统计学之方差分析共39页
合集下载
第5章方差分析
5.1.4 方差分析中的基本假定
(基本前提:独立、同分布、同方差)
一、因素中的k个水平相当于r个正态总体。 每个水平下的n个观察数据(试验结果)相当 于从正态总体中抽取的容量为n的随机样本。 (同分布) 二、r个正态总体的方差是相同。 即:σ12=σ22…….=σr2=σ2 (同方差) 三、从不同的正态总体中抽取的各个随机样 本是相互独立的。(独立)
SSE
j1 i1
r
nj
xijxj
(续前)
方差分析的优点之二:增加了稳定性 由于方差分析将所有的样本资料结合在一起, 故而增加了分析结论的稳定性。 例如:30个样本,每一个样本中包括10个观 察单位(n=10)。如果采用t检验法,则在两 两检验中,一次只能研究2个样本和20个观察 单位,而在方差分析中,则可以把30个样本 和300个样本观察单位同时放在一起、结合进 行研究。 所以,方差分析是一种实用、有效的分析方 法。
r
2
j1 i r
xij xj 2 x
j1 i1 2 r
nj
ij
xj
x
2
j
x
j1 i1
r
nj
x j x
2
j1 i1
nj
xij xj xj x SSE SSA
nj
j1 i1
2、随机误差项离差平方和(SSE)的计算 SSE反映的是水平内部或组内观察值的离散状 况。它实质上反映了除所考察因素以外的其 他随机因素的影响,反映样本数据( x i j ) 与水平均值 ( x j )之间的差异,故而称之 为随机误差项离差平方和或组内误差。计算 公式如下:
统计学课件 方差分析
总离差平方和 (Sum of Square for Total ) 误差项离差平方和 (Sum of Square for Error ) 水平项离差平方和
(Sum of Square for Facoor A )
简称SST,反映离差平方 和的总体情况. 简称SSE,反映水平内部 (组内)的离散情况. 简称SSA,反映水平间( 组间)的差异情况.
处是,由于进行分析时是将所有的样本资料结合
在一起,因而增加了稳定性。
一、方差分析的内容
方差分析是对多个总体均值是否相等这一假设进行检验。
在方差分析中,常用术语有: 1、因素(因子) : 是一个独立的变量,也是方差分析研究的对象。针对一个因 素进行分析称为单因素方差分析,针对多个因素进行分析称为 多因素方差分析。
Ì « Â É 30.8 29.6 32.4 31.7 32.8
请问饮料的颜色是否对销售量产生影响 ? (α =0.05)
第一节
方差分析的基本内容
方差分析(Analysis of Variance,简
称ANOVA)能够解决多个均值是否相等的检验 问题。指对数据变动的来源进行分解和检验的方 法和过程。 节省时间是这种方法明显的优点,它的另一个好
F检验及判断 检验规则: F>Fα 则拒绝原假设,接受备择假设 F<Fα 则接受原假设,拒绝备择假设
为了将方差分析表现得更清楚,将计算结果 列成方差分析表如下:
方差分析表
方差来源 离差平方和 自由度 平均平方 组 间 组 内 总差异 SSA SSE SST K-1 n-K n-1 MSA MSE F值 MSA/MSE
①提出假设
②计算水平均值
¬ Ð ³ Ê 1 2 3 4 5 Ã û Ï Ú å Ò ¬ Ð Ä ú Û é ö ¸ Ò Á Ô Î ¼ ³ Ê µ Ï Ê Ç ¿ Þ « Î É Û « ·É Ù Æ « é » É 26.5 31.2 27.9 28.7 28.3 25.1 25.1 30.8 28.5 29.1 27.9 24.2 27.2 29.6 26.5 Ì « Â É 30.8 29.6 32.4 31.7 32.8
(Sum of Square for Facoor A )
简称SST,反映离差平方 和的总体情况. 简称SSE,反映水平内部 (组内)的离散情况. 简称SSA,反映水平间( 组间)的差异情况.
处是,由于进行分析时是将所有的样本资料结合
在一起,因而增加了稳定性。
一、方差分析的内容
方差分析是对多个总体均值是否相等这一假设进行检验。
在方差分析中,常用术语有: 1、因素(因子) : 是一个独立的变量,也是方差分析研究的对象。针对一个因 素进行分析称为单因素方差分析,针对多个因素进行分析称为 多因素方差分析。
Ì « Â É 30.8 29.6 32.4 31.7 32.8
请问饮料的颜色是否对销售量产生影响 ? (α =0.05)
第一节
方差分析的基本内容
方差分析(Analysis of Variance,简
称ANOVA)能够解决多个均值是否相等的检验 问题。指对数据变动的来源进行分解和检验的方 法和过程。 节省时间是这种方法明显的优点,它的另一个好
F检验及判断 检验规则: F>Fα 则拒绝原假设,接受备择假设 F<Fα 则接受原假设,拒绝备择假设
为了将方差分析表现得更清楚,将计算结果 列成方差分析表如下:
方差分析表
方差来源 离差平方和 自由度 平均平方 组 间 组 内 总差异 SSA SSE SST K-1 n-K n-1 MSA MSE F值 MSA/MSE
①提出假设
②计算水平均值
¬ Ð ³ Ê 1 2 3 4 5 Ã û Ï Ú å Ò ¬ Ð Ä ú Û é ö ¸ Ò Á Ô Î ¼ ³ Ê µ Ï Ê Ç ¿ Þ « Î É Û « ·É Ù Æ « é » É 26.5 31.2 27.9 28.7 28.3 25.1 25.1 30.8 28.5 29.1 27.9 24.2 27.2 29.6 26.5 Ì « Â É 30.8 29.6 32.4 31.7 32.8
统计学之方差分析
执行方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。
统计学-方差分析
SST n-1
第5章 方差分析 5.4 有交互作用的双因素方差分析
[例]研究人员从某省十五期间结项的自然科学基金 项目中随机抽取部分项目进行绩效评估。采用设 计的综合评价体系,获得有关项目的“相对绩效 分值”(满分为100分)。研究人员认为,学校 类型、项目类型等有可能会影响到科研项目绩效, 请你在5%的显著水平下分析这两个因素对科研项 目绩效的影响。
MSA SSA k 1
(2)SSE的均方MSE : MSE SSE
nk
第5章 方差分析 5.2 单因素方差分析
5.2.2 分析步骤
5.计算F检验统计量
F MSA ~ F(k 1, n k) MSE
第5章 方差分析 5.2 单因素方差分析
5.2.2 分析步骤
6.统计判断 在计算出F检验统计量的具体数值之后,将F检验统计值与 给定的显著性水平的F分布临界数值相比较,作出接受还 是拒绝原假设的统计判断。若F检验统计值落在由F分布临 界数值界定的接受域内,则接受原假设;反之,便拒绝原 假设。
第5章 方差分析 5.3 无交互作用的双因素方差分析
误差 来源
行因素
无交互作用的双因素方差分析表
误差 自由度 均方 F统 F临 P值(Sig)
平方和
差 计量 界值
SSR
k-1 MSR FR
列因素 SSC
r-1 MSC FC
随机误差 SSE (k-1)(r-1) MSE
总和 SST kr-1
第5章 方差分析 5.3 无交互作用的双因素方差分析
第5章 方差分析 5.2 单因素方差分析
[例]试对下表数据进行方差分析,回答三种不同包装方式对 “酷酷爽”销售量的差异是否显著。
产品包装 类型
123
第5章 方差分析 5.4 有交互作用的双因素方差分析
[例]研究人员从某省十五期间结项的自然科学基金 项目中随机抽取部分项目进行绩效评估。采用设 计的综合评价体系,获得有关项目的“相对绩效 分值”(满分为100分)。研究人员认为,学校 类型、项目类型等有可能会影响到科研项目绩效, 请你在5%的显著水平下分析这两个因素对科研项 目绩效的影响。
MSA SSA k 1
(2)SSE的均方MSE : MSE SSE
nk
第5章 方差分析 5.2 单因素方差分析
5.2.2 分析步骤
5.计算F检验统计量
F MSA ~ F(k 1, n k) MSE
第5章 方差分析 5.2 单因素方差分析
5.2.2 分析步骤
6.统计判断 在计算出F检验统计量的具体数值之后,将F检验统计值与 给定的显著性水平的F分布临界数值相比较,作出接受还 是拒绝原假设的统计判断。若F检验统计值落在由F分布临 界数值界定的接受域内,则接受原假设;反之,便拒绝原 假设。
第5章 方差分析 5.3 无交互作用的双因素方差分析
误差 来源
行因素
无交互作用的双因素方差分析表
误差 自由度 均方 F统 F临 P值(Sig)
平方和
差 计量 界值
SSR
k-1 MSR FR
列因素 SSC
r-1 MSC FC
随机误差 SSE (k-1)(r-1) MSE
总和 SST kr-1
第5章 方差分析 5.3 无交互作用的双因素方差分析
第5章 方差分析 5.2 单因素方差分析
[例]试对下表数据进行方差分析,回答三种不同包装方式对 “酷酷爽”销售量的差异是否显著。
产品包装 类型
123
医学统计学(课件)方差分析
要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。
方差分析(共66张PPT)
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员的 体重指数总体均数相等
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等分成三组, 分别为正常对照组、肾缺血60分组和肾缺血60分再灌注组,测得 各个体的NO数据见数据文件,试问各组的NO平均水平是否相同?
单因素方差分析
分析:
对于单因素方差分析,其资料在SPSS中的数据结构应当由两 列数据构成,其中一列是观察指标的变量值,另一列是用以表 示分组变量。实际上,几乎所有的统计分析软件,包括SAS, STATA等,都要求方差分析采用这种数据输入形式,这一点也暗 示了方差分析与线性模型间千丝万缕的联系。
H1:三个总体均数不等或不全相等
(2)计算检验统计量F值
变异来源
SS 自由度(df)
MS
F
组间 组内 总变异
143.406 363.86 507.36
2
71.703
8.87
45
8.09
47
(3)确定p值,作出统计推断
,本次F值处于F界值之外,说明组间均方组内 均方比值属于小概率事件,因此拒绝H0,接受 H1,三个总体均数不等或不全相等
分凝血活酶时间有无不同?
方差分析步骤 :
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=
方差分析(二):双向方差分析39页PPT
每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
方差分析(二):双向方差分 析
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
方差分析(二):双向方差分 析
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
第6章spss方差分析(共39张PPT)
“Separate Lines”框中。
因sp为he当ric一ity个)I因n,变c否l量则u被应d重校e复正i测n。量te几r次c,ep从t而i同n一m个体o的d几e次l 观-在察结模果间型存在中相关包,这括样就截不满距足独。立若性的能要求确,但定要求回满足协方差矩阵的球形性( 归线不通过原点,则不选此项。 01,说明模型有统计学意义。
控制因素,可多 个
随机因素,不是 必需
协变量-用于去除该变量对因变量 的影响 ,协方差分析用
5
异方差时,将选入变量用加权最小二乘 法估计模型参数,协方差分析用
【Model按钮】:
Full factorial 全模型,包括所有因素的主效应、交互效应、协变 量主效应等。是系统默认的模型。
Custom 自定义模型。用户可以选择实验中感兴趣的效应 。
6
Factors&covariate-框中所列出的是主对话框中所选的因素:包 括固定因素(标F)、随机因素(标R)、协变量因素(标C) 。本例中只含有固定因素。
Build terms:针对所选因素选择不同的效应。 Interaction 指定任意的交互效应; Main effects 指定主效应; All 2-way 指定所有2维交互效应; All 3-way 指定所有3维交互效应; All 4-way 指定所有4维交互效应 All 5-way 指定所有5维交互效应。
Error 误差。其偏差平方和反应的是组内差异。也称组内偏差平方 和。
Total 是偏差平方和,在数值上等于截距+主效应+交互效应+误差
偏差平方和。 Corrected Total 校正总和。其偏差平方和等于校正模型与误差之偏 差平方和之总和。
22
因sp为he当ric一ity个)I因n,变c否l量则u被应d重校e复正i测n。量te几r次c,ep从t而i同n一m个体o的d几e次l 观-在察结模果间型存在中相关包,这括样就截不满距足独。立若性的能要求确,但定要求回满足协方差矩阵的球形性( 归线不通过原点,则不选此项。 01,说明模型有统计学意义。
控制因素,可多 个
随机因素,不是 必需
协变量-用于去除该变量对因变量 的影响 ,协方差分析用
5
异方差时,将选入变量用加权最小二乘 法估计模型参数,协方差分析用
【Model按钮】:
Full factorial 全模型,包括所有因素的主效应、交互效应、协变 量主效应等。是系统默认的模型。
Custom 自定义模型。用户可以选择实验中感兴趣的效应 。
6
Factors&covariate-框中所列出的是主对话框中所选的因素:包 括固定因素(标F)、随机因素(标R)、协变量因素(标C) 。本例中只含有固定因素。
Build terms:针对所选因素选择不同的效应。 Interaction 指定任意的交互效应; Main effects 指定主效应; All 2-way 指定所有2维交互效应; All 3-way 指定所有3维交互效应; All 4-way 指定所有4维交互效应 All 5-way 指定所有5维交互效应。
Error 误差。其偏差平方和反应的是组内差异。也称组内偏差平方 和。
Total 是偏差平方和,在数值上等于截距+主效应+交互效应+误差
偏差平方和。 Corrected Total 校正总和。其偏差平方和等于校正模型与误差之偏 差平方和之总和。
22
统计学第六章方差分析
第27页,共55页。
总离差平方和=组间离差平方和+组内离差平方和
方差的分解
组间方差反映出不同的因子对样本波动的影响;组内方差则是不考虑组间方差的纯随机影响。
如果组间方差明显高于组内方差,说明样本数据波动的主要来源是组间方差,因子是引起波动的主要原因,可认为因子对实验的结果存在显著的影响 ;
第28页,共55页。
X4
第24页,共55页。
如果备择假设成立,即H1: (i=1,2,3,4)不全相等
– 至少有一个总体的均值是不同的
– 有系统误差
Xi
这意味着四个样本分别来自均值不同的四个正态总体 。
第25页,共55页。
f(X)
X
X1 X2 X3
X4
第26页,共55页。
方差的分解 样本数据的波动又两个来源:一个是随机波动;一个是因子影响。样本数据的波动,可通过离差平方和来反映。这个离差平 方和可分解为组间方差与组内方差两部份。即
算术均值
x1 x...2....
x3
方差
S12 S22
.......
Sr2
si2ni1 1jn i1
2
xijxi
(i1,2, ,r)
第37页,共55页。
SST是全部观察值 与总平均值的离差平方和,反映全部观察值的离散状况。 其计算公式为:
r n
2
SST
xij X
i1 j1
SST反映了全部数据总的误差程度。
样本均值越不同,我们推断总体均值不同的证据就越充分。
第22页,共55页。
• 如果原假设成立,即H0: = = • 四种颜色饮料销售的均值都相等
– 没有系统误差
•
这意味着每个样本都来自均值为 、方差为2的同一正态总体
总离差平方和=组间离差平方和+组内离差平方和
方差的分解
组间方差反映出不同的因子对样本波动的影响;组内方差则是不考虑组间方差的纯随机影响。
如果组间方差明显高于组内方差,说明样本数据波动的主要来源是组间方差,因子是引起波动的主要原因,可认为因子对实验的结果存在显著的影响 ;
第28页,共55页。
X4
第24页,共55页。
如果备择假设成立,即H1: (i=1,2,3,4)不全相等
– 至少有一个总体的均值是不同的
– 有系统误差
Xi
这意味着四个样本分别来自均值不同的四个正态总体 。
第25页,共55页。
f(X)
X
X1 X2 X3
X4
第26页,共55页。
方差的分解 样本数据的波动又两个来源:一个是随机波动;一个是因子影响。样本数据的波动,可通过离差平方和来反映。这个离差平 方和可分解为组间方差与组内方差两部份。即
算术均值
x1 x...2....
x3
方差
S12 S22
.......
Sr2
si2ni1 1jn i1
2
xijxi
(i1,2, ,r)
第37页,共55页。
SST是全部观察值 与总平均值的离差平方和,反映全部观察值的离散状况。 其计算公式为:
r n
2
SST
xij X
i1 j1
SST反映了全部数据总的误差程度。
样本均值越不同,我们推断总体均值不同的证据就越充分。
第22页,共55页。
• 如果原假设成立,即H0: = = • 四种颜色饮料销售的均值都相等
– 没有系统误差
•
这意味着每个样本都来自均值为 、方差为2的同一正态总体
方差分析课件-PPT
、 、 、 增重表就是选用S-N-K法作均数多重两两比较得结果
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
李金昌《统计学》(最新版)精品课件 第六章 方差分析
假设2:在各总体Yi下,各Xij (j = 1,2,„,ni)也是独立 同分布的(正态分布),且有 X N ( , ) (i=1,„,r, j=1,„,ni)。
2 ij i
Statistics
显然,对于表6-1中每一个实际观察值(试验结果)而言, 其变化可以分解为三部分内容:
r 1 r ni i (n ni ) 一、“一般水平”,即, n i 1 i 1
Statistics
表6-2
水平号 A1 A2
……
单因素方差分析数据结构表
观察指标值 x11 x21
......
算术均值 x1n x2n
…...
方差 S1 2 S2 2
.......
x12 x22
……
….. …… …... ……
x1 x2
Ar
xr 1
xr2
xrn
x3
.......
Sr2
其中
xi xij
Statistics
因子A
水 平 1
X11a X21a
…… ……
因子B
水 平 k
X1ka X2ka
…… ……
因子C
水 平 l
X1lb X2lb
…… ……
水 平 2
X12a X22a
…… ……
……..
…….. ……. …….. …….. …….. ……..
水 平 1
X11b X21b
…… ……
水 平 2
115 210 128
125 185 110
100 165 105
• 研究人员需要回答:三种不同包装方式的销售量之间有没有 显著差异?应该如何安排生产?
方差分析
(1.2)
27 May 2020
方差分析
一、单因素方差分析的统计模型:
yij
诸 ij
i ij , j 1, 2,..., mi , i
相互独立,且都服从N
1,(21,..3.)., r,
(0, 2 )
总均值与效应的概念:
1)称诸 i 的平均
为总均值(或一般平均).
2)称第 ia水i=平i -下的为均A值i 的效i 与应总。均1n值ir1m的i 差i :
27 May 2020
方差分析
第26页
➢ 由于组间差异除了随机误差外,还反映了效应间 的差异,故由效应不同引起的数据差异可用组间
偏差平方和 SA r mi ( yi• y )2 表示,也称为 i 1
因子A的偏差平方和(或称为因子A的效应平方 和) ,其自由度为 fA=r1;
27 May 2020
27 May 2020
方差分析
第11页
本例中,我们要比较的是三种饲料对鸡的增肥作用是否相同。为 此,我们把饲料称为因素,记为A,而三种不同的配方称为因素A的三 个水平,记为A1, A2, A3,使用配方Ai下第 j 只鸡60天后的重量用yij表 示,i=1, 2, 3, j=1, 2,, 10。
我们的目的是比较三种饲料配方下鸡的平均重量是否相等,为此, 需要做一些基本假定,把所研究的问题归结为一个统计问题,然后用 方差分析的方法进行解决。
27 May 2020
方差分析
第15页
为对假设(1.1)进行检验,需要从每一水平下的
r
总体抽取样本,设n从 i第1 mi i个水平下的总体获得mi个试验结
果,记 yij 表示第i个总体的第j次重复试验结果。共得如
医学统计学方差分析详解
什么是方差? 离均差
离均差之和
离均差平方和(SS) 方差(2 S2 )也叫均方(MS)
标准差:S 自由度:
关系: MS= SS/
当前7页,共60页,星期一。
方差分析的几个符号
xij表示第i组第j个观察值
x 表示第i组的均数(= i.
1
)x ij ni j
x ( x..) 表示总平均=
二、单因素方差分析的基本思想
例1 某克山病区测得11例克山病患者与13名健康人的 血磷值(mmol/L)如下,问该地急性克山病患者 与健康人的血磷值是否不同?
患者x1:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80
1.87 2.07 2.11
健康人x2:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
P
单因素方差分析
当前33页,共60页,星期一。
结合上题理解:方差分析的基本思想
将全部观察值总的离均差平方和( SS总)及自由度 ( 总)分解为两个或多个部分
除随机误差外,其余每个部分的变异可由某个因素 的作用加以解释
通过比较不同来源变异的均方(MS),借助F分布
做出统计推断,从而了解该因素对观察指标有无影响。
组内=N-组数 通过这个公式计算出统计量F,查表求出对
应的P值,与进行比较,以确定是否为小概率
事件。
当前24页,共60页,星期一。
各种符号的意义 xij第i 个组的第j 个观察值 i=1,2,…k j=1,2,…ni ni第i 个处理组的例数 ∑ni=N xi = x=
当前25页,共60页,星期一。
采用近似检验,如Tamhane's T2,Dunnett's T3,GamesHowell,Dunnett's C等方法。
离均差之和
离均差平方和(SS) 方差(2 S2 )也叫均方(MS)
标准差:S 自由度:
关系: MS= SS/
当前7页,共60页,星期一。
方差分析的几个符号
xij表示第i组第j个观察值
x 表示第i组的均数(= i.
1
)x ij ni j
x ( x..) 表示总平均=
二、单因素方差分析的基本思想
例1 某克山病区测得11例克山病患者与13名健康人的 血磷值(mmol/L)如下,问该地急性克山病患者 与健康人的血磷值是否不同?
患者x1:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80
1.87 2.07 2.11
健康人x2:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
P
单因素方差分析
当前33页,共60页,星期一。
结合上题理解:方差分析的基本思想
将全部观察值总的离均差平方和( SS总)及自由度 ( 总)分解为两个或多个部分
除随机误差外,其余每个部分的变异可由某个因素 的作用加以解释
通过比较不同来源变异的均方(MS),借助F分布
做出统计推断,从而了解该因素对观察指标有无影响。
组内=N-组数 通过这个公式计算出统计量F,查表求出对
应的P值,与进行比较,以确定是否为小概率
事件。
当前24页,共60页,星期一。
各种符号的意义 xij第i 个组的第j 个观察值 i=1,2,…k j=1,2,…ni ni第i 个处理组的例数 ∑ni=N xi = x=
当前25页,共60页,星期一。
采用近似检验,如Tamhane's T2,Dunnett's T3,GamesHowell,Dunnett's C等方法。