -的最小值为6-【答案】ABC【解析】【分析】首先得到圆心坐标与半径,即可判断E 在椭圆外部,在222||||PQ PF PE PF EF +≥+--求出2EF ,即可求出k ,再根据数量积的运算律及椭圆的性质判断B 、C ,根据椭圆的定义判断D.【详解】椭圆2225:1092x y C k k ⎛⎫+=<< ⎪⎝⎭,则3a =,所以1226PF PF a +==,圆22:(2)(4)2E x y -+-=的圆心为()2,4E ,半径r =所以2222419k+>,所以点E 在椭圆外部,又222||||PQ PF PE PF EF +≥+--,当且仅当E 、P 、2F 三点共线(P 在E 2F 之间)时等号成立,所以24EF ==,解得2c =,所以294k -=,解得k =(负值舍去),故A 正确;()()1212PF PF PO OF PO OF ⋅=+⋅+21122PO PO OF PO OF OF OF =+⋅+⋅+⋅ ()21121PO PO OF OF OF OF =+⋅+-⋅ 22214PO OF PO =-=- ,又PO ⎤∈⎦ ,所以[]25,9PO ∈ ,所以[]121,5PF PF ⋅∈ ,即12PF PF ⋅ 的最大值为5,当且仅当P 在上、下顶点时取最大值,故B 正确;设B 为椭圆的上顶点,则OB =22OF =,所以23tan 3OBF ∠=>,所以2π6OBF ∠>,所以12π3F BF ∠>,则存在点P 使得12π3F PF ∠=,故C 正确;因为()121||||6||6PQ PF PQ PF PQ PF -=--=+-11||666PE PF EF ≥+--≥--,当且仅当E 、Q 、P 、1F 四点共线(且Q 、P 在E 1F 之间)时取等号,故D 错误.故选:ABC12.在棱台1111ABCD A B C D -中,底面1111,ABCD A B C D 分别是边长为4和2的正方形,侧面11CDD C 和侧面11BCC B 均为直角梯形,且113,CC CC =⊥平面ABCD ,点P 为棱台表面上的一动点,且满足112PD PC =,则下列说法正确的是()A.二面角1D AD B --的余弦值为13B.棱台的体积为26C.若点P 在侧面11DCC D 内运动,则四棱锥11P A BCD -体积的最小值为4(63D.点P 的轨迹长度为8π9+【答案】ACD 【解析】【分析】A 选项,建立空间直角坐标系,写出点的坐标,利用空间向量相关公式求出二面角的余弦值;B 选项,利用棱台体积公式求出答案;C 选项,设出(),0,P u v ,求出轨迹方程,得到P 点的轨迹,从而得到点P 到平面11A BCD 的最短距离为8134133PF EF EP =-=-,利用体积公式求出答案;D 选项,考虑点P 在各个面上运算,求出相应的轨迹,求出轨迹长度,相加后得到答案.【详解】A 选项,因为1CC ⊥平面ABCD ,,BC CD ⊂平面ABCD ,所以11,CC BC CC CD ⊥⊥,又底面1111,ABCD A B C D 分别是边长为4和2的正方形,故BC CD ⊥,故1,,CC BC CD 两两垂直,以C 为坐标原点,1,,CD CB CC 所在直线分别为,,x y z 建立空间直角坐标系,则()()()()112,0,3,4,4,0,4,0,0,0,0,3D A D C ,平面ADB 的法向量为()0,0,1n =,设平面1D AD 的法向量为()1,,n x y z =,则()()()()111,,0,4,040,,2,4,32430n AD x y z y n AD x y z x y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅--=--+=⎪⎩ ,解得0y =,令3x =得,2z =,故()13,0,2n =,则111cos ,13n n n n n n ⋅⋅==⋅,又从图形可看出二面角1D AD B --为锐角,故二面角1D AD B --余弦值为13,A正确;B 选项,棱台的体积为(221243283V =++⨯=,B 错误;C 选项,若点P 在侧面11DCC D 内运动,112PD PC =,设(),0,P u v=,整理得()22216339u v ⎛⎫++-= ⎪⎝⎭,故P 点的轨迹为以2,0,33E ⎛⎫-⎪⎝⎭为圆心,43为半径的圆在侧面11DCC D 内部(含边界)部分,如图所示,圆弧QW 即为所求,过点E 作EF ⊥1CD 于点F ,与圆弧QW 交于点P ,此时点P 到平面11A BCD 的距离最短,由勾股定理得1CD ==,因为11128233ED EC CD =+=+=,1111sin C C CD C CD ∠==1118sin 313EF D E CD C =∠=,故点P 到平面11A BCD 的最短距离为8134133PF EF EP =-=-,因为11A D 与BC 平行,且BC ⊥平面11CDD C ,又1CD ⊂平面11CDD C ,所以BC ⊥1CD ,故四边形11A BCD 为直角梯形,故面积为()()1112422A D BC CD +⋅+==则四棱锥11P A BCD -体积的最小值为314(643133⎛⎫⨯-⨯= ⎪ ⎪⎝⎭,C 正确;D 选项,由C 选项可知,当点P 在侧面11DCC D 内运动时,轨迹为圆弧QW ,设其圆心角为α,则1213cos 423C E EW α===,故π3α=,所以圆弧QW 的长度为π44π339⋅=,当点P 在面1111D C B A 内运动时,112PD PC =,设(),,3P s t=整理得2221639s t ⎛⎫++= ⎪⎝⎭,点P 的轨迹为以2,0,33E ⎛⎫-⎪⎝⎭为圆心,43为半径的圆在侧面1111D C B A 内部(含边界)部分,如图所示,圆弧QR 即为所求轨迹,其中1213cos 423C E QER ER ∠===,故π3QER ∠=,则圆弧QR 长度为π44π339⋅=,若点P 在面11BCC B 内运动时,112PD PC =,设()0,,P kl ,则=,整理得()22433k l +-=,点P 的轨迹为以()10,0,3C 为圆心,3为半径的圆在侧面11BCC B 内部(含边界)部分,如图所示,圆弧GH 即为所求,此时圆心角1π2GC H =,故圆弧GH长度为π233⋅=,经检验,当点P 在其他面上运动时,均不合要求,综上,点P 的轨迹长度为π4π3π2938339⨯++=,D 正确.故选:ACD【点睛】立体几何中体积最值问题,一般可从三个方面考虑:一是构建函数法,即建立所求体积的目标函数,转化为函数的最值问题进行求解;二是借助基本不等式求最值,几何体变化过程中两个互相牵制的变量(两个变量之间有等量关系),往往可以使用此种方法;三是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值.三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(,4)P m Q m -,且直线PQ 与直线:20+-=l x y 垂直,则实数m 的值为______.【答案】1【解析】【分析】首先求出直线l 的斜率,由两直线垂直得到斜率之积为1-,即可求出PQ k ,再由斜率公式计算可得.【详解】因为直线:20+-=l x y 的斜率1k =-,又直线PQ 与直线:20+-=l x y 垂直,所以1PQ k =,即412m m-=--,解得1m =.故答案为:114.以椭圆2251162x y +=的焦点为顶点,顶点为焦点的双曲线的标准方程为______.【答案】221916y x -=【解析】【分析】根据给定的椭圆方程求出双曲线的顶点及焦点坐标,即可求出双曲线方程.【详解】椭圆2251162x y +=的长轴端点为(0,5),(0,5)-,焦点为(0,3),(0,3)-,因此以(0,3),(0,3)-为顶点,(0,5),(0,5)-4=,方程为221916y x-=.故答案为:221916y x -=15.椭圆22:44E x y +=上的点到直线20x y +-=的最远距离为______.【答案】6105【解析】【分析】设出椭圆上任意一点的坐标,再利用点到直线距离公式,结合三角函数性质求解即得.【详解】设椭圆22:14x E y +=上的点(2cos ,sin )(02π)P θθθ≤<,则点P到直线20x y +-=的距离:π2sin 54d θ⎡⎤⎛⎫==-+ ⎪⎢⎥⎝⎭⎣⎦,显然当5π4θ=时,max 5d =,所以椭圆22:44E x y +=上的点到直线20x y +-=的最远距离为5.故答案为:516.已知点A 的坐标为(0,3),点,B C 是圆22:25O x y +=上的两个动点,且满足90BAC ∠=︒,则ABC 面积的最大值为______.【答案】252+【解析】【分析】设()11,B x y ,()22,C x y ,BC 的中点(,)P x y ,由题意求解P 的轨迹方程,得到AP 的最大值,写出三角形ABC 的面积,结合基本不等式求解.【详解】设()11,B x y ,()22,C x y ,BC 的中点(,)P x y ,点B ,C 为圆22:25O x y +=上的两动点,且90BAC∠=︒,∴121225y x =+,222225x y +=①,122x x x +=,122y y y +=②,1212(3)(3)0x x y y +--=③由③得1212123()90x x y y y y +-++=,即121269x x y y y +=-④,把②中两个等式两边平方得:221122224x x x x x ++=,222121224y y y y y ++=,即221212502()44x x y y x y ++=+⑤,把④代入⑤,可得2234124x y ⎛⎫+-= ⎪⎝⎭,即P 在以30,2⎛⎫ ⎪⎝⎭为半径的圆上.则AP 的最大值为32+.所以()22222111325324422ABCS AB AC AB AC BC AP ⎛⎫++=≤+==≤= ⎪ ⎪⎝⎭.当且仅当AB AC =,P 的坐标为30,2⎛- ⎝⎭时取等号.故答案为:252+四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的顶点(4,1)A ,边AB 上的高线CH 所在的直线方程为10x y +-=,边AC 上的中线BM 所在的直线方程为310x y --=.(1)求点B 的坐标;(2)求直线BC 的方程.【答案】(1)(1,4)--;(2)7110x y ++=.【解析】【分析】(1)由垂直关系求出直线AB 的方程,再求出两直线的交点坐标即得.(2)设出点C 的坐标,利用中点坐标公式求出点C 坐标,再利用两点式求出直线方程.【小问1详解】由边AB 上的高线CH 所在的直线方程为10x y +-=,得直线AB 的斜率为1,直线AB 方程为14y x -=-,即3y x =-,由3310y x x y =-⎧⎨--=⎩,解得1,4x y =-=-,所以点B 的坐标是(1,4)--.【小问2详解】由点C 在直线10x y +-=上,设点(,1)C a a -,于是边AC 的中点2,122a a M ⎛⎫+- ⎪⎝⎭在直线310x y --=上,因此3611022a a+-+-=,解得2a =-,即得点(2,3)C -,直线BC 的斜率4371(2)k --==----,所以直线BC 的方程为37(2)y x -=-+,即7110x y ++=.18.如图,在三棱柱111ABC A B C -中底面为正三角形,1114,2,120AA AB A AB A AC ==∠=∠=︒.(1)证明:1AA BC ⊥;(2)求异面直线1BC 与1AC 所成角的余弦值.【答案】(1)证明见解析(2)70【解析】【分析】(1)根据数量积的运算律及定义得到10AA BC ⋅=,即可得证;(2)取AB 的中点M ,连接1AC 交1AC 于点O ,连接CM 、OM ,即可得到COM ∠为异面直线1BC 与1AC 所成角或其补角,再由余弦定理计算可得.【小问1详解】因为BC AC AB =-,所以()1111AA BC AA AC AB AA AC AA AB⋅=⋅-=⋅-⋅ 1111cos ,cos ,0AA AC AA AC AA AB AA AB =⋅-⋅=,所以1AA BC ⊥,即1AA BC ⊥.【小问2详解】取AB 的中点M ,连接1AC 交1AC 于点O ,连接CM 、OM ,则O 为1AC 的中点,所以1//OM BC ,所以COM ∠为异面直线1BC 与1AC 所成角或其补角,在等边三角形ABC 中CM ==在平行四边形11ACC A 中()222211112AC AC AA AC AC AA AA =-=-⋅+22122244282⎛⎫=-⨯⨯⨯-+= ⎪⎝⎭,所以1A C = OC =,因为1AA BC ⊥,11//AA BB ,所以1BB BC ⊥,在矩形11BCC B 中1BC ==,所以OM =在OCM 中由余弦定理cos70COM ∠=,所以异面直线1BC 与1AC 所成角的余弦值为70.19.已知圆C 的圆心在x轴上,其半径为1,直线:8630l x y --=被圆C 所截的弦长为C 在直线l 的下方.(1)求圆C 的方程;(2)若P 为直线1:30l x y +-=上的动点,过P 作圆C 的切线,PA PB ,切点分别为,A B ,当||||PC AB ⋅的值最小时,求直线AB 的方程.【答案】(1)()2211x y -+=(2)2x y +=【解析】【分析】(1)设圆心C (),0a ,根据直线l 被圆C a ,然后写圆的方程即可;(2)根据等面积的思路得到当1PC l ⊥时,PC AB 最小,然后根据直线AB 为以PC 为直径的圆与圆C 的公共弦所在的直线求直线方程.【小问1详解】设圆心C (),0a 到直线l 的距离为d,则12d ===,解得1a =或14-,因为点C 在直线l 的下方,所以1a =,()1,0C ,所以圆C 的方程为()2211x y -+=.【小问2详解】因为12PACB S PC AB PA AC =⋅==,所以PC AB 最小即PC 最小,当1PC l ⊥时,PC 最小,所以此时1PC k =,PC 的直线方程为:1y x =-,联立130y x x y =-⎧⎨+-=⎩得21x y =⎧⎨=⎩,所以()2,1P ,PC 中点31,22⎛⎫ ⎪⎝⎭,PC ==,所以以PC 为直径的圆的方程为:22311222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,直线AB 为以PC 为直径的圆与圆C 的公共弦所在的直线,联立()222231122211x y x y ⎧⎛⎫⎛⎫-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪-+=⎩得2x y +=,所以直线AB 的方程为2x y +=.20.已知12,F F 分别为椭圆2222:1(0)x y C a b a b +=>>的左、右焦点,离心率2e =,点B 为椭圆上的一动点,且12BF F △面积的最大值为2.(1)求椭圆C 的方程;(2)若点A 为椭圆C 的左顶点,点(,)P m n 在椭圆C 上,线段AP 的垂直平分线与y 轴交于点Q ,且PAQ △为等边三角形,求点P 的横坐标.【答案】(1)22142x y +=(2)25-【解析】【分析】(1)根据三角形12BF F 的面积、离心率以及222a b c =+列出关于,,a b c 的方程组,由此求解出,a b 的值,则椭圆C 的方程可求;(2)表示出AP 的垂直平分线方程,由此确定出Q 点坐标,再根据PAQ △为等边三角形可得AP AQ =,由此列出关于,m n 的等式并结合椭圆方程求解出P 点坐标.【小问1详解】依题意当B 为椭圆的上、下顶点时12BF F △面积的取得最大值,则22221222c a b c a b c ⎧=⎪⎪⎪⨯=⎨⎪=+⎪⎪⎩,解得2a b =⎧⎪⎨=⎪⎩,所以椭圆C 的方程为:22142x y +=.【小问2详解】依题意(,)P m n ,则22142m n +=,且()2,0A -,若点P 为右顶点,则点Q 为上(或下)顶点,则4AP =,AQ =,此时PAQ △不是等边三角形,不合题意,所以2m ≠±,0n ≠.设线段PA 中点为M ,所以2,22m n M -⎛⎫ ⎪⎝⎭,因为PA MQ ⊥,所以1PA MQ k k ⋅=-,因为直线PA 的斜率2AP n k m =+,所以直线MQ 的斜率2MQ m k n +=-,又直线MQ 的方程为2222n m m y x n +-⎛⎫-=-- ⎪⎝⎭,令0x =,得到()()2222Q m m n y n+-=+,因为22142m n +=,所以2Q n y =-,因为PAQ △为正三角形,所以AP AQ ==,化简,得到2532120m m ++=,解得25m =-,6m =-(舍)故点P 的横坐标为25-.【点睛】关键点点睛:解答本题第二问的关键在于AP 垂直平分线方程的求解以及将PAQ △的结构特点转化为等量关系去求解坐标,在计算的过程中要注意利用P 点坐标符合椭圆方程去简化运算.21.如图,在多面体ABCDEF 中,侧面BCDF 为菱形,侧面ACDE 为直角梯形,//,,AC DE AC CD N ⊥为AB 的中点,点M 为线段DF 上一动点,且2,120BC AC DE DCB ==∠=︒.(1)若点M 为线段DF 的中点,证明://MN 平面ACDE ;(2)若平面BCDF ⊥平面ACDE ,且2DE =,问:线段DF 上是否存在点M ,使得直线MN 与平面ABF 所成角的正弦值为310若存在,求出DM DF的值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,39126DM DF =-【解析】【分析】(1)根据中位线和平行四边形的性质得到MN DG ∥,然后根据线面平行的判定定理证明;(2)建系,然后利用空间向量的方法列方程,解方程即可.【小问1详解】取AC 中点G ,连接NG ,GD ,因为,N G 分别为,AB AC 中点,所以NG BC ∥,12NG BC =,因为四边形BCDF 为菱形,M 为DF 中点,所以DM BC ∥,12DM BC =,所以NG DM ∥,NG DM =,则四边形NGDM 为平行四边形,所以MN DG ∥,因为MN ⊄平面ACDE ,DG ⊂平面ACDE ,所以MN ∥平面ACDE .【小问2详解】取DF 中点H ,连接CH ,CF因为平面BCDF ⊥平面ACDE ,平面BCDF ⋂平面ACDE CD =,AC CD ⊥,AC ⊂平面ACDE ,所以AC ⊥平面BCDF ,因为CH ⊂平面BCDF ,CB ⊂平面BCDF ,所以AC CH ⊥,AC CB ⊥,因为120DCB ∠=︒,四边形BCDF 为菱形,所以三角形DCF 为等边三角形,因为H 为DF 中点,所以CH DF ⊥,CH CB ⊥,所以,,CH CB AC 两两垂直,以C 为原点,分别以,,CA CB CH 为,,x y z轴建立空间直角坐标系,()N ,()4,0,0A,()0,B,()F,()0,D,()0,DF =uuu r,()4,AB =-,()AF =-uuu r,()2,ND =--uuu r 设DM DF λ=,则()0,,0DM DF λ==uuu u r uuu r,()2,NM ND DM =+=--uuur uuu r uuu u r ,设平面ABF 的法向量为(),,m x y z = ,则40430m AB x m AF x z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,令x =2y =,3z =,所以2,3m ⎫=⎪⎪⎭u r ,3cos ,10NM m NM m NM m ⋅==uuuru r uuur u r uuur u r ,解得126λ=-或126+(舍去),所以线段DF 上存在点M ,使得直线MN与平面ABF 所成角的正弦值为310,此时126DM DF =-.22.已知椭圆22:143x y C +=的左、右顶点分别为,A B ,右焦点为F ,过点A 且斜率为(0)k k ≠的直线l 交椭圆C 于点P .(1)若||7AP =,求k 的值;(2)若圆F 是以F 为圆心,1为半径的圆,连接PF ,线段PF 交圆F 于点T ,射线AP 上存在一点Q ,使得QT BT ⋅ 为定值,证明:点Q 在定直线上.【答案】(1)1±(2)证明见解析【解析】【分析】(1)设():2l y k x =+,(),P P P x y ,联立直线与椭圆方程,求出P 点坐标,再由两点间的距离公式求出k ;(2)由P 点坐标可求得PF 斜率,进而得到PF 方程,与圆的方程联立可得T 点坐标;设()(),2Q m k m +,利用向量数量积坐标运算表示出()224841k m QT BT k -⋅=+ ,可知若QT BT ⋅ 为定值,则2m =,知()2,4Q k ;当直线PF 斜率不存在时,验证可知2m =满足题意,由此可得定直线方程.【小问1详解】依题意可得()2,0A -,可设():2l y k x =+,(),P P P x y ,由()222143y k x x y ⎧=+⎪⎨+=⎪⎩,消去y 整理得()2222341616120k x k x k +++-=,()22Δ483441440k k ∴=+-=>,221612234P k x k-∴-=+,226834P k x k -∴=+,222681223434P k k y k k k⎛⎫-=+= ⎪++⎝⎭,2226812,3434k k P k k ⎛⎫-∴ ⎪++⎝⎭,所以7A P ==,解得21k =或23132k =-(舍去),所以1k =±.【小问2详解】由(1)知2226812,3434k k P k k ⎛⎫- ⎪++⎝⎭,()1,0F ,若直线PF 斜率存在,则2414PF k k k =-,∴直线214:14k PF x y k-=+,由()222141411k x y k x y ⎧-=+⎪⎨⎪-+=⎩得222441k y k ⎛⎫= ⎪+⎝⎭,又点T 在线段PF 上,所以22241441x k ky k ⎧=⎪⎪+⎨⎪=⎪+⎩,即2224,4141k T k k ⎛⎫ ⎪++⎝⎭,又()2,0B ,22284,4141k k BT k k ⎛⎫∴=- ⎪++⎝⎭,设()(),2Q m k m +,则()()322242242,4141m k m k mk m QT k k ⎛⎫-++--+-= ⎪++⎝⎭,()()()()()()()22422222228421628448414141k mk m m k m k k m k QT BT k k -+-++--+∴⋅==++ ()224841k m k -=+;当480m -=时,0QT BT ⋅= 为定值,此时2m =,则()2,4Q k ,此时Q 在定直线2x =上;当480m -≠时,QT BT ⋅ 不为定值,不合题意;若直线PF 斜率不存在,由椭圆和圆的对称性,不妨设31,2P ⎛⎫ ⎪⎝⎭,从而有()1,1T ,()2,0B ,此时12AP k =,则直线()1:22AP y x =+,设()1,22Q m m ⎛⎫+ ⎪⎝⎭,则()11,122QT m m ⎛⎫=--+ ⎪⎝⎭,()1,1BT =- ,112QT BT m ∴⋅=- ,则2m =时,0QT BT ⋅=,满足题意;综上所述:当0QT BT ⋅= 为定值,点Q 在定直线2x =上.。
2022-2023学年山东省枣庄市滕州市高二上学期期中数学试题(解析版)
2022-2023学年山东省枣庄市滕州市高二上学期期中数学试题一、单选题1.过点(3,0)和点的斜率是( ) AB.CD.【答案】A【解析】直接根据斜率公式计算可得; 【详解】解:过点(3,0)和点的斜率k ==故选:A【点睛】本题考查两点的斜率公式的应用,属于基础题. 2.若()1,2,3AB =-,()1,1,5BC =--,则AC =( ) ABC .5D .10【答案】A【分析】先求出AC ,再利用向量的模长计算公式即可 【详解】因为(1,2,3)(1,1,5)(0,1,2)AC AB BC =+=-+--=-所以2||0AC =故选:A3.经过两点()11,x y 、()22,x y 的直线方程都可以表示为( ) A .112121x x y y x x y y --=-- B .221212x x y y x x y y --=-- C .()()()()121121y y x x x x y y --=-- D .()211121y y y y x x x x --=-- 【答案】C【分析】根据两点式直线方程即可求解.【详解】当经过()11,x y 、()22,x y 的直线不与,x y 轴平行时,所有直线均可以用221212x x y y x x y y --=--, 由于12,x x 可能相等,所以只有选项C 满足包括与,x y 轴平行的直线. 故选:C4.圆222430x y x y +-++=的圆心为( ).A .(1,2)-B .(1,2)-C .(2,4)-D .(2,4)-【答案】A【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标. 【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=, 所以圆心为(1,2)-, 故选:A5.空间,,,A B C D 四点共面,但任意三点不共线,若P 为该平面外一点且5133=--PA PB xPC PD ,则实数x 的值为( ) A .43-B .13-C .13D .43【答案】C【分析】先设AB mAC nAD =+,然后把向量AB ,AC ,AD 分别用向量PA ,PB ,PC ,PD 表示,再把向量PA 用向量PB ,PC ,PD 表示出,对照已知的系数相等即可求解. 【详解】解:因为空间A ,B ,C ,D 四点共面,但任意三点不共线, 则可设AB mAC nAD =+, 又点P 在平面外,则()()PB PA m PC PA n PD PA -=-+-,即(1)m n PA PB mPC nPD ++=-++, 则1111m nPA PB PC PD m n m n m n -=+++-+-+-,又5133=--PA PB xPC PD ,所以15131113m n mx m n n m n -⎧=⎪+-⎪⎪=-⎨+-⎪⎪=-⎪+-⎩,解得15m n ==,13x =, 故选:C .6.“57m <<”是“方程22175x y m m +=--表示椭圆”的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【详解】 由题意,方程22175x ym m +=--表示一个椭圆,则705075m m m m ->⎧⎪->⎨⎪-≠-⎩,解得57m <<且6m ≠, 所以“57m <<”是“方程22175x y m m +=--”的必要不充分条件,故选C.点睛:本题考查了椭圆的标准方程,其中熟记椭圆的标准的形式,列出不等式组是解答关键,此类问题解答中容易忽视条件75m m -≠-导致错解,同时注意有时椭圆的焦点的位置,做到分类讨论. 7.若直线20kx y k --+=与直线230x ky k +--=交于点P ,则P 到坐标原点距离的最大值为( ) A .22 B .221+C .23D .231+【答案】B【分析】两直线均过定点且垂直,则交点P 在以两定点为直径的圆上,由数形结合可求最值. 【详解】两直线满足()110k k ⋅+-⋅=,所以两直线垂直, 由20kx y k --+=得()120k x y --+=,过定点()1,2A , 由230x ky k +--=得()320x y k -+-=,过定点()3,2B , 故交点P 在以AB 为直径的圆C 上,其中()2,2C ,如图所示,则线段OP 的最大值为1221OC +=. 故选:B.8.如图,棱长为2正方体1111ABCD A B C D -,O 为底面AC 的中心,点P 在侧面1BC 内运动且1D O OP ⊥,则点P 到底面AC 的距离与它到点B 的距离之和最小是( )A .85B .125C .5D .22【答案】A【分析】取1BB 中点F ,连接,,,,AC FA FC BD FO ,证明1D O ⊥平面ACF ,求出P 在FC 上.将平面11BCC B 沿BC 翻折到与平面ABCD 共面,将B 关于CF 对称到B ',过B '作B E BC '⊥与E ,则B E '即为点P 到底面AC 的距离与它到点B 的距离之和的最小值. 【详解】取1BB 中点F ,连接,,,,AC FA FC BD FO ,由122DD OB ==22DO BF ==,190D DO FBO ∠∠==可知1D DO OBF ,则1D OD OFB ∠∠=,∴由11180D OD D OF BOF ∠∠∠++=知190D OF ∠=︒,即1D O OF ⊥.∵AC ⊂平面ABCD ,1B B ⊥平面ABCD ,∴AC ⊥1B B ,又AC ⊥BD ,BD ∩1B B =B , ∴AC ⊥平面11BDD B ,∵1D O ⊂平面11BDD B ,∴1AC D O ⊥, ∵AC OF O ⋂=,∴1D O ⊥平面ACF ,∵1D O OP ⊥,∴OP ⊂平面ACF ,P ∈平面ACF ,∵P 在侧面1BC 内,∴P ∈平面ACF ⋂平面11BCC B CF =,即P 在CF 上; ∵平面11BCC B ⊥平面ABCD ,且交线为BC , ∴P 到平面ABCD 的距离即为P 到BC 的距离, 将平面11BCC B 沿BC 翻折到与平面ABCD 共面,如图:将B 关于CF 对称到B ',过B '作B E BC '⊥与E ,则B E '即为点P 到底面AC 的距离与它到点B 的距离之和的最小值.以B 为原点,建立如图所示坐标系,则B (0,0),F (1,0),C (0,2), 直线CF 方程为112x y+=,即220x y +-=, 设()00,B x y ',则()00000082154220522y x x x y y ⎧⎧⋅-=-=⎪⎪⎪⎪⇒⎨⎨⎪⎪=⋅+-=⎪⎪⎩⎩,∴B E '085x ==.故选:A ﹒二、多选题9.已知a ,b ,c 是空间的一个基底,则下列说法中正确的是( ) A .若0xa yb zc ++=,则0x y z === B .a ,b ,c 两两共面,但a ,b ,c 不共面 C .+a b ,b c -,2c a +一定能构成空间的一个基底 D .一定存在实数x ,y ,使得a xb yc =+ 【答案】ABC【分析】由已知,选项A ,可使用反证法,假设结论不成立来推导条件;选项B ,可根据基底的定义和性质来判断;选项C ,可先假设+a b ,b c -,2c a +共面,得到无解,即可判断+a b ,b c -,2c a+组成基底向量;选项D ,由a ,b ,c 不共面可知,不存在这样的实数.【详解】选项A ,若,,x y z 不全为0,则a ,b ,c 共面,此时与题意矛盾,所以若0xa yb zc ++=,则0x y z ===,该选项正确;选项B ,由于a ,b ,c 是空间的一个基底,根据基底的定义和性质可知,a ,b ,c 两两共面,但a ,b ,c 不共面,该选项正确;选项C ,假设+a b ,b c -,2c a +共面, 则+()(2)a b k b c c a λ=-++,此时1=2=1=k k λλ⎧⎪⎨⎪⎩,无解,所以+a b ,b c -,2c a +不共面,即可构成空间的一个基底,所以该选项正确; 选项D ,a ,b ,c 不共面,则不存在实数x ,y ,使得a xb yc =+,故该选项错误. 故选:ABC.10.直线l 的方程为:1x my =+,则( ) A .直线l 恒过定点()1,0 B .直线l 斜率必定存在C .3m =时直线l 的倾斜角为60D .2m =时直线l 与两坐标轴围成的三角形面积为14【答案】AD【分析】利用直线系方程可判断A ,判断直线的斜率可判断B ,求直线的倾斜角可判断C ,求解三角形的面积可判断D.【详解】对于A ,由直线方程知:恒过定点()1,0,故正确; 对于B ,当0m =时1x =,直线斜率不存在,故错误;对于C ,3m =时有()313y x =-,设倾斜角为θ,即3tan 3θ=,则倾斜角为π6θ=,故错误;对于D ,2m =时,直线:21l x y =+,则x 、y 轴交点分别为()11,0,0,2⎛⎫- ⎪⎝⎭,所以直线与两坐标轴围成的三角形面积为1111224⨯⨯=,故正确;故选:AD.11.已知直线:10l kx y k --+=和圆2240C x y x +-=:,则下列说法正确的是( ) A .存在k ,使得直线l 与圆C 相切B .若直线l 与圆C 交于A B ,两点,则AB 的最小值为C .对任意k ,圆C 上恒有4个点到直线的距离为12D .当2k =时,对任意R λ∈,曲线22:(24)0E x y x y λλλ++---=恒过直线l 与圆C 的交点 【答案】BCD【分析】根据直线:10l kx y k --+=经过的定点(1,1)在圆C 内,可判断A 不正确; 根据圆心(2,0)C 到直线l 的距离的最大值求出AB 的最小值,可判断B 正确;根据圆心C 到直线l 的距离d C 正确;将曲线E 的方程化为224(21)0x y x x y λ+-+--=,可判断D 正确.【详解】对于A ,因为直线:10l kx y k --+=过定点(1,1),且211140+-<,即定点(1,1)在圆C 内,所以不存在k ,使得直线l 与圆C 相切,故A 不正确;对于B ,因为圆心(2,0)C 到直线l所以AB 的最小值为=B 正确;对于C ,因为圆心C 到直线l 的距离d ≤2d -122≥>, 所以对任意k ,圆C 上恒有4个点到直线的距离为12,故C 正确;对于D ,当2k =时,直线:210l x y --=,曲线22:(24)0E x y x y λλλ++---=,即224(21)0x y x x y λ+-+--=就是过直线l 与圆C 的交点的曲线方程,故D 正确.故选:BCD.12.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =.若点E ,F ,G 分别为棱AB ,AD ,PC 的中点,则( )A .AG ⊥平面PBDB .直线FG 和直线AB 所成的角为π4C .当点T 在平面PBD 内,且2TA TG +=时,点T 的轨迹为一个椭圆D .过点E ,F ,G 的平面与四棱锥P ABCD -表面交线的周长为【答案】ABD【分析】将该四棱锥补成正方体后可判断A 、B 正误;结合椭圆的定义可判断C 的正误;结合空间中垂直关系的转化可判断D 的正误.【详解】解:将该正四棱锥补成正方体,可知AG 位于其体对角线上,则AG ⊥平面PBD ,故A 正确;设PB 中点为H ,则//FG AH ,且π4∠=HAB ,故B 正确;2TA TG +=,T ∴在空间中的轨迹为椭圆绕其长轴旋转而成的椭球,又平面PBD 与其长轴垂直,∴截面为圆,故C 错误;设平面EFG 与PB ,PD 交于点M ,N ,连接PE ,EC ,PF ,FC ,EM ,MG ,GN ,NF ,PA BC =,AE BE =,PAE CBE ∠=∠,∴≅PAE CBE ,PE CE ∴=,而PG GC =,故EG PC ⊥,同理FG PC ⊥,而FG EG G =,PC ∴⊥平面EFG ,而EM ⊂平面EFG ,则PC EM ⊥,PA ⊥平面ABCD ,BC ⊂平面ABCD ,PA BC ∴⊥,BC AB ⊥,PA AB A =,BC ∴⊥平面PAB ,EM ⊥平面PBC ,而PB ⊂平面PBC ,则EM PB ⊥,22BM EM ∴=2FN DN ==, 又3PG =2322222PM ==6GM GN == 而122EF BD == ∴交线长为226EF EM MG GN FN ++++=D 正确.故选:ABD.三、填空题13.化简算式:()OB OA BA BC ⎡⎤---=⎣⎦______. 【答案】CB【分析】根据向量的减法法则,计算即可.【详解】()OB OA BA BC ⎡⎤---=⎣⎦()OB OA CA OB OC CB --=-=. 故答案为:CB .14.椭圆221259x y +=的长轴的长为__________.【答案】10【分析】利用椭圆方程即可得到结果. 【详解】∵221259x y +=,∴5a =, 所以长轴的长为10. 故答案为:10.15.由曲线2222x y x y +=+围成的图形的面积为_______________.【答案】84π+【详解】试题分析:当0,0x y >>时,曲线 222||2||+=+x y x y 表示的图形为 以为圆心,以为半径的圆在第一象限的部分,所以面积为,根据对称性,可知由曲线222||2||+=+x y x y 围成的图形的面积为【解析】本小题主要考查曲线表示的平面图形的面积的求法,考查学生分类讨论思想的运用和运算求解能力.点评:解决此题的关键是看出所求图形在四个象限内是相同的,然后求出在一个象限内的图形的面积即可解决问题.16.已知椭圆22162x y +=的右焦点为F ,上顶点为A ,点P 在圆228x y +=上,点Q 在椭圆上,则2PA PQ QF +-的最小值是__________.【答案】626-【解析】求得椭圆的,,a b c ,可得焦点坐标和顶点坐标,可(22cos ,22sin )P θθ,由两点的距离公式可得2||||PA PB =,即点P 与(0,42)B 的距离,再由椭圆的定义,可得22||||||||||26PA PQ QF PB PQ QF +-=++-,再由四点共线取得最值,可得所求.【详解】解:椭圆22162x y +=的26,,2a b c ===, 右焦点为(2,0)F ,右焦点为2(2,0) F -,上顶点为(0,2)A ,点P 在圆228x y +=上,可设(22cos ,22sin )P θθ,222||2(22cos )(22sin 2)2108sin 4032sin PA θθθθ=+-=-=- 22(22cos )(22sin 42)θθ=+-,表示点P 与(0,42)B 的距离,由椭圆的定义可得22||226QF QF a QF -=-=-222||||||||||2626PA PQ QF PB PQ QF BF +-=++-≥-22(02)(42)26626++=-当且仅当2,,,B P Q F 三点共线上式取得等号, 故2PA PQ QF +-的最小值是66- 故答案为:66-【点睛】本题考查椭圆的定义、方程和性质,考查圆的参数方程的运用和两点的距离公式,注意转化思想和数形结合思想,考查化简运算能力,属于难题.四、解答题17.已知()1,2,1a =-,()2,4,2b =-;(1)若()ka b b +⊥,求实数k 的值;(2)若a c ∥,且26c =,求c 的坐标.【答案】(1)6k =-(2)(2,4,2)c =-或(2,4,2)c =--【分析】(1)利用()0ka b b +⋅=,即可计算求解.(2)由已知,可设c a λ=(0)λ≠,根据26c =,列方程即可求出c .【详解】(1)由已知得,2()0ka b b ka b b +⋅=⋅+=,得222(282)2420k ⋅-+-+++=,解得6k =- (2)设c a λ=(0)λ≠,由26c =,可得222424λλλ++=,得到24λ=,求得2λ=±,2c a ∴=±,则(2,4,2)c =-或(2,4,2)c =--18.一条直线经过点()3,4P .分别求出满足下列条件的直线方程.(1)与直线250x y -+=垂直;(2)交x 轴、y 轴的正半轴于A ,B 两点,且使PA PB ⋅取得最小值的直线方程.【答案】(1)2100x y +-=(2)70x y +-=【分析】(1)根据待定系数法把()3,4代入求解即可;(2)先求得PA PB ⋅=k . 【详解】(1)解:设与直线250x y -+=垂直的直线方程为20x y m ++=,将()3,4带入可得10m =-,∴ 与直线250x y -+=垂直的直线方程为2100x y +-=.(2)解:设直线方程为()43y k x -=-,0k <.0x =时,43y k =-.0y =时,43x k =-. 222241169912224PA PB k k k k ⎛⎫⋅=-+⋅+=++≥ ⎪⎝⎭, 当1k =-时取等号,所以使PA PB ⋅取得最小值的直线方程为70x y +-=.19.如图,在底面ABCD 为菱形的平行六面体1111ABCD A B C D -中,,M N 分别在棱11,AA CC 上,且11111,33A M AA CN CC ==,且1160A AD A AB DAB ∠∠∠===.(1)求证:1,,,D M B N 共面;(2)当1AA AB为何值时,11AC A B ⊥. 【答案】(1)证明见解析(2)11=AA AB时,11AC A B ⊥ 【分析】(1)根据空间向量线性运算的几何表示可得1=DN MB ,进而即得;(2)设1,,===AA c AD b AB a ,然后利用,,a b c 表示出11、AC A B ,再利用向量的夹角公式可得答案. 【详解】(1)在平行六面体1111ABCD A B C D -中,连接11、、、M MD DN NB B ,因为11111,33A M AA CN CC ==, 所以111111111133=+=+=+MB MA A B AA A B AA AB , 11111133=+=+=+DN DC CN A B CC AA AB , 所以1=DN MB ,即1=DN MB 且1//DN MB ,所以四边形1DMB N 为平行四边形,即1,,,D M B N 共面;(2)当11=AA AB 时,11AC A B ⊥,理由如下, 设1,,===AA c AD b AB a ,且c 与b 、c 与a 、b 与a 的夹角均为60, 因为底面ABCD 为菱形,所以=b a ,111111111=+=++=++AC AA AC A B A D AA a c b ,11=+=-A B A A AB a c ,若11AC A B ⊥,则11⊥AC A B ,即()()()()22110⋅=++-=-+⋅-⋅=AC A B a c b a c ac a b c b , 即2222211cos60cos60022-+⋅-⋅=-+-⋅=a c a b c b a c a c a , 解得a c =或320+=a c 舍去,即11=AA AB时,11AC A B ⊥.20.已知圆M 过C (1,﹣1),D (﹣1,1)两点,且圆心M 在x +y ﹣2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A ,PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.【答案】(1)()()22114x y -+-=;(2)25【分析】(1)设圆M 的方程为:()()()2220x a y b r r -+-=>,由已知列出方程组,解之可得圆的方程;(2)由已知得四边形PAMB 的面积为PAM PBM S S S =+,即有2S PA =,又有22||4S PM =-.因此要求S 的最小值,只需求PM 的最小值即可,根据点到直线的距离公式可求得答案.【详解】解:(1)设圆M 的方程为:()()()2220x a y b r r -+-=>, 根据题意得222222(1)(1)1(1)(1)1202a b r a a b r b a b r ⎧-+--==⎧⎪⎪--+-=⇒=⎨⎨⎪⎪+-==⎩⎩,故所求圆M 的方程为:()()22114x y -+-= ;(2)如图,四边形PAMB 的面积为PAM PBM S S S =+,即()12S AM PA BM PB =+ 又2,AM BM PA PB ===,所以2S PA =,而24PA PM =-22||4S PM =-因此要求S 的最小值,只需求PM 的最小值即可,PM 的最小值即为点M 到直线3480x y ++=的距离所以min 22348334PM ++==+,四边形PAMB 面积的最小值为22||425PM -=21.四棱锥P ABCD -底面为平行四边形,且60,2,3ABC PA AB AD ∠====,PA ⊥平面1,3ABCD BM BC =. (1)在棱PD 上是否存在点N ,使得//PB 平面AMN .若存在,确定N 点位置;若不存在,说明理由.(2)求直线PB 与平面PCD 所成角的正弦值.【答案】(1)存在点N ,且13PN ND =,理由见解析; (2)325886.【分析】(1)连接AM BD 、相交于点O ,连接、PO NO ,利用线面平行的性质可得//NO PB , 根据//AD BM ,13BM BC =可得答案; (2)以A 为原点,分别以、、AM AD AP 所在的直线为x y z 、、轴建立空间直角坐标系,求出平面PCD 的法向量为,利用线面角的向量求法计算可得答案.【详解】(1)存在点N ,且13PN ND =时//PB 平面AMN ,理由如下: 连接AM BD 、相交于点O ,连接NO ,则平面PBD 平面=AMN NO ,若//PB 平面AMN ,NO ⊂平面AMN ,PB ⊄平面AMN ,所以//NO PB ,因为//AD BM ,1133==BM BC AD ,所以13=BO OD , 13=PN ND , 所以13PN ND =时//PB 平面AMN ;(2)因为113==BM BC ,2AB =,60ABC ∠=, 由余弦定理可得2222cos603=+-⨯=AM AB BM AB BM ,由222AB AM BM =+可得AM BC ⊥, AM AD ⊥,又PA ⊥平面ABCD ,以A 为原点,分别以、、AM AD AP 所在的直线为x y z 、、轴建立空间直角坐标系,则()002P ,,,()3,1,0B -,()3,2,0C ,()0,3,0D ,()3,1,2=--PB ,()0,3,2=-PD ,()3,2,2=-PC , 设平面PCD 的法向量为(),,n x y z =,所以00PC n PD n ⎧⋅=⎪⎨⋅=⎪⎩,即3203220y z x y z -=⎧⎪⎨+-=⎪⎩,令2y =,则233,3==z x , 所以23,2,33⎛⎫= ⎪ ⎪⎝⎭n ,设直线PB 与平面PCD 所成角的为θ,所以2263258sin cos ,864314493θ⋅--====++⨯++PB nPB n PB n ,所以直线PB 与平面PCD 325822.已知点()1,1P 在椭圆C :22221x y a b+=(0a b >>)上,椭圆C 的左、右焦点分别为F 1,F 2,12PF F △6(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线P A ,PB 均与圆O :222x y r +=(01r <<)相切,试判断直线AB 是否过定点,并证明你的结论.【答案】(1)222133x y += (2)过定点,证明见解析【分析】(1)结合题意,可得关于,,a b c 的方程,解之可得椭圆C 的方程;(2)先由直线与圆相切可得121k k =,再联立直线与椭圆的方程,利用韦达定理分别求出12x x +,12x x ,12y y +,12y y ,代入121k k =可得,k m 的关系式,进而可得直线AB 过定点.【详解】(1)由题知,22111a b +=,12PF F △的面积等于1212F F c == 所以22232a b c -==,解得2233,2a b ==,所以椭圆C 的方程为222133x y +=. (2)设直线PA 的方程为111y k x k =-+,直线PB 的方程为221y k x k =-+,r =,所以()()2221111k r k -=+,所以()222111210r k k r --+-=,同理,()222221210r k k r --+-=,所以12,k k 是方程()2221210r x x r --+-=的两根,所以121k k =.设()()1122,,,A x y B x y ,设直线AB 的方程为y kx m =+,将y kx m =+代入222133x y +=,得()222124230k x kmx m +++-=, 所以122412km x x k +=-+,① 212223,12m x x k -=+② 所以()121222212m y y k x x m k +=++=+,③ ()()()2222121212122312m k y y kx m kx m k x x km x x m k -=++=+++=+,④ 又因为()()()()()()12121212121212121211111111111y y y y y y y y k k x x x x x x x x ---++--=⨯===-----++,⑤ 将①②③④代入⑤,化简得2234230k km m m +++-=,所以()()234310k km m m +++-=,所以()()3310m k m k +++-=,若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点()1,1P ,舍去.若330m k ++=,则直线():3333AB y kx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.。
北京市大兴区2023-2024学年高二上学期期中语文试题含答案
大兴区2023~2024学年度第一学期期中检测高二语文(答案在最后)2023.11考生须知:1.本试卷共8页,共五道大题,23道小题,满分150分。
考试时间150分钟。
2.试题答案一律涂或写在答题卡上,选择题用2B铅笔作答,其他试题用黑色签字笔作答,在试卷上作答无效。
3.考试结束,只需上交答题卡。
一、本大题共5小题,共18分。
阅读下面材料,完成小题。
材料一民政部养老服务司副司长李邦华介绍,截至2021年年底,全国60岁及以上老年人口达2.67亿,占总人口的18.9%。
预计“十四五”时期,60岁及以上老年人口总量将突破3亿,占比将超过20%,我国将进入中度老龄化阶段。
养老服务已经成为积极应对人口老龄化的重要内容。
“养老”一词,最早见于《礼记·王制》:“凡养老,有虞氏以燕礼,夏后氏以飨礼,殷人以食礼,周人修而兼用之。
”燕、飨、食等礼仪都是借祭祀鬼神之日,以宴会的形式编排长幼序列,演示敬老之礼。
这里的“养老”还并不是常规意义上的养老行为。
周代养老的仪式除了设置公宴外,还给国老颁发上顶端镶有木雕鸠鸟形状的黑色木制拐杖——鸠杖(同王杖、玉杖)。
鸠鸟食道宽,吞咽顺利,意在祝福老年人吃好吃饱;鸠杖象征着一种权利和荣誉,持杖老人凭杖就可以享受一定的待遇。
汉代至南北朝时期,国家实行了一系列的养老优抚政策,除给予老人一些荣誉之外,还向社会颁布养老的法令,明确养老范围,建立了具体的保障监督措施,比如汉代就明确规定“子孙为国而死的父祖”等四类人归社会养老。
唐宋时期,敬老和崇文并举,国家建立了“文学馆”等文史研究机构,组织老年学士修史编志,起草皇帝诏书,协助科举考试。
《唐书》中还有国家为高龄老人配备家庭服务人员的记载。
北宋出现了最先用财政资金救助“老疾孤穷丐”的机构——“福田院”。
明代除参照汉代做法外,还积极组织老年人参加政权建设,并在多地设立了养济院。
清代沿用了明朝的养济制度。
我国古代养老文化的核心是“孝”,而以“孝”为核心的古代养老文化,从诞生之日起,就具有了强大的生命力。
山东省青岛地区2023-2024学年高二上学期期中考试语文试题(含答案)
2023-2024学年度第一学期期中学业水平检测高二语文2023.11注意事项:1.答卷前,考生务必将自己的姓名和考号填涂在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:近几年,短视频作为媒体融合的一种表达形式,成为手机网民中绝对的“宠爱”。
从《中国互联网络发展状况统计报告》中用户规模和网民使用率两项指标看,短视频早在2018年就已成为互联网发展的“黑马”,超过了网络购物、网络视频、网络音乐和网络游戏。
这个结果远远超出了专业机构对短视频行业发展前景的预期。
艾媒咨询发布的两份关于中国短视频行业专题调查分析报告中,对2018年中国短视频用户规模的预判分别为3.53亿和5.01亿。
实际上,根据《中国互联网络发展状况统计报告》,当年短视频用户规模已达6.48亿。
短视频为何发展如此迅猛?对此,复旦大学传播与国家治理研究中心主任李良荣在一次主题演讲中表示:短视频是依托移动互联网的发展而产生和壮大的,由于短视频只有几十秒或者三五分钟,非常符合当前碎片化阅读场景;其次,短视频主题鲜明,叙事结构紧凑,在一个视频中就能将一件事情的前因后果交代清楚,十分符合当前受众高效获取信息的习惯;再次,短视频直接而又直观的表达方式能让“90后”“95后”感觉到这就是他们的生活,符合他们在手机、动漫等包围的成长环境中使用媒介的习惯。
“这一轮短视频风口颠覆了我们以往的内容逻辑。
我们可能看到,短视频平台上有不够专业的东西,但是另一方面,这些东西是人民群众想知道的、想看到的。
”中国人民大学新闻学院宋建武教授曾这样表示。
他认为:“短视频的出现,让媒体传播手段、信息交互方式等都发生了本质性变化,主流媒体不把握这个机会就会没有未来。
高级中学高二下学期期中考试语文试题(含答案)
高级中学高二下学期期中考试语文试题(含答案)南平市高级中学2023-2024学年度第二学期高二年级语文科期中考试试题卷总分:150分考试时长:150分钟一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:台北故宫博物院展出苏轼亲笔手书的《赤壁赋》,网友发现帖中原文写的是“渺浮海之一粟”,并不是此前广为流传的“沧海一粟”,疑似是后人抄写笔误,才造成这样的理解错误。
“沧海一粟"是否要被改为“浮海一粟”,一时间引发热议。
这不由得让人想起,此前教育部纠正过一些异读字的读音,比如粳(jīng)米改为粳(gēng)米、确凿(zuò)改为确凿(záo)、说(shuì)服改为说(shuō)服,都把之前大众容易读错的读音认证为了新的正确读音。
后由于一些异读词的拼音打破了大众原本认知,因此有些修改读音已通过,而还有一部分则一直处于审核阶段,仍以原读音为准。
是以正确读音为重还是以大众读音为重呢?从教育部颁布的异读词修订表的底层逻辑来看,显然还是以后者为重。
毕竟,读音是人们沟通交流的工具,最终还是要为人所用,换言之,文字和词语又何尝不是如此?文字和词语的发展过程会经历很多的变化,非要说存在一个亘古不变或者绝对正确的版本,这本身就是个伪命题。
真相很可能是,某一时期大众普遍认可和接受什么版本,这一版本就将流传到下一时期。
就像一位网友所说“成语本质上是约定俗成的东西,用的人多了也就成了成语,原本的出处是什么已不再重要了"。
原先我们有“沧海一粟”,现在又多了一个“浮海一粟”,在渺小的比喻上加了一层浮萍无根、漂泊不定的寓意,孤独感透纸而出,如果真的适宜人们流传,那么多一个成语又何妨?反之,若人们使用不便,它适用的语境较少,那么成语最终消失在历史长河中也就不足为奇了。
(摘编自小亢《“沧海一粟”还是“浮海一粟"?不必太较真》)材料二:对照手书本《赤壁赋》来看,现行统编版高中语文教材必修上册“寄蜉蝣于天地,渺沧海之一粟”中的“沧海”,手书本作“浮海”,此处异文所传递出的信息或可帮助学生对《赤壁赋》一文产生新的理解。
浙江省杭州第二中学2023-2024学年高二下学期期中考试数学试题(解析版)
2023学年第一学期杭州二中高二期中考试数学1. 两条平行直线1l :注意事项:1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.3.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,多选、错选或不选都给不分.3450x y +−=与2l:6850x y +−=之间的距离是( ) A. 0 B.12C. 1D.32【答案】B 【解析】【分析】利用平行线间距离公式进行求解即可. 【详解】345068100x y x y +−=⇒+−=,12, 故选:B2. 已知圆()()()2122292:x m y m m C −+−=−与圆22288340:x y x C y m +−−+−=,则“4m = ”是“圆1C 与圆2C 外切”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【解析】【分析】利用两圆相切圆心距与两半径之和相等,分别证明充分性和必要性是否成立即可得出答案. 【详解】根据题意将圆2C 化成标准方程为()()22442x y m −+−=−; 易知20m −>,所以可得圆心()12,2C m m,半径为1r =,圆心()24,4C,半径为2r =可得122C C =−,两半径之和12r r += 若4m=,圆心距12C C =,两半径之和12r r +,此时1212C C r r =+=, 所以圆1C 与圆2C 外切,即充分性成立;若圆1C 与圆2C外切,则2−=4m =或2m =(舍), 所以必要性成立;即“4m =”是“圆1C 与圆2C 外切”的充分必要条件. 故选:C3. 已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A. 1±B. C. D. 2±【答案】C 【解析】【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =,则弦长为||MN =, 则当0k =时,MN 取得最小值为2=,解得m =. 故选:C.4. 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y −+=上,则ABP 面积的取值范围是A. []26,B. []48,C. D.【答案】A 【解析】【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点 ()()A 2,0,B 0,2∴−−,则AB = 点P 在圆22x 22y −+=()上∴圆心为(2,0),则圆心到直线距离1d =故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPS AB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.5. 已知正方形ABCD 的边长为2,点M 在以C 为圆心,1为半径的圆上,则2MB MD +的最小值为( )A.B.C.D.【答案】D 【解析】【分析】建立直角坐标系,取点1(0,)2E ,探讨满足条件||2||M D M E ′′=的点M ′的轨迹,再结合已知,求出两条线段长度和的最小值作答.【详解】依题意,以点C 为原点,直线,CB CD 分别为,x y 轴建立平面直角坐标系,则(2,0),(0,2)B D ,如图,取点1(0,)2E ,设(,)M x y ′,当||2||M D M E ′′=化简整理得221x y +=,即点M ′的轨迹是以C 为圆心,1为半径的圆,而点M 在以C 为圆心,1为半径的圆上,因此||2||MD ME =,显然点B 在圆C :221x y +=外,则22||2||2(||||)2||MB MD MB ME MB ME BE +=+=+≥,当且仅当M 为线段BE 与圆C 的交点时取等号,而||BE ,所以2MB MD +的最小值为2||BE =故选:D【点睛】关键点睛:建立坐标系,取点1(0,)2E 并求出满足条件||2||M D M E ′′=的点M ′的轨迹是解题的关键.6. 设椭圆()222210x y a b a b+=>>的左焦点为F ,O 为坐标原点,过F 且斜率为1的直线交椭圆于A ,B两点(A 在x 轴上方).A 关于x 轴的对称点为D ,连接DB 并延长交x 轴于点E ,若DOF S ,DEF S △,DOE S △成等比数列,则椭圆的离心率e 的值为( )A.B.C.D.【答案】D 【解析】【分析】根据DOF S ,DEF S △,DOE S △成等比数列,得到2EF OF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++−−,与椭圆方程联立,再设直线BD 的方程为:()122221x x c y x cx x x x ++−−=−−,令0y =结合韦达定理,得到点E 的坐标,代入2EF OF OE =⋅求解.【详解】解:如图所示:设,,DOF DEF DOE 分别以OF ,EF ,OE 为底,高为h ,则111,,222DOFDEF DOE S OF h S EF h S OE h === , 因为DOF S ,DEF S △,DOE S △成等比数列,所以2DEFDOF DEF S S S =⋅ ,即2EF OF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++−−,联立22221x y a b y x c += =+,消去y 得()2222222220a b x a cx a c a b +++−=, 由韦达定理得:2121222222222,2x x x x a ca c ab a b a b−+=−=++⋅, 直线BD 的方程为:()1222212x x cy x c x x x x ++−−=−−,令0y =得,()12121222E x x c x x x x x c⋅++=++,则()22121212222222222222222222E x x c x x a x c a c a b a c a b a b a b x x c c c a ⋅−⋅++===−++−++−++, 则2EF OF OE =⋅,即为222a a c c c c ⋅−,则()22222c a ac =−,即422430a c a c −+=,即42310e e −+=,解得2e =e =,故选:D7. 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF △的内切圆的圆心为I ,若23450++=IB IA IF ,则该椭圆的离心率是( )A.B.23C.D.12【答案】A 【解析】【分析】对23450++= IB IA IF 变形得到2351882IB IF IA +=−,进而得到以22::3:4:5AF BF AB =,结合椭圆定义可求出2AF a =,245,33BF a AB a ==,1AF a =,由余弦定理求解,a c 关系式,求出离心率.【详解】因为23450++= IB IA IF ,所以2351882IB IF IA +=−, 如图,在2BF 上取一点M ,使得2:5:3BM MF =,连接IM ,则12IM IA =−,则点I 为AM 上靠近点M 的三等分点,所以22::3:4:5IAF IBF IBA S S S = , 所以22::3:4:5AF BF AB =设23AF x =,则24,5BF x AB x ==, 由椭圆定义可知:224AF BF AB a ++=,即124x a =,所以3ax =, 所以2AF a =,245,33BF a AB a ==,1AF a = 故点A 与上顶点重合, 在2ABF △中,由余弦定理得:222222222222516399cos 52523a a a AB F A F B BAF AB F A a +−+−∠===⋅×,在12AF F △中,2222243cos 25a a c BAF a +−∠==,解得:c a =故选:A【点睛】对于求解圆锥曲线离心率问题,要结合题目中的条件,直接求出离心率或求出,,a b c 的齐次方程,解出离心率,本题的难点在于如何将23450++=IB IA IF 进行转化,需要作出辅助线,结合内心的性质得到三角形2ABF 三边关系,求出离心率.8. 在平面直角坐标系xOy 中,若抛物线C :y 2=2px (0p >)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为FAB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM ON ⋅的取值范围是( )A. 63,925−B. []3,21−C. 63,2125D. []3,27【答案】B 【解析】【分析】由已知及抛物线的定义,可求p ,进而得抛物线的方程,可求A ,B ,F 的坐标,直线AF 的方程,可得圆的半径,求得圆心,设N 的坐标,求得M 的坐标,结合向量数量积的坐标表示,以及辅助角公式和正弦函数的值域,可得所求范围.【详解】解:由题意,设(A ,所以||342pAF =+=,解得2p =,所以抛物线的方程为24y x =,(3,A ,(3,B −,(1,0)F ,所以直线AF 的方程为1)yx =−,设圆心坐标为0(x ,0),所以2200(1)(3)12x x −=−+,解得05x =,即(5,0)E ,∴圆的方程为22(5)16x y −+=,不妨设0M y >,设直线OM 的方程为y kx =,则0k >,4=,解得43k =, 由2243(5)16y x x y= −+=,解得912,55M, 设(4cos 5,4sin )N θθ+,所以364812cos sin 9(3cos 4sin )9555OM ON θθθθ⋅=++=++ , 因为[]3cos 4sin5sin()5,5θθθϕ+=+∈−, 所以OM ON ⋅∈[]3,21−. 故选:B .【点睛】关键点点睛:本题解题的关键点是:首先求出圆的方程为22(5)16x y −+=,然后利用直线OM 与圆E 切于点M ,求出M 点的坐标,引入圆的参数方程表示N 点坐标,再根据向量数量积的坐标表示及辅助角公式,可得所求范围..二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知直线1l :230ax y a ++=和直线2l :()3170x a y a +−+−=,下列说法正确的是( ) A. 当25a =时,12l l ⊥ B. 当2a =−时,12l l ∥C. 直线1l 过定点()3,0-,直线2l 过定点()1,1−D. 当1l ,2l 【答案】AD 【解析】【分析】A 选项:把a 的值分别代入两直线,根据直线垂直时,斜率相乘为1−,直接判断即可; B 选项,把a 的值分别代入两直线,根据直线平行时,斜率相等判断即可; C 选项,把直线的方程变形,根据直线过定点的定义判断即可;D 选项,由直线平行时,斜率相等,可求得a 得值,排除重合情况,再利用平行直线的距离公式直接求解即可.【详解】对于A ,当25a =时,那么直线1l 为262055x y ++=,直线2l 为3237055x y −+−=,此时两直线的斜率分别为115k =−和25k =,所以有121k k ⋅=-,所以12l l ⊥,故A 选项正确;对于B ,当2a =−时,那么直线1l 为30x y −+=,直线2l 为30x y −+=,此时两直线重合,故B 选项错误;对于C ,由直线1l :230ax y a ++=,整理可得: ()320a x y ++=,故直线1l 过定点()3,0-,直线2l :()3170x a y a +−+−=,整理可得:()1370a y x y −+−+=,故直线2l 过定点()2,1−,故C 选项错误;对于D ,当1l ,2l 平行时,两直线的斜率相等,即213a a −−=−,解得:3a =或2a =−,当2a =−时,两直线重合,舍去;当3a =时,直线1l 为3290x y ++=,2l 为3240x y ++=,此时两直线的距离d,故D 选项正确. 故选:AD .10. 已知椭圆2222:1(0)x y C a b a b+=>>的左,右两焦点分别是12,F F ,其中12||2F F c =.直线()():R l y k x c k =+∈与椭圆交于,A B 两点,则下列说法中正确的有( )A. 2ABF △的周长为4aB. 若AB 的中点为M ,则22OMb k k a⋅=C. 若2124AF AF c ⋅=,则椭圆的离心率的取值范围是 D. 若1k =时,则2ABF △【答案】ACD 【解析】【分析】根据椭圆定义可知2ABF △的周长为4a ,可判断A 正确;联立直线和椭圆方程求出点M 的坐标,表示出斜率公式即可得22OMb k k a⋅=−,可得B 正确;由2124AF AF c ⋅= 易知A 点在以()0,0为圆心,半径为的圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,需满足b a ≤≤,可得离心率e ∈,可知C 正确;将1k =代入联立的方程可得2ABF △的面积12S c x x =−,可得D 正确.【详解】由12||2F F c =可知,()()12,0,,0F c F c −;显然直线()():R l y k x c k =+∈过点()1,0F c −,如下图所示:由椭圆定义可知2ABF △的周长为2212214AB AF BF AF AF BF BF a ++=+++=,所以A 正确; 设()()1122,,,A x y B x y ,中点()0,Mx y ;将直线和椭圆方程联立()22221x y a b y k x c += =+ ,消去y 整理可得()2222222222220b a k x a k cx a k c a b +++−=; 由韦达定理可得22122222a k c x x b a k +=−+,所以221202222x x a k cx b a k+==−+,代入直线方程解得20222b cky b a k =+,即222222222,a k c b ck M b a k b a k − ++; 所以2222222222222200OMb ckb ck b b a k k a kc a k c a k b a k −+==−=−−−+, 可得2222OMk b k a k b k a⋅−==⋅−,所以B 错误;根据B 选项,由2124AF AF c ⋅=可得()()2222111111,4,c x y c x y x c y c −⋅=+−−=−−−, 可得222115x y c +=,即A 点在以()0,0圆上; 又A 点在椭圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,根据对称性可知b a ≤≤,即22256c a c ≤≤,所以可得离心率e ∈,即C 正确;若1k =时,由选项B 可知联立直线和椭圆方程可得()2222222220b axa cx a c ab +++−=; 所以可得22222121222222,a c a c a b x x x x b a b a−+=−=++; 所以12x x −==易知2ABF △面积12112212121122S F F y F F y c y y c x x =+=−==− 即可得2ABF△,故D 正确. 故选:ACD【点睛】方法点睛:在求解圆锥曲线与直线的位置关系时,特别是在研究跟焦点三角形有关的问题时,经常将直线和圆锥曲线联立并利用韦达定理求解,注意变量间的相互转化即可.11. 已知斜率为k 的直线交抛物线()220y px p =>于()11,A x y 、()22,B x y 两点,下列说法正确的是( ) A. 12x x 为定值B. 线段AB 的中点在一条定直线上的的C.11OA OBk k +为定值(OA k 、OB k 分别为直线OA 、OB 的斜率) D. AF BF为定值(F 为抛物线的焦点)【答案】BC 【解析】【分析】分析可知,0k ≠,设直线AB 的方程为y kx m =+,将直线AB 的方程与抛物线的方程联立,利用韦达定理可判断A 选项;求出线段AB 中点的纵坐标,可判断B 选项;利用斜率公式结合韦达定理可判断C 选项;利用抛物线的焦半径公式可判断D 选项.【详解】若0k =,则直线AB 与抛物线()220y px p =>只有一个交点,不合乎题意,则0k ≠, 设直线AB 的方程为y kx m =+,联立22y kx m y px=+ = 可得()222220k x km p x m +−+=, ()2222224480km p k m p kmp ∆=−−=−>,对于A 选项,2122m x x k =不一定是定值,A 错;对于B 选项,设线段AB 的中点为()00,P x y ,则12022x x p kmx k+−==, 00p km p y kx m m k k−++为定值,故线段AB 的中点在定直线py k =上,B 对;对于C 选项,()121212122222111222OA OB p kmm k x x m x x y y k k k y y p p p k−+++++=+====为定值,C 对;对于D 选项,21222222222p km p p x x AF k p p BF x x −+−+==++不一定为定值,D 错.故选:BC.12. 已知圆22:(2)1M x y +−=,点P 为x 轴上一个动点,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP 交于点C ,则下列结论正确的是( )A. 四边形PAMB周长的最小值为2 B. ||AB 的最大值为2C. 若(1,0)P ,则三角形PAB 的面积为85D.若Q ,则||CQ 的最大值为94【答案】CD 【解析】【分析】首先设||MP t =,对于选项A ,根据题意,表达四边形PAMB 周长关于t 的函数,由t 的取值范围求函数的最小值可判断A 错误;对于选项B ,根据等面积法,求出||AB 关于t 的函数关系,由t 的取值范围求函数的最大值可判断B 错误;对于选项C ,根据题意,计算PAB 底和高,求出面积判断C 正确;对于选项D ,设动点(,0)P m AB 的方程与直线PM 的方程,二者联立消去m 得到二者交点C 的轨迹是圆,||CQ 的最大值为圆心1O 与Q 距离加半径,可判断D 正确. 【详解】对于选项A ,设||MP t =,则||||BP AP ==则四边形PAMB周长为2+,则当t 最小时周长最小,又t 最小值为2, 所以四边形PABM周长最小为2+,故A 错误;对于选项B ,12||||2MAP PAMBS S MP AB ==△四边形,即1121||22t AB ××=,所以||AB =,因为2t,所以)||AB ∈,故B 错误; 对于选项C ,因为(1,0)P,所以||MP =t =,所以||AB ,1||||2AC AB ==,||2AP =,||PC ,所以三角形PAB 的面积为18||||25AB PC =,故C 正确;的对于选项D ,设(,0)P m ,()11,A x y ,则切线PA 的方程为()()11221x x y y +−−=, 又因为直线PA 过点(,0)P m ,代入可得()()112021x m y +−−=化简得11230mx y −+= 设()22,B x y ,同理可得22230mx y −+=, 因此点,A B 都过直线230mx y −+=,即直线AB 的方程为230mx y −+=, MP 的方程为22y x m=−+, 二者联立得,22230y x mmx y =−+−+=①②, 由①式解出22x m y =−,代入②式并化简得227302x y y +−+=, 配方得2271()416x y +−=,2y ≠, 所以点C 的轨迹是以(70,4)为圆心,14为半径的圆, 设其圆心为1O ,所以||CQ的最大值为1119||2444O Q R ++=+=,故D 正确. 故选:CD.【点睛】本题综合性较强,难度较大,具备运动变化的观点和函数思想是解题的关键,对于AB 选项,设变量||MP t =,用t 分别表达周长函数和距离函数求最值,对于D 选项,设出动点(),0P m ,分别表达直线AB 和MP 的方程,联立消去m ,得到动点C 的轨迹,进一步求解答案.三、填空题:本题共4小题,每小题5分,共20分.13. 已知实数0,0a b ><的取值范围是______.【答案】[)2,1−− 【解析】【分析】根据题意,设直线l :0ax by +=的几何意义为,点(1,到直线l 的距离,即可求出取值范围.【详解】根据题意,设直线l :0ax by +=,设点(1,A那么点(1,A 到直线l的距离为:d因为0,0a b ><,所以d =l 的斜率0ak b=−>, 当直线l的斜率不存在时,1d ==,所以1d >,当OA l ⊥时,max 2d OA ===,所以12d <≤,即12<≤,=21−≤<−,故答案为:[)2,1−−.14. 形如()0b y ax b x=+≠的函数图象均为双曲线,则双曲线4135y x x =−的一个焦点坐标为______.【答案】或 【解析】【分析】先确定双曲线的渐近线、对称轴方程,确定焦点位置及实半轴a ,最后由渐近线与对称轴夹角正切值确定b ,利用双曲线性质求出焦点. 【详解】由4135−x y =x 知,其两条渐近线分别为403x x =,y =, 所以双曲线4135−x y =x 的两条对称轴为403xx =,y =的夹角平分线, 令43x y =的倾斜角为0,2πθ ∈,则4tan 3θ=,且一条对称轴倾斜角为42πθ+,而22tan42tan 31tan 2θθθ==−,则22tan 3tan 2022θθ+−=,解得tan 22θ=−(舍去),1tan 22θ=, 所以11+tan 1+22tan ==31421tan 122π +=−−θθθ,即一条对称轴为3y x =, 故另一条对称轴为13y x =−,显然13y x =−与4135−x y =x有交点, 即为双曲线的顶点,则双曲线的实半轴长a = 而渐近线0x =与对称轴13y x =−夹角的正切值为3,3b a =,又因为=a,所以33b =a = 由2222641553+=c =a +b =,设焦点为13 − m,m ,则221433 +−=m m ,所以m =, .故答案为:或.15. 在椭圆2213x y +=上有点31,22P ,斜率为1的直线l 与椭圆交于不同的A ,B 两点(且不同于P ),若三角形ABO 的外接圆恰过点P ,则外接圆的圆心坐标为______. 【答案】71,88 −【解析】【分析】根据题意得到():0AB y x b b =+≠,联立直线AB 与椭圆方程,利用韦达定理求得12x x +,12x x ,12y y +,12y y ;法一:先利用点斜式求得,OP AB 的中垂线方程,联立两者方程即可求得圆心C ,再由半径相等得到2222AC BC OC +=,利用两点距离公式,代入上述式子得到关于b 的方程,解之即可; 法二:根据题意得到圆的方程,联立直线AB 与圆的方程,利用韦达定理求得12x x +,12x x ,进而得到,D E 关于b 的表达式,又由点P 在圆上得到关于b 的方程,解之即可.【详解】依题意,设()11,A x y ,()22,B x y ,直线():0AB y x b b =+≠, 联立2213y x bx y =++=,消去y ,得246330x bx b ++−=, 所以1232x x b +=−,()212314b x x −=, 则121212y y x b b b x ++=+=+,()()2121234b y y x b b x =+−=+, .法一:因为31,22P ,所以10123302OP k −==−,OP 的中点坐标为3,414 ,OP 中垂线的斜率为3−,所以OP 中垂线方程为113:344l y x −=−−,即532y x =−+, 因为AB 的斜率为1,AB 的中点坐标为1212,22x x y y ++ ,即31,44b b− ,所以AB 中垂线的斜率为1−,则AB 中垂线方程213:44l y b x b−=−+,即12y x b =−−, 联立53212y x y x b=−+ =−− ,解得54354b x b y + = + =− ,则圆心坐标535,44b b C ++ − , 因为22222AC BC OC AC +==, 所以222222112253515355354424444b b b b b b x y x y +++++++=−+++−++, 整理得()()22221212121253522044b b x x x x y y y y ++ +−+++++=, 因为1232x x b +=−,()212314b x x −=,1212y y b +=,21234b y y −=, 所以()22222112123624x x x x b x x +=+−+=,()2222211212624y b y y y y y −+=+−+=, 则2203563614242532244b b b b b b ++ −++= − + +−× , 整理得22530b b ++=,解得32b =−,1b =-, 当1b =-时,直线:1AB y x =−,显然直线AB 过P 点,舍去,当32b =−时,()2299361633361633044b b ∆=−−=×−×−>,直线3:2AB y x =−,满足题意,又535,44b b C ++ −,所以此时圆心坐标71,88C − . 法二:因为圆过原点()0,0O ,所以设圆的方程为220x y Dx Ey +++=()220D E +>,联立220y x b x y Dx Ey =++++=,消去y ,得()22220x b D E x b Eb +++++=, 所以1222b D E x x +++=−,2122b Ebx x =+, 又1232x x b +=−,()212314b x x −=,所以3222b D E b ++−=−,()223142b b Eb −+=, 所以1322D b b=+,1322E b b =−, 因为P 点在圆上,所以913104422D E +++=,即530D E ++=,所以13135302222b b b b +++−=,整理得22530b b ++=,解得32b =−,1b =-, 当1b =-时,直线:1AB y x =−,显然直线AB 过P 点,舍去, 当32b =−时,1332722234D =×−+×−=− ,1332122234E =×−−×−= , 对于方程2246330x bx b ++−=,有()2299361633361633044b b ∆=−−=×−×−>,对于方程()22220x b D E x b Eb +++++=,即29152028x x −+=,有2915Δ42028 =−−××>,满足题意,又因为外接圆的圆心坐标为,22D E −− ,所以圆心为71,88− . 故答案为:71,88 −.【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.16. 已知直线l 过抛物线C :24y x =的焦点F ,与抛物线交于A 、B 两点,线段AB 的中点为M ,过M作MN 垂直于抛物线的准线,垂足为N ,则2324NF AB +的最小值是______.【答案】【解析】【分析】设直线:1AB x my =+,()11,A x y ,()22,B x y ,联立抛物线方程得到关于y 的一元二次方程,得到韦达定理式,求出,M N 坐标,利用弦长公式和两点距离公式得到AB 和NF 的表达式,再利用基本不等式即可得到答案.【详解】显然当直线AB 斜率为0时,不合题意;故设直线:1AB x my =+,()11,A x y ,()22,B x y , 联立抛物线方程有2440y my −−=,则216160m ∆=+>,124y y m +=,124y y =−,则1222My y y m +==,111x my =+,221x my =+, 则()21221224221222M m y y x x m x m ++++====+,则()221,2M m m +,准线方程为=1x −,()1,0F ,则()1,2N m −,()22||41AB y m =−=+,()()()22222||1124441||[4,)NF m m m AB =++−=+=+=∈+∞,所以232||32||||4||4NF AB AB AB +=+==,当且仅当32||||4AB AB =,即()2||41AB m =+=时等号成立,此时m .故答案为:【点睛】关键点点睛:本题的关键是采取设线法联立抛物线方程得到韦达定理式,再利用中点公式得到,M N 点坐标,最后利用弦长公式和两点距离公式得到相关表达式,最后利用基本不等式即可得到答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知点()1,0A −和点B 关于直线l :10x y +−=对称. (1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,求直线1l 的方程; (2)若直线2l 过点A 且与直线l 交于点C ,ABC 的面积为2,求直线2l 的方程.【答案】(1)30x y +−=(2)0y =或=1x − 【解析】【分析】根据对称先求出B 点坐标(1)过点B 到点A 距离最大的直线与直线AB 垂直,从而求出直线方程;(2)画出图像,可求出点C 到直线AB 的距离,又点C 在直线l 上,可设出C 点的坐标,利用点到直线的距离公式求出C ,又直线过点A ,利用两点A 、C 即可求出直线2l 的方程. 【详解】解:设点(),B m n则1102211m nn m −+ +−== + ,解得:12m n = = ,所以点()1,0A −关于直线l :10x y +−=对称的点的坐标为()1,2B(1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,则直线1l 与过点AB 的直线垂直,所以1k =−,则直线1l 为:()21y x −=−−,即30x y +−=. (2)由条件可知:AB =,ABC 的面积为2,则ABC的高为h =又点C 在直线l 上,直线l 与直线AB 垂直,所以点C 到直线AB. 直线AB 方程为1y x =+,设(),C a b,即1b a =−或3b a =+又1b a =−,解得:10a b == 或12a b =− =则直线2l 为:0y =或=1x −【点睛】本题考查求点关于直线的对称点,考查直线与直线相交的综合应用..方法点睛:(1)设出交点坐标(2)两点的中点在直线上,两点连线与原直线垂直,列方程组; (3)解出点坐标.18. 已知圆221:(1)5C x y +−=,圆222:420C x y x y +−+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.【答案】(1)(2)22317222x y −++=【解析】【分析】(1)将两圆方程作差可求出公共弦的方程,然后求出圆心1C 到公共弦的距离,再利用弦心距,半径和弦的关系可求得答案,(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+−+++−−≠−,求出圆心坐标代入241x y +=中可求出λ,从而可求出圆的方程,解法二:将公共弦方程代入圆方程中求出两圆的交点坐标,设所求圆的圆心坐标为(),a b ,然后列方程组可求出,a b ,再求出圆的半径,从而可求出圆的方程.【小问1详解】将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即()()222242240x y x y x y y +−+−+−−=,化简得10x y −−=,所以圆1C 的圆心()0,1到直线10x y −−=的距离为d ,则22215232AB r d =−=−=,解得AB =所以公共弦长为【小问2详解】 解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+−+++−−≠−, 则2242240,1111x y x y λλλλλλ−+−+−=≠−+++; 由圆心21,11λλλ− −++ 在直线241x y +=上,则()414111λλλ−−=++,解得13λ=, 所求圆的方程为22310x y x y +−+−=,即22317222x y −++=. 解法二:由(1)得1y x =−,代入圆222:420C x y x y +−+=, 化简可得22410x x −−=,解得x =;当x =时,y =x =时,y =;设所求圆的圆心坐标为(),a b ,则2222241a b a b a b −+=++ += ,解得3212a b ==−;所以222317222r =+−−= ; 所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y −++=19. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)221169x y −= (2)直线CD 过定点,定点坐标为(8,0). 【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值. 【小问1详解】法一.由222225,64271,a b ab += −=解得2216,9a b ==,∴双曲线E 的标准方程为221169x y −=. 法二.左右焦点为()()125,0,5,0F F −,125,28c a MF MF ∴==−=,22294,a b c a ∴===−,∴双曲线E 的标准方程为221169x y −=. 【小问2详解】直线CD 不可能水平,故设CD 方程为()()1122,,,,x my t C x y D x y =+, 联立221169x my t x y =+−= 消去x 得()()2222916189144=0,9160m y mty t m −++−−≠, 12218916mt y y m −∴+=−,21229144916t y y m −=−,12y y −,AC 的方程为11(4)4y yx x ++,令2x =,得1164p y y x =+, 的BD 的方程为22(4)4y yx x −−,令2x =,得2224p y y x −=−,1221112212623124044y y x y y x y y x x −∴=⇔−++=+− ()()21112231240my t y y my t y y ⇔+−+++=()()1212431240my y t y t y ⇔+−++= ()()()()12121242480my y t y y t y y ⇔+−++−−=()22249144(24)180916916m t t mt m m −−⇔−±=−−3(8)(0m t t ⇔−±−=(8)30t m ⇔−±=, 解得8t =3m =±,即8t =或4t =(舍去)或4t =−(舍去), ∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0). 方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+, 联立22,1,169x my t x y =+ −=,消去x 得()2229161891440m y mty t −++−=, 2121222189144,916916mt t y y y y m m −−∴+==−−, AC 的方程为(4)6nyx =+,BD 的方程为(4)2ny x −−, ,C D 分别在AC 和BD 上,()()11224,462n ny x y x ∴=+=−−, 两式相除消去n 得()211211223462444x y y y x x x y −−−=⇔+=+−, 又22111169x y −=,()()211194416x x y ∴+−=. 将()2112344x y x y −−+=代入上式,得()()1212274416x x y y −−−=⇔()()1212274416my t my t y y −+−+−=()()221212271627(4)27(4)0m y y t m y y t ⇔++−++−=⇔()22222914418271627(4)27(4)0916916t mtm t m t m m −−++−+−=−−. 整理得212320t t +=−,解得8t =或4t =(舍去). ∴CD 方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0). 【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.20. 已知双曲线22:154x y Γ−=的左右焦点分别为1F ,2F ,P 是直线8:9l y x =−上不同于原点O 的一个动点,斜率为1k 的直线1PF 与双曲线Γ交于A ,B 两点,斜率为2k 的直线2PF 与双曲线Γ交于C ,D 两点.(1)求1211k k +的值;(2)若直线OA ,OB ,OC ,OD 的斜率分别为OA k ,OB k ,,OC k ,OD k ,问是否存在点P ,满足0OA OB OC OD k k k k +++=,若存在,求出P 点坐标;若不存在,说明理由.【答案】(1)94−; (2)存在98(,)55P −或98(,)55P −满足题意.【解析】【分析】(1)设出(9,8)P λλ−,然后计算1211k k +即可得;(2)假设存在,设设00(9,8)P x x −,写出直线AB 方程,设1122(,),(,)A x y B x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,同理设3344(,),(,)C x y D x y ,直线CD方程代入双曲线方程,应用韦达定理,代入计算OC OD k k +,然后由条件0OA OB OC OD k k k k +++=求得0x 得定点坐标.的【小问1详解】由已知1(3,0)F −,2(3,0)F ,设(9,8)P λλ−,(0)λ≠, ∴1839k λλ=−−,2893k λλ−=−,121139939884k k λλλλ−−−+=+=−−;【小问2详解】 设00(9,8)P x x −,(00x ≠),∴010893x k x −=+,∴直线AB 的方程是008(3)93x yx x −++,设11(,)A x y ,22(,)B x y ,008(3)93x yx x −++代入双曲线方程得2220203204(69)20(93)x x x x x −++=+, 即222200000(549)480(112527045)0x x x x x x x ++−−++=, 2012200480549x x x x x +=++,20012200112527045549x x x x x x ++=−++, 00121212012012883()33(2)[2]9393OA OB x x y y x x k k x x x x x x x x ++=+=−++=−+++2000200008832(2(2)93932561x x x x x x x =−+=−−++++ 2000220000082(31)16(31)9325612561x x x x x x x x −+−+=⋅=+++++, 同理CD 的方程为008(3)93x yx x −−−,设33(,)C x y ,44(,)D x y ,仿上,直线方程代入双曲线方程整理得:222200000(549)4801125270450x x x x x x x −++−+−=,234200480549x x x x x +=−−+,20034200112527045549x x x x x x −+−=−+, ∴2303400423403400083()83480[2](2)9393112527045OC ODy x x x x x y k k x x x x x x x x −+−⋅+=+=−=−−−−+ 20000220000083216(31)(2)9325613(2561)x x x x x x x x x −−−=−=−−+−+.由0OA OB OC OD k k k k +++=得00022000016(31)16(31)025613(2561)x x x x x x x −+−−+=++−+, 整理得200(251)0x x −=,∵00x ≠,∴015x =±, ∴存在98(,)55P −或98(,)55P −满足题意.【点睛】方法点睛:是假设定点存在,题中设00(9,8)P x x −,写出直线方程,设出直线与双曲线的交点坐标如1122(,),(,)x y x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,最后利用已知条件求得0x ,若求不出结果说明不存在.本题考查了学生的逻辑能力,运算求解能力,属于困难题.21. 抛物线2:2(0)C x py p =>的焦点为F ,准线为,l A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点,(1)若90,BFD ABD ∠=的面积为p 的值及圆F 的方程(2)若直线y kx b =+与抛物线C 交于P ,Q 两点,且OP OQ ⊥,准线l 与y 轴交于点S ,点S 关于直线PQ 的对称点为T ,求||FT 的取值范围.【答案】(1)2p =,圆F 的方程为()2218x y +−=(2)(],4p p 【解析】【分析】(1)由焦半径和圆的半径得到2A py FA FD +===,结合ABD △面积求出2p =,圆F 的方程为()2218x y +−=;(2)表达出0,2p S −关于直线PQ 的对称点的坐标,利用垂直关系列出方程,求出2b p =,从而利用两点间距离公式表达出(],2FT p p ==. 【小问1详解】由对称性可知:90,BFD FS BS DS p ∠=°===, 设(),A A A x y,由焦半径可得:2A py FA FD +===,112222ABD A p S BD y p=⋅⋅+=×=解得:2p =圆F 的方程为:()2218x y +−=【小问2详解】由题意得:直线PQ 的斜率一定存在,其中0,2p S−,设0,2p S−关于直线PQ 的对称点为(),T m n ,则12222p n m kp n m k b + =− − =⋅+ ,解得:221212b p m k k b p pn k + =− + +=− + ,联立y kx b =+与22x py =得:2220x pkx pb −−=,设()()1122,,,P x y Q x y ,则12122,2x x pk x x pb +==−, 则()()()2212121212y y kx b kx b k x x kb x x b =++=+++,则()()22121212121x x y y k x x kb x x b +=++++ ()222221220pb k pk b b pb b −+++=−+=,解得:0b =(此时O 与P 或Q 重合,舍去)或2b p =,所以FT =(],4p p ==, 【点睛】圆锥曲线相关的取值范围问题,一般思路为设出直线方程,与圆锥曲线联立,得到两根之和,两根之积,由题干条件列出方程,求出变量之间的关系,再表达出弦长或面积等,结合基本不等式,导函数,函数单调性等求出最值或取值范围.22. 如图,已知点P 是抛物线24C y x =:上位于第一象限的点,点()20A −,,点,M N 是y 轴上的两个动点(点M 位于x 轴上方), 满足,PM PN AM AN ⊥⊥,线段PN 分别交x 轴正半轴、抛物线C 于点,D Q ,射线MP 交x 轴正半轴于点E .(1)若四边形ANPM 为矩形,求点P 的坐标;(2)记,DOP DEQ △△的面积分别为12S S ,,求12S S ⋅的最大值.【答案】(1)(2,P(2)192 【解析】【分析】(1)根据矩形性质,可得对角线互相平分,即AP 的中点在y 轴上,然后点P 在抛物线,即可得(2,P ;(2)联立直线PQ 方程与抛物线C ,根据韦达定理求得,P Q 两点的纵坐标关系,再根据,PM PN AM AN ⊥⊥条件判断MOE △与DON △相似,进而求得,D E 两点的坐标关系,再表示并化简12S S ⋅为关于m 的函数,根据,D E 两点的位置关系,以线段DE 为直径的圆K 与抛物线C 有交点得出关于m 的约束,即可确定12S S ⋅中m 取值范围,最后可得12max ()(4192S S g ⋅=−= 【小问1详解】当四边形ANPM 为矩形时,AP 的中点在y 轴上,则有:2P A x x =−=故(2,P -【小问2详解】设点(,0)D m ,直线PQ 方程:x m ty −=, 显然有0,0m t >≠联立直线PQ 与抛物线C ,得:24x m ty y x −==消去x 得:2440y ty m −−=则有:4P Q y y m ⋅=− 由AM AN ⊥,得:2||||||4OM ON OA ⋅==又由PM PN ⊥,可得:△MOE ∽△DON 则有:||||||||OM OE OD ON = 从而||||||||4OE OD OM ON ⋅=⋅=,即4E D x x ⋅=所以4E x m=,进而有:4||E D DE x x m m =−=− 结合||,4P Q OD m y y m =⋅=−(注:由E D x x >,得4m m >,故有02m <<) 可得:12111(||||)(||||)||||||224P Q P Q S S OD y DE y OD DE y y ⋅=⋅⋅⋅⋅⋅=⋅⋅⋅ 314()444m m m m m m=⋅⋅−⋅=−+ 又由题意知,存在抛物线上的点P 满足条件,即以线段DE 为直径的圆K 与抛物线C 有交点,且易得圆K 方程:24()()0x m x y m−⋅−+=联立抛物线C 与圆K ,得224()()04x m x y my x−⋅−+= = 消去y 得:24(4)40x m x m−+−+= 由0∆≥,结合02m <<,可解得:04m <≤−令3()4g m m m =−+,求导可知()g m在上单调递增又4−≤ 故有:()g m在(0,4−上单调递增因此,12max ()(4192S S g ⋅=−=【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系;在求解相关最值问题时,通常是先建立目标函数,然后应用函数的知识来解决问题;。
高二期中考试试卷及答案
高二期中考试试卷及答案一、选择题(每题2分,共20分)1. 下列哪项不是细胞膜的主要功能?A. 物质交换B. 细胞间通讯C. 细胞分裂D. 细胞形态维持2. 光合作用中,光能转化为化学能发生在哪个阶段?A. 光反应B. 暗反应C. 光暗交替反应D. 光合作用全过程3. 根据达尔文的进化论,生物进化的驱动力是什么?A. 基因突变B. 自然选择C. 人工选择D. 环境适应性4. 以下哪个选项是碱基配对的规则?A. A-T,G-CB. A-G,T-CC. A-C,T-GD. A-G,T-A5. 以下哪种物质不是蛋白质的组成成分?A. 氨基酸B. 脂肪酸C. 核苷酸D. 糖类...(此处省略其他选择题)二、填空题(每空1分,共10分)1. 细胞周期包括____和____两个阶段。
2. 酶的催化作用具有____性、____性和____性。
3. 真核细胞和原核细胞最主要的区别是真核细胞具有____。
4. 遗传信息的传递遵循____定律。
5. 细胞分化的结果是形成____。
三、简答题(每题10分,共20分)1. 简述细胞呼吸的过程及其意义。
2. 描述孟德尔遗传定律中的分离定律和组合定律。
四、实验题(每题15分,共15分)1. 描述如何通过显微镜观察植物细胞的有丝分裂过程。
五、论述题(15分)1. 论述基因工程在现代农业中的应用及其潜在的伦理问题。
高二期中考试试卷答案一、选择题1. C2. A3. B4. A5. C...(此处省略其他选择题答案)二、填空题1. 间期,分裂期2. 高效性,专一性,可调控性3. 细胞核4. 孟德尔遗传5. 组织和器官三、简答题1. 细胞呼吸是细胞将有机物质氧化分解,释放能量的过程。
它包括糖酵解、三羧酸循环和氧化磷酸化三个阶段。
细胞呼吸的意义在于为细胞提供能量,维持生命活动。
2. 分离定律指出在有性生殖过程中,不同性状的遗传因子在形成配子时分离。
组合定律则说明不同性状的遗传因子在配子形成时可以自由组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白银市第八中学2010—2011学年度第二学期期中试题高二物理磁感线起始于 N 极,终止于S 极;电场线起始于正电荷,终止于负电荷。
7、如图所示,L 为一个自感系数很大的自感线圈,开关闭合后,小 灯能正常发光,那么闭合开关和断开开关的瞬间,能观察到的现象 分别是()A 小灯逐渐变亮,小灯立即熄灭B .小灯立即亮,小灯立即熄灭C. 小灯逐渐变亮,小灯比原来更亮一下再慢慢熄灭D. 小灯立即亮,小灯比原来更亮一下再慢慢熄灭一、选择题(12 X 4分=481、两电阻R 1、R 2的I( )A R 1 > R 2B 把它们并联接到电路中, 分)—U 关系图像如图所示,则下列说法中正确的是:C 把它们并联接到电路中,通过R i 两端电压大于 R 2两端电压R i 的电流大于通过 R 2的电流 D 把它们并联接到电路中,通过R i 的电流小于通过R 2的电流2、关于磁感线和电场线,下述说法正确的是A. 磁感线是闭和曲线,而静电场的电场线不是闭和曲线。
B. 磁感线和电场线都是一些互相平行的曲线。
C. D. 磁感线和电场线都只能分别表示磁场和电场的方向。
3、关于电源电动势的说法正确的是A. (电源电动势等于内外电路电势降落之和 B. C. D. 电源电动势等于外电路的路端电压电源电动势等于电源没有接入电路时两极间的电压 电源电动势表征电源把其它形式的能转化为电能的本领 4、有一小段通电导线,长为10cm 电流强度为5mA 把它置于磁场中某点,受到的磁场力为0.1N ,则该点的磁感应强度B 一定是A. B =200T5、电子与质子速度相同, 子和质子运动的可能轨迹 a 是电子运动轨迹, b 是电子运动轨迹,c 是电子运动轨迹,d 是电子运动轨迹,A 、B 、B . BW 200TC. B > 200TD.以上情况均有可能。
都从 0点射入匀强磁场区,则图中画出的四段圆弧,哪两个是电()d 是质子运动轨迹 c 是质子运动轨迹 b 是质子运动轨迹 a 是质子运动轨迹6、理发用的电吹风机中有电动机和电热丝,电动机带动风叶转动,电热丝给空气加热,得到热风将头发吹干。
设电动机线圈电阻为 R ,它与电热丝电阻值 源上,吹风机两端电压为 U,电流为I 消耗的功率为P ,则有F 2 串联后接到直流电 )A. P =UIB . P - I 2(R 1 +R 2) C . P >UID.>I 2(R I +R 2)8、如图9-2所示,矩形线圈有 N 匝,长为 B 的匀强磁场中以速度 v 匀速拉出来, 流的大小应为 a,宽为b ,每匝线圈电阻为 R 从磁感应强度为 那么, 产生的感应电动势合流经线圈中的感应电 A. E = NBav C. E = Bav, ( ) * Bav = BBav I = XX ■1 .E = NBav I! 1 R NR 1 ! 1 I BaN , Bav X X ! i : ---- D .E = Bav, I 1 NR RL ■ 1I = X K *! L 图9-2 9、如图所示,要使电阻 R 上有af b 的感应电流通过, A. B. C.D. 则应发生在 ( ) 合上K 时 断开K 时 K 合上后,将变阻器 K 合上后,将变阻器 R 滑动头 R 滑动头 c 向左移动 c 向右移动 10、如图电路中,当变阻器 R 的滑片 P 向下滑动时, A CD 电压表和电流表的示数变化的情况是 () V 和A 的示数都变大 V 和A 的示数都变小V 的示数变大, V 的示数变小, 11、如图所示,当金属棒 摆动,则金属棒a () 向左匀速运动 向左减速运动 向右加速运动 向右减速运动 A C DA 的示数变小 A 的示数变大a 在金属轨道上运动时,线圈 12、 在图1中虚线所围的区域内,存在电场强度为 E 的 匀强电场和磁感应强度为 B 的匀强磁场.已知从左方 水平射入的电子,穿过该区域时未发生偏转.设重力 可忽略不计.则在这区域中的E 和B 的方向可能是( A. E 和B 都沿水平方向,并与电子运动的方向相同 B. E 和B 都沿水平方向,并与电子运动的方向相反 C. E 竖直向上,B 垂直纸面向外 D. E 竖直向上,B 垂直纸面向里 二、填空(每空2分,共26分) 13、 (8分)千分尺测得金属丝的直径是 mmXXX X X X x + 1 1 1 一0 J —n X X X X 曽X哈11 1 —45X X X X X X 1 0X XXX X XX xj a14、如图,在磁感应强度 B=0.5T 的匀强磁场中,金属棒以动,导轨宽d=0.2m ,电阻R=0.3 Q ,金属棒ab 为0.2 Q ,v=10m/s 的速度向右匀速运回路其它电阻不计,则通过电阻R的电流方向是,电阻R上消耗的电功率为O15、(8分)把一线框从一匀强磁场中拉出,如图所示。
第一次拉出的速率是v ,第二次拉出速率是2 v,其它条件不变,则前后两次拉力大小之比是,拉力功率之比是,线框产生的热量之比是,通过导线截面的电量之比是16、一带电微粒在正交的匀强电场和匀强磁场的竖直平面内做匀速圆周运动, 则微粒带电性质是如图8-10示。
和环绕方向是XXX17、(10分)有一个小灯泡上标有“ 图线.现有下列器材供选用:A.电压表(0〜5V,内阻10k O)C.电流表(0〜0.3A,内阻E.滑动变阻器(100, 2A)(1 )实验中所用电压表应选(2)为使实验误差尽量减小,足实验要求的电路图.10)图8-104V 2W'的字样,现在要用伏安法测量这个灯泡的I —UB.电压表(0〜10V,内阻20k O)D.电流表(0〜0.6A,内阻0.40)学生电源(直流6V),还有开关、导线,电流表应选用___________ (用序号字母表示)要求从零开始多取几组数据,请在图 6 (甲)方框内画出满F.甲乙图6(3)某同学通过实验得到的数据画出了该小灯泡的伏安特性曲线(如图 6 (乙)所示),若直接用电动势为3V、内阻为2.5 Q的电源给该小灯泡供电,则该小灯泡的实际功率是__________ W三、计算(共46分)18、(10分)在如图8所示的电路中,电阻R1=1^, R=80, R=40.当电键K断开时,电流表示数为0.25 A,当K闭合时电流表示数为0.36 A,则电源的电动势和内电阻分别多大?n/KR2R1 £ ,r I R319、(12分)如图所示,重为3N的导体棒,放在间距为d=1m的水平放置的导轨上,其中电源电动势E=6V,内阻r=0.5O,定值电阻R O=11.50,其它电阻不计。
试求:(1)若磁场方向垂直导轨平面向上,大小为B=2T (图未画出),要使导体棒静止不动,导轨与导体棒间的摩擦力至少为多大?(2 )若磁场大小不变,方向与导轨平面成 6 =60。
角。
如图所示,此时导体棒所受的摩擦力多大?20、(12分)据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子(核聚变的原料)将没有通常意义上的“容器”可装,而是由磁场来约束带电粒子运动使之束缚在某个区域内,右图是它的截面图,在外径为R=1.2m、内径R=0.6m的环状区域内有垂直于截面向里的匀强磁场,磁感强度B=0.4T,若氦核(其比荷q/m F4.8 x 107c/kg )在平行于截面的平面内从内圆上A点沿各个方向射入磁场都不能穿出磁场的外边界,求氦核的最大速度。
(不计带电粒子的重力)_一_21、(12分)如图所示,倾角为a的光滑斜面足够长,处在磁感应强度均为B的匀强磁场中,磁场方向均垂直于斜面,但方向相反、均匀相间(间距为L). 一正方形线框的质量为m ,总电阻为R边长与磁场间距相同.(1)当线框从斜面顶端由静止开始下滑时,求线框的最大速度V0和线框速度v = v o/3时线框的加速度a ; (2)若用沿斜面向上的恒力F匀速拉动线框,求线框沿斜面向上移动2L的距离的过程中,线框中产生的热量.白银市第八中学2010—2011学年度第二学期期中试题高二物理答题卡题号123456答案题号789101112答案、选择题(12X 4分=48分)二、填空(每空 2分,共26分)OO O O O O O O O O O O O O O O O O OO O O O O O O O O OO O O O O O O O O O :号位座R 3/KR 2£ ,r I-O —1-R imm13、17、(1)O O O O O O O O O O林XO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ⑶ ______________三、计算(共46 分)18、(10 分)解:O O O O O O O O O O O O O O O O O O O O O O O O O O O O O。