成都37中13级高二数学半期考试题

合集下载

高二上学期期中考试数学试卷含答案

高二上学期期中考试数学试卷含答案

高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。

第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ­ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ­ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

四川省成都市2023-2024学年高二上学期期中数学试题含解析

四川省成都市2023-2024学年高二上学期期中数学试题含解析

2023-2024学年度上期高2025届半期考试高二数学试卷(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试卷上作答无效.5.考试结束后,只将答题卡收回.第Ⅰ卷(选择题,共60分)一.单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()(),2,2,3,4,2a x b =-=-,若a b ⊥,则x 的值为()A.1B.4- C.4D.1-【答案】C 【解析】【分析】根据向量垂直的坐标运算即可求解.【详解】由()(),2,2,3,4,2a x b =-=- 得3840a b x ⋅=--= ,所以4x =,故选:C2.已知直线1:3410l x y --=与2:3430l x y -+=,则1l 与2l 之间的距离是()A.45B.35C.25 D.15【答案】A 【解析】【分析】直接由两平行线之间的距离公式计算即可.【详解】因为已知直线1:3410l x y --=与2:3430l x y -+=,而()()34430⨯---⨯=,所以12l l //,所以由两平行线之间的距离公式可得1l 与2l 之间的距离是45d ==.故选:A.3.已知圆()()221:219C x y -++=与圆()()222:134C x y ++-=,则圆1C 与圆2C 的位置关系为()A.相交B.外切C.内切D.内含【答案】B 【解析】【分析】根据两圆圆心距与半径的关系即可求解.【详解】()()221:219C x y -++=的圆心为()2,1,3r -=,()()222:134C x y ++-=的圆心为()1,3,2R -=,由于125C C ==,125C C r =+=R ,所以1C 与圆2C 外切,故选:B4.若直线()1:410l x a y +-+=与2:20l bx y +-=垂直,则a b +的值为()A.2 B.45C.23D.4【答案】D 【解析】【分析】根据直线垂直的条件求解.【详解】由题意40b a +-=,∴4a b +=.故选:D .5.已知事件,A B 相互独立,且()()0.3,0.7P A P B ==,则()P AB =()A.1 B.0.79C.0.7D.0.21【答案】D 【解析】【分析】由独立事件的概率乘法公式计算.【详解】由题意()()()0.30.70.21P AB P A P B ==⨯=,故选:D .6.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA 上,且2ON NA =,则MN =()A.121232a b c--+B.211322a b c-++C.211322a b c --D.111222a b c +-【答案】C 【解析】【分析】由图形中线段关系,应用向量加减、数乘的几何意义用,,OA a OB b OC c === 表示出MN.【详解】1221()2332MN MB BO ON CB OB OA OA OB OC OB=++=-+=+-- 211211322322OA OB OC a b c =--=--.故选:C7.已知椭圆方程为()222210x y a b a b +=>>,长轴为12A A ,过椭圆上一点M 向x 轴作垂线,垂足为P ,若212||13MP A P A P =⋅,则该椭圆的离心率为()A.3B.3C.13D.23【答案】B 【解析】【分析】根据题意,设()00,M xy ,表示出12,A P A P ,结合椭圆方程,代入计算,再由离心率公式,即可得到结果.【详解】设()00,M x y ,则2200221x y a b+=,()()()120,0,,0,,0A a A a P x -,则10A P x a =+,20A P x a =-,0MP y =所以222002201200||13a y y MP A P A x x a P x a+⋅=-==⋅-,且22x a <,所以22213y a x =-,即222003a x y -=,代入椭圆方程可得222002231a y y a b-+=,化简可得223a b =,则离心率为63e ===.故选:B8.现有一组数据不知道其具体个数,只知道该组数据平方后的数据的平均值是a ,该组数据扩大m 倍后的数据的平均值是b ,则原数据的方差、平方后的数据的方差、扩大m 倍后的数据的方差三个量中,能用,,a b m 表示的量的个数是()A.0 B.1C.2D.3【答案】C 【解析】【分析】设出原始数据,逐个计算求解即可.【详解】设该组数据为123,,n x x x x ⋅⋅⋅,则12nx x x x n++⋅⋅⋅+=.所以22212n x x x a n++⋅⋅⋅+=,12n mx mx mx mx b n ++⋅⋅⋅+==,所以b x m =.原数据的方差()()()()2222221212221212n n n x x x x x x x x x x x x x s xnn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+2222222b b a x x a x a a m m ⎛⎫=-+=-=-=- ⎪⎝⎭,可以用,,a b m 表示.扩大m 倍后的数据的方差:()()()()()()2222221212222n n mx mx mx mx mx mx x x x x x x s m nn ⎡⎤-+-+⋅⋅⋅+--+-+⋅⋅⋅+-==⎢⎥⎢⎥⎣⎦22222212b m s m a m a b m ⎛⎫==-=- ⎪⎝⎭,可以用,,a b m 表示.平方后的数据的方差:()()()()2222222224441212221232n n n x a x a x aa x x x x x x s a nn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+44444422212122n n x x x x x x a a a n n++⋅⋅⋅+++⋅⋅⋅+=-+=-.不能用,,a b m 表示.故选:C.二.多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全选对得5分,部分选对得2分,有错选得0分.9.我校举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,绘制了如图所示的频率分布直方图.根据图中信息,下列说法正确的是()A.图中的x 值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的众数的估计值为82【答案】AC 【解析】【分析】根据频率值和为1即可判断A ;根据由频率分布直方图无法求出这组数据得极差,即可判断B ;求出得分在80分及以上的频率,再乘以总人数,即可判断C ;根据频率分布直方图中众数即可判断D .【详解】解:()100.0050.0350.0300.0101x ⨯++++=,解得0.020x =,故A 正确;因为由频率分布直方图无法求出这组数据得极差,故B 错误;得分在80分及以上的频率为()100.0300.0100.4⨯+=,所以得分在80分及以上的人数为10000.4400⨯=,故C 正确;这组数据的众数的估计值为75,故D 错误.故选:AC .10.下列说法正确的是()A.对任意向量,a b ,都有a b b a⋅=⋅B.若a b a c ⋅=⋅且0a ≠,则b c=C.对任意向量,,a b c,都有()()a b c a b c⋅⋅=⋅⋅ D.对任意向量,,a b c ,都有()+⋅=⋅+⋅ a b c a c b c【答案】AD 【解析】【分析】可由数量积的定义及运算律可逐一判定选项.【详解】cos ,a b a b a b ⋅=,cos ,b a a b a b ⋅= ,可得a b b a ⋅=⋅,故选项A 正确;由a b a c ⋅=⋅ 可得()0a b c ⋅-=,又0a ≠ ,可得b c = 或()a cb ⊥- ,故选项B 错误;()()cos ,R a b c a b a b c c λλ⋅⋅==∈,()()cos ,R a b c c b c b a a μμ⋅⋅==∈所以()()a b c a b c ⋅⋅=⋅⋅ 不一定成立,故选项C 错误;由向量数量积运算的分配律可知选项D 正确;故选:AD.11.甲、乙两支田径队队员的体重(单位:kg)信息如下:甲队体重的平均数为60,方差为200,乙队体重的平均数为68,方差为300,又已知甲、乙两队的队员人数之比为1:3,则关于甲、乙两队全部队员的体重的平均数和方差的说法正确的是()A.平均数为67B.平均数为66C.方差为296D.方差为287【答案】BD 【解析】【分析】先利用比重计算全部队员体重的平均值,再利用平均值计算方差即可.【详解】依题意,甲的平均数160x =,乙的平均数268x =,而甲、乙两队的队员人数之比为1:3,所以甲队队员在所有队员中所占比重为14,乙队队员在所有队员中所占比重为34故甲、乙两队全部队员的体重的平均数为:1360686644x =⨯+⨯=;甲、乙两队全部队员的体重的方差为:()()22213200606630068665922828744s ⎡⎤⎡⎤=⨯+-+⨯+-=+=⎣⎦⎣⎦.故选:BD.12.已知四面体中三组对棱的中点间的距离都相等,则下列说法正确的是()A.该四面体相对的棱两两垂直B.该四面体四个顶点在对面三角形的射影是对面三角形的外心C.该四面体的四条高线交于同一点(四面体的高线即为过顶点作底面的垂线)D.该四面体三组对棱平方和相等【答案】ACD 【解析】【分析】设,,AB b AC c AD d ===,利用向量法AD 选项,用几何法判断BC 选项.【详解】选项A ,如图,四面体ABCD 中,,,,,,E F G H I J 是所在棱中点,EF GH IJ ==,设,,AB b AC c AD d === ,则111()()222EF AF AE AD AB AC d b c =-=-+=-- ,111()()222GH AH AG AC AD AB c d b =-=+-=+- ,EF GH =,即EF GH = ,所以11()()22d b c c d b --=+-,所以222222222222d b c b d c d b c d b c c d b d b c++-⋅-⋅+⋅=+++⋅-⋅-⋅c d b c ⋅=⋅ ,即()0c b d ⋅-= ,所以()c b d ⊥- ,即AC DB ⊥,所以AC BD ⊥,同理,AB CD AD BC ⊥⊥,A 正确;选项B ,设1AH ⊥平面BCD ,1H 是垂足,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,而1BH ⊂平面1ABH ,所以1CD BH ⊥,同理1BC DH ⊥,所以1H 是平面BCD 垂心,同理可得其它顶点在对面的射影是对面三角形的垂心,B 错;选项C ,如上图,1AH ⊥平面BCD ,2BH ⊥平面ACD ,3DH ⊥平面ABC ,123,,H H H 是垂足,先证明12,AH BH 相交,1AH ⊥平面BCD ,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,同理CD ⊥平面2ABH ,所以平面1ABH 和平面2ABH 重合,即12,AH BH 共面,它们必相交,设12AH BH H ⋂=,下面证明DH ⊥平面ABC ,与证明CD ⊥平面1ABH 同理可证得BC ⊥平面1ADH ,又DH ⊂平面1ADH ,所以BC DH ⊥,同理由2BH ⊥平面ACD 可证得DH AC ⊥,而,AC BC 是平面ABC 内两相交直线,所以DH ⊥平面ABC ,因此DH 与3DH 重合,同理可证CH ⊥平面ABD ,C 正确;选项D ,由选项A 的讨论同理可得b c b d c d ⋅=⋅=⋅,222222222()2AB CD AB CD b d c b c d c d +=+=+-=++-⋅ ,222222222()2AC BD AC BD c d b b c d b d +=+=+-=++-⋅,所以2222AB CD AC BD +=+,同理222222AB CD AC BD AD BC +=+=+,D 正确.故选:ACD .第Ⅱ卷(非选择题,共90分)三.填空题:本大题共4小题,每小题5分,共20分.13.经过()()0,2,1,0A B -两点的直线的方向向量为()1,k ,则k =______.【答案】2【解析】【分析】方向向量与BA平行,由此可得.【详解】由已知(1,2)BA =,()1,k 是直线AB 的方向向量,则2k =,故答案为:2.14.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为25,29,30,32,37,38,40,42,那么这组数据的第65百分位数为______.【答案】38【解析】【分析】根据百分位数的定义即可求解.【详解】865% 5.2⨯=,故这组数据的第65百分位数为第6个数38,故答案为:3815.写出与圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=都相切的一条直线的方程__________.【答案】0x =##4y =-##430x y -=##34100x y ++=【解析】【分析】判断两个圆是相离的,得到应该有四条公切线,画出图形易得0x =或4y =-为公切线,设切线方程为y kx b =+,根据圆心到直线的距离等于半径列出关于,k b 方程组,求解.【详解】因为圆1C 的圆心为()11,3C --,半径11r =圆2C 的圆心为()23,1C -,半径23r =又因为124C C =所以圆1C 与圆2C 相离,所以有4条公切线.画图为:易得:0a x =或:4n y =-是圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=的公切线设另两条公切线方程为:y kx b =+圆1C 到直线y kxb =+的距离为1=圆2C 到直线y kxb =+3=所以3133k b b k ++=-+所以31339k b b k ++=-+或31339k b b k ++=-+-34k b =+或52b =-当52b =-1==所以34k =-,切线方程为34100x y ++=当34k b =+3==所以()()225249b b +=++所以240b b +=所以0b =或4b =-当0b =时43k =,切线方程为430x y -=当4b =-时0k =,切线方程为4y =-故答案为:0x =或4y =-或430x y -=或34100x y ++=16.已知P 为直线=2y -上一动点,过点P 作圆221x y +=的两条切线,切点分别为,B C ,则点()2,1A 到直线BC 的距离的最大值为______.【答案】52【解析】【分析】首先设点00(,)P x y ,求过点BC 的直线方程,并判断直线BC 过定点,再利用几何关系求最大值.【详解】设00(,)P x y ,过点P 引圆221x y +=的两条切线,切点分别为,B C ,则切点在以OP 为直径的圆上,圆心00,22x y ⎛⎫ ⎪⎝⎭,半径r =,则圆的方程是22220000224x y x y x y +⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,整理为:22000x y x x y y +--=,又点,B C 在圆221x y +=上,两圆方程相减得到001x x y y +=,即直线BC 的方程是001x x y y +=,因为02y =-,代入001x x y y +=得021x x y -=,则直线BC 恒过定点10,2N ⎛⎫- ⎪⎝⎭,所以点()2,1A 到直线BC 的距离52d AN ≤==,所以点()2,1A 到直线BC 的距离的最大值为52.故答案为:52.【点睛】思路点睛:首先本题求以OP 为直径的圆,利用两圆相减,求得过两圆交点的直线方程,关键是发现直线BC 过定点,这样通过几何关系就容易求定点与动直线距离的最大值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的周长为()()14,3,0,3,0B C -.(1)求点A 的轨迹方程;(2)若AB AC ⊥,求ABC 的面积.【答案】(1)()2210167x y y +=≠(2)7【解析】【分析】(1)结合椭圆定义可得A 的轨迹方程.(2)利用AB AC ⊥及椭圆定义可列出方程,求解AC AB ⋅,即可算出ABC 的面积.【小问1详解】ABC 的周长为14且6,86BC AC AB BC =∴+=>=,根据椭圆的定义可知,点A 的轨迹是以()()3,0,3,0B C -为焦点,以8为长轴长的椭圆,即4,3,a c b ===A 的轨迹方程为221167x y+=,又A 为三角形的顶点,故所求的轨迹方程为()2210167x y y +=≠.【小问2详解】222,||||36AB AC AB AC BC ⊥∴+== ①.A 点在椭圆()2210167x y y +=≠上,且()()3,0,3,0B C -为焦点,8AC AB ∴+=,故22||264AC AB AC AB ++⋅=②.由①②可得,14AC AB ⋅=,故172S AC AB =⋅⋅=.ABC ∴ 的面积为7.18.如图,四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点,连接DE .(1)求DE 的长;(2)求点D 到平面ABC 的距离.【答案】18.219.3【解析】【分析】(1)利用基底,,OA OB OC 表示出向量DE,再根据向量数量积求长度的方法即可求出;(2)由该几何体特征可知,点O 在平面ABC 的射影为ABC 的中心,即可求出.【小问1详解】因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,()1111122222DE DA AB BE OA OB OA OC OB OA OB OC =++=+-+-=-++,而且12OA OB OB OC OA OC ⋅=⋅=⋅= ,所以()()2211131442DE OA OB OC =--=-=,即2DE =,所以DE 的长为2.【小问2详解】因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,ABC 的外接圆半径为11sin6023︒⨯=,所以点O 到平面ABC 的距离为3d ==,由于D 点为线段OA 的中点,所以点D 到平面ABC 的距离为3.19.现从学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160,165,⋅⋅⋅,第八组[]190195,.右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率并估计该校的800名男生的身高的中位数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记事件A 表示随机抽取的两名男生不.在同一组....,求()P A .【答案】(1)第七组的频率为0.06,中位数为174.5cm(2)815【解析】【分析】(1)根据频率为和1,可得第七组的频率为0.06,设学校的800名男生的身高中位数为m ,根据中位数的定义可得()0040080217000405...m ..+++-⨯=,求解即可;(2)用列举法写出基本事件的总数和两名男生不在同一组所包含的基本事件,即可得解.【小问1详解】(1)由直方图的性质,易知第七组的频率为415(0.008+0.016+0.04+0.04+0.06++0.008)=0.06505-⨯⨯.由于0.040.080.20.320.5,0.040.080.20.20.520.5++=<+++=>,设学校的800名男生的身高中位数为m ,则170175m <<,由()0040080217000405...m ..+++-⨯=,得1745m .=,所以学校的800名男生的身高的中位数为174.5cm .【小问2详解】解:第六组[)180185,的人数为4,设为a b c d ,,,,第八组[]190195,的人数为0.0085502⨯⨯=,设为,A B ,则从中随机抽取两名男生有,,,,,,,,,,,,,dB,ab ac ad bc bd cd aA aB bA bB cA cB dA AB 共15种情况.事件A 表示随机抽取的两名男生不在同一组,所以事件A 包含的基本事件为,,,aA aB bA bB ,,,,cA cB dA dB 共8种情况.所以()815P A =.20.已知圆C 经过点()0,2A ,()6,4B ,且圆心在直线340x y --=上.(1)求圆C 的方程;(2)若平面上有两个点()6,0P -,()6,0Q ,点M 是圆C 上的点且满足2MP MQ=,求点M 的坐标.【答案】(1)()22420x y -+=(2)10,33⎛⎫ ⎪ ⎪⎝⎭或10,33⎛⎫-⎪ ⎪⎝⎭【解析】【分析】(1)设出圆心,利用点到直线的距离公式即可求得圆的方程.(2)根据已知条件求得M 满足的方程联立即可求得M 的坐标.【小问1详解】∵圆心在直线340x y --=上,设圆心()34,C a a +,已知圆C 经过点()0,2A ,()6,4B ,则由CA CB =,=解得0a =,所以圆心C 为()4,0,半径r CA ===所以圆C 的方程为()22420x y -+=;【小问2详解】设(),M x y ,∵M 在圆C 上,∴()22420x y -+=,又()6,0P -,()6,0Q ,由2MPMQ=可得:()()2222646x y x y ⎡⎤++=-+⎣⎦,化简得()221064x y -+=,联立()()22224201064x y x y ⎧-+=⎪⎨-+=⎪⎩解得10411,33M ⎛⎫ ⎪ ⎪⎝⎭或10411,33⎛⎫- ⎪ ⎪⎝⎭.21.如图,在直三棱柱111ABC A B C -中,1π,2,3,2BAC AB AC AA M ∠====是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点,点Q 在线段1A N 上.(1)若//PQ 平面1A CM ,请确定点Q 的位置;(2)请在下列条件中任选一个,求11A QA N的值;①平面BPQ 与平面ABC的夹角余弦值为53;②直线AC 与平面BPQ所成角的正弦值为106.【答案】(1)Q 为1A N 靠近N 三等分点处(2)①1112A Q A N =;②1112A Q A N =【解析】【分析】(1)分别以1,,AC AB AA 所在直线为,,x y z 轴,建立空间直角坐标系,求出面1A CM 的法向量n,由//PQ 平面1A CM 得PQ n ⊥ ,即0PQ n ⋅= ,求解11A QA N即可;(2)设()1101A Q A Nλλ=<<,求出平面BPQ 的法向量为m,平面ABC 的法向量,若选择①,利用平面与平面的夹角的向量求法求解;若选择②,由直线与平面所成角的向量求法求解.【小问1详解】分别以1,,AC AB AA 所在直线为,,x y z轴,建立空间直角坐标系,()()()()()130,0,3,2,0,0,0,1,0,1,1,3,1,1,,,,32A C M N P Q a a ⎛⎫ ⎪⎝⎭,则()()1132,0,3,0,1,3,1,1,2A C A M PQ a a ⎛⎫=-=-=-- ⎪⎝⎭ .设面1A CM 的法向量(),,n x y z =r ,则110A C n A M n ⎧⋅=⎪⎨⋅=⎪⎩ ,即23030x z y z -=⎧⎨-=⎩.令2z =,得()3,6,2n =.因为//PQ 平面1A CM ,所以PQ n ⊥ ,即0PQ n ⋅=.所以()()316130a a -+-+=,得23a =,122,,033A Q ⎛⎫= ⎪⎝⎭,所以13A Q = .因为11123A Q A N A N ==,所以Q 为1A N 靠近N 三等分点处时,有//PQ 平面1A CM .【小问2详解】设()1101A QA Nλλ=<<,则()11,,0A Q A N λλλ== .所以1111331,1,,1,1,22PQ PA A Q PA A N PB λλλ⎛⎫⎛⎫=+=+=--=--⎪ ⎪⎝⎭⎝⎭.设平面BPQ 的法向量为()111,,m x y z =,则00PQ m PB m ⎧⋅=⎪⎨⋅=⎪⎩,即()()11111131102302x y z x y z λλ⎧-+-+=⎪⎪⎨⎪-+-=⎪⎩.令()141z λ=-,得()()()3,32,41m λλλ=--.注意到平面ABC 的法向量为()0,0,1,直线AC 的方向向量为()1,0,0,若选择①,平面BPQ 与平面ABC的夹角余弦值为53,则()10,0,1cos 53m mθ⋅==.即()2483001λλλ-+=<<,解得12λ=,即1112A Q A N =.若选择②,直线AC 与平面BPQ所成角的正弦值为106,则()21,0,0sin 106m mθ⋅==.即()2181713001λλλ+-=<<,解得12λ=,即1112A Q A N =.22.已知()()()2,3,2,0,2,0,A B C ABC -∠的内角平分线与y 轴相交于点E .(1)求ABC 的外接圆的方程;(2)求点E 的坐标;(3)若P 为ABC 的外接圆劣弧 BC 上一动点,ABC ∠的内角平分线与直线AP 相交于点D ,记直线CD 的斜率为1k ,直线CP 的斜率为2k ,当1275k k =-时,判断点E 与经过,,P D C 三点的圆的位置关系,并说明理由.【答案】(1)2232524x y ⎛⎫+-=⎪⎝⎭(2)20,3⎛⎫ ⎪⎝⎭(3)点E 在经过,,P D C 三点的圆上,理由见解析【解析】【分析】(1)根据直角三角形的性质即可求解圆心和半径,从而得解;(2)根据等面积法或者利用角平分线的性质可得AB AF BCCF=,即可求解长度得斜率,进而可求解直线方程,得解;(3)联立方程可得22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭,6743,3131k k D k k --⎛⎫ ⎪--⎝⎭,根据1275k k =-可得1k =,即可求解点的坐标,由点的坐标求解圆的方程,即可判定.【小问1详解】易知ABC 为C 为直角的直角三角形,故外接圆的圆心为斜边AB 边的中点30,2⎛⎫ ⎪⎝⎭,半径为52,所以外接圆的方程为2232524x y ⎛⎫+-= ⎪⎝⎭.【小问2详解】设ABC ∠的内角平分线交AC 于点F ,根据角平分线性质定理,可知AB AF BCCF=,(利用11sin 22211sin 222ABFBCFABC AB BF AF BC S ABC S BC BF FC BC ∠⋅⋅==∠⋅⋅ 可得AB AF BC CF =)由结合3AF CF +=,5AB ==,4,3BC AC ==所以4133BD CF CF k BC =⇒==所以,ABC ∠的内角平分线方程为()123y x =+,令0x =,即可得点E 坐标20,3⎛⎫⎪⎝⎭.【小问3详解】点E 在经过,,P D C 三点的圆上,理由如下:由题意可知直线AP 的斜率存在,故设直线AP 的直线方程为()32y k x -=-,联立直线与圆的方程()223232524y k x x y ⎧-=-⎪⎨⎛⎫+-=⎪ ⎪⎝⎭⎩,可得()()22221344640kx k k x kk ++-+--=注意到,A P 两点是直线与圆的交点,所以2246421P k k x k --⋅=+222321P k k x k --∴=+,故22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭.联立直线AP 与ABC ∠的内角平分线方程()321233y k x y x ⎧-=-⎪⎨=+⎪⎩,可得6731k x k -=-6743,3131k k D k k --⎛⎫∴ ⎪--⎝⎭.此时221222243433434003443313111,6753423253422313111k k k k k k k k k k k k k k k k k k k k k ----------++======------+----++,12343475,1435534k k k k k k k -+∴==-=-∴=-+.此时,点31,22P ⎛⎫-- ⎪⎝⎭,点11,.22D P ⎛⎫- ⎪⎝⎭点满足在劣弧 BC 上.设经过,,P D C 三点的圆的方程为()2222040x y mx ny t m n t ++++=+->,则4205320120m t m n t m n t ++=⎧⎪--+=⎨⎪-++=⎩,解得5617673m n t ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩.所以,经过,,P D C 三点的圆的方程为2251770663x y x y +-+-=.将点20,3E ⎛⎫ ⎪⎝⎭代入圆的方程成立,所以点E 在经过,,P D C 三点的圆上.。

四川省成都市郫都区2024-2025学年高二上学期11月期中考试数学试题

四川省成都市郫都区2024-2025学年高二上学期11月期中考试数学试题

四川省成都市郫都区2024-2025学年高二上学期11月期中考试数学试题一、单选题1.下列调查中,适合用普查的是()A .了解我省初中学生的家庭作业时间B .了解“嫦娥四号”卫星零部件的质量C .了解一批电池的使用寿命D .了解某市居民对废电池的处理情况2.若随机事件A ,B 满足()23P A =,()12P B =,()56P A B +=,则()P AB =()A .16B .13C .12D .233.2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则()A .盛李豪的平均射击环数超过10.6B .黄雨婷射击环数的第80百分位数为10.65C .盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D .黄雨婷射击环数的极差小于盛李豪射击环数的极差4.下列命题中正确的是()A .点()3,2,1M 关于平面yOz 对称的点的坐标是()3,2,1--B .若直线l 的方向向量为()1,1,2e =- ,平面α的法向量为()6,4,1m =-,则l α⊥C .若直线l 的方向向量与平面α的法向量的夹角为120 ,则直线l 与平面α所成的角为30oD .已知O 为空间任意一点,A ,B ,C ,P 四点共面,且任意三点不共线,若12OP mOA OB OC =-+ ,则12m =-5.平行六面体1111ABCD A B C D -的底面ABCD 是边长为2的正方形,且1160A AD A AB ∠=∠=︒,13AA =,M 为11A C ,11B D 的交点,则线段BM 的长为()A .3BC D .6.如图,一个正八面体,八个面分别标以数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字,得到样本空间为{1,2,3,4,5,6,7,8}Ω=,记事件A =“得到的点数为奇数”,记事件B =“得到的点数不大于4”,记事件C =“得到的点数为质数”,则下列说法正确的是()A .事件B 与C 互斥B .()58P A B ⋃=C .()()()()P ABC P A P B P C =D .,,A B C 两两相互独立7.钟鼓楼是中国传统建筑之一,属于钟楼和鼓楼的合称,是主要用于报时的建筑.中国古代一般建于城市的中心地带,在现代城市中,也可以常常看见附有钟楼的建筑.如图,在某市一建筑物楼顶有一顶部逐级收拢的四面钟楼,四个大钟对称分布在四棱柱的四个侧面(四棱柱看成正四棱柱,钟面圆心在棱柱侧面中心上),在整点时刻(在0点至12点中取整数点,含0点,不含12点),已知在3点时和9点时,相邻两钟面上的时针所在的两条直线相互垂直,则在2点时和8点时,相邻两钟面上的时针所在的两条直线所成的角的余弦值为()A .6B .14C D .48.如图,在长方体1111ABCD A B C D -中,已知12,1===AB AD AA .动点P 从1A 出发,在棱11A B 上匀速运动;动点Q 同时从B 出发,在棱BC 上匀速运动,P 的运动速度是Q 的两倍,各自运动到另一端点停止.它们在运动过程中,设直线PQ 与平面ABCD 所成的角为θ,则tan θ的取值范围是()A .1,12⎡⎤⎢⎥⎣⎦B .12⎡⎢⎣C .⎤⎥⎦D .1,22⎡⎢⎣⎦二、多选题9.某中学三个年级学生共2000人,且各年级人数比例如以下扇形图.现因举办校庆活动,以按比例分配的分层抽样方法,从中随机选出志愿服务小组,已知选出的志愿服务小组中高一学生有32人,则下列说法正确的有()A .该学校高一学生共800人B .志愿服务小组共有学生96人C .志愿服务小组中高三学生共有20人D .某高三学生被选入志愿服务小组的概率为22510.下列对随机事件,A B 概率的说法正确的有()A .若,AB 相互独立,则(()()P AB P A P B =B .若,A B 互斥,则()()()P AB P A P B =C .()()()P A P AB P AB =+D .()1()P A B P AB +=-11.若一个平面α与棱长为2的正方体的六个面都相交,且它们相交所成的二面角分别为(16)i i θ≤≤,则下列说法正确的是()A .621sin 2i i θ==∑B .621sin 4i i θ==∑C .若正方体的每条棱与平面α所成角都相等,则平面α截此正方体所得截面面积的最大值为D .若正方体的每个面与平面α所成角都相等,则平面α截此正方体所得截面面积的最大值为三、填空题12.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为0.6,乙中靶的概率为0.7,且两人是否中靶相互独立,若甲、乙各射击一次,则恰有一人中靶的概率为.13.已知一组数据12,,,n x x x ⋯的平均数为10,方差为2,若这组数据1221,21,x x --⋯,21n x -的平均数为a ,方差为b ,则a =b =.14.两条异面直线a ,b 所成的角为60︒,在直线a 上取点A ,E ,在直线b 上取点B ,F ,使AB a ⊥,且AB b ⊥.已知6,8,14AE BF EF ===,则线段AB 的长为.四、解答题15.已知盒中有大小、质地相同的红球、黄球、蓝球共4个,从中任取一球,得到红球或黄球的概率是34,得到黄球或蓝球的概率是12.(1)求盒中红球、黄球、蓝球的个数;(2)设置游戏规则如下:从盒中有放回的取球两次,每次任取一球记下颜色.若取到两个球颜色相同则甲胜,否则乙胜,从概率的角度判断这个游戏是否公平,请说明理由.16.文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者.某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),L ,[90,100]得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值及样本成绩的第75百分位数;(2)求样本成绩的众数,中位数和平均数;(3)已知落在[50,60)的平均成绩是54,方差是7,落在[60,70)的平均成绩为66,方差是4,求两组成绩合并后的平均数z 和方差2s .17.如图,在四棱锥,P ABCD PA -⊥平面,//ABCD AB CD ,且2,1,CD AB BC ===,1,,PA AB BC N =⊥为PD 的中点.(1)求证://AN 平面PBC ;(2)求点N 到平面PBC 的距离;(3)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC 所成角的正弦值是26,若存在,求出DMDP的值,若不存在,请说明理由.18.某班同学利用春节进行社会实践,对本地[25,55]岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.序号分组(岁)本组中“低碳族”人数“低碳族”人数在本组所占的比例1[25,30)1200.62[30,35)195p 3[35,40)1000.54[40,45)a 0.45[45,50)300.36[55,60)150.3(一)人数统计表(二)各年龄段人数频率分布直方图(1)在答题卡给定的坐标系中补全频率分布直方图,并求出n 、p 、a 的值;(2)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求[45,50)岁中被抽取的人恰好又分在同一组的概率.19.已知两个非零向量,a b ,在空间任取一点O ,作,OA a OB b == ,则AOB ∠叫做向量,a b的夹角,记作,a b ,.定义a 与b 的“外积”为a b ⨯ ,且a b ⨯是一个向量,它与向量,a b 都垂直,它的模sin ,a b a b a b ⨯=.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,ABCD 4,DP DA ==E 为线段A 上一点,||AD BP ⨯=(1)求AB 的长;(2)若E 为A 的中点,求平面PEB 与平面ABCD 夹角的余弦值;(3)若M 为线段PB 上一点,且满足AD BP EM λ⨯=,求||λ.。

高二上期半期考试数学试题

高二上期半期考试数学试题

高二上期半期考试数学试题高二上半期考试数学试题 第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.一、选择题:本题共有10个小题,每小题5分,共50分;在每小题给出的四个选项中,只有一个是符合题目要求的.1.直线l 的倾斜角是斜率为33的直线的倾斜角的2倍,则l 的斜率为( )A .1B .3C .233D .-32.以圆0222=++y x x的圆心为圆心,半径为2的圆的方程( ) A.()2122=++y x B . ()2214++=x y C .()2122=+-y x是( )A .12-B .12C .33D .63 8.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =( )A .-12B .1C .2D .129.已知点P (x ,y )满足⎩⎪⎨⎪⎧x -1≤0,2x +3y -5≤0,4x +3y -1≥0,点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,210.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P的轨迹是( )A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段第Ⅱ卷注意事项:必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答。

作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚。

答在试题卷上无效。

二、填空题:(本大题共5小题,每小题5分,共25分)把答案填在答题卷中的横线上. 11.直线l1,l2的斜率k1,k2是关于k的方程2k2-3k-b=0的两根,若l1⊥l2,则b=________________;若l1∥l2,则b=________________.12.过点M(-2,4)作圆C:(x-2)2+(y-1)2=25的切线l,且直线l1:ax+3y+2a=0与l平行,则l1与l间的距离是____________________.13.以直线2x +y -4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为____________________.14.已知变量,x y 满足约束条件1,31x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z kx y =+的最大值为5,则实数k = .15.已知m 、n 为直线,α、β为平面,下列命题:① ⎭⎬⎫m ⊥αm ⊥n ⇒n ∥α;②⎭⎬⎫m ⊥βn ⊥β⇒m ∥n ;③ ⎭⎬⎫m ⊥αm ⊥β⇒α∥β;④ ⎭⎪⎬⎪⎫m ⊂αn ⊂βα∥β⇒m ∥n . 其中正确的命题是 (写出所有正确命题)三、解答题:(本大题共6小题,共75分)解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)三角形的三个顶点是(4,0)A ,(2,4)B ,(0,3)C .(1) 求AB 边的中线所在直线1l 的方程;(2) 求BC 边的高所在直线2l 的方程;(3) 求直线l与直线2l的交点坐标.117.(本小题满分12分)如图,在三棱锥P-ABC中,D、E、F分别为棱PC、AC、AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.(1) 证明:直线PA∥面DEF;(2) 证明:平面BDE⊥平面ABC.18.(本小题满分12分)已知一个圆C与y轴相切,圆心C在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为27,求圆C的方程.19.(本小题满分12分)如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=2a,(1) 证明:PD⊥平面ABCD;(2) 求异面直线PB与CD所成的角的余弦值;(3) 求二面角P-BC-D的正切值.20.(本小题满分13分)已知圆C:x2+y2-2x +4y-4=0,斜率为1的直线l与圆C交于A、B两点.(1) 化圆的方程为标准形式,并指出圆心和半径;(2) 是否存在直线l,使以线段AB为直径的圆过原点?若存在,求出直线l的方程,若不存在,说明理由.21.(本小题满分14分)在平面直角坐标系xOy 中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x -4)2+(y-5)2=4(1) 若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2) 设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.数学参考答案评分标准一、选择题BDDCC、DBCBA二、填空题11. 2,-98 12.125 13.x2+(y-4)2=20或(x-2)2+y2=2014.1-或1215.②③三、解答题16.解:(1)390+-=x y(4分)(2)280+-=x y(8分)(3)(3,2)(12分)17.证明:(1)在△PAC中,D、E分别为PC、AC中点,则PA ∥DE ,PA 面DEF ,DE ⊂面DEF , 因此PA∥面DEF(6分)(2)△DEF 中,DE =12PA =3,EF =12BC =4,DF =5,∴DF 2=DE 2+EF 2,∴DE ⊥EF , 又PA ⊥AC ,∴DE ⊥AC .∴DE ⊥面ABC ,∴面BDE ⊥面ABC . (12分)18.分析:设出圆心坐标,利用几何性质列方程求出圆心坐标,再求出半径即可.解:∵圆心C 在直线l 1:x -3y =0上, ∴可设圆心为C (3t,t).(2分)又∵圆C与y轴相切,∴圆的半径为r=|3t|.(4分)再由弦心距、半径、弦长的一半组成的直角三角形可得(|3t-t|2)2+(7)2=|3t|2. 解得t=±1.(8分)∴圆心为(3,1)或(-3,-1),半径为3.(10分)故所求圆的方程为(x-3)2+(y-1)2=9或(x +3)2+(y+1)2=9.(12分)19.证明:(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.∴PD⊥DC.(3分)同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(6分)(2)∵四边形ABCD是正方形,∴AB∥CD,即∠PBA是异面直线PB与CD所成的角,由(1)知PD⊥平面ABCD,∴PD⊥AB.由DA⊥AB.∴AB⊥面PAD. 即AB⊥PA,(8分)在Rt△PAB中,PA=2a,AB=a,∴COS∠(9分)PBA=33(3)由(1)知PD⊥BC,又BC⊥DC,∴BC⊥平面PDC.∴BC⊥PC. ∴∠PCD为二面角P-BC-D的平面角.(11分)在Rt△PDC中,PD=DC=a,∴∠PCD=45°.∴二面角P-BC-D的正切值是1.(12分)20.解:(1)(x-1)2+(y+2)2=9.圆心C(1,-2),r=3.(6分)(2)假设存在直线l,设方程为y=x+m,A(x1,y1),B(x2,y2),因此直线AB的圆过原点O,所以OA⊥OB,即x1x2+y1y2=0.(7分)⎩⎨⎧y =x +m ,x 2+y 2-2x +4y -4=0消去y 得2x 2+2(m +1)x +m 2+4m -4=0.Δ>0得-32-3<m <32-3. (9分)由根与系数关系得:x 1+x 2=-(m +1),x 1x 2=m 2+4m -42,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=0.∴x 1x 2+y 1y 2=2x 1x 2+m (x 1+x 2)+m 2=0. 解得m =1或-4. (12分)直线l 方程为y =x +1或y =x -4. (13分)21.解:(1)由于直线x =4与圆C 1不相交,所以直线l的斜率存在,设直线l的方程为y=k(x-4),圆C1的圆心C1(-3,1)到直线l的距离为d=|1-k(-3-4)|, 2分1+k2因为直线l被圆C1截得的弦长为23,∴4=(3)2+d2,∴k(24k+7)=0,,即k=0或k=-7244分所以直线l的方程为y=0或7x+24y-28=0 6分(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(x-a),k≠0,则直线l2的方程为y-b=-1k(x-a),因为C1和C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪⎪⎪⎪⎪5+1k (4-a )-b 1+1k28分整理得:|1+3k +ak -b |=|5k +4-a -bk |, ∴1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk , 即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5. 10分因为k 的取值有无穷多个,所以⎩⎨⎧ a +b -2=0b -a +3=0,或⎩⎨⎧a -b +8=0a +b -5=0, 解得⎩⎪⎨⎪⎧ a =52b =-12或⎩⎪⎨⎪⎧a =-32b =132这样点P 只可能是点P 1⎝⎛⎭⎪⎪⎫52,-12或点P 2⎝ ⎛⎭⎪⎪⎫-32,132.经检验点P 1和P 2满足题目条件14分。

高二上册数学期中试卷及答案精选

高二上册数学期中试卷及答案精选

高二上册数学期中试卷及答案精选学生的时代只有课本、作业、同学和试卷,单纯却美好。

下面小编整理了高二上册数学期中试卷及答案精选,欢迎阅读参考。

高二上册数学期中试卷及答案精选(一)一、单项选择(注释)1、在△ABC中,已知60°,如果△ABC 两组解,则x的取值范围是 ( )A.(1,2)B. (3,+∞)C.( 2,+∞)D.( 1,+∞)2、已知函数,若则实数的取值范围是 ( )A.(1,+∞)B. (1,-∞)C. (+∞,2)D.(-∞,2)3、设函数则不等式的解集是( )A.(1,2) (3,+∞)B.(1,2) (2,+∞)C. (1,2) (3,-∞)D.(1,2) (2,-∞)4、已知正数满足 , ,则的取值范围是______ .5、已知实数满足则的最大值是( )A.4B.5C. 7D.46、设f(x)= 则不等式f(x)>2的解集为( )A.(1,2) (3,+∞)B.( ,+∞)C.(1,2) ( ,+∞)D.(1,2)7、下列不等式(1)m-3>m-5;(2)5-m>3-m;(3)5m>3m ;(4)5+m>5-m其中正确的有( )(A)1个 (B)2个(C)3个 (D)4个8、已知等差数列的前项和为,,,取得最小值时的值为( )A. B. C. D.9、设等差数列的前项和为 ,若 ,则等于( )A.18B.36C.45D.6010、S={1,2,…,2003},A是S的三元子集,满足:A中的所有元素可以组成等差数列.那么,这样的三元子集A的个数是( )A. B.C. D.11、设等差数列满足: ,则 ( )A.14B.21C.28D.3512、在中,,,分别是,,的对边,已知,,成等比数列,且,则的值为( )A. 4B.2C. 1D.5评卷人得分二、填空题(注释)13、已知 ,若恒成立,则实数的取值范围_________14、已知不等式(x+y) 对任意正实数x,y恒成立,则正实数a的最小值为__________15、在△ 中,若,则△ 的形状是16、在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC=________.评卷人得分三、解答题(注释)17、设数列满足下列关系:为常数), ;数列满足关系: .(1)求证:(2)证明数列是等差数列.18、已知集合A={x|x2<4},B={x|1< }.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为B,求a、b的值.19、已知数列的各项均为正整数,且 ,设集合 .性质1 若对于 ,存在唯一一组 ( )使成立,则称数列为完备数列,当k取最大值时称数列为k阶完备数列.性质2 若记 ,且对于任意 , ,都有成立,则称数列为完整数列,当k取最大值时称数列为k阶完整数列.性质3 若数列同时具有性质1及性质2,则称此数列为完美数列,当取最大值时称为阶完美数列;(Ⅰ)若数列的通项公式为 ,求集合 ,并指出分别为几阶完备数列,几阶完整数列,几阶完美数列;(Ⅱ)若数列的通项公式为 ,求证:数列为阶完备数列,并求出集合中所有元素的和 .(Ⅲ)若数列为阶完美数列,试写出集合 ,并求数列通项公式.20、已知数列为等差数列,公差 ,其中恰为等比数列,若 , , ,⑴求等比数列的公比⑵试求数列的前n项和21、已知是各项均为正数的等比数列,且 ,;(1)求的通项公式;(2)设 ,求数列的前项和 .22、在数列中, .(1)证明数列是等比数列;(2)设是数列的前项和,求使的最小值.参考答案一、单项选择1、【答案】C2、【答案】C【解析】由题知在上是增函数,由题得,解得,故选择C。

2023-2024学年成都七中高二数学上学期12月考试卷附答案解析

2023-2024学年成都七中高二数学上学期12月考试卷附答案解析

2023-2024学年成都七中高二数学上学期12月考试卷(试卷满分150分,考试时间120分钟)2023.12一、单选题(共8个小题,每个小题5分,共40分)1.已知直线l 的一个方向向量为)3-,则直线l 的倾斜角α=()A .30B .60C .120D .1502.某工厂生产A ,B ,C 三种不同型号的产品,它们的产量之比为2∶3∶5,用分层抽样的方法抽取一个容量为n 的样本.若样本中A 型号的产品有20件,则样本容量n 为()A .50B .80C .100D .2003.直线30l y -+=被圆22:(1)4C x y +-=截得的弦长为()A B .C D .4.设1F ,2F 分别是双曲线221412y x -=的下、上焦点,P 是该双曲线上的一点,且1235PF PF =,则12PF F △的面积等于()A .12B .24C .D .5.如图,二面角l αβ--等于120︒,A B 、是棱l 上两点,BD AC 、分别在半平面αβ、内,AC l ⊥,BD l ⊥,且2AB AC BD ===,则CD 的长等于()A .B .C .4D .26.如图是某个闭合电路的一部分,每个元件的可靠性是12,则从A 到B 这部分电路畅通的概率为()A .1116B .1132C .916D .9327.正四面体A BCD -的棱长为4,空间中的动点P 满足PB PC +=AP PD ⋅ 的取值范围为()A .44⎡-+⎣B .C .4⎡-⎣D .[]14,2-8.已知椭圆()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF △的内切圆的圆心为I ,若23450++= IB IA IF ,则该椭圆的离心率是()A B .23C .4D .12二、多选题(共4个小题,每个小题5分,共20分)9.有一组样本数据1x ,2x ,…,6x ,其中1x 是最小值,6x 是最大值,则()A .2x ,3x ,4x ,5x 的平均数等于1x ,2x ,…,6x 的平均数B .2x ,3x ,4x ,5x 的中位数不等于1x ,2x ,…,6x 的中位数C .2x ,3x ,4x ,5x 的标准差不小于1x ,2x ,…,6x 的标准差D .2x ,3x ,4x ,5x 的极差不大于1x ,2x ,…,6x 的极差10.如图所示,正方体1111ABCD A B C D -中,,E F 分别在1,A D AC 上,且1121,33A E A D AF AC ==,则下列结论正确的是()A .1EF AD ⊥B .1EF A D ⊥C .EF 与1BD 异面D .1EF BD ∥11.已知抛物线()2:20C y px p =>上存在一点()2,E t 到其焦点的距离为3,点P 为直线2x =-上一点,过点P 作抛物线C 的两条切线,切点分别为,,A B O 为坐标原点.则()A .抛物线的方程为24y x=B .直线AB 一定过抛物线的焦点C .线段AB 长的最小值为D .OP AB⊥12.已知椭圆:Γ:(22213x y a a +=的左、右焦点分别为1F 、2F ,右顶点为A ,点M 为椭圆Γ上一点,点I 是12MF F △的内心,延长MI 交线段12F F 于N ,抛物线()2158y a c x =+(其中c 为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,若四边形1ABF C 是菱形,则下列结论正确的是()A.2BC =B .椭圆Γ的离心率是2C .1214MF MF +的最小值为94D .INMI的值为22三、填空题(共4个小题,每个小题5分,共20分)13.已知两条平行直线1l :210x y ++=,2l :20ax y c ++=a c +=.14.已知()P ,a b 为圆C :222440x y x y +--+=上任意一点,则-12b a +的取值范围为15.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A+的概率分别为23、34、45,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是.16.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为.四、解答题(共7个题,17题10分,18题—22题每题12分,共70分)17.已知圆C 经过(0A),()12B ,两点,且圆心在直线1x =上.(1)求圆C 的方程;(2)求过点()02P ,且与圆C 相切的直线方程.18.在平面直角坐标系中,有两个圆1C:(221x y ++=,和圆2C:(221x y +=,一动圆P 与圆1C 内切,与圆2C 外切.动圆圆心P 的轨迹是曲线E ,直线1y kx =-与曲线E 交于,A B 两个不同的点.(1)求曲线E 的方程;(2)求实数k 的取值范围;19.2022年4月16日,神舟13号载人飞船返回舱在东风着陆场成功着陆,这趟神奇之旅意义非凡,尤其是“天宫课堂”在广大学生心中引起强烈反响,激起了他们对太空知识的浓厚兴趣.某中学在进行太空知识讲座后,从全校学生中随机抽取了200名学生进行笔试,并记录下他们的成绩,将数据分成6组,并整理得到如下频率分布直方图(1)求这部分学生成绩的中位数、平均数(同组数据用该组区间的中点值作代表);(2)为了更好的了解学生对太空知识的掌握情况,学校决定在成绩高的第5,6组中用分层抽样的方法抽取5名学生,进行第二轮面试,最终从这5名学生中随机抽取2人参加市太空知识竞赛,求90分(包括90分)以上的同学恰有1人被抽到的概率.20.如图所示,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD ∥BC 、90ADC ∠=、112BC CD AD ===、PA PD =,E 、F 分别为AD 、PC 的中点,PE CD ⊥.(1)证明:平面PAD ⊥平面ABCD ;(2)若PC 与AB 所成角为45,求二面角F BE A --的余弦值.21.已知抛物线C :28y x =,点()(),00M a a >,直线l 过点M 且与抛物线C 交于A ,B 两点.(1)若P 为抛物线C 上的一个动点,当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,求a 的取值范围;(2)当a 为定值时,在x 轴上是否存在异于点M 的点N ,对任意的直线l ,都满足直线AN ,BN 关于x 轴对称?若存在,指出点N 的位置并证明,若不存在请说明理由.22.椭圆22:184x y E +=的上顶点为P ,圆()()222:10C x y r r -+=>在椭圆E 内.(1)求r 的取值范围;(2)过点P 作圆C 的两条切线,切点为AB ,切线PA 与椭圆E 的另一个交点为N ,切线PB 与椭圆E 的另一个交点为M .直线AB 与y 轴交于点S ,直线MN 与y 轴交于点T .求ST的最大值,并计算出此时圆C的半径r .1.C【分析】根据直线的方向向量得到直线l 的斜率,进而求出倾斜角.【详解】因为直线l的一个方向向量为)3-,所以直线l的斜率tan k α===,又因为0180α≤<,所以120α= ,故选:C.2.C【分析】直接由分层抽样的定义按比例计算即可.【详解】由题意样本容量为220100235n =÷=++.故选:C.3.D【分析】由圆的方程可得圆心和半径,利用点到直线距离公式可求得圆心到直线距离,利用垂径定理可求得弦长.【详解】由圆22:(1)4C x y +-=,得圆心()0,1C ,半径2r =,所以圆心()0,1C 到直线l的距离为1d =,所以直线l 被圆C截得的弦长为2==.故选:D.4.B【分析】利用条件及双曲线的定义求出12,PF PF ,进而可得12PF F △为直角三角形,然后直接求面积即可.【详解】由双曲线221412y x -=得2,4a b c ===,又1235PF PF =,且1224PF PF a -==,得到1210,6PF PF ==,所以()22221212642PF PF c F F -===,即12PF F △为直角三角形,所以1221211682422PF F S PF F F ==⨯⨯=△.故选:B.5.C【分析】根据题意,可得DC DB BA AC =++uuu r uu u r uu r uuu r ,再由空间向量的模长计算公式,代入计算,即可得到结果.【详解】由二面角的平面角的定义知,120BD AC 〈〉︒=,∴cos ,22cos1202BD AC BD AC BD AC ⋅=〈〉=⨯⨯︒=-,由,AC l BD l ⊥⊥,得0,0AC BA BD BA ⋅=⋅= ,又DC DB BA AC =++uuu r uu u r uu r uuu r,∴22222()222DC DB BA AC DB BA AC DB BA DB AC BA AC=++=+++⋅+⋅+⋅ ()2222222122216BD AC =++-⋅=-⨯-=,所以4DC = ,即4CD =.故选:C.6.A【分析】由并联和串联电路的性质先求出从A 到B 电路不能正常工作的概率,再由对立事件的概率求解.【详解】上半部分电路畅通的概率为:111312228⎛⎫⨯-⨯= ⎪⎝⎭,下半部分电路畅通的概率为12,上下两部分并联,畅通的概率为:3111118216⎛⎫--⨯=⎪⎝⎭.故选:A .7.D【分析】分别取BC ,AD 的中点E ,F ,由题意可得点P 的轨迹是以E为半径的球面,又AP PD ⋅= 24PF -,再求出PF的最值即可求解【详解】分别取BC ,AD 的中点E ,F,则2PB PC PE +==所以PE =故点P 的轨迹是以E为半径的球面,()()()()AP PD PF FA PF FD PF FA PF FA ⋅=-+⋅+=-+⋅- 2224FA PF PF=-=- ,又ED ===EF ===所以min PF EF ==max PF EF ==所以AP PD ⋅的取值范围为[]14,2-.故选:D.8.A【分析】对23450++= IB IA IF 变形得到2351882IB IF IA +=- ,进而得到以22::3:4:5AF BF AB =,结合椭圆定义可求出2AF a =,245,33BF a AB a ==,1AF a =,由余弦定理求解,a c 关系式,求出离心率.【详解】因为23450++= IB IA IF ,所以2351882IB IF IA +=- ,如图,在2BF 上取一点M ,使得2:5:3BM MF =,连接IM ,则12IM IA =- ,则点I 为AM 上靠近点M 的三等分点,所以22::3:4:5IAF IBF IBA S S S = ,所以22::3:4:5AF BF AB =,设23AF x=,则24,5BF x AB x==,由椭圆定义可知:224AF BF AB a++=,即124x a =,所以3a x =,所以2AF a=,245,33BF a AB a ==,1AF a =故点A 与上顶点重合,在2ABF △中,由余弦定理得:222222222222516399cos 52523a a a AB F A F B BAF AB F A a +-+-∠==⋅⨯,在12AF F △中,2222243cos 25a a c BAF a +-∠==,解得:55c a =,所以椭圆离心率为故选:A【点睛】对于求解圆锥曲线离心率问题,要结合题目中的条件,直接求出离心率或求出,,a b c 的齐次方程,解出离心率,本题的难点在于如何将23450++= IB IA IF 进行转化,需要作出辅助线,结合内心的性质得到三角形2ABF 三边关系,求出离心率.9.BD【分析】根据平均数,中位数,标准差,极差的概念逐一判定即可.【详解】对于A ,令样本数据126,,,x x x 为1,2,2,2,2,9,则2345,,,x x x x 的平均数为2,而1x 26,,,x x 的平均数为3,两者不相等,A 错误;对于B ,不妨令1x ,2x ,…,6x 从小到大排列,所以2345,,,x x x x的中位数等于34126,,,,2x x x x x + 的中位数等于342x x +,B 正确;对于C ,令样本数据126,,,x x x 为 0,1,2,8,9,10,可知126,,,x x x 的平均数是5,2345,,,x x x x 的平均数是5,所以126,,,x x x 的方差22211(05)(15)6s ⎡=⨯-+-⎣222(25)(85)(95)+-+-+-250(105)3⎤+-=⎦,2345,,,x x x x 的方差22221(15)(25)4s ⎡=⨯-+-⎣2225(85)(95)2⎤+-+-=⎦,所以221212,s s s s >∴>,C 错误;对于D ,不妨令1x ,2x ,…,6x 从小到大排列,则6521,x x x x ≥≥,6152x x x x ∴-≥-,D 正确.故选:BD.10.BD【分析】建立空间直角坐标系,利用空间向量法判断两直线的位置关系.【详解】以D 为原点,以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系Dxyz ,设正方体棱长为3,则()()()()()()()113,0,0,3,3,0,0,0,0,0,0,3,3,0,3,1,0,1,2,1,0,A B D D A E F ()()()111(1,1,1),3,3,3,3,0,3,3,0,3.EF BD A D AD ∴=-=--=--=-13030,EF AD EF⋅=-+-≠∴与1AD 不垂直,故A 错误;113030,EF A D EF A D ⋅=-++=∴⊥,故B 正确;113,BD EF EF BD =-∴∥,故C 错误,D 正确.故选:BD.11.ACD【分析】根据抛物线的定义,求得抛物线的方程,可判定A 正确;设(2,)P m -,得出PA 和PB 的方程,联立方程组,结合Δ0=,得到12,k k 是方程2210k km +-=的两个不等式的实数根,再由韦达定理和1AB OP k k ⋅=-,可判定D 正确;由2AB k m =,得出直线AB ,结合直线的点斜式的形式,可判定B 不正确,再由圆锥曲线的弦长公式,结合二次函数的性质,可判定C 正确.【详解】由抛物线2:2C y px =,可得焦点坐标(,0)2p F ,准线方程为2p x =-,因为抛物线C 上存在一点()2,E t 到其焦点的距离为3,由抛物线的定义可得232p+=,可得2p =,所以抛物线的方程为24y x =,所以A 正确;设(2,)P m -,显然直线PA 的斜率存在且不为0,设斜率为1k ,可得PA 的方程为1(2)y m k x -=+,联立方程组12(2)4y m k x y x -=+⎧⎨=⎩,整理得2114840k y y k m -++=,因为PA 是抛物线的切线,所以()211(4)4840k k m ∆=--+=,即211210k k m +-=,且点A 的纵坐标为11422k k --=,代入抛物线方程,可得A 横坐标为211k ,即21112(,)A k k ,设直线PB 的斜率存在且不为0,设斜率为2k ,同理可得:222210k k m +-=,且22212(,)B k k ,所以12,k k 是方程2210k km +-=的两个不等式的实数根,所以12121,22m k k k k +=-=-,因为2112122221221222((()1112222AB OP k k k k m m mk k m k k k k --⨯⋅=⋅-=⋅-=⋅-=-+--,所以OP AB ⊥,所以D 正确;由OP AB ⊥,且2OP m k =-,可得2AB k m =,则直线AB 的方程为211221()y x k m k -=-,即22111222mk y mk k x -=-,又由211210k k m +-=,可得21112k m k =-,所以3221111(2)2(12)22k k y k k x ---=-,即211(12)2(2)k y k x -=-,所以直线AB 一定过定点(2,0),该点不是抛物线的焦点,所以B 不正确.由直线AB 的斜率不为0,设直线AB 的方程为2x my =+,且1122(,),(,)A x y B x y ,联立方程组224x my y x =+⎧⎨=⎩,整理得2480y my --=,所以12124,8y y m y y +==-,则12AB y y =-===≥0m =时,等号成立,即AB的最小值为C 正确.故选:ACD.【点睛】方法点睛:解决直线与抛物线有关问题的方法与策略:1、涉及抛物线的定义问题:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.2、涉及直线与抛物线的综合问题:通常设出直线方程,与抛物线方程联立方程组,结合根与系数的关系,合理进行转化运算求解,同时注意向量、基本不等式、函数及导数在解答中的应用.12.AC【分析】对于A :利用椭圆与抛物线的对称性可得点B 坐标,代入抛物线方程,进而可判断;对于B :将点B 坐标代入椭圆方程即可判断;对于C :利用椭圆定义以及基本不等式计算可判断;对于D :利用角平分线的性质结合比例的性质即可计算.【详解】对于A :椭圆Γ:(22213x y a a +=的左、右焦点分别为1F 、2F ,右顶点为A ,则()()()212,0,,0,,0,3A a F c F c b --=,,因为抛物线()2158y a c x =+(其中c 为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,由椭圆与抛物线的对称性可得B ,C 两点关于x 轴对称,设(,),(,),0B m n C m n n ->,因为四边形1ABF C是菱形,所以BC 中点是1AF 的中点,所以2m a c =-,即2a cm -=,所以()()()()22221515151545816161616n a c m a c a c a c b =+=+-=-==,则4n =,所以2BC n ==,A 正确;对于B :由选项A 得()135,24B a c ⎛- ⎪ ⎪⎝⎭,代入椭圆方程可得()2214514163a c a -⋅+=⨯,化简得12a c a-=,进而可得12e =,B 错误;对于C :由选项B 可得22222,33a c b a c c ==-==,则1,2c a ==,所以12||||24MF MF a +==,则12||,||MF s MF t ==,则4,0,0s t s t +=>>,所以()121414114141955||||4444ts s t MF MF t s s t s t ⎛⎫⎛⎫⎛⎫+=+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4t s t s =,即48,33s t ==时等号成立,所以1214MF MF +的最小值为94,C 正确;对于D :连接1IF 和2IF,如图:因为I 是12MF F △的内心,则1IF 为12MF F ∠的平分线,由角平分线定理可得11MF MI F NNI=,同理22MF MI F NNI=,所以2211MF MF MI F NF NNI==,所以1212||||||22||||||2MF MF MI aNI F N F N c +===+,即12IN MI =,D 错误.故选:AC.13.4-或16【分析】可先通过两直线平行求出参数a ,接着将两直线的变量系数化为一致,再利用距离公式求解即可.【详解】因为12//l l ,所以2210a ⨯-⨯=,解得4a =,则2l:420x y c ++=,可化直线1l 为4220x y ++=,所以1l 与2l =,解得8c =-或12c =则4a c +=-或16a c +=.14.304⎡⎤⎢⎥⎣⎦,【分析】求12b a -+的取值范围表示圆上的点()P a b ,与点()21Q -,连线的斜率的取值范围,画出图形,可知当直线与圆相切时斜率取到最值,利用点到直线的距离公式计算即可.【详解】由题意,12b a -+表示圆C 上的点()P a b ,与圆外的点()21Q -,连线的斜率.把圆22:2440C x y x y +--+=化为标准式()()22121x y -+-=,圆心()12C ,,半径1r =.设过点()21Q -,的直线方程为()12y k x -=+,即210kx y k -++=.当直线210kx y k -++=与圆C 相切时,斜率k 取得最值.1=,解得0k =或34k =.所以12b a -+的取值范围为3[0]4,.故答案为:3[04,.15.56【分析】分成两种情况,恰好两门科目A +,三门科目A +,根据独立事件的乘法公式计算.【详解】考生至少拿到两个A +的事件为A ,三门科目A +为事件B ,恰好两门科目A +为事件C ,由题意,A B C =+,且,B C 互斥.三门科目A +,23424()34560P B =⨯⨯=恰好两门科目A +,23423423426()11134534534560P C ⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.根据互斥事件的加法公式,24265()()()60606P A P B P C =+=+=.故答案为:5616.6【分析】由于线段1PF 的垂直平分线过2F ,所以有122F F PF =,再根据双曲线和椭圆的定义,求出2c 的表达式,然后利用基本不等式来求得最小值.【详解】设椭圆对应的参数为11,,a b c ,双曲线对应的参数为22,,a b c ,由于线段1PF 的垂直平分线过2F ,所以有1222F F PF c ==.根据双曲线和椭圆的定义有11122222PF c a PF c a ⎧+=⎪⎨-=⎪⎩,两式相减得到()1242c a a =-,即122a a c -=.所以2121222224222e a a c ce c a c a +=+=++46≥+=,即最小值为6.【点睛】本小题考查双曲线的定义和几何性质,考查椭圆的定义和几何性质,是一个综合性较强的题目.由于椭圆和双曲线有公共的焦点,所以焦距相同,也就是有相同c .对于两个曲线的公共交点来说,即满足椭圆的定义,又满足双曲线的定义,根据定义可列出方程.再利用基本不等式可求得最小值.17.(1)x2+y2﹣2x ﹣3=0;(2)y =2或4x ﹣3y+6=0.【分析】(1)由圆心在直线1x =上,设圆心为(1,t ),再由C 经过(0A),()12B ,两点可得1+(t2=0+(t ﹣2)2,求得圆心和半径即可得解;(2)根据题意切线的斜率存在可设直线方程为y =kx+2,再利用直线和圆相切可得d=2,求得k 即可得解.【详解】(1)根据题意,设圆心C 的坐标为(1,t ),则有1+(t2=0+(t ﹣2)2,解可得t =0,即圆心的坐标为(1,0),圆的半径r2,则圆的方程为(x ﹣1)2+y2=4,即x2+y2﹣2x ﹣3=0;(2)根据题意,圆的方程为(x ﹣1)2+y2=4,过点P (0,2)作圆的切线,斜率必定存在,设切线的斜率为k ,则切线的方程为y =kx+2,即kx ﹣y+2=0;则有d=2,解可得k =0或43;故切线的方程为y =2或4x ﹣3y+6=0.18.(1)221(0)x y x -=<(2)1k <<-【分析】(1)先根据两圆位置关系列式可得动圆圆心P 的轨迹为双曲线的一只,根据双曲线的定义可得轨迹方程;(2)将双曲线方程和直线方程联立,根据方程有两不等负根列不等式组求解即可.【详解】(1)圆1C:(221x y +=和圆2C:(221x y +=的圆心分别为())12,C C ,半径均为1,令动圆P 的半径为r ,显然1r >,当动圆Р与圆1C 内切,与圆2C 外切时,1211PC r PC r ⎧=-⎪⎨=+⎪⎩,即21122PC PC C C -=<,因此动圆圆心P 的轨迹是以1C ,2C 为焦点,且实轴长为2的双曲线的左支,故曲线E 的方程为221(0)x y x -=<;(2)直线1y kx =-与曲线E 交于,A B 两个不同的点,联立2211y kx x y =-⎧⎨-=⎩,消去y 得()221220k x kx -+-=,该方程有两不等负根,所以()()2222210Δ2810201201k k k k k k ⎧-≠⎪=+->⎪⎪⎪⎨-<⎪-⎪-⎪>⎪-⎩,解得1k <<-.19.(1)71.67,70.5(2)35【分析】(1)根据频率直方图按照中位数和平均数的计算方法即可求得答案;(2)确定第5,6组中的人数,从而求得5名学生中每组抽取的人数,列举出抽取两人的所有情况,根据古典概型的概率公式即可求得答案.【详解】(1)设中位数为x,平均数为x ,因为前三个矩形面积为()0.0100.0150.020100.45++⨯=,故()()0.0100.0150.02010700.0300.5x ++⨯+-⨯=,解得71.67x ≈;()10450.010550.015650.020750.030850.0159705510.0.0x =⨯⨯+⨯+⨯+⨯+⨯+⨯=.(2)2000.0151030⨯⨯=人,2000.011020⨯⨯=人,即第五组有30人,第六组有20人,30533020⨯=+人,20523020⨯=+人,即需从第五组抽取3人,从第六组抽取两人,设从抽取的5人中抽取2人,设五组的三人为,,a b c ,第六组的两人为,D E ,则共有抽法为(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c a D a E b c b D b E c D c E D E ,共10种,其中恰有一人得分为90及以上的抽法有6种,故90分(包括90分)以上的同学恰有1人被抽到的概率63105=.20.(1)证明见解析(2)3【分析】(1)根据PA PD =,E 为AD 的中点,得到PE AD ⊥,再由PE CD ⊥,利用线面垂直和面面垂直的判定定理证明;(2)以E 为原点,以EA 为x 轴,EB 为y 轴,以EP 为z 轴,建立空间直角坐标系,求得平面EBF 的一个法向量为()m x y z =,, ,再由平面ABE 的一个法向量为(001),,= n ,由cos ,||||m n m n m n ⋅<>=⋅求解.【详解】(1)证明:∵PA PD =,E 是AD 的中点,∴PE AD ⊥,又PE CD ⊥,AD CD D = ,AD 、CD ⊂平面ABCD ,∴PE ⊥平面ABCD ,∵PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:∵//AD BC 、90ADC ∠=、112BC CD AD ===,∴AE BE ⊥,以E 为坐标原点,EA 、EB 、EP 分别为x 、y 、z 轴建立空间直角坐标系如图所示,连接EC ,∵//AE BC 、AE BC =,∴四边形AECB 为平行四边形,∴//AB CE ,∴PCE ∠是异面直线PC 与AB 所成的角,则45PCE ∠=o,∴PE CE =()000E ,,、(00P 、(0)10B ,,、()110C -,,,∴11222F ⎛⎫- ⎪ ⎪⎝⎭,,,设平面BEF 的法向量为()m x y z =,, ,又(0,1,0)EB = 、112(,,222EF =- ,∴011022m EB y m EF x y ⎧⋅==⎪⎨⋅=-++=⎪⎩ ,令1z =,则x =、0y =,∴m =r,又平面ABE 的法向量(001),,= n ,设二面角F BE A --的平面角为θ,经观察θ为钝角,∴3co |cos ,s |||||||m n m n m n θ⋅=-<>=-=--⋅.21.(1)(]0,4(2)存在,(),0N a -【分析】(1)设()00,P x y ,表示出MP,然后利用二次函数的性质求解;(2)设直线AB 的方程为x my a =+,()()1122,,,A x y B x y ,假设存在异于点M 的点N ,对任意的直线l ,都满足直线AN ,BN 关于x 轴对称,联立28x my ay x =+⎧⎨=⎩,利用韦达定理代入计算0AN BN k k +=即可得答案.【详解】(1)设()00,P x y ,则2008y x =,于是MP ==,设()2282y x a x a =+-+,对称轴4x a =-,又0x =时MP取最小值,所以40a -≤,得04a <≤,即a 的取值范围是(]0,4;(2)设直线AB 的方程为x my a =+,()()1122,,,A x y B x y ,假设存在异于点M 的点N ,对任意的直线l ,都满足直线AN ,BN 关于x 轴对称,则AN BN k k +=,且设(),0N t ,联立28x my ay x =+⎧⎨=⎩,消去x 得2880y my a --=,则2121264320,8,8m a y y m y y a ∆=+>+==-,所以()()21222121212282,64y y x x m y y a m a x x a +=++=+==,于是()()()()()()()()122112211212212121212AN BN y x t y x t y my a y my a t y y y yk k x t x t x t x t x x t x x t -+-+++-++=+==-----++()()()()()1212222212122168082my y a t y y ma m a t x x t x x t a t m a t +-+-+-===-++-++,整理得880ma mt +=,所以0m =或t a =-,当0m =时,直线AB 的方程为x a =,此时点N 在x 轴上任意一点均满足假设,当t a =-时,(),0N a -.综上:存在异于点M 的点(),0N a -,对任意的直线l ,都满足直线AN ,BN 关于x 轴对称22.(1)((2)ST最大值为9-2r =-【分析】(1)设椭圆上任意一点()000,,2Q x y x ≤,可得minr CQ <,求出2CQ,进而可得r 的取值范围;(2)设()()()()12112234,,,0,0,,,,,PA PB k k k k N x y M x y S y T y ==,过点P 的直线l 的方程为2y kx =+,根据点到直线的距离公式得到()2221440r k k r --+-=,则可得212241r k k r -=-,再联立222184y kx x y =+⎧⎪⎨+=⎪⎩,求出,M N 坐标,设出直线MN 的方程,代入,M N 坐标计算,再求解即可》【详解】(1)不妨设椭圆上任意一点()000,,Q x y x ≤2200184x y +=此时半径min r CQ <,又()()()22222200000111423322x CQ x y x x =-+=-+-=-+≥,当x0=2时取等号.所以min r CQ <=,所以r的取值范围为(;(2)过点()0,2P 作圆C 的两条切线,当两条切线均存在斜率时,设()()()()12112234,,,0,0,,,,,PA PB k k k k N x y M x y S y T y ==经过点P 的直线l 的方程为2y kx =+,r=,整理得()2221440r k k r--+-=,所以有212122244,11rk k k kr r-+==--又以PC为直径的圆的方程为()222151224x y⎛⎫⎛⎫-+-==⎪⎪ ⎪⎝⎭⎝⎭则直线AB的方程为()()22222521114xx y y r⎛⎫⎡⎤-+--=-⎪⎣⎦⎝⎭-+,整理得2210x y r--+=,令0x=得2312ry-=,即220,1S r-⎛⎫⎪⎝⎭,联立222184y kxx y=+⎧⎪⎨+=⎪⎩,消去y得()221280k x kx++=,所以1212221288,1212k kx xk k--==++,即22221122221212824824,,,12121212k k k kN Mk k k k⎛⎫⎛⎫----⎪ ⎪++++⎝⎭⎝⎭,不妨设直线MN的方程为y tx m=+,则2112211222222224812122481212k k t mk kk k t mk k⎧--=+⎪++⎪⎨--⎪=+⎪++⎩,整理得()()2112222482024820m k tk mm k tk m⎧+-+-=⎪⎨+-+-=⎪⎩,所以12,k k为方程()224820m k tk m+-+-=的两个根,则12224mk km-=+,又212241rk kr-=-,所以2224241rmm r--=+-,解得226187rmr-=-,此时222234221161814818722727r r rST y y m rr r---⎛⎫=-=-=-=--+⎪--⎝⎭1|1892≤-=-,当且仅当224877rr-=-,即2r=-当两条切线中一条斜率不存在时,1r=,此时,PA即y轴,此时()()0,20,0,S T-,29ST=<-,综上ST的最大值为9-2r=-.【点睛】关键点点睛:本题的关键点是通过计算求出相关点的坐标,进而才能求出长度表达式,对于计算的准确性以及计算速度要求高.。

四川省成都市郫都区2020-2021学年高二下学期期中考试理科数学试题 Word版含答案

四川省成都市郫都区2020-2021学年高二下学期期中考试理科数学试题 Word版含答案

郫都区2020—2021学年度下期期中考试高二理科数学说明:1.本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟.2.所有试题均在答题卡相应的区域内作答.第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的)1.函数2)(++=x e x f x ,其导函数为)(x f ',则=')0(fA.2B.3C.4D.1+e 2.已知向量),34,2(),1,2,3(m -=-=,若b a //,则实数m 的值为 A.6 B.38 C.23 D.32- 3.在曲线2x y =上且切线倾斜角为π4的切点是A .(0,0)B .(2,4) C.)161,41( D.)41,21( 4.已知n m ,是两条不同的直线,βα,是两个不同的平面. 若αββα⊥⊥⊥,且n m ,,则下列结论一定正确的是A. n m ⊥B.n m //C.相交与n mD.异面与n m 5.若函数x ax x f cos )(-=为增函数,则实数a 的取值范围是A .),1[+∞-B .),1[+∞C .),1(+∞-D .),1(+∞ 6.如图,已知空间四边形OABC ,其对角线为N M AC OB ,,,分别是CB OA ,的中点,点G 在线段MN 上,且使GN MG 2=,用向量,,表示向量OG 为 A.313161++= B.OC OB OA OG 323221++=C.3232++=D.OC OB OA OG 323121++=7.函数xx xx f -+=e e 2)(的部分图象大致为A B C D8.如图,阴影部分是曲线x e y =与轴轴y x ,及直线1=x 围成的封闭图形. 现采用随机模拟的方法向右图中矩形OABC 内随机投入800个点,其中恰有500个点落在图中阴影部分,则由此次模拟实验可以估计出e 的值约为 A .2.667 B.2.737 C. 2.718 D.2.7859.如图,长方体1111D C B A ABCD -的底面是边长为2的正方形,41=AA ,点M E 、分别为棱11BB CC 、的中点. 若平面ACM 平面1111D C B A =l ,则直线l 与平面E D B 11所成角的正切值为A.36B.2C.3D.23 10.><a ,表示a 在b 方向上的投影,换个角度,点O 在直线OB 的法向量方向上的投影就是点A到直线OB的距离(如图1),如果利用类比的方法,那么图2中点A 到平面BCD 的距离为A.32 B. 63 C.22 D. 3311.如果过点)1,0(可作曲线c x x x f +-=2331)(的三条切线,则实数c 的取值范围是 A.)31,(-∞ B.)1,32( C.)32,31( D.),32(+∞12.已知)(x f 是定义在)0(∞+,上的函数,且1)1(=f ,导函数)(x f '满足)()(x f x f <'恒成立,则不等式1)(-<x ex f 的解集为A.)1(∞+,B.]21,0[C.]121[, D.)1,0(第II 卷(非选择题 共90分)注意事项: 必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指定的答题区域内作答作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.二、填空题(本大题共4小题,每小题5分,共20分) 13.=⎰-dx x 11sin _________.14.函数x x x f ln )(=的单调递减区间为__________.15.在直三棱柱111ABC A B C -中,90=∠ABC ,=AB 11BC CC ==,则异面直线1AB 与C A 1所成角 的正弦值为__________.16.若函数x ae x x x f -++=1)(2有且仅有一个零点,则实数a 的取值范围为__________. 三、解答题(本大题共6小题共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设函数bx x x f +=3)(,曲线)(x f y =在点))21(,21(f 处的切线与y 轴垂直.(1)求b ;(2)求函数)(x f y =的极值.18.(本小题满分12分)已知等差数列}{n a 的前n 项和为n S ,且66,61142==+S a a . (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足11+=n n n a a b ,求证:121<+⋅⋅⋅++n b b b . 19.(本小题满分12分)2020年,我国已经实现全面脱贫的历史性战略任务. 但巩固贫困成果还有很多工作要继续,利用互联网电商进行产品的销售就是一种有效的方式. 某村盛产脐橙,为了更好销售,现从脐橙树上摘下100个脐橙进行测重,其质量分布在区间]500,200[(单位:克),统计质量的数据作出其频率分布直方图如图所示:(1)按分层抽样的方法从质量落在)350,300[)300,250[,的脐橙中随机抽取5个,再从这5个脐橙中随机抽取2个,求这2个脐橙质量至少有一个小于300克的概率;(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的脐橙种植地上大约有100000个脐橙待出售,某电商提出两种收购方案:A.所有脐橙均以7元/千克收购;B.低于350克的脐橙以2元/个收购,其余的以3元/个收购.请你通过计算为该村选择收益较好的方案.5.35405.04752.04253.037524.032516.027505.0225=⨯+⨯+⨯+⨯+⨯+⨯参考数据:20.(本小题满分12分)在五边形AEBCD 中,BE AE BC CD AB AB CD CD BC ⊥==⊥,22,//,,AE BE =(如图1),将ABE ∆沿AB 折起使得平面⊥ABE 平面ABCD ,线段AB 的中点为O (如图2).(1)求证:平面⊥ABE 平面DOE ;(2)求平面ABE 与平面CDE 所成的锐二面角的大小.图1 图221.(本小题满分12分)ABC ∆的内角C B A ,,的对边分别为c b a ,,. 已知2cos)sin(A c B A a ⋅=+⋅. (1)求A ;(2)已知3,1==c b ,且边BC 上有一点D 满足ADC ABD S S ∆∆=3,求AD .22.(本小题满分12分)已知函数xxa x f ln )(-=. (1)若.)(x f 在1=x 处取得极值,求实数a 的值; (2)讨论)(x f 在)1,0(上的单调性; (3)在(1)的条件下证明0)(>+x xe x f .郫都区2020—2021学年度下期期中考试高二理科数学参考答案一、选择题ADDAB ACABD BA 二、填空题13. 0 14. )1,0(e 15. 1 16. ),3()1,0(+∞e三、解答题17.解:(1)由b x x f +='23)(得43083)21(-==+='b b f ,; …………4分 (2))21)(21(3433)(2+-=-='x x x x f ,由0)(>'x f 得2121-<>x x 或,由0)(<'x f 得2121<<-x ,所以函数)(x f 在),21()21,(+∞--∞和单调递增,在)2121(,-单调递减. ……8分所以)(x f 的极大值为41)21(=-f ,极小值为41)21(-=f …………10分18.解:(1)由6611611==a S 得66=a …………2分设公差为d ,则1,4426=∴==-d d a a …………4分 所以n n d n a a n =⨯-+=-+=1)1(2)2(2 …………6分 (2)由(1)得111)1(1+-=+=n n n n b n …………8分所以)111()3121()211(21+-+⋅⋅⋅+-+-=+⋅⋅⋅++n n b b b n1111<+-=n …………12分 19.解:(1)由题意,脐橙质量在)300,250[和)350,300[的比例为2:3∴应分别在)300,250[和)350,300[的脐橙中各取2个和3个 ……………………2分记抽取质量在)300,250[的脐橙为21,A A ;质量在)350,300[的脐橙为321`,,B B B ,则从5个脐橙中随机抽取2个的情况有:32312132221231211121,,,,,,,,B B B B B B B A B A B A B A B A B A A A ,,共10种其中质量至少有一个小于300克的情况有7种 ……………………5分 故所求概率为107……………………6分 (2)方案B 好,理由如下:由频率分布直方图可知,脐橙质量落在区间,,,)350,300[)300,250[)250,200[ )500,450[)450,400[)400,350[,,的频率依次是05.0,2.0,3.0,24.0,16.0,05.0且各段脐橙的个数依次为5000,20000,30000,24000,16000,5000个按方案A 收购,总收益为()248150710001000005.354=⨯÷⨯元 …………9分 按方案B 收购,总收益为()255000355000224000160005000=⨯+⨯++元 …………11分故该村选择方案B 收购收益更好. …………12分 20.解:(1)证明:由题意O CD AB ,2=是线段AB 的中点,则CD OB =, 又AB CD //,所以OBCD 是平行四边形, 又CD BC ⊥,所以OD AB ⊥.因为OA OB BE AE ==,,所以AB EO ⊥, …………3分 又O DO EO = ,所以ABE AB DOE AB 平面又平面⊂⊥,,所以DOE ABE 平面平面⊥ …………5分 (2)由(1)知,OE OD OB ,,两两垂直,以O 为坐标原点,以OE OD OB ,,所在直线分别为z y x ,,建立如图所示空间直角坐标系xyz O -.因为EAB ∆为等腰直角三角形,且BC CD AB 22==,则,则,取1=====BC CD OE OD OB OA)1,1,0(),0,0,1(),1,0,0(),0,1,0(),0,1,1(),0,0,0(-=-=E D C O …………7分设平面ECD 的法向量为),,(z y x =,则⎪⎩⎪⎨⎧=⋅=⋅0DE n ,即⎩⎨⎧=+-=-00z y x ,取)1,1,0(=n …………9分 因为ABE OD 平面⊥,所以平面ABE 的一个法向量为)0,1,0(= …………10分 设平面ECD 与平面ABE 所成锐二面角为θ,则22|,cos |cos =><=θ 所以4πθ=,故平面ECD 与平面ABE 所成锐二面角为4π…………12分 21.解:(1)因为2cossin A c C a =, 由正弦定理得2cos sin sin sin AC C A =, ……………2分因为,0sin >C 所以2cos sin AA =,所以2cos 2cos 2sin 2AA A = ……………4分因为20π<<A ,所以02cos ≠A ,212sin =A ,所以62π=A ,所以3π=A ……………6分(2)解法一:设ABD ∆的AB 边上的高为1h ,ADC ∆的AC 边上的高为2h , 因为1,3,3===∆∆b c S S ADC ABD , ……………7分 所以2121321h b h c ⋅⨯=⋅ ……………8分 所以21h h =,AD 是ABC ∆角A 的内角平分线,所以 30=∠BAD ,……………9分因为ADC ABD S S ∆∆=3,可知ABC ABD S S ∆∆=43, ……………10分 所以60sin 214330sin 21⨯⨯⨯=⨯⨯AC AB AD AB , 所以433=AD . ……………12分 解法二:设),3,0(,παα∈=∠BAD则απ-=∠3DAC , ……………7分因为1,3,3===∆∆b c S S ADC ABD , 所以)3sin(213sin 21απα-⨯⨯⨯=⨯⨯AD b AD c ……………8分 所以)3sin(sin απα-= ……………9分所以 3033tan ,sin 21cos 23sin =∠=-=BAD ,即αααα ……………10分 因为ADC ABD S S ∆∆=3,可知ABC ABD S S ∆∆=43, ……………11分 所以60sin 214330sin 21⨯⨯⨯=⨯⨯AC AB AD AB , 所以433=AD . ……………12分 解法三:设,,α=∠=BDA x AD 则απ-=∠ADC , 在△ABC 中,由1,3==b c 及余弦定理得7=a因为ADC ABD S S ∆∆=3,可知4733==DC BD , ……………8分 在△ABD 中,αcos 2222⋅⋅-+=AD BD AD BD AB , 即αcos 273166392⋅⋅-+=AD AD , ……………9分 在△ADC 中,()απ-⋅⋅-+=cos 2716712AD AD ,即αcos 2716712⋅⋅++=AD AD , ……………11分 所以433=AD . ……………12分 22.解:因为2ln 1)('xxa x f +--=, (1)由0)1('=f 得1-=a , ……………2分 经验证,1-=a 时)(x f 在1=x 处取极小值; ……………3分 (2)令0)('=x f ,得1+=a e x ,若1-<a ,则101<<+a e ,当),0(1+∈a e x 时,0)('<x f ,)(x f 单调递减,当)1,(1+∈a e x 时,0)('>x f ,)(x f 单调递增; ……………5分 若1-≥a ,则11≥+a e ,当)1,0(∈x 时0)('<x f ,)(x f 单调递减. 综上所述:1-<a 时)(x f 在),0(1+a e 单调递减,在)1,(1+a e 单调递增; 1-≥a 时)(x f 在)1,0(单调递减. ……………7分 (3)1-=a 时0)(>+x xe x f 01ln )(2>--=⇔x e x x h xx e x x x h x 1)2()('2-+= ,令)(')(x h x =ϕ,)0(01)24()('22>>+++=x xe x x x x ϕ )(x ϕ∴即)('x h 在),0(+∞单调递增,又04169)41('41<-=e h ,0245)21('21>-=e h ,所以存在)21,41(0∈x ,使0)('0=x h ,当),41(0x x ∈时,0)('0<x h ,)(x h 单调递减;当)21,(0x x ∈时,0)('0>x h ,)(x h 单调递增. ……………9分故1ln )()(0200min 0--==x e x x h x h x ,)21,41(0∈x 因01)2()('002000=-+=x e x x x h x , ∴210200+=x e x x1ln 21)(00min --+=∴x x x h ,)21,41(0∈x 设)2141(1ln 21)(<<--+=x x x x λ,则)2141(01)2(1)('2<<<-+-=x xx x λ, )(x λ在)21,41(单调递减,0532ln )21()(>-=>λλx ,即01ln 21)(00min >--+=x x x h 所以0)(>+x xe x f . ……………12分。

2022-2023学年四川省成都市高二下学期期中联考数学(理)试题【含答案】

2022-2023学年四川省成都市高二下学期期中联考数学(理)试题【含答案】

2022-2023学年四川省成都市高二下学期期中联考数学(理)试题一、单选题1.AB BC BA ++=()A .AC B .BCC .ABD .0【答案】B【分析】利用向量加法的运算法则求解即可.【详解】AB BC BA AC BA BC ++=+=,故选:B .2.函数()2sin x f x x =+的导函数为()A .)2cos x f x x '(=-B .)2ln2cos x f x x '(=-C .)2cos x f x x '(=+D .)2ln2cos x f x x'(=+【答案】D【分析】根据给定条件,利用求导公式及导数运算法则求解作答.【详解】函数()2sin x f x x =+,求导得)2ln2cos x f x x '(=+.故选:D3.若可导函数()f x 满足()()11lim 3x f x f x∆→+∆-=∆,则()1f '=()A .1B .2C .3D .4【答案】C【分析】根据导数定义可直接得到结果.【详解】由导数的定义知:()()()111lim 3x f x f f x∆→+∆-'==∆.故选:C.4.已知直线l 的方向向量为1,2,4)m (-= ,平面α的法向量为,1,2)n x =(-,若直线l 与平面α平行,则实数x 的值为()A .12B .12-C .10D .10-【答案】C【分析】依题意可得m n ⊥ ,即可得到0m n ⋅=,从而得到方程,解得即可.【详解】因为直线l 的方向向量为1,2,4)m (-= ,平面α的法向量为,1,2)n x =(-,若直线l 与平面α平行,则m n ⊥ ,即0m n ⋅=,即280x --=,解得10x =.故选:C .5.若定义在R 上的函数()f x 的导数()f x '的图象如图所示,则下列说法正确的是()A .函数()f x 在区间(),0∞-上单调递减,在区间()0,∞+上单调递增B .函数()f x 在区间(),1-∞上单调递增,在区间()1,+∞上单调递减C .函数()f x 在1x =处取极大值,无极小值D .函数()f x 在0x =处取极大值,无极小值【答案】A【分析】根据导函数的正负可确定()f x 单调性,结合极值点定义可确定正确选项.【详解】对于AB ,由()f x '图象可知:当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x ¢>;()f x \在(),0∞-上单调递减,在()0,∞+上单调递增,A 正确,B 错误;对于CD ,由单调性可知:()f x 在0x =处取得极小值,无极大值,CD 错误.故选:A.6.若函数()ln f x x x =在点00(,())x f x 处的切线斜率为1,则0x =()A .e -B .eC .1-D .1【答案】D【分析】先求出()f x ',由已知得0()1f x '=列出方程,求解即可.【详解】因为()ln 1f x x '=+,所以()f x 在点00(,())x f x 处的切线斜率为00()ln 11k f x x '==+=,解得01x =,故选:D .7.若关于x 的不等式e 0x x a -->恒成立,则a 的取值范围为()A .()e,+∞B .(),1-∞C .[)1,+∞D .(],0-∞【答案】B【分析】令()e xf x x a =--,将问题转化为()min 0f x >,利用导数可求得()f x 单调性,从而得到()min f x ,解不等式即可求得结果.【详解】令()e xf x x a =--,则()0f x >恒成立,()min 0f x ∴>;()e 1x f x '=- ,∴当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x ¢>;()f x \在(),0∞-上单调递减,在()0,∞+上单调递增,()()min 010f x f a ∴==->,解得:1a <,即a 的取值范围为(),1-∞.故选:B.8.已知正四面体A BCD -的棱长为2,若M 、N 分别是AB 、CD 的中点,则线段MN 的长为()A .2B .2C .3D .62【答案】B【分析】以AC 、AB、AD 作为一组基底表示出MN ,再根据数量积的运算律求出MN ,即可得解.【详解】111222MN MA AN AB AC AD =+=-++,又AC 、AB、AD 两两的夹角均为π3,且2AB AC AD === ,22111222MN AB AC AD ⎛⎫∴=-++ ⎪⎝⎭ ()22212224AB AC AD AB AC AB AD AD AC =++-⋅-⋅+⋅2221πππ2cos 2cos 2cos 24333AB AC AD AB AC AB AD AD AC ⎛⎫=++-⋅-⋅+⋅= ⎪⎝⎭ ,22MN MN ∴== .故选:B .9.函数e ()1xf x x =-的图象大致是()A .B .C .D .【答案】A【分析】根据图象结合函数定义域、单调性判断B ,C 错误;由函数在0x <时函数值的符号可判断D.【详解】由定义域为{1}x |x ≠,∴排除B ;又2e 2))1)x x f x x (-'(=(-,令)0f x '(>,得2x >,()f x ∴的单增区间为2,)(+∞,∴排除C ;当0x <时,()0f x <,∴排除D ;故选:A .10.若函数()2ln f x x ax x =-+有两个极值点,则a 的取值范围为()A .022a <<B .2222a -<<C .22a <-或22a >D .22a >【答案】D【分析】函数有两个不同的极值点,则()0f x '=在()0,∞+上有两个不同的实数解,转化为二次方程在()0,∞+有两个不同的实数解,求解即可.【详解】由题意可得()f x 的定义域为()0,x ∈+∞,()21212x ax f x x a x x-+'=-+=,因为函数()f x 有两个极值点,所以2210x ax -+=在()0,∞+上有两个不同的实数解,所以28002a a ⎧->⎪⎨>⎪⎩,解得22a >,故选:D11.如图,半径为1的球O 是圆柱12O O 的内切球,线段AB 是球O 的一条直径,点P 是圆柱12O O 表面上的动点,则PA PB ⋅的取值范围为()A .[0,1]B .[0,3]C .[0,2]D .[1,2]【答案】A【分析】先把,PA PB 都用PO 表示,再根据PO的模长的范围求出数量积的范围即可.【详解】))PA PB PO OA PO OB ⋅=(+⋅(+,因为线段AB 是球O 的一条直径,,1OA OB OA OB ∴-=== ,222))1PA PB PO OA PO OA PO OA PO ⋅=(+⋅(-=-=- ,又min1PO = ,max2PO =,[0,1]PA PB ∴⋅∈,故选:A .12.若关于x 的不等式2(2)ln 1k x x x +≤+的解集中恰有2个整数,则k 的取值范围是()A .113k <≤B .ln21183k +<≤C .ln31ln21158k ++<≤D .ln41ln312415k ++<≤【答案】C【分析】将不等式变形为ln 1(2)x k x x ++≤,令()f x =ln 1x x+,)2)g x k x (=(+,数形结合,转化为两个函数图象相交情况分析.【详解】0x >,∴不等式2(2)ln 1k x x x +≤+可化为ln 1(2)x k x x++≤,令()f x =ln 1x x+,2ln ()xf x x -∴=',由()0f x '>解得01x <<,由()0f x '<解得1x >,()f x ∴在0,1)(为增函数,()f x 在,)(1+∞为减函数,令)2)g x k x (=(+,则()g x 的图象恒过2,0)(-,若解集恰有2个整数,当0k ≤时,有无数个整数解,不满足题意;当0k >时,如图,2满足不等式且3不满足不等式,即8ln21k ≤+且15ln31k >+,ln31ln21158k ++∴<≤.故选:C .二、填空题13.已知2,1,3)OA =(- ,1,2,4)OB =(- ,则AB =______.【答案】3,3,1)(-【分析】利用空间向量的坐标运算求解作答.【详解】因为2,1,3)OA =(- ,1,2,4)OB =(- ,所以3,3,1)AB OB OA =-=(-.故答案为:3,3,1)(-14.11)d x x -(2+1=⎰______.【答案】2【分析】利用微积分基本定理直接运算求值.【详解】()1211(21)d 2021x x x x -+=+=+=-⎰,故答案为:2.15.若函数()cos f x kx x =-在区间()0,π上单调递减,则k 的取值范围是______.【答案】(],1-∞-【分析】根据函数的单调性与导函数的关系,利用分离参数法解决恒成立问题,结合三角函数的性质即可求解.【详解】由题意可知,()sin f x k x '=+,因为()f x 在区间()0,π单调递减,所以()sin 0f x k x '=+≤在()0,π上恒成立,等价于()()min sin ,0,πk x x ≤-∈即可,因为()0,πx ∈,所以0sin 1x ≤≤,即1sin 0x -≤-≤,于是有1k ≤-,所以k 的取值范围是(],1-∞-.故答案为:(],1-∞-.16.如图,正方体1111ABCD A B C D -的棱长为2,若空间中的动点P 满足1AP AB AD AA λμν=++,[0,1]λμν∈,,,则下列命题正确的是______.(请用正确命题的序号作答)①若12λμν===,则点P 到平面1AB C 的距离为233;②若12λμν===,则二面角P AB C --的平面角为π4;③若12λμν++=,则三棱锥1P BDA -的体积为2;④若12λμν+-=,则点P 的轨迹构成的平面图形的面积为33.【答案】②④【分析】分别以AB ,AD ,0AA 所在直线为x ,y ,z 轴建立空间直角坐标系,对于①:直接应用点到平面距离的向量公式,即可判断;对于②:直接应用面面角的向量公式,即可判断;对于③:先求出点P 到平面1BDA 的距离,即可计算出1P BDA V -,得出判断;对于④:延长1A A 至点0A ,使得102A A AA =,取AB 中点0B ,AD 中点0D ,连接00A B ,00A D ,作出平面000B D A 与正方体的截面,并说明该截面为边长为2的正六边形,由条件得00022122)0B P D P A P λμλμ++(--=,根据空间向量共面定理得点P 在平面000B D A 上,即可作出判断.【详解】对于①:由空间向量的正交分解及其坐标表示可建立如图空间直角坐标系,所以1,1,1)P (,1(2,0,2)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,2)A ,向量1,1,1)AP =( ,设平面1AB C 的法向量1111,,)n x y z =(,由1(2,0,2)AB =,(2,2,0)AC =uuu r,则11100AB n AC n ⎧⋅=⎪⎨⋅=⎪⎩即1111220220x z x y +=⎧⎨+=⎩,取11x =-则11,1,1)n =(- ,则点P 与平面1AB C 的距离为111333|AP n |d |n |⋅===,故①错误;对于②:设平面ABP 的法向量2222,,)n x y z =(,又1,1,1)AP =(,1,0,0)AB =(,2200AP n AB n ⎧⋅=⎪∴⎨⋅=⎪⎩即2222=00x y z x ++⎧⎨=⎩,取21y =-,则20,1,1)n =(- ,易得平面ABC 的一个法向量3(0,0,1)n =,设二面角P AB C --的平面角为θ,则323212cos 22n n |n ||n |θ⋅===⋅ ,θ 是锐角,∴二面角P AB C --的平面角为π4,故②正确;对于③:1AP AB AD AA λμν=++ ,(2,0,0)AB = ,(0,2,0)AD = ,1(0,0,2)AA =,2,2,2)AP λμν∴=(,则112,2,22)A P AP AA λμν=-=(- ,设平面1BDA 的法向量为4444,,)n x y z =(,由(2,2,0)BD =-,1(2,0,2)BA =- ,则4444220220x y x z -+=⎧⎨-+=⎩,取41x =则41,1,1)n =( ,则点P 到平面1BDA 的距离为1442()23A P n d n λμν⋅++-== ,由12λμν++=得2()2333d λμν++-==易知12322)234BDA S =⨯(=△,则三棱锥111233P BDA BDA V S d -=⋅=△,故③错误;对于④:延长1A A 至点0A ,使得102A A AA =,取AB 中点0B ,AD 中点0D ,连接00A B ,00A D 并延长,交棱1BB ,1DD 于点E ,F ,交11A B ,11A D 延长线于点M ,N ,连接MN ,交棱11B C ,11C D 于点G ,H ,连接EG ,HF ,如图所示,则平面000B D A 与正方体的截面为六边形00B D FHGE ,22220000112B D AB AD =+=+=,在平面11ABB A 中,01//AA BB ,点0B 为AB 中点,000B A A B EB ∴∠=∠,00AB BB =,在00AB A 和0BB E 中00000000AA B BEB AB A BB E AB BB∠=∠⎧⎪∠=∠⎨⎪=⎩ ,000()AB A BB E AAS ∴≅ ,01AA BE ∴==,1B E BE ∴=,即点E 为1BB 中点,22002B E BE BB =+=,同理可得,02EG GH HF D F ====,∴六边形00B D FHGE 为正六边形,且边长为2,则其面积2362)4S =⨯⨯(33=,12λμν+-= ,1AP AB AD AA λμν=++,10001)22122)2AP AB AD AA AB AD AA λμλμλμλμ∴=++(+-=++(-- ,整理得00022122)0B P D P A P λμλμ++(--=,∴点P 在平面000B D A 上,∴当12λμν+-=,点P 的轨迹构成的平面图形的面积为33,故④正确.故答案为:②④.三、解答题17.已知空间向量1,0,1)a =(,2,1,0)b =(- ,4,,)c λλλ=(+-.(1)若(a b )//c +,求λ;(2)若ka b + 与2a b -相互垂直,求k .【答案】(1)2λ=(2)12k =【分析】(1)根据空间向量共线公式列式求参即可;(2)根据空间向量垂直数量积为0列式求参即可.【详解】(1)311a b (,,)+=- ,()//a b c + (a b )c μ∴+=,R μ∈,即34)μλ=(+,且1μλ-=-,1μλ=,解得2λ=;(2)(2,1,)ka b k k +=+- ,2012a b (,,)-= ,又2210(ka b )(a b )k +⋅-=-= ,解得12k =.18.已知函数3215()2333f x x x x =-++.(1)求曲线()y =f x 在点1,1))f ((处的切线方程;(2)求函数在区间[1,4]-的最大值与最小值.【答案】(1)3y =(2)max )3f x (=;min 11)3f x (=-【分析】(1)利用导数求出切线的斜率,并结合切点得到切线方程;(2)先利用导数求得()f x 在区间[1,4]-上的单调区间,进而求得()f x 在区间[1,4]-上的最大值与最小值.【详解】(1)1)3f (= ,∴切点为1,3)(,又2)43f x x x '(=-+ ,1)0f '∴(=,∴切线方程为301)y x -=(-,即3y =,即曲线()y =f x 在点1,1))f ((处的切线方程为3y =;(2)由(1)知2)43f x x x '(=-+,令)0f x '(>,得1x <或3x >,令)0f x '(<,得13x <<,∴函数()f x 在区间[1,1)-,3,4](为增函数,在区间[1,3]为减函数,又1)3f (= ,4)3f (=,max )1)4)3f x f f ∴(=(=(=;又111)3f (-=- ,53)3f (=,min 11)1)3f x f ∴(=(-=-.19.如图,在正三棱柱111ABC A B C -中,1323AA AC ==,D 是1BB 的中点.(1)求异面直线1A D 与BC 所成角的余弦值;(2)证明:平面11A DC ⊥平面ADC .【答案】(1)77;(2)证明见解析.【分析】(1)分别作AC ,11AC 的中点O ,1O ,连接OB ,1OO ,以O 为坐标原点,分别以OA ,OB ,1OO 所在直线为x y z ,,轴,建立空间直角坐标系,求出直线1A D 与BC 的空间向量,即可利用线线角的公式求解.(2)分别求出平面11A DC 和平面ADC 的法向量,利用法向量数量积为0,即可证明.【详解】(1)如图,分别作AC ,11AC 的中点O ,1O ,连接OB ,1OO ,在正三棱柱111ABC A B C -中,1OO ⊥底面ABC ,且BO AC ⊥,则OA ,OB ,1OO 互相垂直,以O 为坐标原点,分别以OA ,OB ,1OO 所在直线为x y z ,,轴,建立如图空间直角坐标系,已知1323AA AC ==,则11,0,23)A (,0,3,3)D (,0,3,0)B (,1,0,0)C (-,设异面直线1A D 与BC 所成角为θ,2]π(0,θ∈,11,3,3)A D =(-- ,1,3,0)BC =(-- ,11137cos 772|A D BC ||||A D ||BC |θ⋅-∴===⨯⋅uuur uuu r uuur uuu r ;(2)由题可知1,0,0)A (,11,0,23)C (-,112,0,0)A C =(- ,1,3,3)AD =(- ,2,0,0)AC =(-,设平面11A DC 的法向量为()111,,m x y z =r ,则111111133020m A D x y z m A C x ⎧⋅=-+-=⎪⎨⋅=-=⎪⎩ ,令11y =,0,1,1)m ∴=(r ,设平面ADC 的法向量为222,,)n x y z =(r,则222233020n AD x y z n AC x ⎧⋅=-++=⎪⎨⋅=-=⎪⎩ ,令21y =,0,1,1)n ∴=(-r ,110m n ⋅=-=r r Q ,∴平面11A DC ⊥平面ADC .20.制作一个容积为V 的圆柱体容器(有底有盖,不考虑器壁的厚度),设底面半径为r .(1)把该容器外表面积S 表示为关于底面半径r 的函数;(2)求r 的值,使得外表面积S 最小.【答案】(1)()222πV S r r r=+,()0,r ∈+∞(2)32πVr =【分析】(1)根据圆柱体积公式可表示出圆柱的高h ,结合圆柱表面积公式可表示出()S r ;(2)利用导数可求得()S r 的单调性,进而确定最值点.【详解】(1)设圆柱体水杯的高为h ,则2πV h r =,∴表面积()2222π2π2πV S r r rh r r =+=+,即()222πV S r r r=+,()0,r ∈+∞.(2)由(1)得:()224πV S r r r'=-;令()0S r '=,解得:32πV r =;则当302πV r <<时,()0S r '<,()S r 单调递减;当32πV r >时,()0S r '>,()S r 单调递增;∴当32πV r =时,表面积()S r 取得最小值.21.在如图①所示的长方形ABCD 中,3AB =,2AD =,E 是DC 上的点且满足3DC EC =,现将三角形ADE 沿AE 翻折至平面APE ⊥平面ABCD (如图②),设平面PAE 与平面PBC 的交线为l.(1)求二面角B l A --的余弦值;(2)求l 与平面ABCE 所成角的正弦值.【答案】(1)66(2)55.【分析】(1)建立空间直角坐标系,利用空间向量法求二面角B l A --的余弦值;(2)设直线AE 与BC 相交于点F ,PF 即为l ,PFO ∠是l 与平面ABCE 所成角,计算求解即可.【详解】(1)如图,取AE 的中点O ,连接PO ,2AD DE ==,则PO AE ⊥,又 平面PAE ⊥平面ABCE ,又平面PAE 平面ABCE AE =,又PO ⊂平面PAEPO ∴⊥平面ABCE ,延长DO 交AB 于点G ,由DE AB ∥,O 为AE 的中点,则2AG DE ==,OG AE ⊥,2OG OA ==,分别以OA OG OP ,,所在直线为x y z ,,轴建立空间直角坐标系,如图所示,()2,0,0A ,()0,2,0G ,()0,2,0D -,()2,0,0E -,()0,0,2P ,232,,022B ⎛⎫- ⎪ ⎪⎝⎭,PO ⊥ 平面ABCE ,OG ⊂平面ABCE ,OG OP ∴⊥,又OG AE ⊥ ,AE OP O = ,,AE OP ⊂平面PAE ,所以OG ⊥平面PAE ,∴平面PAE 的法向量为OG ,且(0,2,0)OG =,又(2,2,0)CB DA == ,232(,,2)22PB =-- ,设平面PBC 的法向量为(,,)n x y z = ,则2202322022CB n x y PB n x y z ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩,令1y =,则(1,1,2)n =- ,设二面角B l A --的平面角为θ,26cos ,626OG n OG n OG n⋅===⨯ ,由题知π(0,)2θ∈,二面角B l A --的余弦值为66;(2)设直线AE 与BC 相交于点F ,F BC ∈ ,F ∈平面PBC ,同理F ∈平面PAE ,由平面公理3可得∈F l ,又P l ∈,PF ∴即为l ,PO ⊥ 平面ABCE ,OF ∴是PF 在平面ABCE 内的投影,PFO ∴∠是l 与平面ABCE 所成角,由2PO =,又22OF =,2210PF PO OF ∴=+=,25sin 510PO PFO PF ∠===,l ∴与平面ABCE 所成角的正弦值为55.22.已知函数()ln 1)f x x =(+,)e )x g x f x (=(.(1)求函数()g x 的导函数在0,)(+∞上的单调性;(2)证明:0,)a b ∀∈(+∞,,有)))g a b g a g b (+>(+(.【答案】(1)()g x '在0,)(+∞上单调递增;(2)证明见解析.【分析】(1)直接对函数求导,利用导数与函数间的关系即可求出结果;(2)构造函数()()()(00)F x g x a g x x a =+->>,,将求证结果转化判断函数值大小,再利用函数的单调性即可求出结果.【详解】(1)因为)e ()e ln(1)x x g x f x x (==+,所以e 1)e ln(1)+=e [ln(1)]11x xx g x x x x x '(=+++++,令))h x g x '(=(,即1)=e [ln(1)]1x h x x x (+++,又因为222121)e [ln(1)]=e [ln(1)]11)1)x x x h x x x x x x +'(=++-+++(+(+,又因为0,)x ∈(+∞,所以11,)x +∈(+∞,即有221ln(1)0,0(1)x x x ++>>-,所以()0h x '>,所以)h x (在区间0,)(+∞上单调递增,即()g x '在0,)(+∞上单调递增;(2)由题知(0)0g =,要证)))g a b g a g b (+>(+(,即证)))0)g a b g b g a g (+-(>(-(,令()()()(00)F x g x a g x x a =+->>,,则()()()F b g b a g b =+-,(0)()(0)F g a g =-即证)0)F b F (>(,由(1)知()g x '在区间0,)(+∞上单调递增,又因为x a x +>,所以)))0F x g x a g x '''(=(+-(>,所以))()F x g x a g x (=(+-在区间0,)(+∞上单调递增,因为0b >,所以)0)F b F (>(,故命题得证.。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。

2021年四川省成都市第三十七中学高二数学理期末试卷含解析

2021年四川省成都市第三十七中学高二数学理期末试卷含解析

2021年四川省成都市第三十七中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 圆的圆心坐标和半径分别为()A.(-1, -2),4 B.(1,2),4 C.(-1,-2),2 D.(1,2),2参考答案:D,所以圆心坐标和半径分别为,;选D.2. 已知,,且与的夹角为钝角,则实数x的取值范围是()A.x>4 B.0<x<4 C.x<﹣4 D.﹣4<x<0参考答案:C【考点】空间向量的数量积运算.【专题】转化思想;定义法;空间向量及应用.【分析】根据与的夹角为钝角得出?<0,列出不等式求出x的取值范围.【解答】解:∵,,且与的夹角为钝角,∴?<0,∴3x+2(2﹣x)<0;解得x<﹣4,∴实数x的取值范围是x<﹣4.故选:C.【点评】本题考查了空间向量的数量积定义与应用问题,是基础题目.3. 对于任意实数x,不等式ax2+2ax-(a+2) <0恒成立,则实数a的取值范围是()A. -1≤ a ≤ 0B. -1<a<0C. -1≤ a<0D.-1<a ≤ 0参考答案:D4. 若随机事件A在一次试验中发生的概率为p(0<p<1),用随机变量ξ表示A在一次试验发生的次数,则的最大值为()A.2 B.﹣1 C.0 D.1参考答案:C【考点】离散型随机变量及其分布列.【分析】由已知得随机变量ξ的所有可能取值为0,1,且P(ξ=1)=p,P(ξ=0)=1﹣p,推导出E(ξ)=p,D(ξ)=p﹣p2,从而得到=4﹣(4p+),由此利用均值定理能求出的最大值.【解答】解:随机变量ξ的所有可能取值为0,1,并且有P(ξ=1)=p,P(ξ=0)=1﹣p,从而 E(ξ)=0×(1﹣p)+1×p=p,D(ξ)=(0﹣p)2×(1﹣p)+(1﹣p)2×p=p﹣p2,==4﹣(4p+),∵0<p<1,∴4p+=4,当4p=,p=时,取“=”,∴当p=时,取得最大值0.故选:C.5. 平面外有两条直线和,如果和在平面内的射影分别是和,给出下列四个命题:①;②;③与相交与相交或重合;④与平行与平行或重合.其中不正确的命题个数是A.1B.2C.3D.4参考答案:D略6. 已知平行四边形ABCD,点P为四边形内部或者边界上任意一点,向量=x+y,则0≤x≤,0≤y≤的概率是()A. B.C. D.参考答案:A7. 设f n(x)是等比数列1,﹣x,x2,…,(﹣x)n的各项和,则f2016(2)等于()A.B.C.D.参考答案:C【考点】数列的求和.【分析】利用等比数列的求和公式即可得出.【解答】解:∵f n(x)是等比数列1,﹣x,x2,…,(﹣x)n的各项和,x≠﹣1时,∴f n(x)=.∴f2016(2)==.故选:C.8. 如图,在正方体中,P为棱AB上一点,过点P在空间作直线l,使l与平面ABCD和平面AB均成角,则这样的直线l的条数为()A.1 B .2 C.3 D .4参考答案:B解析:由于二面角C1—AB—D的平面角为45°,所以在这个二面角及它的“对顶”二面角内,不存在过点P且与面ABCD和面ABC1D1均成30°的直线。

四川省成都市高二上学期期中数学试卷

四川省成都市高二上学期期中数学试卷

四川省成都市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题: (共14题;共14分)1. (1分)下列命题的否定为假命题的是________.①∀x∈R,﹣x2+x﹣1<0;②∀x∈R,|x|>x;③∀x,y∈Z,2x﹣5y≠12;④∃x∈R,Tsin2x+sinx+1=0.2. (1分)(2018·河南模拟) 已知点是抛物线的焦点,,是该抛物线上两点,,则线段的中点的横坐标为________3. (1分) (2016高一上·青浦期中) 命题“设x,y∈Z,若x,y是奇数,则x+y是偶数”的等价命题是________.4. (1分) (2019高三上·如皋月考) 已知集合,集合,若是的必要不充分条件,则实数的取值范围为________.5. (1分) (2017高二下·黑龙江期末) 已知满足约束条件,则的最大值是________6. (1分) (2017高一下·启东期末) 一元二次不等式﹣2x2﹣x+6≥0的解集为________.7. (1分) (2016高一上·西城期末) 在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是________.8. (1分) (2019高二上·荆州期中) 过且与双曲线有相同渐近线的双曲线的标准方程为________.9. (1分)(2017·襄阳模拟) 以下四个命题:①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为;②设a、b∈R,则“log2a>log2b”是“2a﹣b>1”的充分不必要条件;③函数f(x)= ﹣()x的零点个数为1;④命题p:∀n∈N,3n≥n2+1,则¬p为∀n∈N,3n≤n2+1.其中真命题的序号为________.10. (1分)(2017·郎溪模拟) 如图,F1、F2是双曲线﹣ =1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为________.11. (1分) (2016高三上·浦东期中) 已知函数y=f(x),y=g(x)的值域均为R,有以下命题:①若对于任意x∈R都有f[f(x)]=f(x)成立,则f(x)=x.②若对于任意x∈R都有f[f(x)]=x成立,则f(x)=x.③若存在唯一的实数a,使得f[g(a)]=a成立,且对于任意x∈R都有g[f(x)]=x2﹣x+1成立,则存在唯一实数x0 ,使得g(ax0)=1,f(x0)=a.④若存在实数x0 , y0 , f[g(x0)]=x0 ,且g(x0)=g(y0),则x0=y0 .其中是真命题的序号是________.(写出所有满足条件的命题序号)12. (1分) (2017高一下·怀仁期末) 已知分别为的三个内角的对边,,且,则面积的最大值为________.13. (1分) (2018高一上·华安期末) 已知函数,若函数有个零点,则实数的取值范围是________.14. (1分) (2018高二上·益阳期中) 已知是圆为圆心上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为________.二、解答题 (共6题;共45分)15. (5分) (2019高二上·文昌月考) 已知;,若p是q的充分不必要条件,求实数的取值范围.16. (5分) (2017高二下·彭州期中) 已知椭圆C: + =1(a>b>0)的焦距为4 ,且椭圆C过点(2 ,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C与y轴负半轴的交点为B,如果直线y=kx+1(k≠0)交椭圆C于不同的两点E、F,且B,E,F 构成以EF为底边,B为顶点的等腰三角形,判断直线EF与圆x2+y2= 的位置关系.17. (10分) (2017高三下·深圳月考) 已知.(1)当,解不等式;(2)对任意恒成立,求的取值范围.18. (5分) (2019高二下·临海月考) 有一长为16 m的篱笆,要围成一个矩形场地,求矩形场地的最大面积。

四川省成都市第三十七中学2020-2021学年高二数学文联考试题含解析

四川省成都市第三十七中学2020-2021学年高二数学文联考试题含解析

四川省成都市第三十七中学2020-2021学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 等比数列的前项,前项,前项的和分别为,,,则A. B. C. D.参考答案:D2. 设,若函数,,有大于零的极值点,则()A. B. C. D.参考答案:D3. 已知等比数列a1,a2,…a8各项为正且公比q≠1,则()A.a1+a8=a4+a5B.a1+a8<a4+a5C.a1+a8>a4+a5D.a1+a8与a4+a5大小关系不能确定参考答案:C【考点】等比数列的通项公式.【分析】把数列的各项用首项和公比表示,然后直接作差得答案.【解答】解:由题意可知,a1>0,q>0,=>0.∴a1+a8>a4+a5.故选:C.4. 用“辗转相除法”求得459和357的最大公约数是:()A.3 B.9 C.17 D.51参考答案:D略5. 在直角坐标系内,满足不等式的点的集合(用阴影表示)正确的是()参考答案:B略6. 用秦九韶算法计算多项式当时的值时,需要做乘法和加法的次数分别是()A.6,6 B. 5, 6 C. 5, 5 D. 6, 5参考答案:A7. 为考察喜欢黑色的人是否易患抑郁症,对91名大学生进行调查,得到如下列联表:A.有把握B.有把握C.有把握D.不能参考答案:D略8. 如图是函数的大致图象,则等于()A. B. C. D.参考答案:C略9. 某产品的广告费用x与销售额y的统计数据如表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A. 63.6万元 B. 67.7万元 C. 65.5万元 D. 72.0万元参考答案:C【分析】根据回归方程的性质,利用样本数据的中心点可求出方程的系数,可得答案.【详解】解:由表中数据得:,,又回归方程中的为9.4,故,将代入回归直线方程,得(万元).∴此模型预报广告费用为6万元时销售额为65.5(万元).故选:C.【点睛】本题主要考察统计案例中的回归方程,属于基础题型.10. 为虚数单位,则的值是()A. –B.C. 1D. -1参考答案:略二、填空题:本大题共7小题,每小题4分,共28分11. 下列命题中_________为真命题.①“A∩B=A”成立的必要条件是“A B”,②“若x2+y2=0,则x,y全为0”的否命题,③“全等三角形是相似三角形”的逆命题,④“圆内接四边形对角互补”的逆否命题。

四川省成都市第三十七中学2019年高二数学文月考试题含解析

四川省成都市第三十七中学2019年高二数学文月考试题含解析

四川省成都市第三十七中学2019年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设直线和平面,下列四个命题中,正确的是()A.若,则B. ,则C. 若,则D. ,则参考答案:D略2. 已知命题p:任意x∈R,sin x≤1,则它的否定是( )A.存在x∈R,sin x≥1 B.任意x∈R,sin x≥1C.存在x∈R,sin x>1 D.任意x∈R,sin x>1参考答案:C3. 已知点及抛物线上的动点P(x,y),则y+|PQ|的最小值是()A.2 B.3 C.4 D.参考答案:A【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用抛物线的定义,将点P到准线y=﹣1的距离转化为点P到焦点F的距离|PF|,再利用不等式的性质即可求得答案.【解答】解:∵抛物线的方程为x2=4y,∴其焦点F(0,1),准线方程为y=﹣1,∴抛物线上的动点P(x,y)到准线的距离为:y﹣(﹣1)=y+1,由抛物线的定义得:|PF|=y+1,又Q(2,0),∴y+|PQ|=y+1+|PQ|﹣1=|PF|+|PQ|﹣1≥|FQ|﹣1=﹣1=3﹣1=2(当且仅当F,P,Q三点共线时取等号).故选A.【点评】本题考查抛物线的简单性质,将点P到准线y=﹣1的距离转化为点P到焦点F的距离|PF|是关键,突出考查转化思想,属于中档题.4. 设为直线,是两个不同的平面,下列命题中正确的是()A.若,,则B.若,,则C.若,,则D.若,,则参考答案:B略5. 在同一直角坐标系中,直线=1与圆x2+y2+2x﹣4y﹣4=0的位置关系是()A.直线经过圆心B.相交但不经过圆心C.相切D.相离参考答案:B【考点】直线与圆的位置关系.【专题】直线与圆.【分析】求出圆心到直线的距离大于零且小于半径,可得直线和圆相交但不经过圆心.【解答】解:圆x2+y2+2x﹣4y﹣4=0,即(x+1)2+(y﹣2)2=9,表示以(﹣1,2)为圆心、半径等于3的圆.由于圆心到直线=1的距离为=2<3,故直线和圆相交但不经过圆心,故选:B.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.6. 如图,梯形A1B1C1D1是一平面图形ABCD的直观图(斜二测),若AD∥Oy,AB∥CD,A1B1=C1D1=3,A1D1=1,则原平面图形ABCD的面积是()A.14.B.7 C.14D.7参考答案:B【考点】平面图形的直观图.【分析】如图,根据直观图画法的规则,确定原平面图形四边形ABCD的形状,求出底边边长,上底边边长,以及高,然后求出面积.【解答】解:如图,根据直观图画法的规则,直观图中A1D1∥O′y′,A1D1=1,?原图中AD∥Oy,从而得出AD⊥DC,且AD=2A1D1=2,直观图中A1B1∥C1D1,A1B1=C1D1=3,?原图中AB∥CD,AB=CD=3,即四边形ABCD上底和下底边长分别为3,4,高为2,如图.故其面积S=(3+4)×2=7.故选:B.7. 下列求导计算正确的是()A. B. C. D.参考答案:B【分析】根据函数求导法则得到相应的结果.【详解】A选项应为,C选项应为,D选项应为.故选:B.【点睛】这个题目考查了函数的求导运算,牢记公式,准确计算是解题的关键,属于基础题.8. 执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1 B.2 C.3 D.4参考答案:B【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:输入的a值为1,则b=1,第一次执行循环体后,a=﹣,不满足退出循环的条件,k=1;第二次执行循环体后,a=﹣2,不满足退出循环的条件,k=2;第三次执行循环体后,a=1,满足退出循环的条件,故输出的k值为2,故选:B9. 圆锥曲线)抛物线的焦点坐标为()A .B .C .D.D略10. 直线y=kx﹣k+1与椭圆的位置关系是()A.相交B.相切C.相离D.不确定参考答案:A【考点】直线与圆锥曲线的关系.【分析】直线y=kx﹣k+1恒过点(1,1),且在椭圆的内部,由此可得直线y=kx﹣k+1与椭圆的位置关系.【解答】解:直线y=kx﹣k+1可化为y=k(x﹣1)+1,所以直线恒过点(1,1)∵∴(1,1)在椭圆的内部∴直线y=kx﹣k+1与椭圆的位置关系是相交故选A.二、填空题:本大题共7小题,每小题4分,共28分11. 如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30°,45°,且A、B两点之间的距离为60 m,则树的高度为(30+30) m略12. 如图所示,在圆锥SO中,AB,CD为底面圆的两条直径,,且,,P为SB的中点,则异面直线SA与PD所成角的正切值为__________.参考答案:【分析】由于与是异面直线,所以需要平移为相交直线才能找到异面直线与所成角,由此连接OP再利用中位线的性质得到异面直线与所成角为,并求出其正切值。

四川2022年高二数学前半期期末考试带答案与解析

四川2022年高二数学前半期期末考试带答案与解析

四川2022年高二数学前半期期末考试带答案与解析选择题直线:和:垂直,则实数A. B. 1 C. 或1 D. 3【答案】A【解析】本题可以根据直线与直线的解析式以及两直线垂直的相关性质列出算式,然后通过计算得出结果。

由,解得,故选A。

选择题若命题p:,,则为A. ,B. ,C. ,D. ,【答案】C【解析】本题首先可以判断出命题是特称命题,然后根据特称命题的否定是全称命题,分别对量词和结论进行否定即可得出结果。

命题是特称命题,则命题的否定是:,,故选C。

选择题中,若,,,则该三角形的形状是:()A. 锐角三角形B. 等边三角形C. 钝角三角形D. 等腰直角三角形【答案】D【解析】利用空间向量模的公式求出三角形三边的长,从而可得结果.因为,,,所以,,,,所以,且,是等腰直角三角形,故选D.选择题“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】先得出,由子集关系可得解。

⇒,但由包含了,得是充分不必要条件。

故选A选择题执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.选择题已知圆,圆与圆关于直线对称,则圆的方程为()A. B.C. D.【答案】B【解析】试题分析:在圆上任取一点,则此点关于直线的对称点在圆上,所以有,即,所以答案为,故选B.选择题如图,将矩形沿对角线把折起,使移到点,且在平面上的射影恰好在上,则与所成角是()A. B. C. D.【答案】D【解析】由线面垂直的性质可得,由矩形的性质可得,由此可得平面,从而可得,进而可得结果.因为在平面上的射影恰好在上,所以平面,因为在平面内,所以,又因为,与在平面内相交,所以,平面,在平面内,所以,、成的角为,故选D.选择题某校高三年级共有学生900人,编号为1,2,3,,900,现用系统抽样的方法抽取一个容量为45的样本,若在第一组抽取的编号是5,则抽取的45人中,编号落在区间的人数为A. 10B. 11C. 12D. 13【答案】C【解析】本题首先可以通过总量以及样本数量计算出样本组距,然后根据区间的间距以及系统抽样的性质即可得出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都37中2011-2012学年下期2013级半期考试数学(理)试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是( ▲ ) A. 简单随机抽样法,分层抽样法 B. 系统抽样法,简单随机抽样法 C .分层抽样法,系统抽样法 D .系统抽样法,分层抽样法2、不等式213x +>的解集为( ▲ )A. (1,2)-B. (,1)(2,)-∞-+∞C.(,2)(1,)-∞-+∞D. (2,1)- 3、命题“00,()0x R f x ∃∈<”的否定是( ▲ )A. 00,()0x R f x ∃∉≥B. ,()0x R f x ∀∉≥ C .,()0x R f x ∀∈≥ D .,()0x R f x ∀∈< 4、已知,,a b c R ∈,且0c ≠,则下列命题正确的是( ▲ )A. 如果a b >,那么a bc c > B. 如果ac bc <,那么a b < C .如果a b >,那么11a b> D .如果22ac bc <,那么a b <5、在投掷两枚硬币的随机试验中, 记“一枚正面朝上,一枚反面朝上” 为事件A ,“两枚正面朝上” 为事件B ,则事件A ,B ( ▲ )A. 既是互斥事件又是对立事件B. 是对立事件而非互斥事件C .既非互斥事件也非对立事件D .是互斥事件而非对立事件 6、若函数3()3f x x ax =+在R 上单增,则a 的取值范围为( ▲ )A.[0,)+∞B. (0,)+∞C.(,0]-∞D. (,0)-∞ 7、根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100mL (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL (含80)以上时,属醉酒驾车。

据有关报道,2012年3月15日至3月28日间,某地区查处酒后驾车和醉酒驾车共500人,右图为对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数为( ▲ )A .25B .50C .75D .100 8、不等式11a b a b -≤-+-取等号的条件是( ▲ )tB.A. (1)(1)0a b--< B. (1)(1)0a b--≤C. (1)(1)0a b--> D. (1)(1)0a b--≥9、下列四个条件中,使ba>成立的充分不必要条件是(▲)A.1+>ba B.1->ba C.22ba> D.33ba>10、若,,,6a b c R a b c+∈++=且,则cba lglglg++的取值范围是(▲)A.(,lg6]-∞ B.(,3lg2]-∞ C.[lg6,)+∞ D.[3lg2,)+∞11、直线l与函数(0)y xαα=<的图象切于点(1,1),则直线l与坐标轴所围成三角形的面积S的取值范围为(▲)A.(0,4]B.(0,2]C.[4,)+∞ D.[2,)+∞12、如右下图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完,已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t的函数关系表示的图象只可能是(▲)二、填空题(本大题共4小题,每小题4分,共16分)13、在茎叶图122204533中,样本的中位数为▲,众数为▲ .14、已知函数sin()2cosfθθθ=+,则(0)f'=▲ .15、已知,,a b c R+∈,若111ka b c a b c++≥++,则k的最大值为▲ .16、函数①()21f x x=-,②()f x=2()1f x x x=+-,④()xf x e=,⑤3()f x x=中,满足条件“0000(1)(1),()2f x f xx R f x+--'∃∈=”的有▲ .(写出所有正确的序号).O hO 'O 'C O 'BO 'AO '三、解答题(本大题共6小题,17~21题每题12分,22题14分,共74分.解答应写出文字说明,证明过程或演算步骤)17、在区间[0,6]内任取两个数(可以相等),分别记为x 和y ,(1)若x 、y 为正整数,求这两数中至少有一个偶数的概率; (2)若x 、y R ∈,求x 、y 满足1622≤+y x 的概率.18、设22)(-++=x x x f ,(1)证明:()4f x ≥;(2)解不等式42)(2+-≥x x x f .19、如图,已知球的半径为定值R ,球内接圆锥的高为()h h R >,体积为V ,(1)写出以h 表示V 的函数关系式()V h ;(2)当h为何值时,()V h 有最大值,并求出该最大值.20、已知1x =为奇函数3221()(6)3f x ax bx a x =++-的极大值点, (1)求()f x 的解析式;(2)若(,)Pm n 在曲线()y f x =上,证明:过点P 作该曲线的切线至多存在两条.21、设2()[(3)23]x f x x t x t e =-+++⋅,R t ∈ (1)若)(x f 在R 上无极值,求t 值;(2)求)(x f 在[12],上的最小值)(t g 表达式; (3)若对任意的[1)t ∈+∞,,任意的[12]x ∈,,均有)(x f m ≤成立,求m 的取值范围.22、已知函数2()ln(12)2f x x x ax =+-+, (1)若1a =,求()f x 的单调区间;(2)若函数()f x 存在两个极值点,且都小于1,求a 的取值范围;(3)若对()f x 定义域内的任意x ,不等式()0f x ≤恒成立,求a 的取值范围.成都37中2011-2012学年下期2013级半期考试数学(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分)13、 22 , 12 14、1315、 9 16、 ①③三、解答题(本大题共6小题,17~21题每题12分,22题14分,共74分) 17、(本题满分12分)解:(1)当y x ,为正整数,同时抛掷两枚骰子,等可能性的基本事件共36个,如下:()1,1、()2,1、()3,1、()4,1、()5,1、()6,1; ()1,2、()2,2、()3,2、()4,2、()5,2、()6,2; ()1,3、()2,3、()3,3、()4,3、()5,3、()6,3; ()1,4、()2,4、()3,4、()4,4、()5,4、()6,4; ()1,5、()2,5、()3,5、()4,5、()5,5、()6,5; ()1,6、()2,6、()3,6、()4,6、()5,6、()6,6.记“两个数y x ,中至少有一个为偶数”为事件A ,包含上述基本事件的个数为27,由古典概型可知273()364P A ==. 6 分(2)当R y x ∈,时,记事件总体为Ω,所求事件为B ,则有06:06x y ≤≤⎧Ω⎨≤≤⎩, B :⎪⎩⎪⎨⎧≤+≤≤≤≤16606022y x y x ,Ω对应的区域为正方形,其面积为36,B 对应的区域为四分之一圆,其面积为4π,由几何概型可知4()369P B ππ==. 12 分18、(本题满分12分)解:(1) 2222(2)(2)4x x x x x x ++-=++-≥++-= ,()4f x ∴≥. 5 分 (2)当2-<x 时,2()224f x x x x =-≥-+,解集为∅; 7 分 当22≤≤-x 时,2()424f x x x =≥-+ ,解集为[0,2]; 9 分 当2>x 时,2()224f x x x x =≥-+,解集为∅. 11 分 综上所述,42)(2+-≥x x x f 的解集为[0,2]. 12 分 19、(本题满分12分)解:(1)连接OC ,设O C r '=,有OC R =,O O h R '=-,则有 222()h R r R -+=,即222r Rh h =-. 3 分2322112()(2)(2)3333Rh h V h r h Rh h h R h R ππππ==-=-<<6 分(2) 33114232()(42)()66381R h h h V h R h h h R πππ-++=-⋅⋅≤= 10 分 不等式取等条件为42R h h -=,即当43h R =时,3max 32()81V h R π=. 12 分 20、(本题满分12分)解:(1)()f x 为奇函数,故0b =.22()6f x ax a '=+-. 2 分2(1)60f a a '=+-=,得3a =-或2a =. 4 分当2a =时,1x =为()f x 的极小值点,与已知矛盾,舍去.故3()3f x x x =-+. 6 分(2)由(1)知33n m m =-+,设切点为3000(,3)x x x -+,则切线方程为320000(3)(33)()y x x x x x --+=-+-.P 点在切线上,有3320000(3)(3)(33)()m m x x x m x -+--+=-+-, 3320000()3()(33)()m x m x x m x --+-=-+-,222000000()()3()(33)()m x m mx x m x x m x --+++-=-+-,.O hO ' O ' CO ' BO ' AO '22000()(2)0x m x mx m ---=,即 200()()02mx m x ---=. 10 分 当0m =时,00x =,此时原曲线仅有一条切线;当0m ≠时,0x m =或02mx =-,此时原曲线有两条切线. 原命题获证. 12 分21、(本题满分12分) 解:x e t x x x f ⋅--='))(1()(.(1)函数)(x f 在R 上无极值,则方程(1)()0x x t --=有等根,即1t =. 2 分 (2)当1t ≤时,(1,2)x ∈,()0f x '>,)(x f 在[1,2]上单调递增,则e t f x f ⋅+==)1()1()(min . 3 分当12t <<时,(1,)x t ∈,()0f x '<,)(x f 在[1,]t 上单调递减;(,2)x t ∈,()0f x '>,)(x f 在(,2]t 上单调递增,则t e t t f x f ⋅-==)3()()(min . 5 分当2>t 时,(1,2)x ∈,()0f x '<,)(x f 在[1,2]上单调递减,则2min )2()(e f x f ==. 6 分综上,2(1),1,()(3),12,, 2.tt e t g t t e t e t +⋅≤⎧⎪=-⋅<<⎨⎪≥⎩7 分(3)问题等价于:[1)t ∀∈+∞,,)(t g m ≤,即min (),[1,)m g t t ≤∈+∞. 当1=t 时,()2g t e = ; 8 分当12t <<时,()(2)0t g t t e '=-⋅>,故)(t g 在(1,2)上单增,且)(t g 的图象连续不断,有22(1)()(2)e g g t g e =<<=; 10 分当2t ≥时,2)(e t g =. 11 分综上,e m 2≤. 12 分 22、(本题满分14分)解:(1)若1a =时,2()ln(12)2f x x x x =+-+,(21)1()2()122x x f x x x -'=>-+.当1(,0)2x ∈-1(,)2+∞ ,()0f x '>,则)(x f 的单调递增区间为1(,0)2-和1(,)2+∞;当1(0,)2x ∈,()0f x '<,则)(x f 的单调递减区间为1(0,)2. 2 分(2) 22(2)1()2()122ax a x f x x x --'=⋅>-+.由()f x 存在两个极值点知0a ≠, 有112[()]2()212ax x a f x x--'=⋅+,且满足1102a -≠,即2a ≠. 4 分由极值点小于1及函数定义域有111122a -<-<,解得23a >. 综上,23a >且2a ≠. 6 分 (3)1 若0a <,则112[()]2()212ax x a f x x--'=⋅+,且11122a -<-.当1(,0)2x ∈-,()0f x '>,)(x f 单增;当(0,)x ∈+∞,()0f x '<,)(x f 单减,则max ()(0)0f x f ==. 故max ()()0f x f x ≤=,满足题设.2 若0a =,则4()12xf x x-'=+.当1(,0)2x ∈-,()0f x '>,)(x f 单增;当(0,)x ∈+∞,()0f x '<,)(x f 单减,则max ()(0)0f x f ==.故max ()()0f x f x ≤=,满足题设. 8 分3 若2a ≥,当(0,)x ∈+∞时,则22(2)0ax a x -->,()0f x '>,)(x f 单增,故()(0)0f x f >=,不满足题设. 9 分 先证不等式ln(1)1tt t +≥+恒成立,证略. 10 分 令2t x =,则有222224()ln(12)22()21212x ax a f x x x ax x ax x x x a-=+-+≥-+=-++. 4 若02a <<,有402a a ->,当4(,)2ax a-∈+∞时,()0f x >,不满足题设. 综上,当0a ≤时,对()f x 定义域内的任意x ,不等式()0f x ≤恒成立. 14 分另解(分离变量法):令2t x =,原不等式等价为21ln(1)4t t at +-≤-,若0t =,满足题设;若0t ≠,有2ln(1)4t t a t +-≤-,而ln(1)0t t +-<恒成立(证略),则2ln(1)0t t t +-<,而2ln(1)lim 0t t tt →+∞+-=(用洛比达法则求该极限,过程略),故04a≤-,即0a ≤.。

相关文档
最新文档