【中考模拟】2018年包头市昆都仑区中考二模数学试卷含答案解析

合集下载

2018包头市中考数学试卷含答案解析(word版)0001

2018包头市中考数学试卷含答案解析(word版)0001

2018年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分•每小题只有一个正 确选项1. (3.00分)计算-■■-| - 3|的结果是( ) A.— 1 B.- 5C. 1 D . 52. (3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小 正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )21 2(3.00分)下列事件中,属于不可能事件的是( A .某个数的绝对值大于0 B. 某个数的相反数等于它本身C •任意一个五边形的外角和等于 540°D .长分别为3, 4,6的三条线段能围成一个三角形 5.(3.00分)如果2x a+1y 与x 2y b -1是同类项,那么亠的值是()bA .丄 B.二 C. 1D . 32 26. (3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( )A . 4,1B . 4,2C. 5,1 D . 5,2A . 自变量x 的取值范围是( X M 1B . x >0C. x > 1D . x > 14. A . 中,3.3 D C'7. (3.00 分)如图,在△ ABC中,AB=2, BC=4, / ABC=30,以点B 为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A. 2-卫B. 2-匹C. 4-卫D. 4- —3 6 3 68. (3.00分)如图,在△ ABC中,AB=AC △ADE的顶点D, E分别在BC, AC上, 且/ DAE=90, AD=AE 若/ C+Z BAC=145,则/ EDC的度数为()A. 17.5 °B. 12.5 °C. 12°D. 10°9. (3.00分)已知关于x 的一元二次方程x2+2x+m-2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A. 6B. 5C. 4D. 310. (3.00分)已知下列命题:①若a3>b3,贝U a2>b2;②若点A (冷,y1)和点B (X2, y2)在二次函数幵-2x- 1的图象上,且满足X1<x2< 1,贝U y1 >y2>- 2;③在同一平面内,a, b, c是直线,且a// b, b±c,贝U a// c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A. 4个B. 3个C. 2个D. 1个11. (3.00分)如图,在平面直角坐标系中,直线1仁y=- 一x+1与x轴,y轴分别交于点A和点B,直线I?:y=kx (k工0)与直线11在第一象限交于点C.若Z BOC Z BCO,贝U k的值为()3 D C'A . 「B.二 C.匚 D . 2 匚3 212. (3.00分)如图,在四边形 ABCD 中,BD 平分/ ABC, / BAD=/ BDC=90,E 为BC 的中点,AE 与BD 相交于点F.若BC=4 / CBD=30,则DF 的长为( )、填空题:本大题共有8小题,每小题3分,共24 分.4小于2的概率是度.18. (3.00分)如图,在?ABCD 中,AC 是一条对角线,EF// BC,且EF 与AB 相交 于点E ,与AC 相交于点F , 3AE=2EB 连接DF.若 S AEF =1 ,则S ADF 的值为 _______ .19. (3.00分)以矩形ABCD 两条对角线的交点O为坐标原点,以平行于两边的A .B . 二 C.3D .13. (3.00 分) 14. (3.00 分) 15. (3.00 分) 若 a -3b=2, 3a - b=6,贝U b — a 的值为 _r2i+7>3(x+l )不等式组出23沈+4 / 2的非负整数解有从-2, - 1, 1, 2四个数中,随机抽取两个数相乘,积为大于- 个.16. (3.00分) 化简; 2-e —1)= 17.( 3.00 分) 如图, AB 是。

【精品】【真题】2018年包头市中考数学试卷含答案解析(Word版)

【精品】【真题】2018年包头市中考数学试卷含答案解析(Word版)

2018年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.52.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>14.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.36.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,27.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.310.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.212.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE 与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为.14.(3.00分)不等式组的非负整数解有个.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.16.(3.00分)化简;÷(﹣1)=.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=度.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相=1,则S△ADF的值为.交于点F,3AE=2EB,连接DF.若S△AEF19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE 的值为.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD ⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.2018年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.5【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣2﹣3=﹣5,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故选:C.【点评】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键.5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,2【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.【解答】解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.7.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣=2﹣.【解答】解:如图,过A作AE⊥BC于E,∵AB=2,∠ABC=30°,∴AE=AB=1,又∵BC=4,∴阴影部分的面积是×4×1﹣=2﹣,故选:A.【点评】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,又∵∠C+∠BAC=145°,∴∠C=35°,∵∠DAE=90°,AD=AE,∴∠AED=45°,∴∠EDC=∠AED﹣∠C=10°,故选:D.【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.10.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【分析】利用直线l1:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=.【解答】解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,故选:B.【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.12.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE 与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【解答】解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=3,∴,∴,∴DF=BD=×2=,故选:D.【点评】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为﹣2.【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.14.(3.00分)不等式组的非负整数解有4个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.16.(3.00分)化简;÷(﹣1)=﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=115度.【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.【解答】解:连接OC,∵DC切⊙O于C,∴∠DCO=90°,∵∠D=40°,∴∠COB=∠D+∠DCO=130°,∴的度数是130°,∴的度数是360°﹣130°=230°,∴∠BEC==115°,故答案为:115.【点评】本题考查了圆周角定理和切线的性质,能根据切线的性质求出∠DCO的度数是解此题的关键.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S=1,则S△ADF的值为.△AEF【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF=1知S△=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.ADC【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,=1,∵S△AEF∴S=,△ABC∵四边形ABCD是平行四边形,∴S=S△ABC=,△ADC∵EF∥BC,∴===,∴==,=S△ADC=×=,∴S△ADF故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定及性质、平行线分线段成比例定理及平行四边形的性质.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE 的值为3.=k=,由矩形性质知S△AOB=2S△ODF=,据此可【分析】由双曲线y=(x>0)经过点D知S△ODF得OA•BE=3,根据OA=OB可得答案.【解答】解:如图,∵双曲线y=(x>0)经过点D,∴S=k=,△ODF则S=2S△ODF=,即OA•BE=,△AOB∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是①②③.(填写所有正确结论的序号)【分析】先判断出∠BCD=∠ACE,即可判断出①正确;先求出∠BDC=110°,进而得出∠AEC=110°,即可判断出②正确;先判断出∠CAE=∠CEF,进而得出△CEF∽△CAE,即可得出CE2=CF•AC,最后用勾股定理即可得出③正确;先求出BC=AC=3,再求出BD=,进而求出CE=CD=,求出CF=,即可判断出④错误.【解答】解:∵∠ACB=90°,由旋转知,CD=CE,∠DCE=90°=∠ACB,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE,故①正确;∵∠ACB=90°,BC=AC,∴∠B=45°∵∠BCD=25°,∴∠BDC=180°﹣45°﹣25°=110°,∵△BCD≌△ACE,∴∠AEC=∠BDC=110°,∵∠DCE=90°,CD=CE,∴∠CED=45°,则∠AED=∠AEC﹣∠CED=65°,故②正确;∵△BCD≌△ACE,∴∠CAE=∠CBD=45°=∠CEF,∵∠ECF=∠ACE,∴△CEF∽△CAE,∴,∴CE2=CF•AC,在等腰直角三角形CDE中,DE2=2CE2=2CF•A C,故③正确;如图,过点D作DG⊥BC于G,∵AB=3,∴AC=BC=3,∵AD=2BD,∴BD=AB=,∴DG=BG=1,∴CG=BC﹣BG=3﹣1=2,在Rt△CDG中,根据勾股定理得,CD==,∵△BCD≌△ACE,∴CE=,∵CE2=CF•AC,∴CF==,∴AF=AC﹣CF=3﹣=,故④错误,故答案为:①②③.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△BCD≌△ACE是解本题的关键.三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.【分析】(1)根据中位数的概念计算;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.【解答】解:(1)这四名候选人面试成绩的中位数为:=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【点评】本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)【分析】(1)解直角三角形求出AD、AE即可解决问题;(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;【解答】解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵AB=AD,∴∠ABD=∠ADB=45°,∵∠BDE=15°,∴∠ADE=30°,在Rt△ADE中,AE=DE×sin30=2,AD=DE•cos30°=6,∴AB=AD=6,∴BE=6﹣2.(2)作DF⊥BC于F.则四边形ABFD是矩形,∴BF=AD=6,DF=AB=6,在Rt△DFC中,FC==4,∴BC=6+4,=S△DEB+S△BCD=×(6﹣2)×6+(6+4)×6=36+6.∴S四边形DEBC【点评】本题考查矩形的性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.【分析】(1)先利用等角的余角相等即可得出结论;(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.【解答】解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,∴CD=,CE=,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.【点评】此题主要考查了圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数,正确作出辅助线是解本题的关键.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.【分析】(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出BK=GK=,最后用勾股定理即可得出结论;(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,的粗,△ED'M∽△ECH,得出,进而得出,即可得出结论;②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.【解答】解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CHG∽△CBF,∴,设BK=GK=y,∴CK=5﹣y,∴y=,∴BK=GK=,在Rt△GKB中,BG=;(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=,∴DH=,CH=,∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴,∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴,∴,∴,∴;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴,∴△D'MH∽△CBE.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,勾股定理,角平分线的定义,熟练掌握判定两三角形相似的方法是解本题的关键.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD ⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【解答】解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如右图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如右图2所示,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.。

内蒙古包头市2018年中考数学二模试卷

内蒙古包头市2018年中考数学二模试卷

内蒙古包头市2018年中考数学二模试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑)1.计算:|﹣5+3|的结果是()A.﹣8 B.8 C.﹣2 D.22.下列运算结果正确的是()A.(2x3)2=4x6B.x2+x3=x5C.(﹣x)﹣1=D.x0=13.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克4.下列说法正确的是()A.“购买1张彩票就中奖”是不可能事件B.“掷一次骰子,向上一面的点数是6”是随机事件C.了解我国青年人喜欢的电视节目应作全面调查D.甲、乙两组数据,若S甲2>S乙2,则乙组数据波动大5.不等式组的最大整数解为()A.1 B.2 C.3 D.46.一组按规律排列的式子:,,,,…第n个式子是()(用含n的式子表示,n为正整数)A.B.C. D.7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin ∠ACD的值为()A.B.C.D.8.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.109.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为()A.B.C.D.10.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠311.已知下列命题:①若a>b,则c﹣a<c﹣b;②若|a|=﹣a,则a<0;③对角线互相平分且相等的四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是()A.①③B.②④C.①④D.③④12.如图,二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②4a+c>2b;③(a+c)2>b2;④x(ax+b)≤a﹣b.其中正确的结论的个数是()A.三B.二C.一D.零二、填空题(共8小题,每小题3分,满分24分。

2018包头市中考数学试卷含答案解析(word版)

2018包头市中考数学试卷含答案解析(word版)

2018年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分•每小题只有一个正确选项1. (3.00分)计算-| - 3|的结果是()A. —1B.- 5C. 1D. 52. (3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是(A.某个数的绝对值大于0B. 某个数的相反数等于它本身C•任意一个五边形的外角和等于540°D.长分别为3, 4, 6的三条线段能围成一个三角形(3.00分)如果2x a+1y与x2y b-1是同类项,那么彳的值是(A. 17.5 °B. 12.5 °C. 12°D. 10°自变量x的取值范围是()A. X M 1B. x>0C. x> 1D.x> 14. (3.00分)下列事件中,属于不可能事件的是(5.A.6.B -C 1 D. 3(3.00分)一组数据1, 3, 4, 4, 4, 5, 5, 6的众数和方差分别是()A. 4,1B. 4,2C. 5,1D. 5, 27. (3.00分)如图,在△ ABC中,交BC于点D,则图中阴影部分的面积是(7TC. 4-D. 4-A.中,3.A. 2-寻B. 2-B -9. (3.00分)已知关于x 的一元二次方程x 2+2x+m - 2=0有两个实数根,m 为正整数,且该方程 的根都是整数,则符合条件的所有正整数 m 的和为( ) A . 6B. 5C. 4D . 310. (3.00分)已知下列命题: ① 若 a 3>b 3,则 a 2>b 2;② 若点A (X 1, y 1)和点B (X 2, y 2)在二次函数y=x 2 - 2x - 1的图象上,且满足 x 〔v x 2< 1,则 y 1 >y 2>- 2;③ 在同一平面内,a , b , c 是直线,且a // b , b ±c ,则a // c ; ④ 周长相等的所有等腰直角三角形全等. 其中真命题的个数是()A . 4个B. 3个C. 2个D . 1个11. (3.00分)如图,在平面直角坐标系中,直线I 仁y=- x+1与x 轴,y 轴分别交于点A 和 点B ,直线l 2: y=kx ( k M 0)与直线h 在第一象限交于点C.若/ BOCK BCQ 则k 的值为( )、填空题:本大题共有8小题,每小题3分,共24 分.13. (3.00分)若 a -3b=2 , 3a - b=6 ,贝U b - a 的值为3 2 |12. (3.00 分)如图,在四边形 ABCD 中, BD 平分/ ABC , / BAD=Z BDC=90, E 为 BC 的中点,AE 与BD 相交于点F.若BC=4 / CBD=30 ,贝U DF 的长为()D .19. (3.00分)以矩形ABCD 两条对角线的交点O 为坐标原点,以平行于两边的方向为坐标轴, •色2x20. (3.00分)如图,在Rt A ACB 中,/ ACB=90, AC=BC D 是AB 上的一个动点(不与点 A , B 重合),连接CD,将CD 绕点C 顺时针旋转90°得到CE 连接DE, DE 与AC 相交于点F ,连接 AE下列结论:① 厶 ACE^A BCD② 若/ BCD=25,则/ AED=65; 14. (3.00 分) 15. (3.00 分) 是 . _ I ; _ _的非负整数解有 I 歹―弓 从-2,- 1, 1 , 2四个数中,随机抽取两个数相乘,积为大于- 4小于2的概率不等式组 个.16. (3.00 分) 化简; 2K _x 24i+2-1)= 17. (3.00 分) 如图, AB 是。

2018年内蒙古包头市中考数学试卷及试卷解析

2018年内蒙古包头市中考数学试卷及试卷解析

2018年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.52.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>14.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.36.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,27.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.310.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.212.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为.14.(3.00分)不等式组的非负整数解有个.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.16.(3.00分)化简;÷(﹣1)=.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=度.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S=1,则S△ADF的值为.△AEF19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE 的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.2018年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.5【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣2﹣3=﹣5,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故选:C.【点评】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键.5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,2【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.【解答】解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.7.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣=2﹣.【解答】解:如图,过A作AE⊥BC于E,∵AB=2,∠ABC=30°,∴AE=AB=1,又∵BC=4,∴阴影部分的面积是×4×1﹣=2﹣,故选:A.【点评】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C 可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,又∵∠C+∠BAC=145°,∴∠C=35°,∵∠DAE=90°,AD=AE,∴∠AED=45°,∴∠EDC=∠AED﹣∠C=10°,故选:D.【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.10.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【分析】利用直线l1:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=.【解答】解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,故选:B.【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.12.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【解答】解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=3,∴,∴,∴DF=BD=×2=,故选:D.【点评】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为﹣2.【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.14.(3.00分)不等式组的非负整数解有4个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.16.(3.00分)化简;÷(﹣1)=﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=115度.【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.【解答】解:连接OC,∵DC切⊙O于C,∴∠DCO=90°,∵∠D=40°,∴∠COB=∠D+∠DCO=130°,∴的度数是130°,∴的度数是360°﹣130°=230°,∴∠BEC==115°,故答案为:115.【点评】本题考查了圆周角定理和切线的性质,能根据切线的性质求出∠DCO的度数是解此题的关键.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S=1,则S△ADF的值为.△AEF【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,=1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S结合S△AEF可得答案.△ADC【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,=1,∵S△AEF∴S=,△ABC∵四边形ABCD是平行四边形,∴S=S△ABC=,△ADC∵EF∥BC,∴===,∴==,=S△ADC=×=,∴S△ADF故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定及性质、平行线分线段成比例定理及平行四边形的性质.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为3.=k=,由矩形性质知S△AOB=2S 【分析】由双曲线y=(x>0)经过点D知S△ODF=,据此可得OA•BE=3,根据OA=OB可得答案.△ODF【解答】解:如图,∵双曲线y=(x>0)经过点D,=k=,∴S△ODF=2S△ODF=,即OA•BE=,则S△AOB∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是①②③.(填写所有正确结论的序号)【分析】先判断出∠BCD=∠ACE,即可判断出①正确;先求出∠BDC=110°,进而得出∠AEC=110°,即可判断出②正确;先判断出∠CAE=∠CEF,进而得出△CEF∽△CAE,即可得出CE2=CF•AC,最后用勾股定理即可得出③正确;先求出BC=AC=3,再求出BD=,进而求出CE=CD=,求出CF=,即可判断出④错误.【解答】解:∵∠ACB=90°,由旋转知,CD=CE,∠DCE=90°=∠ACB,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE,故①正确;∵∠ACB=90°,BC=AC,∴∠B=45°∵∠BCD=25°,∴∠BDC=180°﹣45°﹣25°=110°,∵△BCD≌△ACE,∴∠AEC=∠BDC=110°,∵∠DCE=90°,CD=CE,∴∠CED=45°,则∠AED=∠AEC﹣∠CED=65°,故②正确;∵△BCD≌△ACE,∴∠CAE=∠CBD=45°=∠CEF,∵∠ECF=∠ACE,∴△CEF∽△CAE,∴,∴CE2=CF•AC,在等腰直角三角形CDE中,DE2=2CE2=2CF•A C,故③正确;如图,过点D作DG⊥BC于G,∵AB=3,∴AC=BC=3,∵AD=2BD,∴BD=AB=,∴DG=BG=1,∴CG=BC﹣BG=3﹣1=2,在Rt△CDG中,根据勾股定理得,CD==,∵△BCD≌△ACE,∴CE=,∵CE2=CF•AC,∴CF==,∴AF=AC﹣CF=3﹣=,故④错误,故答案为:①②③.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△BCD ≌△ACE是解本题的关键.三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.【分析】(1)根据中位数的概念计算;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.【解答】解:(1)这四名候选人面试成绩的中位数为:=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【点评】本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)【分析】(1)解直角三角形求出AD、AE即可解决问题;(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;【解答】解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵AB=AD,∴∠ABD=∠ADB=45°,∵∠BDE=15°,∴∠ADE=30°,在Rt△ADE中,AE=DE×sin30=2,AD=DE•cos30°=6,∴AB=AD=6,∴BE=6﹣2.(2)作DF⊥BC于F.则四边形ABFD是矩形,∴BF=AD=6,DF=AB=6,在Rt△DFC中,FC==4,∴BC=6+4,=S△DEB+S△BCD=×(6﹣2)×6+(6+4)×6=36+6.∴S四边形DEBC【点评】本题考查矩形的性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.【分析】(1)先利用等角的余角相等即可得出结论;(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.【解答】解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,∴CD=,CE=,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.【点评】此题主要考查了圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数,正确作出辅助线是解本题的关键.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE 的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.【分析】(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出BK=GK=,最后用勾股定理即可得出结论;(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,的粗,△ED'M∽△ECH,得出,进而得出,即可得出结论;②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.【解答】解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CHG∽△CBF,∴,设BK=GK=y,∴CK=5﹣y,∴y=,∴BK=GK=,在Rt△GKB中,BG=;(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=,∴DH=,CH=,∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴,∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴,∴,∴,∴;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴,∴△D'MH∽△CBE.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,勾股定理,角平分线的定义,熟练掌握判定两三角形相似的方法是解本题的关键.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【解答】解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如右图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如右图2所示,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.。

内蒙古包头市昆都仑区中考数学二模试卷

内蒙古包头市昆都仑区中考数学二模试卷

中考数学二模试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是( )A. -|-2|B. (-)2C. -(-2)D. (-2)0.2.不等式组的所有整数解的积为( )A. 5050B. -5050C. 0D. -13.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为( )A. 2B. 3C. 5D. 74.下列图形中,不是中心对称图形的是( )A. 圆B. 菱形C. 矩形D. 等边三角形5.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为( )cm.A. 8B. 12C.D.6.如果一组数据3、4、5、6、x、8的众数是4,那么这组数据的中位数是( )A. 4B. 4.5C. 5D. 5.57.关于x的一元一次不等式组有三个整数解,则m的取值范围是( )A. 5≤m<6B. 5<m<6C. 5≤m≤6D. 5<m≤68.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )A. 45B. 52.5C. 67.5D. 759.若方程x2-7x+12=0的两个实数根恰好是直角△ABC的两边的长,则△ABC的周长为( )A.12 B. 7+ C. 12或 D. 1110.下列命题为真命题的是( )A. 有两边及一角对应相等的两个三角形全等B. 方程x2-x+2=0有两个不相等的实数根C. 面积之比为1:4的两个相似三角形的周长之比是1:4D. 顺次连接任意四边形各边中点得到的四边形是平行四边形11.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A. ﹣5B. ﹣4C. ﹣3D. ﹣212.如图,四边形ABCD中,AC平∠DAB,∠ADC=∠ACB=90°,E为AB的中点,若AD=4,AB=6,则的值为( )A. 2B.C.D.二、填空题(本大题共8小题,共24.0分)13.已知(a-)2+=0,则=______.14.从一副洗匀的普通扑克牌(共54张)中随机抽取一张,则抽出黑桃的概率是______15.若x=tan45°+,则代数式的值为______.16.如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则弧DE的长为______.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为______.18.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.若,则=______.19.如图,点P1,P3在y轴上,P2,P4在x轴上,且P1P2⊥P2P3,P2P3⊥P3P4,若点P1,P2的坐标分别为(0,-1),(-2,0),则点P4的坐标为______.20.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列四个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN2+CM2=MN2;其中正确的结论是______.(填写所有正确结论的序号)三、解答题(本大题共6小题,共60.0分)21.在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2),根据图表中的信息解答下列各题:(1)请求出九(2)全班人数;(2)请把折线统计图补充完整;(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.23.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如下表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金,请计算李师傅共可获得多少元奖金?24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:(A)原式=-2;(B)原式=2;(C)原式=2;(D)原式=1;故选:A.根据实数的大小比较法则即可求出答案.本题考查实数的大小比较,解题的关键是正确化简原数,本题属于基础题型.2.【答案】C【解析】解:,由①得:x≥-,由②得:x≤50,∴不等式组的解集为-≤x≤50,所有整数解为-1,0,1,2,3,4,…,50,之积为0,故选:C.分别求出不等式组中两不等式的解集,找出所有整数解求出之积即可.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3.【答案】A【解析】解:由题意可得,m=3÷-3-4=9-3-4=2.故选:A.根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.4.【答案】D【解析】解:A、B、C中,既是轴对称图形,又是中心对称图形;D、只是轴对称图形.故选:D.根据中心对称图形的概念和各图的性质求解.掌握中心对称与轴对称的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】C【解析】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故选:C.根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.6.【答案】B【解析】解:∵数据3、4、5、6、x、8的众数是4,∴x=4,这组数据按照从小到大的顺序排列为:3、4、4、5、6、8,则中位数为:(4+5)=4.5.故选:B.根据众数为4,可得x=4,然后把这组数据按照从小到大的顺序排列,找出中位数.本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】D【解析】解:由①得:x>2,由②得:x<m,则不等式组的解集是:2<x<m.不等式组有三个整数解,则整数解是3,4,5.则5<m≤6.故选:D.先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于m的不等式组.8.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵∠A=30°,∴∠ABC=∠ACB=(180°-30°)=75°,∵以B为圆心,BC长为半径画弧,∴BE=BD=BC,∴∠BDC=∠ACB=75°,∴∠CBD=180°-75°-75°=30°,∴∠DBE=75°-30°=45°,∴∠BED=∠BDE=(180°-45°)=67.5°.故选:C.根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数.本题考查了学生对等腰三角形的性质和三角形内角和定理等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=45°,然后即可求得答案.9.【答案】C【解析】解:(x-3)(x-4)=0,x-3=0或x-4=0,所以x1=3,x2=4,所以直角三角形的两边为3,4,当4为直角边时,斜边长==5,三角形的周长为3+4+5=12;当4为斜边时,另一条直角边长==,三角形的周长为3+4+=7+.故选:C.先利用因式分解法解方程得到直角三角形的两边为3,4,然后进行讨论:当4为直角边时,利用勾股定理计算斜边长,从而得到此时三角形的周长;当4为斜边时,利用勾股定理计算出另一条直角边长,从而得到此时三角形的周长.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.10.【答案】D【解析】解:有两边及其夹角对应相等的两个三角形全等,选项A中的一角不一定是对应相等两边的夹角,故选项A错误;∵x2-x+2=0,∴△=(-1)2-4×1×2=1-8=-7<0,∴方程x2-x+2=0没有实数根,故选项B错误;面积之比为1:4的两个相似三角形的周长之比是1:2,故选项C错误;顺次连接任意四边形各边中点得到的四边形,这个四边形的对边都等于原来四边形与这组对边相对的对角线的一半,并且和这条对角线平行,故得到的中点四边形是平行四边形,故选项D正确;故选:D.根据各个选项中的命题,假命题举出反例或者说明错在哪,真命题说明理由即可解答本题.本题考查命题和定理,解题的关键是明确什么命题是真命题、什么命题的假命题,对真假命题可以说明理由,真命题说明根据,假命题举出反例或通过论证说明.11.【答案】C【解析】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=-3.故选:C.根据题意可以求得点B的坐标,从而可以求得k的值.本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.12.【答案】B【解析】解:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA;∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;∴△AFD∽△CFE,∴AD:CE=AF:CF;∵CE=AB=3,AD=4,∴==,∴=.故选:B.证明∠DAC=∠ECA,得到CE∥AD,进而得到△AFD∽△CFE,AD:CE=AF:CF;求得CE=3,AD=4,即可解决问题.该题主要考查了直角三角形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握直角三角形的性质、相似三角形的判定及其性质是解题的关键.13.【答案】-【解析】解:∵(a-)2+=0,∴a=、b=-1,则==-,故答案为:-先根据非负数的性质得出a、b的值,再代入计算可得.本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算术平方根的非负性.14.【答案】【解析】解:∵一副扑克牌共54张,其中黑桃13张,∴随机抽出一张牌得到黑桃的概率是;故答案为:.让黑桃的张数除以扑克牌的总张数即为所求的概率.本题考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【答案】【解析】解:原式=÷=•=,当x=tan45°+()-1时,∴x=1+2=3,∴原式=,故答案为:根据分式的运算法则进行化简,然后将x的值代入原式即可求出答案本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.【答案】π【解析】解:连接OE,∵四边形ABCD是平行四边形,∴AD=BC=6,∠D=∠B=70°,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=40°,∴弧DE的长==π,故答案为:π.连接OE,求出∠DOE=40°,根据弧长公式计算,得到答案.本题考查的是弧长计算、平行四边形的性质,掌握弧长公式是解题的关键.17.【答案】=【解析】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:=.故答案是:=.设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.本题考查了由实际问题抽象出分式方程,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.18.【答案】1【解析】解:∵∠AED=∠B,∠DAE=∠CAB,∴∠ADF=∠C.又∵=,∴△ADF∽△ACG.∴=,∵=,∴=,∴==1.故答案为1.证明△ADF∽△ACG.可得==,可得结论.本题考查了相似三角形的判定与性质以及三角形内角和定理,熟记相似三角形的判定定理与性质定理是解题的关键.19.【答案】(8,0)【解析】解:∵点P1,P2的坐标分别为(0,-1),(-2,0),∴OP1=1,OP2=2,∵Rt△P1OP2∽Rt△P2OP3,∴=,即=,解得,OP3=4,∵Rt△P2OP3∽Rt△P3OP4,∴=,即=,解得,OP4=8,则点P4的坐标为(8,0),故答案为:(8,0).根据相似三角形的性质求出OP3的长,再根据相似三角形的性质计算求出OP4的长,得到答案.本题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.20.【答案】①②④【解析】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,在△CNB和△DMC中,,∴△CNB≌△DMC(ASA),①正确;∴CM=BN,∵四边形ABCD是正方形,∴∠OCM=∠OBN=45°,OC=OB=OD,在△OCM和△OBN中,,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,在△CON和△DOM中,,∴△CON≌△DOM(SAS),②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,③不正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,④正确;故答案为:①②④.根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.本题主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,熟练掌握正方形的性质,证明三角形全等和三角形相似是解题的关键.21.【答案】解:(1)∵演讲人数12人,占25%,∴出九(2)全班人数为:12÷25%=48(人);(2)∵国学诵读占50%,∴国学诵读人数为:48×50%=24(人),∴书法人数为:48-24-12-6=6(人);补全折线统计图;(3)分别用A,B,C,D表示书法、国学诵读、演讲、征文,画树状图得:∵共有16种等可能的结果,他们参加的比赛项目相同的有4种情况,∴他们参加的比赛项目相同的概率为:=.【解析】(1)由演讲人数12人,占25%,即可求得九(2)全班人数;(2)首先求得书法与国学诵读人数,继而补全折线统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们参加的比赛项目相同的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率以及折线与扇形统计图的知识.注意掌握折线统计图与扇形统计图的对应关系.22.【答案】解:作AM⊥EF于点M,作BN⊥EF于点N,如图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN-CM=100+20-60=(40+20)米,即A、B两点的距离是(40+20)米.【解析】本题考查解直角三角形的应用,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答问题.根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN-CM,从而可以求得AB的长.23.【答案】解:(1)设p与x之间的函数关系式为p=kx+b,,解得,,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20-(0.5x+7)](2x+20)=-x2+16x+260,当10≤x≤15时,W=[20-(0.5x+7)]×40=-20x+520,即W=;(2)当1≤x<10时,W=-x2+16x+260=-(x-8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=-20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令-x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=-20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的天数是第4天到第11天,李师傅共获得奖金为:20×(11-3)=160(元),即李师傅共可获得160元奖金.【解析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.本题考查二次函数的应用、一元二次方程的应用,解不等式,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.24.【答案】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.解法二:证明:连接AC.∵OA=OC∴∠BAC=∠ACO,∵CD平行AF,∴∠FAC=∠ACD,∴∠FAC=∠CAO,∵CF⊥AF,CE⊥AB,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【解析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.25.【答案】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3-t,由△DMF∽△DNE得:MF=(3-t),∴AF=4+MF=-t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=-x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t-3,由△DMF∽△DNE得:MF=(t-3),∴AF =4-MF =-t +,∵点G 为EF 的三等分点,∴G (,t ),代入直线AD 的解析式y =-x +6得:t =;综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为或【解析】(1)当t =3时,点E 为AB 的中点,由三角形中位线定理得出DE ∥OA ,DE =OA =4,再由矩形的性质证出DE ⊥AB ,得出∠OAB =∠DEA =90°,证出四边形DFAE 是矩形,得出DF =AE =3即可;(2)作DM ⊥OA 于M ,DN ⊥AB 于N ,证明四边形DMAN 是矩形,得出∠MDN =90°,DM ∥AB ,DN ∥OA ,由平行线得出比例式,=,由三角形中位线定理得出DM =AB =3,DN =OA =4,证明△DMF ∽△DNE ,得出=,再由三角函数定义即可得出答案;(3)作作DM ⊥OA 于M ,DN ⊥AB 于N ,若AD 将△DEF 的面积分成1:2的两部分,设AD 交EF 于点G ,则点G 为EF 的三等分点;①当点E 到达中点之前时,NE =3-t ,由△DMF ∽△DNE 得:MF =(3-t ),求出AF =4+MF =-t +,得出G (,t ),求出直线AD 的解析式为y =-x +6,把G (,t )代入即可求出t 的值;②当点E 越过中点之后,NE =t -3,由△DMF ∽△DNE 得:MF =(t -3),求出AF =4-MF =-t +,得出G (,t ),代入直线AD 的解析式y =-x +6求出t 的值即可.本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、三角形中位线定理、相似三角形的判定与性质、平行线分线段成比例定理、一次函数解析式的求法等知识;本题综合性强,难度较大.26.【答案】解:(1)把A 、B 两点坐标代入解析式可得,解得,∴抛物线解析式为y =x 2+x -5;(2)在y =x 2+x -5中,令x =0可得y =-5,∴C (0,-5),∵S △ABE =S △ABC ,且E 点在x 轴下方,∴E 点纵坐标和C 点纵坐标相同,当y =-5时,代入可得x 2+x -5=-5,解得x =-2或x =0(舍去),∴E 点坐标为(-2,-5);(3)假设存在满足条件的P点,其坐标为(m,m2+m-5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m-5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC-DC=5-=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m-5=(5+m)或m2+m-5=-(5+m),当m2+m-5=(5+m)时,整理可得4m2+5m-75=0,解得m=或m=-5(与A点重合,舍去),当m2+m-5=-(5+m)时,整理可得4m2+11m-45=0,解得m=或m=-5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.【解析】(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P点坐标的方程,可求得P点坐标.本题主要考查二次函数的综合运用.涉及到的知识点有待定系数法、三角形的面积、相似三角形的判定和性质及分类讨论等.在(3)中利用∠BAP=∠CAE构造三角形相似是解题的关键.本题考查知识点较多,综合性很强,难度适中.。

2018年内蒙古包头市中考数学试卷(含解析)

2018年内蒙古包头市中考数学试卷(含解析)

2018年内蒙古省包头市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018内蒙古包头,1,3分)计算34---的结果是( )A .-1B .-5C .1D .5【答案】B【解析】原式=-2-3=-5,故选择B . 【知识点】实数的运算2.(2018内蒙古包头,2,3分)如图1,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )【答案】C【解析】主视图是指从正面看到的图形,由已知条件可知,主视图有两列,每列小正方形数目分别是2、2,故选择C .【知识点】几何体的三视图3.(2018内蒙古包头,3,3分) 函数11-=x y 中,自变量x 的取值范围是( )A .x ≠1B .x >0C .x ≥1D .x >1【答案】D【解析】根据函数有意义,则分母不能为0,根号下的数必须非负得:x -1>0,所以x >1,故选择D .【知识点】函数自变量的取值范围4.(2018内蒙古包头,4,3分) 下列事件中,属于不可能事件的是( )A .某个数的绝对值大于0B .某个数的相反数等于它本身C .任意一个五边形的外角和等于540°D .长分别为3,4,6的三条线段能围成一个三角形【答案】C 【解析】根据定义可知:A 、B 都属于随机事件;C 属于不可能事件;D 属于确定必然事件.故选择C .【知识点】事件的分类及概念5.(2018内蒙古包头,5,3分)如果y a x 12+与12-b y x 是同类项,那么ba 的值是( ) A .21 B .23 C .1 D .3【答案】A【解析】根据同类项的特征可得⎩⎨⎧=-=+1121b a ,解得⎩⎨⎧==21b a,∴21=b a .故选择A . 【知识点】同类项的概念6.(2018内蒙古包头,6,3分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( )A .4,1B .4,2C .5,1D .5,2【答案】B【解析】因为4出现了3次,次数最多,故众数是4;又∵4865544431=+++++++=x , ∴282)46(2)45(2)45(2)44(2)44(2)44(2)43(2)41(2=-+-+-+-+-+-+-+-=S . 故选择B .【知识点】众数、方差7.(2018内蒙古包头,7,3分)如图2,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是 ( )A .32π- B .62π- C .34π- D .64π-【答案】A【解析】作AM ⊥BC 于点M ,∵∠ABC =30°∴AM =21AB =1 3236022301421ππ-=⨯-⨯⨯=-∆=ABD S ABC S S 扇形阴影面积故选择A .【知识点】扇形面积的计算;三角形面积的计算;含有30°角的直角三角形的性质8.(2018内蒙古包头,8,3分)如图3,在△ABC 中,AB =AC , △ADE 的顶点D 、E分别在BC 、AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =145°,则∠EDC 的度数为( )A .17.5°B .12.5°C .12°D .10°【答案】D【思路分析】由∠C +∠BAC =145°得知∠B =35°;由AB =AC 得知∠B =∠C =35°;由等腰直角三角形的性质可得∠AED =45°,又∵∠AED =∠EDC +∠C ,∴∠EDC =45°-35°=10°.【知识点】等腰三角形的性质;等腰直角三角形的性质;三角形内角和;三角形外角的性质9.(2018内蒙古包头,9,3分)已知关于x 的一元二次方程0222=-++m x x 有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为 ( )A .6B .5C .4D .3【答案】B【思路分析】根据方程有两个实数根,得出根的判别式的值大于或等于0列出关于m 的不等式,求出不等式的解集得到m 的取值范围;找出m 范围中的正整数解确定出m 的值,经检验即可得到满足题意的m 的值.【解题过程】根据题意得:△=4-4(m -2)≥0,解得m ≤3;由m 为正整数,得m =1或2或3, 利用求根公式表示出方程的解为m m x -±-=-±-=312)3(42, ∵方程的解为整数。

2018全品包头教研中考二模数学提升难度预测题

2018全品包头教研中考二模数学提升难度预测题

A.
B.
C.
D.
4. 在△ABC 中,∠C = 90°.若 AB = 3,BC = 1,则 sin 2 A cos2 B ( )
2
A. 1
B.
3
5. 下列说法正确的是( )
2
C.
9
16
D.
9
A. 一次数学测试后,某班 50 名学生的成绩被分为 5 组,第 1~4 组的频数分别为 12、10、
绝密 ★ 启用前
2018 年 初 中 升 学 考 试 调 研 试 卷(二)
数学
(包头市青山区第二次模拟数学测试题预测卷提升版【高难度版】)
注意事项:
1.本试卷 9 页,满分为 120 分,考试时间为 120 分钟。 2.答题前,考生务必先将自己的座位号、准考证号、姓名填写在试卷和答题卡的指定 位置。请认真核准条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上。 3.答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,修改时用橡 皮擦干净,再选涂其他答案。 4.答非选择题时,必须使用 0.5 毫米的黑色字迹签字笔书写,作图题可先用铅笔绘出, 确认后再用 0.5 毫米的黑色字迹签字笔描清楚,要求字体工整、笔迹清晰。严格按题号所示 的答题区域作答,超出答题区域书写的答案无效;在试卷、草稿纸上答题无效。 5.保持答题卡清洁、完整。严禁折叠、破损,严禁在答题卡上做任何标记,严禁使用 涂改液、胶带纸、修正带。考试结束后,将本试卷和答题卡一并交回。
15、8,则第 5 组的频率是 0.2
B. 若代数式 1 x 1 有意义,则实数 x 的取值范围是 x 1 x 1
C. 已知一组数据 6,8,10,x 的中位数与平均数相等,这样的 x 有 4 个

2018年内蒙古包头市中考数学试卷-答案

2018年内蒙古包头市中考数学试卷-答案

内蒙古包头市2018年初中升学考试数学答案解析第Ⅰ卷 一、选择题1.【答案】B【解析】解:=235--=-原式,故选:B .【考点】实数的运算2.【答案】C【解析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C .【考点】三视图的知识.3.【答案】D【解析】由题意得,1x -≥0且10x -≠,解得1x >,故选:D . 【考点】函数自变量的范围4.【答案】C【解析】A .某个数的绝对值大于0,是随机事件,故此选项错误;B .某个数的相反数等于它本身,是随机事件,故此选项错误;C .任意一个五边形的外角和等于540,是不可能事件,故此选项正确;D .长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误,故选:C .【考点】随机事件以及确定事件5.【答案】A【解析】∵12a x y +与21b x y -是同类项,∴12a +=,11b -=,解得1a =,2b =.∴12a b =,故选:A . 【考点】同类项的知识6.【答案】B【解析】数据1,3,4,4,4,5,5,6的众数是4,1344455648x +++++++==, 则222222222(14)(34)(44)(44)(44)(54)(54)(64)28s -+-+-----+-+-+-==,故选:B . 【考点】方差和众数7.【答案】A【解析】如图,过A 作AE BC ⊥于E ,∵2AB =,30ABC ∠=, ∴112AE AB ==, 又∵4BC =, ∴阴影部分的面积是21302141223603ππ⨯⨯⨯⨯-=-,故选:A 【考点】扇形面积的计算8.【答案】D【解析】∵AB AC =,∴B C ∠=∠,∴2180B C BAC C BAC ∠+∠+∠=∠+∠=,又∵145C BAC ∠+∠=,∴35C ∠=,∵90DAE ∠=,AD AE =,∴45AED ∠=,∴10EDC AED C ∠=∠-∠=,故选:D .【考点】等腰直角三角形9.【答案】B【解析】∵1a =,2b =,2c m =-,关于x 的一元二次方程2220x x m ++-=有实数根∴22=424(2)1240b ac m m ∆-=--=-≥,∴3m ≤.∵m 为正整数,且该方程的根都是整数,∴2m =或3,∴2+3=5,故选:B .【考点】根的判别式以及一元二次方程的整数解10.【答案】C【解析】①若33a b >,则22a b >不一定成立,故错误;②若点11(,)A x y 和点22(,)B x y 在二次函数221y x x =--的图象上,且满足121x x <<,则122y y >>-,故正确;③在同一平面内,a ,b ,c 是直线,且a b ∥,b c ⊥,则a c ⊥,故错误;④周长相等的所有等腰直角三角形全等,故正确,故选:C .【考点】命题与定理11.【答案】C【解析】直线1l :1y x =+中,令0x =,则1y =,令0y =,则x =,即A ,(0,1)B ,∴Rt AOB △中,3AB =,如图,过C 作CD OA ⊥于D ,∵BOC BCO ∠=∠,∴1CB BO ==,2AC =,∵CD BO ∥,∴13OD AO =2233CD BO ==,即2)3C ,把2)3C 代入直线2l :y kx =,可得23,即2k =,故选:B . 【考点】两直线相交或平行问题12.【答案】D【解析】如图,在Rt BDC △中,4BC =,30DBC ∠=,∴BD =,连接DE ,∵90BDC ∠=,点D 是BC 中点,∴122DE BE BC ===, ∵30DCB ∠=,∴30BDE DBC ∠=∠=,∵BD 平分ABC ∠,∴ABD DBC ∠=∠,∴ABD BDE ∠=∠,∴DE AB ∥,∴DEF BAF △∽△, ∴DF DE BF AB=,在Rt ABD △中,30ABD ∠=,BD =,∴3AB =, ∴23DF BF =, ∴25DF BD =,∴2255DF BD ==⨯=,故选:D . 【考点】含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义第Ⅱ卷二.填空题13.【答案】2-【解析】由题意知3236a b a b -=⎧⎨-=⎩①②,+①②,得:448a b -=,则2a b -=,∴2b a -=-,故答案为:2-【考点】解二元一次方程组14.【答案】4【解析】解不等式273(1)x x ++>,得4x <,解不等式2342363x x +-≤,得8x ≤,则不等式组的解集为4x <, 所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.【考点】解一元一次不等式组15.【答案】12由表可知,共有12种等可能结果,其中积为大于4-小于2的有6种结果,∴积为大于4-小于2的概率为61=122,故答案为:12. 【考点】用列表法或树状图法求概率16.【答案】2x x-- 【解析】2(2)42=()(2)22x x x x x x -+÷-+++原式 22(2)2=(2)2(2)2(2)(2)2,x x x x x x x x x x x x--÷++-+=⋅+---=- 故答案为:2x x--. 【考点】分式的混合运算17.【答案】115【解析】连接OC ,∵DC 切⊙O 于C ,∴90DCO ∠=,∵40D ∠=,∴130COB D DCO ∠=∠+∠=, ∴CEB 的度数是130,∴CAB 的度数是360130230-=, ∴1230=1152BEC ∠=⨯,故答案为:115.【考点】圆周角定理和切线的性质18.【答案】52【解析】∵32AE EB =,∴可设2AE a =、3BE a =,∵EF BC ∥,∴AEF ABC △∽△, ∴2224()()2325AEF ABC S AE aS AB a a ===+△△,∵1AEF S =△, ∴254ABC S =△,∵四边形ABCD 是平行四边形, ∴254ADC ABC S S ==△△,∵EF BC ∥, ∴2233AF AE a FC BE a ===, ∴23ADFCDF S AF S CF==△△, ∴222555542ADF ADC S S ==⨯=△△,故答案为:52.【考点】相似三角形的判定及性质.19.【答案】3【解析】如图,∵双曲线32y x=(0x >)经过点D , ∴13=24ODF S k =△,则322AOB ODF S S ==△△,即1322OA BE ⋅=, ∴3OA BE ⋅=,∵四边形ABCD 是矩形,∴OA OB =,∴3OB BE ⋅=,故答案为:3【考点】反比例函数图象上的点的坐标特征.20.【答案】①②③【解析】∵90ACB ∠=,由旋转知,CD CE =,90DCE ACB ∠==∠,∴BCD ACE ∠=∠,在△BCD 和△ACE 中,BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴BCD ACE △≌△,故①正确;∵90ACB ∠=,BC AC =,∴45B ∠=∵25BCD ∠=,∴1804525110BDC ∠=--=,∵BCD ACE △≌△,∴110AEC BDC ∠=∠=,∵90DCE ∠=,CD CE =,∴45CED ∠=,则65AED AEC CED ∠=∠-∠=,故②正确;∵BCD ACE △≌△,∴45CAE CBD CEF ∠=∠==∠,∵ECF ACE ∠=∠,∴CEF CAE △∽△, ∴CE CF AC CE=, ∴2CE CF AC =⋅,在等腰直角三角形CDE 中,2222DE CE CF AC ==⋅,故③正确;如图,过点D 作DG BC ⊥于G ,∵AB =∴3AC BC ==,∵2AD BD =,∴13BD AB = ∴1DG BG ==,∴312CG BC BG =-=-=,在Rt △CDG 中,根据勾股定理得,CD =∵△BCD ≌△ACE ,∴CE =∵2CE CF AC =⋅, ∴253CE CF AC ==, ∴54333AF AC CF =-=-=,故④错误,故答案为:①②③. 【考点】等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理.三、解答题21.【答案】(1)89(2)86(3)要招聘的前两名的人选是甲和丙【解析】(1)这四名候选人面试成绩的中位数为:8890892+=(分); (2)由题意得,60%9040%87.6x ⨯+⨯=,解得86x =,答:表中x 的值为86;(3)甲候选人的综合成绩为:9060%8840%89.2⨯+⨯=(分),乙候选人的综合成绩为:8460%9240%87.2⨯+⨯=(分),丁候选人的综合成绩为:8860%8640%87.2⨯+⨯=(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【考点】中位数、加权平均数22.【答案】(1)6-(2)36+【解析】(1)在四边形ABCD 中,∵AD BC ∥,90ABC ∠=,∴90BAD ∠=,∵AB AD =,∴45ABD ADB ∠=∠=,∵15BDE ∠=,∴30ADE ∠=,在Rt △ADE 中,sin3023AE DE =⨯=,cos306AD DE =⋅=,∴6AB AD ==,∴6BE =-(2)作DF BC ⊥于F ,则四边形ABFD 是矩形,∴6BF AD ==,6DF AB ==,在Rt △DFC 中,FC =∴6BC =+∴11(66(663622DEB BCD DEBC S S S =+=⨯-⨯++⨯=+△△四边形 【考点】矩形的性质、锐角三角函数、勾股定理.23.【答案】(1)该商店3月份这种商品的售价是40元.(2)该商店4月份销售这种商品的利润是990元.【解析】(1)设该商店3月份这种商品的售价为x 元,则4月份这种商品的售价为0.9x 元, 根据题意得:24002400840300.9x x+=-, 解得:40x =,经检验,40x =是原分式方程的解.答:该商店3月份这种商品的售价是40元. (2)设该商品的进价为y 元,根据题意得:2400(40)90040a -⨯=,解得:25a =, ∴2400+840(400.925)990400.9⨯-⨯=⨯(元). 答:该商店4月份销售这种商品的利润是990元.【考点】分式方程的应用以及一元一次方程的应用.24.【答案】(1)证明:∵90ACB ∠=, ∴90BCD ACD ∠+∠=,∵DE 是⊙A 的直径,∴90DCE ∠=,∴90BEC CDE ∠+∠=,∵AD AC =,∴CDE ACD ∠=∠,∴BCD BEC ∠=∠,(2)∵BCD BEC ∠=∠,EBC EBC ∠=∠, ∴△BDC ∽△BCE , ∴CD BD BCCE BC BE =,∵2BC =,1BD =,∴4BE =,2EC CD =,∴3DE BE BD =-= ,在Rt △DCE 中,2229DE CD CE =+=,∴CD =,CE =,过点F 作FM AB ⊥于M ,∵FAB ABC ∠=∠,90FMA ACB ∠=∠=, ∴△AFM ∽△BAC , ∴FM AFAC AB =,∵3DE =, ∴32AD AF AC ===,52AB =,∴910FM =,过点F 作FN BC ⊥于N ,∴90FNC ∠=,∵FAB ABC ∠=∠,∴FA BC ∥,∴90FAC ACB ∠=∠=,∴四边形FNCA 是矩形, ∴32FN AC ==,32NC AF ==, ∴12BN =,在Rt △FBN 中,BF =,在Rt △FBM 中,sin FMABF BF ∠==.【解析】(1)证明:∵90ACB ∠=,∴90BCD ACD ∠+∠=,∵DE 是⊙A 的直径,∴90DCE ∠=,∴90BEC CDE ∠+∠=,∵AD AC =,∴CDE ACD ∠=∠,∴BCD BEC ∠=∠,(2)∵BCD BEC ∠=∠,EBC EBC ∠=∠,∴△BDC ∽△BCE ,∴CDBD BCCE BC BE =,∵2BC =,1BD =,∴4BE =,2EC CD =,∴3DE BE BD =-= ,在Rt △DCE 中,2229DE CD CE =+=,∴CD =,CE =,过点F 作FM AB ⊥于M ,∵FAB ABC ∠=∠,90FMA ACB ∠=∠=,∴△AFM ∽△BAC , ∴FMAFAC AB =,∵3DE =, ∴32AD AF AC ===,52AB =, ∴910FM =,过点F 作FN BC ⊥于N ,∴90FNC ∠=,∵FAB ABC ∠=∠,∴FA BC ∥,∴90FAC ACB ∠=∠=,∴四边形FNCA 是矩形, ∴32FN AC ==,32NC AF ==, ∴12BN =,在Rt △FBN 中,BF =,在Rt △FBM 中,sin FMABF BF ∠==.【考点】圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数.25.【答案】(1)如图1,连接OA ,在矩形ABCD 中,3CD AB ==,5AD BC ==,90BAD ∠=在Rt △ABD 中,根据勾股定理得,BD =∵O 是BD 中点,∴OD OB OA ===, ∴OAD ODA ∠=∠,∵OE DE =,∴EOD ODE ∠=∠,∴EOD ODE OAD ∠=∠=∠ ,∴△ODE ∽△ADO , ∴DO DE AD DO=, ∴2DO DE DA =⋅,∴设AE x =,∴5DE x =-,∴25(5)x =-, ∴3310x =, 即:3310AE =;(2)如图2,在矩形ABCD 中,∵BE 平分ABC ∠,∴45ABE EBC ∠=∠=,∵AD BC ∥,∴AEB EBC ∠=∠,∴ABE AEB ∠=∠,∴3AE AB ==,∴3AE CD ==,∵EF EC ⊥,∴90FEC ∠=,∴90AEF CED ∠+∠=,∵,90A ∠=∴90AEF AFE ∠+∠=,∴CED AFE ∠=∠ ,∵90D A ∠=∠=,∴△AEF ≌△DCE ,∴2AF DE == ,∴1BF AB AF ==﹣,过点G 作GK BC ⊥于K ,∴45EBC BGK ∠=∠=,∴BK GK =,90ABC GKC ∠=∠=,∵KCG BCF ∠=∠,∴△CHG ∽△CBF , ∴GK CKFB CB =,设BK GK y ==,∴5CK y =-, ∴56y =, ∴56BK GK ==,在Rt △GKB 中,BG =;(3)①在矩形ABCD 中,90D ∠=,∵1AE =,5AD = ,∴4DE =,∵3DC =,∴5EC =,由折叠知,4ED ED '==,D H DH '=,90ED H D '∠=∠=,∴1D C '=,设D H DH z '==,∴3HC z =-,根据勾股定理得,22(3)1z z -=+, ∴43z =, ∴43DH =,53CH =, ∵D N AD '⊥,∴90AND D '∠=∠=,∴D N DC '∥,∴△EMN ∽△EHD , ∴MN EM HD EH=, ∵D N DC '∥,∴ED M ECH '∠=∠,∵MED HEC '∠=∠,∴△ED'M ∽△ECH , ∴D M EM CH EH'=, ∴MN D M HD CH'=, ∴54D M CH MN HD '==, ∴54ED M EMN S S '=△△; ②相似,理由:由折叠知,EHD EHD '∠=∠,90ED H D '∠=∠=,∴90MD H ED N ''∠+∠=,∵90END '∠=,∴90ED N NED ''∠+∠=,∴MD H NED ''∠=∠,∵D N DC '∥,∴EHD D MH '∠=∠,∴EHD D MH ''∠=∠,∴D M D H ''=,∵AD BC ∥,∴NED ECB '∠=∠,∴MD H ECB '∠=∠,∵5CE CB ==, ∴D M D H CB CE''=, ∴△D'MH ∽△CBE .【解析】(1)如图1,连接OA ,在矩形ABCD 中,3CD AB ==,5AD BC ==,90BAD ∠=在Rt △ABD 中,根据勾股定理得,BD =∵O 是BD 中点,∴OD OB OA ===, ∴OAD ODA ∠=∠,∵OE DE =,∴EOD ODE ∠=∠,∴EOD ODE OAD ∠=∠=∠ ,∴△ODE ∽△ADO , ∴DO DE AD DO=, ∴2DO DE DA =⋅,∴设AE x =,∴5DE x =-,∴25(5)x =-, ∴3310x =,即:3310AE =;(2)如图2,在矩形ABCD 中,∵BE 平分ABC ∠,∴45ABE EBC ∠=∠=,∵AD BC ∥,∴AEB EBC ∠=∠,∴ABE AEB ∠=∠,∴3AE AB ==,∴3AE CD ==,∵EF EC ⊥,∴90FEC ∠=,∴90AEF CED ∠+∠=,∵90A ∠=,∴90AEF AFE ∠+∠=,∴CED AFE ∠=∠ ,∵90D A ∠=∠=,∴△AEF ≌△DCE ,∴2AF DE == ,∴1BF AB AF ==﹣,过点G 作GK BC ⊥于K ,∴45EBC BGK ∠=∠=,∴BK GK =,90ABC GKC ∠=∠=,∵KCG BCF ∠=∠,∴△CHG ∽△CBF , ∴GK CKFB CB =,设BK GK y ==,∴5CK y =-, ∴56y =,∴56BK GK ==,在Rt △GKB 中,BG =; (3)①在矩形ABCD 中,90D ∠=,∵1AE =,5AD = ,∴4DE =,∵3DC =,∴5EC =,由折叠知,4ED ED '==,D H DH '=,90ED H D '∠=∠=,∴1D C '=,设D H DH z '==,∴3HC z =-,根据勾股定理得,22(3)1z z -=+, ∴43z =, ∴43DH =,53CH =, ∵D N AD '⊥,∴90AND D '∠=∠=,∴D N DC '∥,∴△EMN ∽△EHD , ∴MN EM HD EH=, ∵D N DC '∥,∴ED M ECH '∠=∠,∵MED HEC '∠=∠,∴△ED'M ∽△ECH , ∴D M EM CH EH'=, ∴MN D M HD CH'=,∴54D M CH MN HD '==, ∴54ED M EMN S S '=△△; ②相似,理由:由折叠知,EHD EHD '∠=∠,90ED H D '∠=∠=, ∴90MD H ED N ''∠+∠=,∵90END '∠=,∴90ED N NED ''∠+∠=,∴MD H NED ''∠=∠,∵D N DC '∥,∴EHD D MH '∠=∠,∴EHD D MH ''∠=∠,∴D M D H ''=,∵AD BC ∥,∴NED ECB '∠=∠,∴MD H ECB '∠=∠,∵5CE CB ==, ∴D M D H CB CE''=, ∴△D'MH ∽△CBE .【考点】矩形的性质,相似三角形的判定和性质,勾股定理,角平分线的定义.26.【答案】(1)122y x =-- (2)7283225525DE EF FD =-=-= (3)1398,981P ⎛⎫ ⎪⎝⎭【解析】(1)∵抛物线213+222y x x =-, ∴当0y =时,得11x =,24x =-,当0x =时,2y =-, ∵抛物线213222y x x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,∴点A 的坐标为(﹣4,0),点B (1,0),点C (0,﹣2), ∵直线l 经过A ,C 两点,设直线l 的函数解析式为y kx b =+, 402k b b -+=⎧⎨=-⎩,得122k b ⎧=-⎪⎨⎪=-⎩即直线l 的函数解析式为122y x =--;(2)直线ED 与x 轴交于点F ,如右图1所示,由(1)可得,4AO =,2OC =,90AOC ∠=,∴AC =∴OD ,∵OD AC ⊥,OA OC ⊥,OAD CAO ∠=∠,∴△AOD ∽△ACO , ∴ADAOAO AC =,即4AD=AD∵EF x ⊥轴,90ADC ∠=,∴EF OC ∥,∴△ADF ∽△ACO , ∴AF DF ADAO OC AC ==,解得:165AF =,85DF =, ∴164455OF =-=, ∴45m =-, 当45m =-时,2143472()()2252525y =⨯-+⨯--=-, ∴7225EF =,21 / 22∴7283225525DE EF FD =-=-=;(3)存在点P ,使BAP BCO BAG ∠=∠-∠,理由:作GM AC ⊥于点M ,作PN x ⊥轴于点N ,如右图2所示, ∵点(4,0)A -,点(1,0)B ,点(0,2)C -,∴4OA =,1OB =,2OC =, ∴21tan 42OC OAC OA ∠===,1tan 2OBOCB OC ∠==,AC =∴OAC OCB ∠=∠,∵BAP BCO BAG ∠=∠-∠,GAM OAC BAG ∠=∠-∠, ∴BAP GAM ∠=∠,∵点(0,1)G -,AC =4OA =,∴1OG =,1GC =,∴AG 22AC GM CG OA⋅⋅=142⨯=,解得:GM =,∴AM ==,∴2tan 9GMGAM AM ∠===, ∴29tan PAN ∠=,设点P 的坐标为213(,2)22n n n +-,∴4AN n =+,213222PN n n =+-, ∴213222249n n n +-=+, 解得:1139n =,24n =-(舍去),当139n=时,2139822281n n+-=,∴点P的坐标为1398 (,) 981,即存在点1398(,)981P,使BAP BCO BAG∠=∠-∠.【考点】二次函数.22 / 22。

包头市数学中考二模试卷

包头市数学中考二模试卷

包头市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2018七上·江阴期中) 在数轴上有A、B两点,点A表示的数是,且A、B两点之间的距离为3,则点B表示的数为()A . 2B .C . 2或D .2. (2分)为参加2012年“苏州市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A . 8.5,8.75B . 8.5,9C . 8.5,8.5D . 8.64,93. (2分)(2017·新泰模拟) (﹣)﹣2的值为()A . ﹣9B . 9C . ﹣6D . ﹣4. (2分)(2019·莲池模拟) 为了测量被池塘隔开的A , B两点之间的距离,根据实际情况,作出如图所示的图形,其中AB⊥BE ,EF⊥BE , AF交BE于点D , C在BD上,有四位同学分别测量出以下四组数据:①BC ,∠ACB;②CD ,∠ACB ,∠ADB;③EF , DE , BD;④DE , DC , BC .能根据所测数据,求出A、B间距离的有()A . 4组B . 3组C . 2组D . 1组5. (2分) (2016八上·孝义期末) 如图,在△ABC中,AD⊥BC垂足为点D,AD是BC边上的中线,BE⊥AC,垂足为点E.则以下4个结论:①AB=AC;②∠EBC= ;③AE=CE;④∠EBC=中正确的有()A . ①②B . ②③C . ①②③D . ①②③④6. (2分)如图,A,B,C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A . 35°B . 140°C . 70°D . 70°或140°7. (2分)将x2﹣16分解因式正确的是()A . (x﹣4)2B . (x﹣4)(x+4)C . (x+8)(x﹣8)D . (x﹣4)2+8x8. (2分) (2019八下·灞桥期末) 用两个完全相同的直角三角形拼下列图形:(1)平行四边形,(2)矩形,(3)菱形,(4)正方形,(5)等腰三角形,(6)等边三角形,一定可以拼成的图形是()A . (1)(4)(5);B . (2)(5)(6);C . (1)(2)(3);D . (1)(2)(5).9. (2分)关于关于x的一元二次方程x2+x-2=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法判断二、填空题 (共6题;共8分)10. (1分)(2017·滨江模拟) 已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是________;若a+b的值为非零整数,则b的值为________.11. (2分) (2020七下·顺德月考) 如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,则指针停止后落在红色区域的概率是________.12. (1分)某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省________元.13. (1分)(2019·镇江) 已知点、都在反比例函数的图象上,则________ .(填“>”或“<”)14. (1分) (2016九上·云梦期中) 若抛物线y=2x2+mx+8与x轴只有一个公共点,则m的值为________.15. (2分) (2018九上·大石桥期末) 如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD= ,则图中阴影部分的面积为________.三、解答题 (共8题;共54分)16. (5分)解不等式组,并把解集在数轴上表示出来.17. (5分) (2016八上·泸县期末) 解方程:.18. (2分)(2018·南京模拟) 城南中学九年级共有12个班,每班48名学生,学校对该年级学生数学学科学业水平测试成绩进行了抽样分析,请按要求回答下列问题:(1)【收集数据】要从九年级学生中抽取一个48人的样本,你认为以下抽样方法中最合理的是________.①随机抽取一个班级的48名学生;②在九年级学生中随机抽取48名女学生;③在九年级12个班中每班各随机抽取4名学生.(2)【整理数据】将抽取的48名学生的成绩进行分组,绘制成绩频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①表中m的值为________;② B类部分的圆心角度数为________°;③估计C、D类学生大约一共有________名.九年级学生数学成绩频数分布表成绩(单位:分)频数频率A类(80~100)24B类(60~79)12C类(40~59)8mD类(0~39)4(3)【分析数据】教育主管部们为了解学校学生成绩情况,将同层次的城南、城北两所中学的抽样数据进行对比分析,得到下表:请你评价这两所学校学生数学学业水平测试的成绩,提出一个解释来支持你的观点.19. (5分) (2019八上·南通月考) 如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC 的长.20. (5分)已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.21. (2分) (2019八下·湖北期末) 已知一次函数的图像经过点(3,5)与(,).(1)求这个一次函数的解析式;(2)点A(2,3)是否在这个函数的图象上,请说明理由.22. (15分)如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC =∠ABD=30°.(1)求证:△BCD是等边三角形;(2)求证:AE是⊙O的切线;(3)若CE=2,求⊙O的半径.23. (15分) (2019九上·房山期中) 如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)利用直尺和圆规,作出抛物线y=x2+mx+n的对称轴(尺规作图,保留作图痕迹,不写作法);(2)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(3)在(2)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为________.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共6题;共8分)10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共54分)16-1、17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。

2018包头昆都仑区中考二模数学试卷(pdf解析版)

2018包头昆都仑区中考二模数学试卷(pdf解析版)

绝密 ★ 启用前2018 年 初 中 升 学 考 试 模 拟 试 卷(二)数学(2018 包头市昆都仑区中考第二次模拟考试)注意事项:1.本试卷 1 ~ 6 页,满分为 120 分,考试时间为 120 分钟。

2.答题前,考生务必先将自己的座位号、准考证号、姓名填写在试卷和答题卡的指定位置。

请认真核准条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上。

3.答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,修改时用橡皮擦干净,再选涂其他答案。

4.答非选择题时,必须使用 0.5 毫米的黑色字迹签字笔书写,作图题可先用铅笔绘出,确认后再用 0.5 毫米的黑色字迹签字笔描清楚,要求字体工整、笔迹清晰。

严格按题号所示的答题区域作答,超出答题区域书写的答案无效;在试卷、草稿纸上答题无效。

5.保持答题卡清洁、完整。

严禁折叠、破损,严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带。

考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共 12 小题,每题 3 分,共 36 分)1.(2018 包头昆都仑区二模. 1)9 的算术平方根是()C. D. ± A. 3 B. ±3 33【答案】A【解析】解:一般地,若一个非负数 x 的平方等于 a ,即 x 2= a ,则这个非负数 x 叫做 a 的算术平方根。

则根据定义知, x 2= 9 ,取其非负数根: x = 3 ,则 9 的算术平方根是 3【试题分析】本题考察算术平方根的概念,试题难度简单。

2.(2018 包头昆都仑区二模. 2)从 2 ,0,π,13 ,6 这 5 个数中随机抽取一个数,抽到有理数的概率是( )A.1 B.2 C.3 D. 45555【答案】C【解析】根据实数的概念可知,这 5 个数中有理数有:0,13 ,6,无理数有2 ,π,故设3 5 个数中随机抽取一个数中抽到有理数的事件为 A,则抽到有理数的概率P(A) 5【命题思路分析】本题考察实数的分类,有理数的概念和随机事件概率的计算,命题思路新颖,试题难度简单。

2018年内蒙古包头市中考数学全真模拟试卷(2)含答案解析

2018年内蒙古包头市中考数学全真模拟试卷(2)含答案解析

CAB,交 CD 于点 E,交 CB 于点 F.若 AC=3,AB=5,则 CE 的长为(

A.
B.
C.
D.
二. 填空题(共 8 小题,满分 24 分,每小题 3 分) 13. (3 分)月球与地球的平均距离约为 384400 千米,将数 384400 用科学记数 法表示为 . = .
14. (3 分)计算: (a﹣ )•
三.解答题(共 6 小题,满分 48 分,每小题 8 分) 21. (8 分)正四面体各面分别标有数字 1、2、3、4,正六面体各面分别标有数 字 1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加. (1)请用树状图或列表的方法表示可能出现的所有结果; (2)求两个正多面体朝下面上的数字之和是 3 的倍数的概率.
A.π+1 B.π+2 C.2π+2
D.4π+1
10. (3 分)有以下四个命题: ①反比例函数 y= ,当 x>0 时,y 随 x 的增大而增大;
②抛物线 y=x2﹣2x+2 与两坐标轴无交点; ③平分弦的直径垂直于弦,且平分弦所对的弧; ④有一个角相等的两个等腰三角形相似. 其中正确命题的个数为( A.4 B.3 C.2 D.1 )
24. (10 分)如图 ,点 C 在以 AB 为直径的⊙O 上,AD 与过点 C 的切线垂直, 垂足为点 D.
[来源:]
(1)求证:AC 平分∠DAB; (2)求证:AC2=AD•AB; (3)若 AD= ,sinB= ,求线段 BC 的长.
11. (3 分)在同一坐标系下,抛物线 y1=﹣x2+4x 和直线 y2=2x 的图象如图所示, 那么不等式﹣x2+4x>2x 的解集是( )

2018年内蒙古包头市昆都仑区中考数学二模试卷(解析版)

2018年内蒙古包头市昆都仑区中考数学二模试卷(解析版)

2018年内蒙古包头市昆都仑区中考数学二模试卷一、选择题(本大题共12小题,每题3分,共36分)1.(3分)9的算术平方根是()A.B.C.3D.±32.(3分)从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.3.(3分)中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展,据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万,请将780000用科学记数法表示为()A.78×104B.7.8×105C.7.8×106D.0.78×1064.(3分)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣)﹣2=4D.(﹣2)0=﹣15.(3分)一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.66.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N.若△AMN的周长为18,BC=6,则△ABC的周长为()A.21B.22C.24D.268.(3分)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°9.(3分)若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1B.a>1C.a≥1且a≠4D.a>1且a≠4 10.(3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A.B.C.D.11.(3分)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③两个全等的三角形面积相等;④四条边相等的四边形是菱形.其中原命题和逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个12.(3分)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0②a+b+c=0③2a﹣b=0④c﹣a=3,其中正确的有()个.A.1B.2C.3D.4二、填空题(本大题共8小题,每题3分,共24分)13.(3分)化简:().14.(3分)不等式组的解集为.15.(3分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(3分)一组数据5,2,x,6,4的平均数是4,这组数据的方差是.17.(3分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(3分)如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α度数为.19.(3分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.20.(3分)如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)三、解答题(本大题共6小题,共60分)21.(8分)如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)22.(8分)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.23.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.(10分)如图1,在⊙O中,E为的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=2,⊙O的半径是3.(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.25.(12分)如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.26.(12分)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.2018年内蒙古包头市昆都仑区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分)1.(3分)9的算术平方根是()A.B.C.3D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:C.2.(3分)从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【解答】解:∵在,0,π,,6这5个数中有理数只有0、、6这3个数,∴抽到有理数的概率是,故选:C.3.(3分)中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展,据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万,请将780000用科学记数法表示为()A.78×104B.7.8×105C.7.8×106D.0.78×106【解答】解:780000=7.8×105,故选:B.4.(3分)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣)﹣2=4D.(﹣2)0=﹣1【解答】解:A、2a3+a3=3a3,故错误;B、(﹣a)2•a3=a5,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.5.(3分)一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.6【解答】解:由题中所给出的俯视图知,底层有3个小正方体;由左视图可知,第2层有1个小正方体.故则搭成这个几何体的小正方体的个数是3+1=4个.故选:B.6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.7.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N.若△AMN的周长为18,BC=6,则△ABC的周长为()A.21B.22C.24D.26【解答】解:∵MN∥BC,∴∠MEB=∠EBC,∵BE平分∠ABC,∴∠MBE=∠EBC,∴∠MEB=∠MBE,∴△MBE是等腰三角形,∴ME=MB,同理,EN=CN,∵AM+AN+MN=18,MN=ME+EN=BM+CN∴AM+AN+BM+CN=18,∴AB+AC=18,∴AB+AC+BC=24故选:C.8.(3分)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.9.(3分)若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1B.a>1C.a≥1且a≠4D.a>1且a≠4【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.10.(3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A.B.C.D.【解答】解:过E作EH⊥CF于H,由折叠的性质得:BE=EF,∠BEA=∠FEA,∵点E是BC的中点,∴CE=BE,∴EF=CE,∴∠FEH=∠CEH,∴∠AEB+∠CEH=90°,在矩形ABCD中,∵∠B=90°,∴∠BAE+∠BEA=90°,∴∠BAE=∠CEH,∠B=∠EHC,∴△ABE∽△EHC,∴,∵AE==10,∴EH=,∴sin∠ECF=sin∠ECH==,故选:D.11.(3分)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③两个全等的三角形面积相等;④四条边相等的四边形是菱形.其中原命题和逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【解答】解:①若>1,a=﹣3,b=﹣2,则a<b,错误;②若a+b=0,则|a|=|b|,若|a|=|b,则a=b或a+b=0,错误;③两个全等的三角形面积相等,面积相等的两个三角形不一定全等,错误;④四条边相等的四边形是菱形,菱形的四条边相等,正确;故选:A.12.(3分)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0②a+b+c=0③2a﹣b=0④c﹣a=3,其中正确的有()个.A.1B.2C.3D.4【解答】解:①由图象可知:抛物线与x轴有两个交点,故△=b2﹣4ac>0,故①错误;②(﹣2,0)关于直线x=﹣1的对称点为(0,0),(﹣3,0)关于直线x=﹣1的对称点为(1,0),∴令x=1,y=a+b+c<0,故②错误;③由对称轴可知:=﹣1,∴2a﹣b=0,故③正确;④令x=﹣1,y=a﹣b+c=3,∴a﹣2a+c=3,即c﹣a=3,故④正确;故选:B.二、填空题(本大题共8小题,每题3分,共24分)13.(3分)化简:()=﹣.【解答】解:原式==•=﹣,故答案为:=﹣.14.(3分)不等式组的解集为﹣1≤x<2.【解答】解:解不等式﹣≤1,得:x≥﹣1,解不等式5x﹣1<3(x+1),得:x<2,则不等式组的解集为﹣1≤x<2,故答案为:﹣1≤x<2.15.(3分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为2.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.16.(3分)一组数据5,2,x,6,4的平均数是4,这组数据的方差是2.【解答】解:∵数据5,2,x,6,4的平均数是4,∴(5+2+x+6+4)÷5=4,解得:x=3,∴这组数据的方差是[(5﹣3)2+(2﹣3)2+(3﹣3)2+(6﹣3)2+(4﹣3)2]=2;故答案为:2.17.(3分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【解答】解:连接OC,如图,∵OA=OC,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.18.(3分)如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α度数为80°.【解答】解:∵∠1:∠2:∠3=28:5:3,∴设∠1=28x,∠2=5x,∠3=3x,由∠1+∠2+∠3=180°得:28x+5x+3x=180°,解得x=5,故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,∠5=∠2+∠3=25°+15°=40°,故∠EAC=∠4+∠5=40°+40°=80°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CF A,∴△EGF∽△CAF,∴∠EGF=∠EAC=80°.∴∠α=∠EGF=80°,故答案为:80°.补充方法:据外角定理,α=∠GBC+∠GCB=2∠2+2∠3=80°.此解法更佳!19.(3分)如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故答案是:.20.(3分)如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是①②③.(写出所有正确结论的序号)【解答】解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF,∴∠1=∠2,∵∠EAF=45°,∴∠1=∠2=∠22.5°,所以①正确;连结EF、AC,它们相交于点H,如图,∵Rt△ABE≌Rt△ADF,∴BE=DF,而BC=DC,∴CE=CF,而AE=AF,∴AC垂直平分EF,AH平分∠EAF,∴EB=EH,FD=FH,∴BE+DF=EH+HF=EF,所以④错误;∴△ECF的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;设BE=x,则EF=2x,CE=1﹣x,∵△CEF为等腰直角三角形,∴EF=CE,即2x=(1﹣x),解得x=﹣1,∴EF=2(﹣1),∴CH=EF=﹣1,所以②正确.故答案为①②③.三、解答题(本大题共6小题,共60分)21.(8分)如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)【解答】解:过点M作MN⊥AB于N,设MN=x米.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,∴MA=2MN=2x,AN=MN=x.在Rt△BMN中,∵∠BNM=90°,∠MBN=45°,∴BN=MN=x,MB=MN=x.∵AN+BN=AB,∴x+x=300(+l),∴x=300,∴MA=2x=600,MB=x=300.故供水站M到小区A的距离是600米,到小区B的距离是300米.22.(8分)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.故答案为.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率=.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是.故答案为.23.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?【解答】解:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,设总费用为w元,由题意可知w=[0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)]=4x2﹣48x+120=4(x﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.24.(10分)如图1,在⊙O中,E为的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=2,⊙O的半径是3.(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.【解答】(1)证明:连接OC、OE,OE交AB于H,如图1,∵E是的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:如图3,连接BC,∵E是的中点,∴=,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴∴EF•EC=BE2=22=4;(3)解:如图2,连接OA,AE,BC,OE,OE交AB于H,∵=,∴AE=BE=2设OH=x,则EH=3﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=9,在Rt△EAH中,AH2+EH2=EA2,即AH2+(3﹣x)2=4,∴9﹣x2+(3﹣x)2=4,即得x=,∴HE=3﹣=,在Rt△OAH中,AH==,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF==,∵EF•EC=4,∴•EC=4,∴EC=2.25.(12分)如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.【解答】解:(1)∵△ADP沿点A旋转至△ABP′,∴根据旋转的性质可知,△APD≌△AP′B,∴AP=AP′,∠P AD=∠P′AB,∵∠P AD+∠P AB=90°,∴∠P′AB+∠P AB=90°,即∠P AP′=90°,∴△APP′是等腰直角三角形;(2)由(1)知∠P AP′=90°,AP=AP′=1,∴PP′=,∵P′B=PD=,PB=2,∴P′B2=PP′2+PB2,∴∠P′PB=90°,∵△APP′是等腰直角三角形,∴∠APP′=45°,∴∠BPQ=180°﹣90°﹣45°=45°;(3)作BE⊥AQ,垂足为E,∵∠BPQ=45°,PB=2,∴PE=BE=2,∴AE=2+1=3,∴AB==,BE==2,∵∠EBQ=∠EAB,cos∠EAB=,∴cos∠EBQ=,∴,∴BQ=,∴CQ=﹣=.26.(12分)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且P A=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QFC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.。

2018年4月内蒙古包头市昆都仑区中考数学模拟试卷(含答案)

2018年4月内蒙古包头市昆都仑区中考数学模拟试卷(含答案)

2018年内蒙古包头市昆都仑区中考数学模拟试卷(4月份)一.选择题(共12小题,满分36分)1.的算术平方根为()A.9B.±9C.3D.±32.从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.3.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1084.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a105.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136C.124D.846.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是47.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.=9.若分式方程=a无解,则a的值为()A.0B.﹣1C.0或﹣1D.1或﹣1 10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.2211.下列命题是真命题的是()A.如果a+b=0,那么a=b=0B.的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分24分,每小题3分)13.化简:÷(﹣1)=.14.若不等式组的解集是x<4,则m的取值范围是15.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是.16.有一组数据:3,a,4,6,7,它们的平均数是5,则a=,这组数据的方差是.17.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为cm18.如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为.19.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A 、E 分别引y 轴与x 轴的垂线,交于点C ,且与y 轴与x 轴分别交于点M 、B .连接OC交反比例函数图象于点D ,且=,连接OA ,OE ,如果△AOC 的面积是15,则△ADC 与△BOE 的面积和为 .20.如图,已知正方形ABCD 中,∠MAN=45°,连接BD 与AM ,AN 分别交于E ,F 点,则下列结论正确的有 . ①MN=BM +DN②△CMN 的周长等于正方形ABCD 的边长的两倍; ③EF 2=BE 2+DF 2;④点A 到MN 的距离等于正方形的边长 ⑤△AEN 、△AFM 都为等腰直角三角形. ⑥S △AMN =2S △AEF⑦S 正方形ABCD :S △AMN =2AB :MN⑧设AB=a ,MN=b ,则≥2﹣2.三.解答题(共6小题,满分38分)21.(8分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)22.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.23.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.25.(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.26.如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B两点.(1)a0,b2﹣4ac0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.参考答案一.选择题1.C.2.C.3.C.4.B.5.B.6.D.7.A.8.B.9.D.10.A.11.D.12.D.二.填空题13.﹣.14.m≥4.15.10<a≤10.16.5,2.17.30π+30.18.4.19.17.20.①②③④⑤⑥⑦.三.解答题21.解:(1)由正玄定理得:∠A=60°,AC=20;故答案为:60°,20;(2)如图,依题意:BC=40×0.5=20(海里)∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°.∴∠A=45°.在△ABC中,,即,解之得:AB=10≈24.49海里.所以渔政204船距钓鱼岛A的距离约为24.49海里.22.解:(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)==.23.解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,10(46﹣50)2+4000=3840,∴x=46时,w大=﹣答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.24.(1)证明:连结OD,如图,∵EF=ED,∴∠EFD=∠EDF,∵∠EFD=∠CFO,∴∠CFO=∠EDF,∵OC⊥OF,∴∠OCF+∠CFO=90°,∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE,∵OA=OD∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴,∵Rt△ABD中,tanA==∴=∴AE=2DE,DE=2BE∴AE=4BE∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=x∵OF=1,∴OE=1+2x在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为3.25.解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.26.解:(1)a>0,b2﹣4ac>0;(2)∵直线x=2是对称轴,A(﹣2,0),∴B(6,0),∵点C(0,﹣4),将A,B,C的坐标分别代入y=ax2+bx+c,解得:a=,b=﹣,c=﹣4,∴抛物线的函数表达式为y=x 2﹣x ﹣4;(3)存在,理由为:(i )假设存在点E 使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形, 过点C 作CE ∥x 轴,交抛物线于点E ,过点E 作EF ∥AC ,交x 轴于点F ,如图1所示,则四边形ACEF 即为满足条件的平行四边形,∵抛物线y=x 2﹣x ﹣4关于直线x=2对称,∴由抛物线的对称性可知,E 点的横坐标为4,又∵OC=4,∴E 的纵坐标为﹣4,∴存在点E (4,﹣4);(ii )假设在抛物线上还存在点E′,使得以A ,C ,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC 交x 轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC ∥E′F′,如图2,过点E′作E′G ⊥x 轴于点G ,∵AC ∥E′F′,∴∠CAO=∠E′F′G ,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO ≌△E′F′G ,∴E′G=CO=4,∴点E′的纵坐标是4,∴4=x2﹣x﹣4,解得:x1=2+2,x2=2﹣2,∴点E′的坐标为(2+2,4),同理可得点E″的坐标为(2﹣2,4).。

2018年4月内蒙古包头市昆都仑区中考数学模拟试题含答案

2018年4月内蒙古包头市昆都仑区中考数学模拟试题含答案

2018年内蒙古包头市昆都仑区中考数学模拟试卷(4月份)一.选择题(共12小题,满分36分)1.的算术平方根为()A.9B.±9C.3D.±32.从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.3.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1084.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a105.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136C.124D.846.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S 2=0.6,则甲的射击成绩较稳定乙D.数据3,5,4,1,﹣2的中位数是47.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.=9.若分式方程=a无解,则a的值为()A.0B.﹣1C.0或﹣1D.1或﹣110.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.2211.下列命题是真命题的是()A.如果a+b=0,那么a=b=0B.的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分24分,每小题3分)13.化简:÷(﹣1)=.14.若不等式组的解集是x<4,则m的取值范围是15.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是.16.有一组数据:3,a,4,6,7,它们的平均数是5,则a=,这组数据的方差是.17.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为cm18.如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为.19.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.20.如图,已知正方形ABCD 中,∠MAN=45°,连接BD 与AM ,AN 分别交于E ,F 点,则下列结论正确的有.①MN=BM +DN②△CMN 的周长等于正方形ABCD 的边长的两倍;③EF 2=BE 2+DF 2;④点A 到MN 的距离等于正方形的边长⑤△AEN 、△AFM 都为等腰直角三角形.⑥S △AMN =2S △AEF⑦S 正方形ABCD :S △AMN =2AB :MN⑧设AB=a ,MN=b ,则≥2﹣2.三.解答题(共6小题,满分38分)21.(8分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图(1)),则,即AD=csinB ,AD=bsinC ,于是csinB=bsinC ,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)22.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.23.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.25.(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.26.如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B两点.(1)a0,b2﹣4ac0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.参考答案一.选择题1.C.2.C.3.C.4.B.5.B.6.D.7.A.8.B.9.D.10.A.11.D.12.D.二.填空题13.﹣.14.m≥4.15.10<a≤10.16.5,2.17.30π+30.18.4.19.17.20.①②③④⑤⑥⑦.三.解答题21.解:(1)由正玄定理得:∠A=60°,AC=20;故答案为:60°,20;(2)如图,依题意:BC=40×0.5=20(海里)∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°.∴∠A=45°.在△ABC中,,即,解之得:AB=10≈24.49海里.所以渔政204船距钓鱼岛A的距离约为24.49海里.22.解:(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)==.23.解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,﹣10(46﹣50)2+4000=3840,∴x=46时,w大=答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.24.(1)证明:连结OD,如图,∵EF=ED,∴∠EFD=∠EDF,∵∠EFD=∠CFO,∴∠CFO=∠EDF,∵OC⊥OF,∴∠OCF+∠CFO=90°,∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE,∵OA=OD∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴,∵Rt△ABD中,tanA==∴=∴AE=2DE,DE=2BE∴AE=4BE∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=x∵OF=1,∴OE=1+2x在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为3.25.解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.26.解:(1)a>0,b2﹣4ac>0;(2)∵直线x=2是对称轴,A(﹣2,0),∴B(6,0),∵点C(0,﹣4),将A,B,C的坐标分别代入y=ax2+bx+c,解得:a=,b=﹣,c=﹣4,∴抛物线的函数表达式为y=x2﹣x﹣4;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,∵抛物线y=x2﹣x﹣4关于直线x=2对称,∴由抛物线的对称性可知,E点的横坐标为4,又∵OC=4,∴E的纵坐标为﹣4,∴存在点E(4,﹣4);(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴点E′的纵坐标是4,∴4=x2﹣x﹣4,解得:x1=2+2,x2=2﹣2,∴点E′的坐标为(2+2,4),同理可得点E″的坐标为(2﹣2,4).。

内蒙古包头市2018年中考数学试题(含解析)-精品推荐

内蒙古包头市2018年中考数学试题(含解析)-精品推荐

2018年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.52.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>14.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.36.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,27.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.310.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x 1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个B.3个C.2个D.1个11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A. B. C.D.212.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为.14.(3.00分)不等式组的非负整数解有个.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.16.(3.00分)化简;÷(﹣1)= .17.(3.00分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC= 度.18.(3.00分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF =1,则S△ADF的值为.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D 落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.2018年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1.(3.00分)计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.5【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣2﹣3=﹣5,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3.00分)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3.00分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故选:C.【点评】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键.5.(3.00分)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.(3.00分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,2【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.【解答】解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.7.(3.00分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.2﹣B.2﹣C.4﹣D.4﹣【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣=2﹣.【解答】解:如图,过A作AE⊥BC于E,∵AB=2,∠ABC=30°,∴AE=AB=1,又∵BC=4,∴阴影部分的面积是×4×1﹣=2﹣,故选:A.【点评】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠B AC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C 可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,又∵∠C+∠BAC=145°,∴∠C=35°,∵∠DAE=90°,AD=AE,∴∠AED=45°,∴∠EDC=∠AED﹣∠C=10°,故选:D.【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.9.(3.00分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.10.(3.00分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x 1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个B.3个C.2个D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x 1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(3.00分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A. B. C.D.2【分析】利用直线l1:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=.【解答】解:直线l:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,1即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),:y=kx,可得把C(,)代入直线l2=k,即k=,故选:B.【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.12.(3.00分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【解答】解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=3,∴,∴,∴DF=BD=×2=,故选:D.【点评】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.二、填空题:本大题共有8小题,每小题3分,共24分.13.(3.00分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为﹣2 .【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.14.(3.00分)不等式组的非负整数解有 4 个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3.00分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.16.(3.00分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.17.(3.00分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在上(不与点B ,C 重合),连接BE ,CE .若∠D=40°,则∠BEC= 115 度.【分析】连接OC ,根据切线的性质求出∠DCO ,求出∠COB ,即可求出答案. 【解答】解:连接OC ,∵DC 切⊙O 于C ,∴∠DCO=90°,∵∠D=40°, ∴∠COB=∠D+∠DCO=130°, ∴的度数是130°, ∴的度数是360°﹣130°=230°,∴∠BEC==115°, 故答案为:115.【点评】本题考查了圆周角定理和切线的性质,能根据切线的性质求出∠DCO 的度数是解此题的关键.18.(3.00分)如图,在▱ABCD 中,AC 是一条对角线,EF ∥BC ,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE=2EB ,连接DF .若S △AEF =1,则S △ADF 的值为 .【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF =1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC =S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF =S△ADC=×=,故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定及性质、平行线分线段成比例定理及平行四边形的性质.19.(3.00分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为 3 .【分析】由双曲线y=(x>0)经过点D知S△ODF =k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=3,根据OA=OB可得答案.【解答】解:如图,∵双曲线y=(x>0)经过点D,∴S△ODF=k=,则S△AOB =2S△ODF=,即OA•BE=,∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.20.(3.00分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是①②③.(填写所有正确结论的序号)【分析】先判断出∠BCD=∠ACE,即可判断出①正确;先求出∠BDC=110°,进而得出∠AEC=110°,即可判断出②正确;先判断出∠CAE=∠CEF,进而得出△CEF∽△CAE,即可得出CE2=CF•AC,最后用勾股定理即可得出③正确;先求出BC=AC=3,再求出BD=,进而求出CE=CD=,求出CF=,即可判断出④错误.【解答】解:∵∠ACB=90°,由旋转知,CD=CE,∠DCE=90°=∠ACB,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE,故①正确;∵∠ACB=90°,BC=AC,∴∠B=45°∵∠BCD=25°,∴∠BDC=180°﹣45°﹣25°=110°,∵△BCD≌△ACE,∴∠AEC=∠BDC=110°,∵∠DCE=90°,CD=CE,∴∠CED=45°,则∠AED=∠AEC﹣∠CED=65°,故②正确;∵△BCD≌△ACE,∴∠CAE=∠CBD=45°=∠CEF,∵∠ECF=∠ACE,∴△CEF∽△CAE,∴,∴CE2=CF•AC,在等腰直角三角形CDE中,DE2=2CE2=2CF•AC,故③正确;如图,过点D作DG⊥BC于G,∵AB=3,∴AC=BC=3,∵AD=2BD,∴BD=AB=,∴DG=BG=1,∴CG=BC﹣BG=3﹣1=2,在Rt△CDG中,根据勾股定理得,CD==,∵△BCD≌△ACE,∴CE=,∵CE2=CF•AC,∴CF==,∴AF=AC﹣CF=3﹣=,故④错误,故答案为:①②③.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△BCD ≌△ACE是解本题的关键.三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.【分析】(1)根据中位数的概念计算;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.【解答】解:(1)这四名候选人面试成绩的中位数为:=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【点评】本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)【分析】(1)解直角三角形求出AD、AE即可解决问题;(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;【解答】解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵AB=AD,∴∠ABD=∠ADB=45°,∵∠BDE=15°,∴∠ADE=30°,在Rt△ADE中,AE=DE×sin30=2,AD=DE•cos30°=6,∴AB=AD=6,∴BE=6﹣2.(2)作DF⊥BC于F.则四边形ABFD是矩形,∴BF=AD=6,DF=AB=6,在Rt△DFC中,FC==4,∴BC=6+4,∴S四边形DEBC =S△DEB+S△BCD=×(6﹣2)×6+(6+4)×6=36+6.【点评】本题考查矩形的性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(10.00分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.【分析】(1)先利用等角的余角相等即可得出结论;(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.【解答】解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,∴CD=,CE=,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.【点评】此题主要考查了圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数,正确作出辅助线是解本题的关键.25.(12.00分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D 落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.【分析】(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出BK=GK=,最后用勾股定理即可得出结论;(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,的粗,△ED'M∽△ECH,得出,进而得出,即可得出结论;②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.【解答】解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CHG∽△CBF,∴,设BK=GK=y,∴CK=5﹣y,∴y=,∴BK=GK=,在Rt△GKB中,BG=;(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=,∴DH=,CH=,∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴,∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴,∴,∴,∴;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴,∴△D'MH∽△CBE.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,勾股定理,角平分线的定义,熟练掌握判定两三角形相似的方法是解本题的关键.26.(12.00分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【解答】解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如右图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如右图2所示,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.。

内蒙古包头市九年级数学中考二模试卷

内蒙古包头市九年级数学中考二模试卷

内蒙古包头市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、填空题 (共4题;共4分)1. (1分)(2018·衢州模拟) 从-,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是________.2. (1分)(2018·无锡模拟) 如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=________.3. (1分)(2017·南宁模拟) 如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G (0,﹣2),则点F的坐标是________.4. (1分) (2019九上·孝义期中) 如图,四边形ABCD中,∠ABC=45°,∠CAD=90°,AB=BC=100,AC =AD.则BD=________.二、解答题 (共11题;共88分)5. (5分) (2020九上·诸暨期末) 计算:6. (5分)(2017·玄武模拟) 计算÷(1+ ).7. (5分)(2018·温州模拟) 如图,在方格纸中,点A,D都在格点上,作三角形ABC,使其满足下列条件.(点B,C不与点D重合)(1)在图甲中,作格点等腰△ABC,使AD为△ABC的高线.(2)在图乙中,作格点钝角△ABC,使AD为△ABC的角平分线8. (5分)(2018·岳池模拟) 如图,AB=AE,∠1=∠2,∠C=∠D.求证:AC=AD.9. (11分) (2020九上·大丰期末) 九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.10. (5分)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点都在小方格的格点上.现以点D,E,F,G,H中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△ABC相似且相似比为1:2.(2)在图乙中画出一个三角形与△ABC的面积比为1:4但不相似.11. (10分)(2018·海陵模拟) 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:家电名称空调彩电冰箱工时产值(千元)432设每周生产空调器x台、彩电y台、冰箱z台.(1)用含z的代数式分别表示出x与y的值,请写出求解过程;(2)每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)12. (10分) (2018九上·彝良期末) 在一个不透明的布袋中有2个红球和3个黑球,它们只有颜色上的区别.(1)从布袋中随机摸出一个球,求摸出红球的概率;(2)现从布袋中取出一个红球和一个黑球,放入另一个不透明的空布袋中,甲乙两人约定做如下游戏:两人分别从这两个布袋中各随机摸出一个小球,若颜色相同,则甲获胜;若颜色不同,则乙获胜.请用树状图(或列表)的方法表示游戏所有可能的结果,并用概率知识说明这个游戏是否公平?13. (11分) (2019九上·黄石期中) 已知AB是⊙O的直径,弦CD⊥AB于点E.(1)如图①,若CD=8,BE=2,求⊙O的半径;(2)如图②,点G是上一点,AG的延长线与DC的延长线交于点F,求证:∠AGD=∠FGC.14. (10分) (2017九上·东丽期末) 已知:抛物线经过、两点,顶点为.求:(1)求,的值;(2)求△ 的面积.15. (11分)(2017·邗江模拟) 对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有________;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;________③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;________(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.参考答案一、填空题 (共4题;共4分)1-1、2-1、3-1、4-1、二、解答题 (共11题;共88分)5-1、6-1、7-1、7-2、8-1、9-1、9-2、10-1、11-1、11-2、12-1、12-2、13-1、13-2、14-1、14-2、15-1、15-2、。

内蒙古包头市中考数学模拟试卷(含答案).doc

内蒙古包头市中考数学模拟试卷(含答案).doc

2018年内蒙古包头市昆都仑区中考数学模拟试卷(4月份)一.选择题(共12小题,满分36分)1. 佰的算术平方根为()A. 9B. ±9 C・ 3 D. ±32. 从仮,0, n, I,6这5个数中随机抽取一个数,抽到有理数的概率是()A- i B- f c-1 D- f3. 长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()5. 如图是某几何体的三视图, 则该几何体的全面积等于(6. 下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B. 从1, 2, 3, 4, 5中随机抽取一个数,取得奇数的可能性比较大C. 甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2二0.4, 二06则甲的射击成绩较稳定D. 数据3, 5, 4, 1, - 2的中位数是47.如图,BD是ZABC的角平分线,DC//AB,下列说法正确的是()A. 0.25X101°B. 2.5 X1O10C・ 2.5 X109 D. 25X1084.下列计算正确的是()A. a2*a3=a6B. (a2)3=a6C.D. a5+a5=a 10斗A. 112B. 136C. 124D. 84C. AD=BC D・点A与点C关于BD对称&如图,已知AB是(DO的直径,弦CD1AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A. ZACB=90° B・ 0E二BE C・ BD=BC D・ AD 二AC9. 若分式方程诗无解,则a的值为()x+1A. 0B. - 1 C・ 0或一 1 D・[或一 110. 如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6, AD=9,则五边形ABMND的周长为()A. 28B. 26C. 25 D・ 22下列命题是真命题的是()A. 如果a+b二0,那么a=b-=0B. 届的平方根是±4C. 有公共顶点的两个角是对顶角D. 等腰三角形两底角相等12.如图,抛物线y=ax2+bx+c与x轴交于点A ( - 1, 0),顶点坐标(1, n)与y轴的交点在(0, 2), (0, 3)之间(包含端点),则下列结论:①3a+b<0;②-lWaW - y;③对于任意实数m, a+b^am2+bm总成立;④关于x的方程a/+bx+c二n - 1有两个不相等的实数根.其中结论正确的个数为()二. 填空题(共8小题,满分24分,每小题3分) e 化简:琴詈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密 ★ 启用前
2018 年 初 中 升 学 考 试 模 拟 试 卷(二)
数 学
(2018 包头市昆都仑区中考第二次模拟考试)
注意事项: 1.本试卷 1 ~ 6 页,满分为 120 分,考试时间为 120 分钟。 2.答题前,考生务必先将自己的座位号、准考证号、姓名填写在试卷和答题卡的指定 位置。请认真核准条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上。 3.答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,修改时用橡 皮擦干净,再选涂其他答案。 4.答非选择题时,必须使用 0.5 毫米的黑色字迹签字笔书写,作图题可先用铅笔绘出, 确认后再用 0.5 毫米的黑色字迹签字笔描清楚,要求字体工整、笔迹清晰。严格按题号所示 的答题区域作答,超出答题区域书写的答案无效;在试卷、草稿纸上答题无效。 5.保持答题卡清洁、完整。严禁折叠、破损,严禁在答题卡上做任何标记,严禁使用 涂改液、胶带纸、修正带。考试结束后,将本试卷和答题卡一并交回。 一、选择题(本大题共 12 小题,每题 3 分,共 36 分) 1.(2018 包头昆都仑区二模. 1)9 的算术平方根是( A. 3 【答案】A 【解析】解:一般地,若一个非负数 x 的平方等于 a,即 x a ,则这个非负数 x 叫做 a 的 算术平方根。则根据定义知, x 9 ,取其非负数根: x 3 ,则 9 的算术平方根是 3 【试题分析】本题考察算术平方根的概念,试题难度简单。 2.(2018 包头昆都仑区二模. 2)从 2 ,0,π, 理数的概率是( A. ) B.
【命题思路分析】本题考察实数的分类,有理数的概念和随机事件概率的计算,命题思路 新颖,试题难度简单。本题的命题方式在 2017 年全国各地中考均有出现,这种小章节结合 考察在包头模拟题中出现预示着包头中考对小章节考察越来越详细,对小章节的组合越来 越重视。 3.(2018 包头昆都仑区二模. 3)中共十九大召开期间,十九大代表纷纷利用休息时间来到北 京展览馆,参观“砥砺奋进的五年”大型成就展,据统计,9 月下旬开幕至 10 月 22 日,展览 累计参观人数已经超过 78 万,请将 780000 用科学记数法表示为( A.78×104 【答案】B 【解析】解:根据科学记数法的定义,科学记数法的表示形式为 a×10n,其中 1≤ |a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 在确定 n 的值时,看该数是大于或等于 1 还是小于 1. 当该数大于或等于 1 时,n 为它的整数位数减 1;当该数小于 1 时,-n 为它 第一个有效数字前 0 的个数(含小数点前的 1 个 0). 780000 > 1 ∴ n = 6- 1 = 5 ∴ 780000 = 7.8×105 B.7.8×105 C.7.8×106 ) D.0.78×106
2 2
) D. 3B. Fra bibliotek3C.
3
1 ,6 这 5 个数中随机抽取一个数,抽到有 3 3 5 4 5
1 5
2 5
C.
D.
【答案】C 【解析】根据实数的概念可知,这 5 个数中有理数有:0,
1 ,6,无理数有 2 ,π,故设 3 3 5 个数中随机抽取一个数中抽到有理数的事件为 A,则抽到有理数的概率 P ( A) 5
n

D. 根据零次幂的概念知任何非零实数的零次幂均为 1 知: ( 2) 1 ,故 D 计算错误. 【考点分析】本题考察合并同类项、积的乘方、同底数幂的乘法、负整数次幂的运算以及零
0
次幂的概念,试题难度中等。 5. (2018 包头昆都仑区二模. 5) 一个几何体由几个大小相同的小正方体搭成, 其左视图和俯视图如图所示, 则搭成这个几何体的小正方体的个数是 ( A.3 【答案】B 【解析】解:由题中所给出的俯视图知,底层有 3 个小正方体;由左视图可知,第 2 层有 1 个小正方体.故则搭成这个几何体的小正方体的个数是 3 + 1 = 4 个. 【试题分析】本题考察三视图的灵活运用(俯视图与左视图结合考察),本题来源于 2016 年山东威海中考,试题难度简单。 6.(2018 包头昆都仑区二模. 6)下列说法正确的是( A.检测某批次灯泡的使用寿命,适宜用全面调查 B.可能性是 1% 的事件在一次试验中一定不会发生 C.数据 3,5,4,1,-2 的中位数是 4 D.“367 人中有 2 人同月同日出生” 为必然事件 【答案】D 【解析】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项 错误;B、可能性是 1% 的事件在一次试验中是随机事件,故可能发生,此选项错误;C、 数据 3,5,4,1,-2 共 5 个数,将其从大到小排列最中间的数是 3,则这组数据的中位数 是 3,此选项错误;D、“367 人中有 2 人同月同日出生”为必然事件,此选项正确; 【考点分析】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机 事件与必然事件,本题来源于 2017 湖南长沙中考,试题难度简单。 7.(2018 包头昆都仑区二模. 7)如图在△ABC 中,∠ABC 和∠ACB 的平 分线交于点 E,过点 E 作 MN∥BC 交 AB 于 M,交 AC 于 N,若△AMN 的周长为 18,BC = 6,则△ABC 的周长为( A. 21 【答案】C 【解析】解:∵ EB 平分∠ABC ∴ ∠EBC =∠BEM ∴ ∠ABE =∠EBC ∵ MN∥BC 同理可得 CN = EN B. 22 C. 24 ) D. 26 ) B.4 C.5 D.6 )
【考点分析】本题考查科学计数法的概念,难度简单 4.(2018 包头昆都仑区二模. 4)下列计算结果正确的是( A. 2a a 3a C. ( )
2 2 4

4
B. ( a ) a a D. ( 2) 1
0
2
2
1 2
2
4
【答案】C 【解析】解:A. 根据合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母 连同它的指数不变。字母不变,系数相加减可知, 2a a 3a ,故 A 计算错误; B. 根据积的乘方 ( ab) a b 和同底数幂的乘法 a a a
n n n m n mn 2 2 2
可知,
( a ) 2 a 2 (1) 2 a 2 a 2 a 2 2 a 4 ,故 B 计算错误;
C. 根据负整数次幂的计算公式 a
1 ( ) 2 2
1 1 1 ( a 0 )特别地: a ( a 0 )可知, n a a 1 1 1 1 1 4 (或 ( ) 2 [( ) 2 ]1 ( ) 1 4 ),故 C 计算正确; 1 1 2 2 4 ( ) 2 2 4
相关文档
最新文档