统计学-第七章 方差分析

合集下载

梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。

1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。

2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。

3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。

4. 单侧检验:备择假设符号为大于或小于时的假设检验。

5. 显著性水平:原假设为真时,拒绝原假设的概率。

6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。

二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。

1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。

1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。

1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。

1. 在任何情况下,假设检验中的两类错误都不可能同时降低。

( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。

第七章方差分析基础《卫生统计学》课件

第七章方差分析基础《卫生统计学》课件

方差分析简述方差分析也是统计检验的一种。

由英国著名统计学家:R.A.FISHER推导出来的,也叫F检验。

190240290340分组正常钙组中剂量钙(1.0%)高剂量钙(1.5%)1X 2X 3X X(2) 计算检验统计量可根据表7-5的公式来计算出离均差平方和、自由度、均方和F值。

从已知正态总体N(10,52)进行随机抽样,共抽取了k=10组样本,每组样本的样本含量n i=20,可算出各组的均数和标准差,得表7-7的结果。

如果采用t检验作两两比较,其比较次数为(1)10(101)45 222k k km⎛⎫--====⎪⎝⎭从理论上讲10个样本均来自同一正态总体N(10,52),应当无差异,但我们用两样本t检验时,已经规定犯第一类错误的概率不超过α=0.05,本次实验实际犯第一类错误的频率为5/45≈0.11,显然比所要控制的0.05要大。

因此不能直接用前面学过的两样本t检验对多样本均数作两两比较,而应采用专用的两两比较的方法。

(2) 计算检验统计量首先将三个样本均数由大到小排列,并编组次:, =11()2A B A B A B X X A BX X X X q S MS n n νν---==+误差误差(3) 确定值并作出推断结论自由度ν误差和对比组内包含组数a查附表4的q界值表得q界值,将算得的q值与相应q界值进行比较得各组的p值。

(3) 确定P值并作出推断结论自由度ν误差和实验组数 (不含对照组)查附表5.2的Dunnett –t(q, )界值表,得q,临界值,用计算得到的q,与临界值进行比较,得P值 。

(2) 计算检验统计量=11()A B A B A B X X A BX X X X t S MS n n νν---==+误差误差。

统计学之方差分析

统计学之方差分析
执行方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。

统计学中的方差分析方法

统计学中的方差分析方法

统计学中的方差分析方法统计学是现代社会中最重要的学科之一,它基于大量的数据和数学模型,研究人类社会和自然环境中各种现象和规律。

其中,方差分析是统计学中最基本的分析方法之一,它常常被用来分析各种因素对某个变量的影响。

在本文中,我们将详细介绍方差分析方法的基本原理和应用。

一、方差分析的基本原理方差分析是利用方差的性质分析多组数据之间的差异或相似性的方法。

它是以方差分解为基础的,通过对总方差、组间平方和和组内平方和的分解,来度量实验因素对实验变量的影响。

在具体的研究过程中,我们通常将所研究的因素分为不同的组别,并在每个组别中测量实验变量的值,随后运用方差分析方法来分析不同组别之间的差异。

在方差分析中,我们通常采用F检验法来判断差异的显著性。

通过计算F值并与临界值进行比较,得出数据是否符合研究假设的结果。

如果F值大于临界值,则说明差异是显著的,反之则说明差异不显著。

F检验法在实际应用中非常广泛,适用于大多数实验设计和数据类型。

二、方差分析的应用方差分析方法可以用于各种不同类型的数据分析,如一元方差分析、双因素方差分析、三因素方差分析等等。

下面我们将分别介绍它们的应用。

1. 一元方差分析一元方差分析是指只有一个自变量和一个因变量的分析方法,也就是说只有一个因素影响一个变量。

一元方差分析通常用于分析实验组与对照组之间的差异或者不同处理方式对实验结果的影响等。

例如,我们要研究不同肥料对作物产量的影响,我们可以将实验分成几组,每组采用不同的肥料,最后对产量进行测量。

接着通过方差分析法来比较每组之间产量的差异,最后确定哪种肥料更适合提高作物产量。

2. 双因素方差分析双因素方差分析是指有两个自变量和一个因变量的分析方法,也就是说有两个因素对一个变量产生影响。

双因素方差分析通常用于研究两种或多种因素的交互效应。

例如,我们要研究不同机器和不同操作员对产品质量的影响,我们可以先在不同机器上制造同种产品,然后再让不同的操作员进行操作。

统计学方差分析

统计学方差分析

统计学方差分析方差分析(Analysis of Variance,缩写为ANOVA)是一种常用的统计学方法,广泛应用于数据分析中。

它的主要目的是用于比较多个样本群体之间的均值是否存在显著差异。

通过方差分析,可以确定因素对于不同组之间的差异程度有无显著影响。

方差分析的基本原理是将数据进行分解,并据此计算各部分之间的均方差(mean square),然后通过比较这些均方差的比值,得出各部分对总体的贡献程度,并进行显著性检验。

在方差分析中,数据通常被分为几个不同的组别,每个组别称为一个因素(factor)。

每个因素可以有不同的水平(level),例如性别因素可以有男和女两个水平。

而一个水平下的所有观测值构成一个处理(treatment)或条件(condition)。

方差分析的基本模型是一种线性模型,假设因变量与自变量之间存在线性关系。

对于单因素方差分析,它的模型可以表示为:Y=μ+α+ε其中,Y表示因变量,μ表示总体的平均值,α表示组别之间的差异,ε表示组内误差。

方差分析的目标是判断组别之间的差异(α)与组内误差(ε)的比值是否显著。

方差分析的核心思想是通过计算均方差,评估不同因素水平之间的差异是否显著。

均方差是方差与其自由度的比值,用于度量数据的离散程度。

通过计算组间均方差(MSTr)和组内均方差(MSE),我们可以得出F值,进而进行显著性检验。

F值是组间均方差与组内均方差的比值F = (MSTr / dfTr) / (MSE / dfE)其中,dfTr表示组间自由度,dfE表示组内自由度。

在统计学中,F值与显著性水平相关。

当F值大于显著性水平对应的临界值时,我们可以拒绝原假设,认为组别之间存在显著差异。

否则,我们不能拒绝原假设,即组别之间的差异不显著。

方差分析不仅可以应用于单因素情况,还可以扩展到多因素情况。

多因素方差分析可以用于研究多个自变量对因变量的影响,并评估这些自变量之间是否存在交互作用。

第七章协方差分析

第七章协方差分析

相应的总体相关系数ρ 可用x与y的总体标
准差 x 、 y ,总体协方差COV(x,y)或 xy 表
示如下:
CO(Vx,y) xy xy xy
(10-4)
均积与均方具有相似的形式 , 也有相似的
性质。在方差分析中,一个变量的总平方和与
自由度可按变异来源进行剖分,从而求得相应
的均方。统计学已证明:两个变量的总乘积和
(covariance),记为COV(x,y)或 xy 。统 计学证明了,均积MPxy是总体协方差COV(x,y) 的无偏估计量,即 EMPxy= COV(x,y)。
于是,样本相关系数r可用均方MSx、MSy,
均积MPxy表示为:
r MPxy MSx MSy
(10-3)
上一张 下一张 主 页 退 出
在分析阶段控制混杂因素的方法:
1、采用分层分析:如把年龄分组,再比较 同一年龄组的正常体重与超重组有无差别。 (适用:计量、计数资料)
2、协方差分析(适用:计量资料)
3、多因素分析(适用:计量、计数资料)
协方差分析(analysis of covariance,ANCOVA)
将线性回归与方差分析结合起来,检 验两组或多组修正均数间有无差异的一种 统计方法,用于消除混杂因素对分析指标 的影响。
Yijuti eij
第i组第j个观 测值
一般均值
第i组的组效 应
随机误差
方差分析的前提是除随机误差外,水平变量是影响观测值的唯一变量
下面我们再看协方差分析数据结构(单因 素完全随机设计试验资料的协方差分析):
观测值=一般均值+水平影响+协变量影响+随机误差
Y ij u y tie (X ij u x )ij

统计学中的方差分析方法

统计学中的方差分析方法

统计学中的方差分析方法方差分析(Analysis of Variance,简称ANOVA)是统计学中常用的一种假设检验方法,用于比较两个或更多个样本均值是否存在差异。

它通过分析不同组之间的方差来评估组内和组间的变异情况,进而得出结论。

一、方差分析的基本思想方差分析基于以下两个基本假设:1. 原假设(H0):各总体均值相等,即样本所来自的总体没有差异;2. 备择假设(H1):各总体均值不相等,即至少存在一个样本来自于与其他样本不同的总体。

二、一元方差分析(One-way ANOVA)一元方差分析适用于只有一个自变量的情况,它将样本根据自变量分为两个或多个组,然后比较这些组之间的均值差异。

下面以一个简单的案例来说明一元方差分析。

假设我们要研究三种不同肥料对植物生长的影响,我们将随机选取三个试验区,分别施用A、B和C三种不同的肥料,每个试验区都观察到了相应植物的生长情况(例如植物的高度)。

我们的目标是通过方差分析来判断这些不同肥料是否对植物的生长有显著的影响。

在执行一元方差分析之前,我们首先需要验证方差齐性的假设。

如果各组样本的方差相等,我们就可以继续使用方差分析进行比较。

常用的方差齐性检验方法有Bartlett检验和Levene检验。

在通过方差齐性检验后,我们可以进行一元方差分析。

分析结果将提供两个重要的统计量:F值和P值。

F值表示组间均方与组内均方的比值,P值则表示了接受原假设的概率。

如果P值较小,则说明组间的差异是显著的,我们可以拒绝原假设,接受备择假设,即不同肥料对植物生长有显著影响。

三、多元方差分析(Two-way ANOVA)多元方差分析适用于有两个以上自变量的情况,分析对象的均值差异可以归因于两个或多个自变量的相互作用。

这种分析方法常用于研究两个或多个因素对实验结果的影响情况。

以品牌和价格对手机销量的影响为例,我们假设品牌和价格是两个自变量,手机销量是因变量。

我们可以将样本分成不同的组合,比如将不同品牌的手机按不同的价格段进行分类。

统计学-方法、数据与R的应用 第7章 方差分析

统计学-方法、数据与R的应用 第7章 方差分析
统计学
——方法、数据与R的应用
第7章 方差分析
上课之前的话
t检验用于检验两个独立正态总体均值是否相 等。例如,检验对照组和处理组之间是否存在 差异 当要同时检验多个总体的均值是否存在差异时 ,此时就不能用t检验了,而需要使用方差分 析(Analysis of Variance,简称ANOVA)
基本引概言念
基本引概言念
做一些假定把所研究的问题归结为一个统计问题 ,然后用方差分析方法进行分析
• 一般情况下,把年龄分组这样的离散型变量称为因素或因子(factor) ,记为A。因素的取值称为水平(level)或处理(treatment)。这里, 因素就是变量,水平就是该变量的取值,这些名词是分类或属性变量 所特有的。对于本例,三个年龄段称为因素A的水平,分别记为A1, A2,A3。xij表示第i组的第j个职工的保险消费额,其中i=1,2,3; j=1,2,…,12
方差分析是英国统计学家费歇尔(R.A.Fisher) 在20世纪20年代提出并逐渐发展起来的一种在 实践中广泛运用的统计方法
• 形式上,方差分析是比较多个总体的均值是否相等 • 本质上,它所研究的是分类型自变量对数量型因变量
的影响,这使得它与后面介绍的回归分析关系密切, 但又不完全相同
基本引概言念
通过总离差平方和分解公式,我们发现若SSB明显大于SSW ,说明各总体(或各水平)之间的差异显著大于抽样误差, 那么零假设可能并不成立
SSB/SSW的比值大到什么程度,可以否定零假设呢?由于 SSB的自由度为r-1,而SSW的自由度为N-r,其中r是组数,
r
N是所有的观测数,即 N ni
i 1
7.1.1 基本思想
i1 j 1
7.1.1 基本思想

统计学期末复习选择练习题(分章节)——第七章

统计学期末复习选择练习题(分章节)——第七章

应用统计单项选择题-第07章-方差分析1.单选题:关于方差分析中的SSA和SSE,正确的说法是()。

A. SSA和SSE反映了随机因素带来的影响B. SSA和SSE反映了系统因素带来的影响C. SSA所表现的是组间差异既包括随机因素,也包括系统因素D. SSE所表现的是组内差异既包括随机因素,也包括系统因素解答: C2.单选题:利用“方差分析表”进行方差分析时,该表不包括的项目有()。

A. 方差来源B. 离差平方和及其分解C. 各离差平方和的自由度D. 原假设的统计判断解答: D3.单选题:下面不属于单因素方差分析中所需的平方和是()。

A. SSTB. SSAC. SSED. SSR解答: D4.单选题:与假设检验相比,方差分析方法可以使犯第I类错误的概率()。

A. 提高B. 降低C. 等于0D. 等于1解答: B5.单选题:方差分析中,错误说法是()。

A. 如果方差分析只针对一个因素进行,称为单因素方差分析B. 如果同时针对多个因素进行,称为多因素方差分C. 方差分析就是通过不同方差的比较,作出接受原假设或拒绝原假设的判断D. 方差分析不可以对若干平均值是否相等同时进行检验解答: D6.单选题:以下对方差分析叙述不正确的是()。

A. 方差分析可以对若干平均值是否相等同时进行检验B. 进行方差分析要求各水平下的样本容量相同C. 离差平方和能分解为组内方差与组间方差的和D. 方差分析方法在社会科学领域也大有用武之地解答: B7.单选题:下列式子错误的是()。

A. F=MSE/MSAB. MSA=SSA/(r-1)C. MSE=SSE/(n-r)D. SST=SSE+SSA解答: A8.单选题:方差分析所研究的是()。

A. 分类型自变量对分类型因变量的影响B. 分类型自变量对数值型自变量的影响C. 分类型因变量对数值型自变量的影响D. 分类型自变量对数值型因变量的影响解答: D9.单选题:若方差分析中,所提出的原假设是H0:μ1=μ2=…=μk,备择假设是()。

高级统计学:第七章方差分析

高级统计学:第七章方差分析

第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。

一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。

饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。

这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。

现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。

新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。

A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。

可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。

二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。

如,颜色水平:将因素中不同的现象称为水平。

(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。

多因素方差分析:同时针对多个因素进行分析。

观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。

方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。

如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。

如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。

对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。

统计学中的方差分析

统计学中的方差分析

统计学中的方差分析在统计学中,方差分析(Analysis of Variance,简称ANOVA)是一种常用的数据分析方法,用于比较两个或更多个样本均值之间的差异。

它可以帮助研究人员确定这些差异是否是由于随机变异导致的,或者是否存在其他因素对样本均值产生显著影响。

方差分析的基本理念是将总体方差分解为不同来源的方差,以评估各个因素对总体方差的影响程度。

一般情况下,将总体方差分解为组内方差和组间方差两部分。

组内方差反映了同一组内个体之间的差异程度,而组间方差则反映了不同组之间的差异程度。

方差分析的数学模型可以通过以下公式表示:$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$其中,$Y_{ij}$表示第i组中第j个个体的观测值,$\mu$为总体均值,$\alpha_i$为第i组的固定效应,$\epsilon_{ij}$为误差项。

通过方差分析可以检验组间因素($\alpha_i$)对于总体均值是否具有显著影响。

在进行方差分析之前,需要满足以下几个前提条件:1. 独立性:样本观测值彼此之间应独立,即每个观测值的产生不会受到其他观测值的影响。

2. 正态性:每个组内的观测值应呈正态分布,这样才能保证方差分析的结果准确性。

3. 方差齐性:每个组内的观测值应具有相同的方差,即不同组之间的方差应该相等。

方差分析有两种常见的类型:单因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量(或因素)的情况下,用于比较不同水平(或处理)之间的均值差异。

例如,一个研究人员想要比较不同药物治疗方法对疾病恢复时间的影响,可以使用单因素方差分析。

多因素方差分析适用于具有两个或更多个自变量(或因素)的情况。

它可以帮助研究人员分析多个因素之间的相互作用效应。

例如,一个研究人员想了解不同年龄、性别和教育程度对于工资水平的影响,可以使用多因素方差分析。

方差分析的结果可以通过计算统计量F值来判断不同因素对于总体均值的显著影响。

生物统计学7-方差分析5-ok

生物统计学7-方差分析5-ok
为了进一步弄清究竟在哪些处理之间差异显 著,还应在各处理平均数之间一对一对地做 比 较 。 这 就 是 多 重 比 较 ( multiple comparison)。
一、多重比较的方法
1.最小显著差数法(Least Significant Difference , LSD法)
实质是两个平均数相比较的成组数据t检验,方法如下:
有时候固定因素与随机因素很难区分,除上述所讲的 原则外,还可以从另一个角度考虑: 固定因素是指因素的水平可以严格地人为控制,
在水平固定之后,它的效应值也是固定的。 随机因素的水平是不能严格地人为控制,在水平
确定之后,它的效应值并不固定。
五、平方和与自由度的分解
由于方差 = 平方和 / 自由度,表示变异的程度。
因为
所以
SST
SSA
SSe
an
SSe
( xij xi )2 ;
i1 j1
dfe a(n 1)
SSe是样本观测值与处理平均数的离差平方和,即反映处理 内变异(即误差引起的变异)的平方和,称为误差平方和、 处理内平方和、组内平方和;
误差项自由度:每一处理均有n-1个自由度,共有α个处理。
a
另一种是检验几个样本平均数的方差是否足够大。
如果样本平均数的方差足够大,远大于由随机误差所产生的方差,说明这几 个样本平均数之间的离散程度很高,除了误差效应外,必然还存在不同的处 理效应。我们可以推断抽出这几个样本的总体属于不同的总体,总体平均数 是不同的。
方差分析的基本思想是分析变异,也就是分解变异。 即:将数据总的变异分解为处理因素引起的变异和随
2.最小显著极差法(Least Significant ranges, LSR法)
是比较α个处理平均数的有序排列中两极端平均数间的差异 显著性。检验步骤如下:

心理统计学基础讲义 第七章 方差分析、统计效力

心理统计学基础讲义 第七章 方差分析、统计效力

第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。

将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。

生物统计学-单因素方差分析PPT课件

生物统计学-单因素方差分析PPT课件
Analysis of Variance (ANOVA )
由英国统计学家R.A.Fisher首创,
为纪念Fisher,以 F 命名,故方 差分析又称 F 检验 (F test)。
用于推断多个总体均数有无差异
精选ppt
5
一. 方差分析的基础 二. 完全随机设计的单因素方差分析 三. 多个样本均数间的多重比较 四.方差分析的假定条件
a
SS组间
ni (Yi Y )2
i 1
v组间 a 1
精选ppt
11
组内变异(variation within groups): 各组均数Yij与其所在组的均数的变异程度 包含了:随机误差
SS 组内
a
n
(Yij
Yi ) 2
i 1 j 1
v组内 N a
v组内 ( ni 1) i
精选ppt

Yi.

Y..
因素也称为处理(treatment) 因素(factor),每一处理因素至少有两个水
平(level)(精也选p称pt “处理组”, a个处理组),各重复n次。
7
1. 方差分析的基本思想
所有测量值上的总变异按照其变异的来源分解为多个 部份,然后进行比较,评价由某种因素所引起的变异 是否具有统计学意义。
为3组不同喂养方式下大白鼠体重改变的总体平均水平不全
精选相ppt同。
21
三.平均值之间的多重比较
不拒绝H0,表示拒绝总体均数相等的证据不足
分析终止
拒绝H0,接受H1, 表示总体均数不全相等
哪两两均数之间相等? 哪两两均数之间不等?
需要进一步作多重比较。
精选ppt
22
H0: μi= μj H1: μi ≠ μj 事先指定的两个组(i,j)进行比较: 一类错误的概率为: 比较性错误率 (comparison-wise error rate, CER)

统计学——方差分析概念和方法

统计学——方差分析概念和方法

统计学——方差分析概念和方法方差分析是一种用于比较两个或多个样本均值之间差异的统计分析方法。

它主要用于分析一个因变量和一个或多个自变量之间的关系,并判断这些自变量对因变量的影响是否存在显著差异。

方差分析主要包括以下几个概念和方法:1.因变量和自变量:方差分析中,我们首先需要明确研究的因变量和自变量。

因变量是我们感兴趣的变量,我们想要比较的两个或多个样本均值;而自变量是我们认为对因变量有影响的变量,可以是类别变量(如性别、教育程度等)或连续变量(如年龄、收入等)。

2.假设检验:在进行方差分析之前,我们需要假设样本均值之间没有显著差异,即为零假设(H0)。

然后,我们通过方差分析来检验零假设是否成立。

3.方差分析的类型:根据自变量的个数和类型的不同,方差分析可以分为单因素方差分析、多因素方差分析和混合方差分析。

单因素方差分析适用于只有一个自变量的情况,多因素方差分析适用于含有多个自变量的情况,而混合方差分析适用于自变量同时包含类别变量和连续变量的情况。

4.方差分析表:方差分析表是用来总结方差分析结果的常用工具。

在方差分析表中,我们可以看到组间方差(组间均方)、组内方差(组内均方)、总体方差(总体均方)以及统计量F值。

通过比较F值与给定的显著性水平,我们可以判断不同样本均值之间是否存在显著差异。

5.假设检验的步骤:进行方差分析时,需要按照以下几个步骤进行假设检验:a.建立假设:H0(样本均值没有显著差异)和H1(至少有一组样本的均值存在显著差异);b.计算各个组的均值;c.计算组间方差和组内方差;d.计算统计量F值;e.判断结果:通过比较F值和临界值来判断是否拒绝零假设。

6. 方差分析的扩展:在方差分析中,我们可以进行一些扩展的分析,如多重比较和建模。

多重比较是用来判断哪些组之间存在显著差异,常用的方法有Tukey法、Duncan法和Scheffe法等。

建模则是通过增加其他变量(如交互效应)来更好地解释因变量的变化。

统计学中的方差分析与假设检验

统计学中的方差分析与假设检验

统计学中的方差分析与假设检验方差分析(Analysis of Variance,简称ANOVA)是统计学中一种常用的假设检验方法,用于比较两个或多个样本的均值是否存在显著差异。

方差分析通过对不同组之间的方差进行比较,判断样本均值是否有统计学上的差异。

本文将介绍方差分析的基本原理和假设检验的步骤。

一、方差分析的基本原理方差分析是一种多个总体均值比较的方法,它通过计算组间离散度与组内离散度的比值来判断样本均值是否有显著差异。

方差分析的基本原理可以用以下公式表示:$$F=\frac{MS_{\text{between}}}{MS_{\text{within}}}$$其中,F为方差比值,$MS_{\text{between}}$为组间均方,$MS_{\text{within}}$为组内均方。

方差比值F的值越大,说明组间差异相对于组内差异的贡献越大,即样本均值之间的差异越显著。

通过查找F分布表,可以确定F值对应的显著性水平,从而判断样本均值是否有显著差异。

二、假设检验的步骤方差分析的假设检验可以分为以下几个步骤:1. 建立假设- 零假设(H0):各组样本的均值相等,即$\mu_1=\mu_2=...=\mu_k$- 备择假设(H1):至少有两个组样本的均值不相等,即$\mu_i\neq\mu_j$2. 计算组间均方- 组间均方$MS_{\text{between}}$的计算公式为:$MS_{\text{between}}=\frac{SS_{\text{between}}}{df_{\text{between}}}$ - 其中,$SS_{\text{between}}$为组间平方和,$df_{\text{between}}$为组间自由度。

3. 计算组内均方- 组内均方$MS_{\text{within}}$的计算公式为:$MS_{\text{within}}=\frac{SS_{\text{within}}}{df_{\text{within}}}$ - 其中,$SS_{\text{within}}$为组内平方和,$df_{\text{within}}$为组内自由度。

07t检验--方差分析(医学统计学)

07t检验--方差分析(医学统计学)
? 0
• 例1(P60例7-1) 以往通过大规模调查已知某地新生 儿出生体重为3.30kg.从该地难产儿中随机抽取35 名新生儿作为研究样本,平均出生体重为3.42kg,标 准差为0.40kg,问该地难产儿出生体重是否与一般 新生儿体重不同?
例题里涉及两个总体:
• 一般新生儿出生体重(已知总体,µ0=3.30kg) • 该地难产儿出生体重(未知总体,µ未知) • 3.42 >3.30既可能是抽样误差所致,或本质上不同
(n1
1)S12
(n2
1)S
2 2
n1 n2 2
若n1=n2时:
S X1X 2
S2 S2 X1 X2
S12
n1
S
2 2
n2
例3 测得14名慢性支气管炎病人与11名健
康人的尿中17酮类固醇(mol/24h)排出量 如下,试比较两组人的尿中17酮类固醇的 排出量有无不同。
• 原始调查数据如下:
t | 1.33 | 0.58 7.91 12
• (3)确定P值,作出推断结论 自由度=n-1=12-1=11,查附表2,t界值表,得
单侧t0.05,11=1.796,t=0.58<t0.05,11=1.796,故P > 0.05。 按α=0.05水准,不拒绝H0, 差异无统计学意义。
• 结论:故尚不能认为该减肥药有减肥效果。
t ' 10.38 6.62 2.0639 6.322 2.162 14 16
v 15.6447 16,
查 t 界 值 表 , t t0 . 0 5 / 2=(21.61)1 9 。 P > , 不 拒 绝 H0, 尚 不 能 认 为 两 种 药 的 疗 效 不 等 。
三、t检验与Z检验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Excel的应用
1.列出数据结构表; 2.工具-数据分析-单因素方差分 析-确定; 3.填写对话框;确定。
三、关系强度的测量
拒绝原假设表明因素(自变量)与观测值之间有关

自变量与因变量的关系强度如何测定?
变量间关系的强度用组间平方和 (SSA) 占总平方
和(SST)的比例大小记为R2来反映,即
分析步骤
1.提出假设 需要针对行因素和列因素分别提出假设 行因素 • H0:u1=u2=u3=,……,=un • 行因素对因变量没有显著影响 • H1:u1、u2、u3、……un不全相等 行因素对因变量有显著影响
列因素 • H0:u1=u2=u3=,……,=un • 列因素对因变量没有显著影响 • H1:u1、u2、u3、……un不全相等 列因素对因变量有显著影响
方差分析的有关术语
1.因素或因子 所要检验的对象称为因素或因子。 上例中,要分析品牌对销售额是否有影响,“品牌” 是所要检验的对象——因素或因子。 2.水平或处理 因素的不同表现称为水平或处理。
品牌A 、品牌B 、品牌 C 、品牌D 是“品牌”这一因素的具 体表现,称为水平或处理。本例有四个水平。
不同品牌空调的销售额数据
品牌 观测值 1 2 3 4 5 6 平均 品牌A 365 340 350 343 323 400 353.5 品牌B 345 330 363 368 340 349.2 品牌C 358 300 323 353 300 326.8 品牌D 288 290 280 270 280 281.6
1 2 3 4 5 6 平均
品牌A
365 340 350 343 323 400 353.5
品牌B
345 330 363 368 340 349.2
品牌C
358 300 323 353 300 326.8
• • • •
要分析品牌对空调的销售额是否有显著差异,可以判断4 种品牌销售额的均值是否相等。 若它们的均值相等,就意味着不同品牌空调销售额无差 异,即“品牌”对“销售额”没有显著影响; 若均值不全相等,则意味着“品牌”对“销售额”有显 著影响。 但是这还不能提供充分的证据,因为平均销售额是根据 随机样本的数值计算的,均值的差异可能是由于抽样随 机性造成的。因此,需要有更准确的方法来检验这种差 异是否是显著,就需要进行方差分析。
MSA MST
• 行因素的检验统计量 :
i 1 j 1
k
ni


2
三个平方和的关系

SST =SSA+SSE

总平方和=组间平方和+组内误差平方和
方差MS
各误差平方和的大小与观察值的多少有关,为 消除观察值多少对误差平方和大小的影响,需 要将其平均,这就是均方,也称为方差 计算方法是用误差平方和除以相应的自由度 三个平方和对应的自由度分别是
双因素方差分析:
涉及两个分类型自变量对数值型因变量的影响
【例7-1】某市场调查公司为了研究品牌对空调销售额的影 响,对四个品牌空调的销售情况进行了调查,结果如下表。 试分析品牌对空调的销售额是否有显著影响。
不同品牌空调的销售额数据
品牌
万元 品牌D
288 290 280 270 280 281.6
观测值
2.构造并计算检验统计量
• • • • SSR:行因素误差平方和 SSC:列因素误差平方和 SSE:随机因素误差平方和 SST:总因素误差平方和 SST=SSR+SSC+SSE
计算方差
平方和 自由度 方差
行因素
列因素 随机因素 总和
SSR
-1)
MSE
R2 SSA(组间平方和) SST (总平方和)
它反映了自变量对因变量的影响效应占总影响
效应的比例。如例7-2的计算结果为:
SSA 16914 .45 R 70 .70 % SST 23922 .95
2
表明品牌(自变量)对销售额(因变量)的影
响效应占总效应的70.70%,而残差效应则占 29.30%。
三、方差分析的基本假定
1.观测值是来自于服从正态分布总体的随 机样本 2.各总体的方差相同。 3.各总体相互独立。
四、方差分析的基本步骤
• 第一步:提出假设 • 第二步:构造检验统计量F • 第三步:查表得Fα,进行统计决策(右侧 检验)
• 若F>F,则拒绝原假设 • 若F<F,则不能拒绝原假设
• 因素之间产生交互作用,两个因素的组合产 生了新的效应 。 如某个地区对某种品牌的 空调具有特殊偏好
• 二、无交互作用的双因素方差分析
数据结构
列因素B( j ) B1 行 因 素 A (i) A1 A2 … Ak x11 x21 … xk1 B2 x12 x22 … xk2 … … … … … Br x1r x2r … xkr
349.2 326.8 281.6
方差
705.9
253.7 777.7 62.8
6
5 5 5
误差平方和、方差、检验统计量
差异源 组间 组内 SS 16899.7 7906.3 df 3 17 MS 5633.233 465.0765 F 12.11249 P-value 0.000174 F crit 3.196777
显著的,所检验的因素对观察值有显著影响 若F<F ,则不拒绝H0 ,不能认为所检验的因 素对观察值有显著影响
F分布与拒绝域
如果均值相等, F=MSA/MSE1
不拒绝H0 0
拒绝H0

F
F(k-1,n-k) F 分布
例题分析
【例7-2】根据下表调查数据,试分析品牌对空调的销售额 是否有显著影响(显著性水平α=0.05)。

两个误差的比值
1. 若品牌对空调销售额没有影响,则组间误差中
2. 若品牌对空调销售额有影响,在组间误差中除 3. 当这个比值大到某种程度时,就可以说不同水
平之间存在着显著差异,也就是自变量对因变 量有影响。 了包含随机误差外,还会包含有系统误差,这 时它们之间的比值就会大于1; 只包含随机误差,没有系统误差。这时,组间 误差与组内误差的比值就会接近1;
不同品牌空调的销售额数据
品牌
万元 品牌D
288 290 280 270 280 281.6
观测值
1 2 3 4 5 6 平均
品牌A
365 340 350 343 323 400 353.5
品牌B
345 330 363 368 340 349.2
品牌C
358 300 323 353 300 326.8
• 也可以用R2的平方根R测量自变量和因 变量之间的关系强度,其值介于0和1之 间,其绝对值越接近于1,说明关系强度 越高。 • 根据上面的结果,可以计算出品牌与销 售额之间的关系强度为0.84,这表明品 牌(自变量)与销售额)(因变量)关 系强度较高。
• 第三节 双因素方差分析
一、双因素方差分析及其类型
• 方差分析中涉及两个分类型自变量时, 称为双因素方差分析。
• 例如,在分析空调销售额的影响因素时, 除了品牌因素之外,还需考虑地区、价 格、质量等因素。
方差分析
单因素方差分析 双因素方差分析
无交互作用
有交互作用
• 1.无交互作用的双因素分析(无重复双 因素分析)
• 因素间的影响是相互独立的
• 2.有交互作用的双因素分析(可重复双 因素方差分析)
自变量对因变量有显著影响
注意:备择假设并不意味着所有的均值都不相等
2.构造并计算检验统计量
• 均值:各水平的均值、全部观察值的均值 • 组内误差平方和:SSE ( xij xi )2
i 1 j 1
K
k
ni
• 组间误差平方和:SSA ni
I 1
x x
i
• 总误差平方和: SST xij x
万元
1.提出假设:
• 原假设H0: μ1=μ2=μ3=μ4
• 品牌对空调销售额没有显著影响 • 品牌对空调销售额有显著影响
• 备择假设H1: μ1、μ2、μ3、μ4不完全相等
2.计算检验统计量
各水平的均值与方差 观测数
品牌A
品牌B 品牌C 品牌D
求和
2121
1746 1634 1408
平均
353.5

SST 的自由度为n-1,n为全部观察值的个数
SSA的自由度为k-1,k为因素水平(总体)的个数 SSE 的自由度为n-k
平方和
组内(误差项) 组间(水平) 总 SSE SSA SST
自由度
n-K K-1 n-1
方差
MSE MSA MST
将MSA和MSE进行对比,即得到检验统计量
MSA F ~ F (k 1, n k ) MSE
3.观测值 每个水平下的样本数据称为观测值。
本例不品牌的销售额就是观测值 。
4.总体 因素的每一个水平可以看做是一个总体。
如品牌A、品牌B等。
5.样本数据 调查得到的数据可以看做从总体中抽取的样本 数据。
本例各品牌的销售额即为样本数据。
• 二、方差分析的基本思想和原理
【例7-1】某市场调查公司为了研究品牌对空调销售额的影 响,对四个品牌空调的销售情况进行了调查,结果如下表。 试分析品牌对空调的销售额是否有显著影响。
从上表中可以看出,各品牌的平均销售 额不同,但这还不能提供充分的证据证 明品牌对销售额有显著的影响,因为这 种差异也可能是由于抽样的随机性所造 成的。 在判断均值之间是否有差异时需借助于 反映变异程度的指标 —— 方差,所以叫 方差分析。
这个名字也表示:它是通过对数据误差来源的 分析,来判断不同总体的均值是否相等。因此, 进行方差分析时,需要考察数据误差的来源。
相关文档
最新文档