2017年河南省周口市扶沟二中高考数学一模试卷(理科)

合集下载

2017年河南省高考数学试卷及答案(理科)(全国新课标ⅰ)

2017年河南省高考数学试卷及答案(理科)(全国新课标ⅰ)

2017年河南省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i 为抽取的第i 个零件的尺寸,i=1,2,…,16. 用样本平均数作为μ的估计值,用样本标准差s 作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ﹣3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C :+=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.21.(12分)已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy 中,曲线C 的参数方程为,(θ为参数),直线l 的参数方程为,(t 为参数).(1)若a=﹣1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为,求a .[选修4-5:不等式选讲]23.已知函数f (x )=﹣x 2+ax +4,g (x )=|x +1|+|x ﹣1|. (1)当a=1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[﹣1,1],求a 的取值范围.2017年河南省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A11.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].。

2017高考仿真卷 理科数学(一) Word版含答案

2017高考仿真卷 理科数学(一) Word版含答案

2017高考仿真卷·理科数学(一)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3]B.(-∞,1]∪(2,+∞)C.[1,2)D.(-∞,0)∪[1,+∞)2.已知i是虚数单位,若a+b i=(a,b∈R),则a+b的值是()A.0B.-iC.-D.3.已知p:a<0,q:a2>a,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的射影可能是()A.①④B.②③C.②④D.①②5.已知双曲线=1(a>0,b>0)与椭圆=1的焦点相同,若过右焦点F,且倾斜角为60°的直线与双曲线的右支有两个不同的交点,则此双曲线的实半轴长的取值范围是()A.(2,4)B.(2,4]C.[2,4)D.(2,+∞)6.若数列{a n}满足=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10B.20C.30D.407.已知实数x,y满足约束条件则x2+y2+2x的最小值是()A. B.-1 C. D.18.执行如图所示的程序框图,输出的S的值是()A.2B.-C.-3D.9.已知函数f(x)=sin(2x+φ),其中0<φ<2π,若f(x)≤对任意的x∈R恒成立,且f>f(π),则φ等于()A. B. C. D.10.一袋中有红、黄、蓝三种颜色的小球各一个,每次从中取出一个,记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好取5次球时停止取球的概率为()A.B.C.D.11.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为()A. B. C. D.212.定义在R上的函数f(x)满足f(1)=1,且对任意的x∈R,都有f'(x)<,则不等式f(log2x)>的解集为()A.(1,+∞)B.(0,1)C.(0,2)D.(2,+∞)第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.(1-)6的展开式中含x的项的系数是.14.已知等比数列{a n}为递增数列,a1=-2,且3(a n+a n+2)=10a n+1,则公比q=.15.如图,在正方形ABCD中,E为AB的中点,P是以A为圆心,AB为半径的圆弧上的任意一点.设向量=λ+μ,则λ+μ的最小值为.16.定义在R上的奇函数f(x),当x≥0时,f(x)=则关于x的函数F(x)=f(x)-a(0<a<1)的所有零点之和为.(用含有a的式子表示)三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin.(1)求cos C的值;(2)若△ABC的面积为,且sin2A+sin2B=sin2C,求a,b及c的值.18.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,下表是在某单位得到的数据(人数):赞反合(1)能否在犯错误的概率不超过0.1的前提下认为对这一问题的看法与性别有关?(2)进一步调查:①从赞同“男女延迟退休”的16人中选出3人进行陈述发言,求事件“男士和女士各至少有1人发言”的概率;②从反对“布列和均值.附:K2=,其中n=a+b+c+d.19.(本小题满分12分)如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,FB=,M,N分别为EF,AB的中点.(1)求证:MN∥平面FCB;(2)若直线AF与平面FCB所成的角为30°,求平面MAB与平面FCB所成角的余弦值.20.(本小题满分12分)已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点B(0,)为短轴的一个端点,∠OF2B=60°.(1)求椭圆C的方程;(2)如图,过右焦点F2,且斜率为k(k≠0)的直线l与椭圆C相交于D,E两点,A为椭圆的右顶点,直线AE,AD分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k'.试问k·k'是否为定值?若为定值,求出该定值;若不为定值,请说明理由.21.(本小题满分12分)已知函数f(x)=x--a ln x(a∈R).(1)讨论f(x)的单调区间;(2)设g(x)=f(x)+2a ln x,且g(x)有两个极值点为x1,x2,其中x1∈(0,e],求g(x1)-g(x2)的最小值.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程极坐标系与平面直角坐标系xOy有相同的长度单位,且以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin,曲线C2的极坐标方程为ρsin θ=a(a>0),射线θ=φ,θ=φ+,θ=φ-,θ=+φ与曲线C1分别交于四点A,B,C,D.(1)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;(2)求|OA|·|OC|+|OB|·|OD|的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-a|.(1)若f(x)≤m的解集为[-1,5],求实数a,m的值;(2)当a=2,且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).参考答案2017高考仿真卷·理科数学(一)1.D解析因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).2.D解析因为a+b i=,所以a=,b=0.所以a+b=3.B解析因为p:a≥0,q:0≤a≤1,所以p是q的必要不充分条件.4.A解析由题图中的正方体可知,△P AC在该正方体上、下面上的射影是①,△P AC在该正方体左、右面上的射影是④,△P AC在该正方体前、后面上的射影是④,故①④符合题意.5.A解析因为双曲线=1(a>0,b>0)与椭圆=1的焦点相同,所以双曲线的半焦距c=4.因为过右焦点F,且倾斜角为60°的直线与双曲线的右支有两个不同的交点,所以双曲线的其中一条渐近线方程的斜率小于直线的斜率,即<tan 60°,即b<a.又因为c2=a2+b2,所以c2-a2<3a2,整理得c<2a.所以a>2.又因为a<c=4,所以双曲线的实半轴长的取值范围是(2,4).6.B解析∵数列为调和数列,=x n+1-x n=d.∴{x n}是等差数列.又x1+x2+…+x20=200=,∴x1+x20=20.又x1+x20=x5+x16,∴x5+x16=20.7.D解析约束条件所表示的平面区域如图中阴影部分所示.因为x2+y2+2x=(x+1)2+y2-1,所以x2+y2+2x表示点(-1,0)到可行域内一点距离的平方减1.由图可知,当x=0,y=1时,x2+y2+2x取得最小值1.8.A解析由题中的程序框图可知,S=2,i=1;S==-3,i=2;S==-,i=3;S=,i=4;S==2,i=5;S==-3,i=6;……可知S的值以4为周期循环出现.当i=2 017=4×504+1时,结束循环,输出S,即输出的S=2.9.C解析若f(x)对任意的x∈R恒成立,则f为函数f(x)的最大值或最小值,即2+φ=kπ+,k∈Z.则φ=kπ+,k∈Z.又因为f>f(π),所以sin φ<0.又因为0<φ<2π,所以只有当k=1时,φ=才满足条件.10.B解析由题意可知有两种情况,3,1,1(表示一种颜色的球有3个,另外两种颜色的球各1个)及2,2,1(表示两种颜色的球各2个,另外一种颜色的球1个),且这两种情况是互斥的,下面计算每一种情况的概率.当取球情况是3,1,1时,试验发生包含的总的基本事件数是35,满足条件的基本事件数是,故这种结果发生的概率是;当取球情况是2,2,1时,同理求得这种结果的概率是根据互斥事件的概率公式可知所求的概率为11.C解析设直线AB的倾斜角为θ(0<θ<π),|BF|=m.∵|AF|=3,∴点A到准线l:x=-1的距离为3.∴2+3cos θ=3,即cos θ=∴sin θ=∵|BF|=m,∴m=2+m cos(π-θ),即m=∴△AOB的面积为S=|OF|·|AB|·sin θ=112.C解析设g(x)=f(x)-x.∵f'(x)<,∴g'(x)=f'(x)-<0.∴g(x)在R上为减函数.又f(1)=1,f(log2x)>=log2x+,∴g(log2x)=f(log2x)-log2x>log2x+log2x=又g(1)=f(1)-=1-,∴g(log2x)>g(1),即log2x<1.∴0<x<2.13.31解析因为(1-)6的展开式中的第r+1项为T r+1=16-r=(-1)r,所以当r=4时,T5=(-1)4x2=15x2;当r=0时,T1=(-1)0x0=1.所以(1-)6的展开式中含x的项的系数为2×15+1=31.14解析因为等比数列{a n}为递增数列,且a1=-2<0,所以公比0<q<1.又因为3(a n+a n+2)=10a n+1,所以3(1+q2)=10q,即3q2-10q+3=0,解得q=3或q=又因为0<q<1,所以q= 15解析以A为原点,以AB所在直线为x轴,建立平面直角坐标系.设正方形ABCD的边长为1,P(cos θ,sin θ),其中可知E,C(1,1),D(0,1),A(0,0),故=(1,1),=(cos θ,sin θ).因为=+,所以+μ(cos θ,sin θ)==(1,1).所以所以令f(θ)=λ+μ==-1+,可知f'(θ)=>0.故y=f(θ)在上是增函数.因此,当θ=0时,λ+μ取得最小值为16.1-3a解析因为f(x)是R上的奇函数,且当x≥0时,f(x)=所以可画出f(x)的图象如图所示.因为函数F(x)=f(x)-a(0<a<1)的零点即为函数y=f(x)与y=a(0<a<1)的图象的交点的横坐标,所以函数F(x)=f(x)-a有5个零点,从左到右依次设为x1,x2,x3,x4,x5.因为函数f(x)为奇函数,所以结合图象可得x1+x2=-8,x4+x5=8.当-2≤x<0时,则0<-x≤2.所以f(-x)=lo(-x+1)=-log3(1-x).所以f(x)=log3(1-x),其中-2≤x<0.由f(x)=log3(1-x)=a,解得x=1-3a,即x3=1-3a.所以函数F(x)=f(x)-a(0<a<1)的所有零点之和为x1+x2+x3+x4+x5=1-3a.17.解(1)因为sin,所以cos C=1-2sin2=-(2)因为sin2A+sin2B=sin2C,所以a2+b2=c2.①由余弦定理得a2+b2=c2+2ab cos C,将cos C=-及①代入上式得ab=c2.②由S△ABC=及sin C=,得ab=6.③由①②③得经检验都满足题意.所以18.解(1)由题意可知,K2=2.932>2.706,故在犯错误的概率不超过0.1的前提下认为对这一问题的看法与性别有关.(2)①设“男士和女士各至少有1人发言”为事件A,则所求概率为P(A)=;②根据题意可知X服从超几何分布,故P(X=k)=,k=0,1,2,3,因此,X的分布列为X的均值为E(X)=0+1+2+3=1.19.(1)证明取BC的中点Q,连接NQ,FQ,则NQ=AC,NQ∥AC.又MF=AC,MF∥AC,∴MF=NQ,MF∥NQ,∴四边形MNQF为平行四边形.∴MN∥FQ.∵FQ⊂平面FCB,MN⊄平面FCB,∴MN∥平面FCB.(2)解由AB∥CD,AD=DC=CB=1,∠ABC=60°,可得∠ACB=90°,AC=,AB=2.∵四边形ACFE为矩形,∴AC⊥CF.又AC⊥BC,∴AC⊥平面FCB.∵直线AF与平面FCB所成的角为30°,∴∠AFC=30°,∴FC=3.∵FB=,∴FC⊥BC.∴可建立如图所示的空间直角坐标系.∴A(,0,0),B(0,1,0),M设平面MAB的法向量m,则可得出平面MAB的一个法向量m=(2,6,1).又n=(,0,0)为平面FCB的一个法向量,∴cos<m,n>=平面MAB与平面FCB所成角的余弦值为20.(1)解由题意可知a=2,b=,故所求椭圆方程为=1.(2)证明设过点F2(1,0)的直线l的方程为y=k(x-1).由可得(4k2+3)x2-8k2x+4k2-12=0.因为点F2(1,0)在椭圆内,所以直线l和椭圆相交,即Δ>0恒成立.设点E(x1,y1),D(x2,y2),可得x1+x2=,x1x2=因为直线AE的方程为y=(x-2),直线AD的方程为y=(x-2),令x=3,可得M,N,所以点P的坐标为所以直线PF2的斜率为k'=====-,所以k·k'为定值-21.解(1)由题意可知f(x)的定义域为(0,+∞),f'(x)=1+令f'(x)=0,得x2-ax+1=0.①当-2≤a≤2时,Δ=a2-4≤0,此时,f'(x)≥0恒成立,所以f(x)在定义域(0,+∞)内单调递增;②当a<-2时,Δ=a2-4>0,但x2-ax+1=0的两根x1,x2均为负数,此时,f'(x)>0在(0,+∞)内恒成立,所以f(x)在定义域(0,+∞)内单调递增;③当a>2时,Δ=a2-4>0,解得x2-ax+1=0的两根为x1=,x2=,当x时,f'(x)>0,f(x)单调递增;当x时,f'(x)<0,f(x)单调递减;当x时,f'(x)>0,f(x)单调递增.综上可得,当a≤2时,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>2时,f(x)的单调递增区间为,单调递减区间为(2)由题意可知,g(x)=x-+a ln x,定义域为(0,+∞),则g'(x)=1+令g'(x)=0,得x2+ax+1=0,其两根为x1,x2,且所以x2=,a=-所以a<0.所以g(x1)-g(x2)=g(x1)-g=x1-+a ln x1-=2+2a ln x1=2-2ln x1.设h(x)=2-2ln x,x∈(0,e],可知[g(x1)-g(x2)]min=h(x)min.因为h'(x)=2-2,所以当x∈(0,e]时,恒有h'(x)≤0.所以h(x)在(0,e]上单调递减.所以h(x)min=h(e)=-,所以[g(x1)-g(x2)]min=-22.解(1)因为C1的极坐标方程为ρ=2sin=2sin θ+2cos θ,所以C1的直角坐标方程为x2+y2=2y+2x,化为标准方程为(x-1)2+(y-1)2=2.由题意可知曲线C2的直角坐标方程为y=a.因为曲线C1关于曲线C2对称,所以a=1,所以曲线C2的直角坐标方程为y=1.(2)因为|OA|=2sin,|OB|=2sin=2cos φ,|OC|=2sin φ,|OD|=2sin=2cos,所以|OA|·|OC|+|OB|·|OD|=2sin2sin φ+2cos φ·2cos=8cos=8=423.解(1)因为|x-a|≤m,所以a-m≤x≤a+m.又因为f(x)≤m的解集为[-1,5],所以解得(2)当a=2时,f(x)+t≥f (x+2)等价于|x-2|+t≥|x|.当x≥2时,不等式转化为x-2+t≥x,解得t≥2,与0≤t<2矛盾,故舍去;当0≤x<2时,不等式转化为2-x+t≥x,解得0≤x;当x<0时,不等式转化为2-x+t≥-x,解得t≥-2,符合题意.所以原不等式解集是。

河南省周口市数学高考理数一诊试卷

河南省周口市数学高考理数一诊试卷

河南省周口市数学高考理数一诊试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高二下·台州期中) 设集合,则集合()A .B .C .D .2. (2分) (2020高二下·哈尔滨期末) 复数的共轭复数是()A .B .C .D .3. (2分)(2017·成都模拟) 若实数x,y满足约束条件,则z=2x﹣y的最大值为()A . ﹣1B . 1C . 2D . 34. (2分) (2015高二上·菏泽期末) 在△ABC中,∠C= ,AC=2 ,AB=2,则BC的长是()A . 2B . 4C . 2或4D . 4或85. (2分)(2018·安徽模拟) 执行如图所示的程序框图,当输入的时,输出的结果不大于的概率为()A .B .C .D .6. (2分) (2017高三上·赣州期中) 下列四种说法正确的是()①函数f(x)的定义域是R,则“∀x∈R,f(x+1)>f(x)”是“函数f(x)为增函数”的充要条件;②命题“ ”的否定是“ ”;③命题“若x=2,则x2﹣3x+2=0”的逆否命题是真命题;④p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数,则p∧q为真命题.A . ①②③④B . ②③C . ③④D . ③7. (2分)已知抛物线的准线与圆相切,则p的值为()A .B . 1C . 2D . 48. (2分)已知、均为等差数列,其前项和分别为和,若,则值是()A .B . 2C .D . 无法确定9. (2分)某几何体的三视图如图所示,则它的体积等于()A . 8B . 6C . 4D .10. (2分)(2015·合肥模拟) 已知双曲线的两条渐近线分别与抛物线y2=2px(p>0)的准线交于A,B两点,O为坐标原点,若△OAB的面积为1,则p的值为()A . 1B .C . 2D . 411. (2分)已知函数的图象的两条相邻对称轴的距离是,则ω=()A . 4B .C . 1D . 212. (2分)设是定义在R上的偶函数,且f(x+2)=f(2﹣x)时,当x∈[﹣2,0]时,,若(﹣2,6)在区间内关于x的方程xf(x)﹣loga(x+2)=0(a>0且a≠1)有且只有4个不同的根,则实数a 的范围是()A .B . (1,4)C . (1,8)D . (8,+∞)二、填空题 (共4题;共5分)13. (1分) (2017高二下·溧水期末) 已知△ABC是等边三角形,有一点D满足 + = ,且||= ,那么• =________.14. (1分) (2016高三上·怀化期中) 在圆x2+y2=4内随机取一点P(x0 , y0),则的概率为________.15. (2分)若的展开式各项系数之和为64,则 ________;展开式中的常数项为________.16. (1分) (2019高一上·桐城月考) 给出下列说法:①集合与集合是相等集合;②不存在实数 ,使为奇函数;③若,且f(1)=2,则;④对于函数在同一直角坐标系中,若,则函数的图象关于直线对称;⑤对于函数在同一直角坐标系中,函数与的图象关于直线对称;其中正确说法是________.三、解答题 (共7题;共65分)17. (10分) (2019高一下·哈尔滨期中) 已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证: .18. (10分)某网站对是否赞成延长退休话题对500位网友调查结果如下:性别男女总计结果赞成403070不赞成160270430总计200300500附:x2= ,n=a+b+c+dP(x2≥k0 )0.100.050.01k0 2.706 3.84 6.635(1)能否在犯错误概率不超过0.01前提下,认为“该调查结果”与“性别”有关;(2)若从赞成的网友中按性别分层抽样方法抽取7人,再从被抽7人中再随机抽取2人,求这2人中有女网友的概率.19. (10分) (2019高一上·吴起月考) 如图,四边形与四边形为平行四边形,分别是的中点,求证:(1)平面;(2)平面平面 .20. (10分) (2017高三上·湖北开学考) 已知椭圆C:的离心率为,左焦点为F (﹣1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.(1)求椭圆C的标准方程;(2)在y轴上,是否存在定点E,使恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.21. (10分)(2019·南昌模拟) 已知函数(为自然对数的底数,为常数,并且).(1)判断函数在区间内是否存在极值点,并说明理由;(2)若当时,恒成立,求整数的最小值.22. (10分)(2017·扶沟模拟) 以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.23. (5分) (2020高二下·张家口期中) 已知,,若是的充分而不必要条件,求实数m的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、。

2017年河南省高考数学质检试卷(理科)

2017年河南省高考数学质检试卷(理科)

2017年河南省高考数学质检试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x(5﹣x)>4},B={x|x≤a},若A∪B=B,则a的值可以是()A.1B.2C.3D.42.(5分)已知复数在复平面内对应的点在第四象限,则实数a的取值范围是()A.(﹣∞,﹣1)B.(4,+∞)C.(﹣1,4)D.(﹣4,﹣1)3.(5分)为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()A.B.C.D.4.(5分)已知3cos2θ=tanθ+3,且θ≠kπ(k∈Z),则sin[2(π﹣θ)]等于()A.﹣B.C.D.﹣5.(5分)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k的值为()A.4.5B.6C.7.5D.96.(5分)已知双曲线C:(a>0,b>0)过点,过点(0,﹣2)的直线l与双曲线C的一条渐进线平行,且这两条平行线间的距离为,则双曲线C的实轴长为()A.2B.C.4D.7.(5分)若f(x)为奇函数,且x0是函数y=f(x)﹣e x的一个零点,在下列函数中,﹣x0一定是其零点的函数是()A.y=f(﹣x)•e﹣x﹣1B.y=f(x)•e﹣x+1C.y=f(x)•e﹣x﹣1D.y=f(x)•e x+18.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.4D.9.(5分)在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且•=5,则||等于()A.2B.4C.6D.110.(5分)已知椭圆C:(a>b>0)的右焦点为F2,O为坐标原点,M为y轴上一点,点A是直线MF2与椭圆C的一个交点,且|OA|=|OF2|=2|OM|,则椭圆C的离心率为()A.B.C.D.11.(5分)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1∉平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是()A.与平面A1DE垂直的直线必与直线BM垂直B.异面直线BM与A1E所成角是定值C.一定存在某个位置,使DE⊥MOD.三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值12.(5分)若曲线f(x)=(e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x <0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是()A.(e,e2)B.(e,)C.(1,e2)D.[1,e)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知实数x,y满足条件,则z=x2+(y+1)2的最小值为.14.(5分)把3男2女共5名新生分配给甲、乙两个班,每个班分配的新生不少于2名,且甲班至少分配1名女生,则不同的分配方案种数为.15.(5分)函数f(x)=Asin(ωx+φ)(ω>0,)的部分图象如图所示,将函数f(x)的图象向右平移个单位后得到函数g(x)的图象,若函数g (x)在区间()上的值域为[﹣1,2],则θ=.16.(5分)在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的前n(n∈N*)项和为S n,a3=3,且λS n=a n a n+1,在等比数列{b n}中,b1=2λ,b3=a15+1.(Ⅰ)求数列{a n}及{b n}的通项公式;(Ⅱ)设数列{c n}的前n(n∈N*)项和为T n,且,求T n.18.(12分)某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为,甲、乙两家公司对每题的回答都是相独立,互不影响的.(1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=,点E在AD上,且AE=2ED.(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?20.(12分)已知A是抛物线y2=4x上的一点,以点A和点B(2,0)为直径的圆C交直线x=1于M,N两点.直线l与AB平行,且直线l交抛物线于P,Q 两点.(Ⅰ)求线段MN的长;(Ⅱ)若=﹣3,且直线PQ与圆C相交所得弦长与|MN|相等,求直线l的方程.21.(12分)设函数f(x)=e2x,g(x)=kx+1(k∈R).(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-4:极坐标与参数方程]22.(10分)在直角坐标系xoy中,曲线C的参数方程为(t为参数,a >0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为.(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|.(Ⅰ)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;(Ⅱ)若关于x的不等式f(x)<g(x)的解集为,求a+b的值.2017年河南省高考数学质检试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x(5﹣x)>4},B={x|x≤a},若A∪B=B,则a的值可以是()A.1B.2C.3D.4【分析】由已知得A⊆B,由此能求出实数a的取值范围,可得结论.【解答】解:集合A={x|x(5﹣x)>4}={x|1<x<4},∵A∪B=B,∴A⊆B,∵B={x|x≤a},∴a≥4.∴a的值可以是4,故选:D.【点评】本题考查实数的取值范围的求法,是基础题,解题时要注意并集的性质的合理运用.2.(5分)已知复数在复平面内对应的点在第四象限,则实数a的取值范围是()A.(﹣∞,﹣1)B.(4,+∞)C.(﹣1,4)D.(﹣4,﹣1)【分析】利用复数代数形式的乘除运算化简,再由实部大于0且虚部小于0联立求得实数a的取值范围.【解答】解:∵=在复平面内对应的点在第四象限,∴,解得﹣1<a<4.∴实数a的取值范围是(﹣1,4).故选:C.【点评】本题考查复数代数式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.3.(5分)为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()A.B.C.D.【分析】根据四个列联表中的等高条形图看出不服药与服药时患禽流感的差异大小,从而得出结论.【解答】解:根据四个列联表中的等高条形图知,图形D中不服药与服药时患禽流感的差异最大,它最能体现该药物对预防禽流感有效果.故选:D.【点评】本题考查了列联表中条形图的应用问题,是基础题.4.(5分)已知3cos2θ=tanθ+3,且θ≠kπ(k∈Z),则sin[2(π﹣θ)]等于()A.﹣B.C.D.﹣【分析】由已知利用同角三角函数基本关系式tanθ(1+tan2θ+3tanθ)=0,结合tanθ≠0,可得1+tan2θ=﹣3tanθ,利用诱导公式,二倍角公式,同角三角函数基本关系式即可计算得解.【解答】解:∵3cos2θ=3×=tanθ+3,整理可得:tanθ(1+tan2θ+3tanθ)=0,∵θ≠kπ(k∈Z),tanθ≠0,∴1+tan2θ=﹣3tanθ,∴sin[2(π﹣θ)]=sin(2π﹣2θ)=﹣sin2θ=﹣=﹣=.故选:C.【点评】本题主要考查了同角三角函数基本关系式,诱导公式,二倍角公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.5.(5分)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k的值为()A.4.5B.6C.7.5D.9【分析】模拟程序的运行,依次写出每次循环得到的n,S的值,当n=4时,不满足条件n<4,退出循环,输出S的值为,即可解得k的值.【解答】解:模拟程序的运行,可得n=1,S=k满足条件n<4,执行循环体,n=2,S=k﹣=,满足条件n<4,执行循环体,n=3,S=﹣=,满足条件n<4,执行循环体,n=4,S=﹣=,此时,不满足条件n<4,退出循环,输出S的值为,由题意可得:=1.5,解得:k=6.故选:B.【点评】算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.6.(5分)已知双曲线C:(a>0,b>0)过点,过点(0,﹣2)的直线l与双曲线C的一条渐进线平行,且这两条平行线间的距离为,则双曲线C的实轴长为()A.2B.C.4D.【分析】由双曲线的渐近线方程y=±x,利用点到直线的距离公式,即可求得a和c的关系,即可求得b=2a,将点代入椭圆方程,即可求得a的值,求得双曲线C的实轴长.【解答】解:由双曲线的渐近线方程y=±x,则(0,﹣2)到渐近线bx﹣ay=0的距离d===,则c=3a,即b=2a,由双曲线C过点,即,解得:a=1,则双曲线C的实轴长为2a=2,故选:A.【点评】本题考查双曲线的简单几何性质,考查点到直线的距离公式,考查计算能力,属于中档题.7.(5分)若f(x)为奇函数,且x0是函数y=f(x)﹣e x的一个零点,在下列函数中,﹣x0一定是其零点的函数是()A.y=f(﹣x)•e﹣x﹣1B.y=f(x)•e﹣x+1C.y=f(x)•e﹣x﹣1D.y=f(x)•e x+1【分析】根据f(x)是奇函数可得f(﹣x)=﹣f(x),因为x0是y=f(x)﹣e x的一个零点,代入得到一个等式,利用这个等式对A、B、C、D四个选项进行一一判断.【解答】解:f(x)是奇函数,∴f(﹣x)=﹣f(x)且x0是y=f(x)﹣e x的一个零点,∴f(x0)﹣e x0=0,∴f(x0)=e x0,把﹣x0分别代入下面四个选项,A、y=f(x0)e x0﹣1=e x0e x0﹣1≠0,故A错误;B、y=f(﹣x0)e x0+1=﹣(e x0)2+1≠0,故B错误;C、y=e x0f(﹣x0)﹣1=﹣e x0•e x0﹣1≠0,故C不正确;D、y=e﹣x0f(﹣x0)+1=﹣e x0e﹣x0+1=0,故D正确.故选:D.【点评】此题主要考查函数的零点问题以及奇函数的性质,此题是一道中档题,需要一一验证.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.4D.【分析】由三视图可得,直观图为三棱锥和三棱柱的组合体,底面为俯视图中的三角形,高为2,即可求出体积.【解答】解:由三视图可得,直观图为三棱锥和三棱柱的组合体,底面为俯视图中的三角形,高为2,体积为+=,故选:A.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键.9.(5分)在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且•=5,则||等于()A.2B.4C.6D.1【分析】依题意,作出图形,设=k,利用三角形法则可知=+=﹣+k,再由•=5可求得k,从而可求得||的值.【解答】解:∵在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且•=5,作图如下:设=k,∵=+=﹣+k,∴•=•(﹣+k)=﹣||||cos60°+k=﹣5×4×+25k=5,解得:k=,∴||=5×=3,∴||=5﹣3=2.故选:A.【点评】本题考查平面向量数量积的运算,考查平面向量的加法运算(三角形法则)及平面向量共线基本定理的应用,考查数形结合思想,属于中档题.10.(5分)已知椭圆C:(a>b>0)的右焦点为F2,O为坐标原点,M为y轴上一点,点A是直线MF2与椭圆C的一个交点,且|OA|=|OF2|=2|OM|,则椭圆C的离心率为()A.B.C.D.【分析】取椭圆的左焦点为F1,连接AF1,依题意可得.△F1AF2∽△MOF2,⇒,由⇒即可求解.【解答】解:如图,取椭圆的左焦点为F1,连接AF1,依题意:|OA|=|OF2|=2|OM|=c,可得.△F1AF2∽△MOF2,⇒==,∵AF1+AF2=2a,∴.由⇒,∴.则椭圆C的离心率为:,故选:D.【点评】本题考查椭圆的离心率,考查椭圆定义的运用,考查学生分析解决问题的能力,属于中档题.11.(5分)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1∉平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是()A.与平面A1DE垂直的直线必与直线BM垂直B.异面直线BM与A1E所成角是定值C.一定存在某个位置,使DE⊥MOD.三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值【分析】对于A,延长CB,DE交于H,连接A1H,运用中位线定理和线面平行的判定定理,可得BM∥平面A1DE,即可判断A;对于B,运用平行线的性质和解三角形的余弦定理,以及异面直线所成角的定义,即可判断B;对于C,连接A1O,运用线面垂直的判定定理和性质定理,可得AC与DE垂直,即可判断C;对于D,由直角三角形的性质,可得三棱锥A1﹣ADE外接球球心为O,即可判断D.【解答】解:对于A,延长CB,DE交于H,连接A1H,由E为AB的中点,可得B为CH的中点,又M为A1C的中点,可得BM∥A1H,BM⊄平面A1DE,A1H⊂平面A1DE,则BM∥平面A1DE,故与平面A1DE垂直的直线必与直线BM垂直,则A正确;对于B,设AB=2AD=2a,过E作EG∥BM,G∈平面A1DC,则∠A1EG=∠EA1H,在△EA1H中,EA1=a,EH=DE=a,A1H==,则∠EA1H为定值,即∠A1EG为定值,则B正确;对于C,连接A1O,可得DE⊥A1O,若DE⊥MO,即有DE⊥平面A1MO,即有DE⊥A1C,由A1C在平面ABCD中的射影为AC,可得AC与DE垂直,但AC与DE不垂直.则不存在某个位置,使DE⊥MO,则C不正确;对于D,连接OA,由直角三角形斜边的中线长为斜边的一半,可得三棱锥A1﹣ADE外接球球心为O,半径为,即有三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值.则D正确.故选:C.【点评】本题考查命题的真假判断与应用,考查了线面、面面平行与垂直的判定和性质定理,考查空间想象能力和推理能力,是中档题.12.(5分)若曲线f(x)=(e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x <0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是()A.(e,e2)B.(e,)C.(1,e2)D.[1,e)【分析】由题意设出A,B的坐标,代入函数解析式,利用中点坐标公式把B的坐标用A的坐标表示,由可得关于A的横坐标的方程,分离参数a 后构造函数h(x)=,利用导数求其在(e﹣1<x<e2﹣1)上的单调性,得到函数的值域得答案.【解答】解:设A(x1,y1),y1=f(x1)=,B(x2,y2),y2=g(x2)=﹣x23+x22(x<0),则=0,x2=﹣x1,∴.,,由题意,,即=0,∴,∵e﹣1<x1<e2﹣1,∴,则.设h(x)=,则h′(x)=,∵e﹣1<x<e2﹣1,∴h′(x)>0,即函数h(x)=在(e﹣1<x<e2﹣1)上为增函数,则,即e<a<.∴实数a的取值范围是(e,).故选:B.【点评】本题考查利用导数研究函数的单调性,考查数学转化思想方法,考查逻辑思维能力和推理运算能力,属中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知实数x,y满足条件,则z=x2+(y+1)2的最小值为5.【分析】先根据条件画出可行域,z=x2+(y+1)2,再利用几何意义求最值,只需求出可行域内的点到点B(0,﹣1)距离的最值,从而得到z最值即可.【解答】解:先根据实数x,y满足条件画出可行域,z=x2+(y+1)2,表示可行域内点B到A(0,﹣1)距离的平方,当z是点A到直线2x+y﹣4=0的距离的平方时,z最小,最小值为d2==5,给答案为:5.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.14.(5分)把3男2女共5名新生分配给甲、乙两个班,每个班分配的新生不少于2名,且甲班至少分配1名女生,则不同的分配方案种数为16.【分析】根据题意,用间接法分析:先计算将5人分配到2个班级的情况数目,再分析其中甲班全部为男生的情况数目,用“将5人分配到2个班级”的情况数目减去“甲班没有女生即全部为男生”的情况数目,即可得答案.【解答】解:根据题意,先将5人分配到2个班级,需要先把5人分成两组,有C52=10种分组方法,再把分好的2组对应2个班级,有A22=2种情况,则将5人分配到2个班级,有10×2=20种分配方法;其中甲班没有女生即全部为男生的情况有2种:甲班只有3名男生,则有C33=1种情况,甲班只有2名男生,则有C32=3种情况,则甲班没有女生的即全部为男生的情况有1+3=4种,则甲班至少分配1名女生的分配方案有20﹣4=16种;故答案为:16.【点评】本题考查排列、组合的实际应用,可以选用间接法,避免分类讨论.15.(5分)函数f(x)=Asin(ωx+φ)(ω>0,)的部分图象如图所示,将函数f(x)的图象向右平移个单位后得到函数g(x)的图象,若函数g (x)在区间()上的值域为[﹣1,2],则θ=.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式.再利用y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,结合条件,利用正弦函数的定义域和值域,求得θ的值..【解答】解:根据函数f(x)=Asin(ωx+φ)(ω>0,)的部分图象,可得A=﹣2,==,∴ω=2.再根据五点法作图可得2•+φ=π,∴φ=,f(x)=﹣2sin(2x+).将函数f(x)的图象向右平移个单位后得到函数g(x)=﹣2sin(2x﹣+)=﹣2sin(2x﹣)的图象,对于函数y=g(x),当x∈(),2x﹣∈[﹣π,2θ﹣],由于g(x)的值域为[﹣1,2],故﹣2sin(2x﹣)的最小值为﹣1,此时,2sin (2θ﹣)=,则θ=,故答案为:.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值.还考查y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.16.(5分)在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=.【分析】由已知利用同角三角函数基本关系式,三角形面积公式,余弦定理化简可得:a2+b2=2c2,利用余弦定理,正弦定理化简sinAcosB=2cosAsinB可得:b2﹣a2=﹣,联立解得a2=c2,b2=c2,进而利用余弦定理即可解得cosA的值.【解答】解:∵(a2+b2)tanC=8S,可得:(a2+b2)•=4absinC,∵C∈(0,π),sinC≠0,∴a2+b2=4abcosC=4ab•=2(a2+b2﹣c2),整理可得:a2+b2=2c2,①又∵sinAcosB=2cosAsinB,∴a•=2b•,整理可得:b2﹣a2=﹣,②∴联立①②解得:a2=c2,b2=c2,∴cosA===.故答案为:.【点评】本题主要考查了同角三角函数基本关系式,三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的前n(n∈N*)项和为S n,a3=3,且λS n=a n a n+1,在等比数列{b n}中,b1=2λ,b3=a15+1.(Ⅰ)求数列{a n}及{b n}的通项公式;(Ⅱ)设数列{c n}的前n(n∈N*)项和为T n,且,求T n.【分析】(I)分别令n=1,2列方程,再根据等差数列的性质即可求出a1,a2得出a n,计算b1,b3得出公比得出b n;(II)求出c n,根据裂项法计算T n.【解答】解:(Ⅰ)∵λS n=a n a n+1,a3=3,∴λa1=a1a2,且λ(a1+a2)=a2a3,∴a2=λ,a1+a2=a3=3,①∵数列{a n}是等差数列,∴a1+a3=2a2,即2a2﹣a1=3,②由①②得a1=1,a2=2,∴a n=n,λ=2,∴b1=4,b3=16,∴{b n}的公比q==±2,∴或b n=(﹣2)n+1.(Ⅱ)由(I)知,∴=,∴T n==1+﹣﹣=.【点评】本题考查了等差数列,等比数列的性质,裂项法数列求和,属于中档题.18.(12分)某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为,甲、乙两家公司对每题的回答都是相独立,互不影响的.(1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?【分析】(1)利用独立重复试验的概率公式求解甲、乙两家公司共答对2道题目的概率.(2)设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.求出概率,得到X的分布列求解期望;乙公司正确完成面试的题为Y,则Y取值分别为0,1,2,3.求出概率得到分布列,求出期望即可.【解答】解:(1)由题意可知,所求概率.(2)设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.,,.则X的分布列为:X123P∴.设乙公司正确完成面试的题为Y,则Y取值分别为0,1,2,3.,,,则Y的分布列为:Y0123P∴.(或∵,∴).()由E(X)=E(Y),D(X)<D(Y)可得,甲公司竞标成功的可能性更大.【点评】本题考查独立重复试验概率以及分布列期望的求法,考查计算能力.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=,点E在AD上,且AE=2ED.(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?【分析】(Ⅰ)推导出∠ACB=45°,从而∠ACD=45°,进而四边形ABFE是平行四边形,推导出AC⊥EF,PA⊥EF,从而EF⊥平面PAC,由此能证明平面PEF⊥平面PAC.(Ⅱ)由PA⊥AC,AC⊥AB,知AC⊥平面PAB,则∠APC为直线PC与平面PAB 所成的角,取BC的中点为G,连接AG,则AG⊥BC,以A为坐标原点,建立空间直角坐标系A﹣xyz,利用向量法能求出直线PC与平面PAB所成的角.【解答】(Ⅰ)证明:∵AB⊥AC,AB=AC,∴∠ACB=45°,∵底面ABCD是直角梯形,∠ADC=90°,AD∥BC,∴∠ACD=45°,即AD=CD,∴,∵AE=2ED,CF=2FB,∴,∴四边形ABFE是平行四边形,则AB∥EF,∴AC⊥EF,∵PA⊥底面ABCD,∴PA⊥EF,∵PA∩AC=A,∴EF⊥平面PAC,∵EF⊂平面PEF,∴平面PEF⊥平面PAC.(Ⅱ)解:∵PA⊥AC,AC⊥AB,∴AC⊥平面PAB,则∠APC为直线PC与平面PAB所成的角,若PC与平面PAB所成夹角为45°,则,即,取BC的中点为G,连接AG,则AG⊥BC,以A为坐标原点建立如图所示的空间直角坐标系A﹣xyz,则B(1,﹣1,0),C(1,1,0),,,∴,,设平面PBE的法向量,则即令y=3,则x=5,,∴,∵是平面PAB的一个法向量,∴,即当二面角A﹣PB﹣E的余弦值为时,直线PC与平面PAB所成的角为45°.【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,是中档题.20.(12分)已知A是抛物线y2=4x上的一点,以点A和点B(2,0)为直径的圆C交直线x=1于M,N两点.直线l与AB平行,且直线l交抛物线于P,Q 两点.(Ⅰ)求线段MN的长;(Ⅱ)若=﹣3,且直线PQ与圆C相交所得弦长与|MN|相等,求直线l的方程.【分析】(Ⅰ)C的方程为(x﹣2)(x﹣+y(y﹣y0)=0,令x=1,得y2﹣y0y+﹣1=0,利用韦达定理及弦长公式求线段MN的长;(Ⅱ)设直线l的方程为x=my+n,代入抛物线方程,利用=﹣3,求出n,直线PQ与圆C相交所得弦长与|MN|相等,求出m,即可求直线l的方程.【解答】解:(Ⅰ)设A(,y0),则C的方程为(x﹣2)(x﹣+y(y﹣y0)=0,令x=1,得y2﹣y0y+﹣1=0,∴|MN|=|y1﹣y2|==2;(Ⅱ)设直线l的方程为x=my+n,代入抛物线方程得y2﹣4my﹣4n=0,∴y1+y2=4m,y1y2=﹣4n∵=﹣3,∴x1x2+y1y2=+y1y2=﹣3,∴n2﹣4n+3=0,∴n=1或3,此时B(2,0)到直线l的距离d=.由题意,圆心C到直线l的距离等于到直线x=1的距离,∴=.∵m=,∴=64,∴=8,∴m=0,∴直线l的方程为x=3,综上,直线l的方程为x=1或x=3.【点评】本题考查直线方程,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.21.(12分)设函数f(x)=e2x,g(x)=kx+1(k∈R).(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.【分析】(Ⅰ)设切线的坐标为(t,e2t),得到(1﹣2t)e2t=1,令h(x)=(1﹣x)e x,根据函数的单调性求出k的值即可;(Ⅱ)通过讨论k的范围,结合对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立以及函数的单调性求出对应的函数的单调区间,求出k的具体范围即可.【解答】解:(Ⅰ)设切线的坐标为(t,e2t),由f(x)=e2x得f′(x)=2e2x,∴切线方程为y﹣e2t=2e2t(x﹣t),即y=2e2t x+(1﹣2t)e2t,由已知y=2e2t x+(1﹣2t)e2t和y=kx+1为同一条直线,∴2e2t=k,(1﹣2t)e2t=1,令h(x)=(1﹣x)e x,则h′(x)=﹣xe x,当x∈(﹣∞,0)时,h′(x)>0,h(x)单调递增,当x∈(0,+∞)时,h′(x)<0,h(x)单调递减,∴h(x)≤h(0)=1,当且仅当x=0时等号成立,∴t=0,k=2,(Ⅱ)①当k>2时,由(Ⅰ)知:存在x>0,使得对于任意x∈(0,x0),都有f(x)<g(x),则不等式|f(x)﹣g(x)|>2x等价于g(x)﹣f(x)>2x,即(k﹣2)x+1﹣e2x>0,设t(x)=(k﹣2)x+1﹣e2x,t′(x)=k﹣2﹣2e2x,由t′(x)>0,得:x<ln,由t′(x)<0,得:x>ln,若2<k≤4,ln≤0,∵(0,x0)⊆(ln,+∞),∴t(x)在(0,x0)上单调递减,注意到t(0)=0,∴对任意x∈(0,x0),t(x)<0,与题设不符,若k>4,ln>0,(0,ln)⊆(﹣∞,ln),∴t(x)在(0,ln)上单调递增,∵t(0)=0,∴对任意x∈(0,ln),t(x)>0,符合题意,此时取0<m≤min{x0,ln},可得对任意x∈(0,m),都有|f(x)﹣g(x)|>2x,②当0<k≤2时,由(Ⅰ)知e2x﹣(2x+1)≥0,(x>0),f(x)﹣g(x)=e2x﹣(2x+1)+(2﹣k)x≥(2﹣k)x≥0对任意x>0都成立,∴|f(x)﹣g(x)|>2x等价于e2x﹣(k+2)x﹣1>0,设φ(x)=e2x﹣(k+2)x﹣1,则φ′(x)=2e2x﹣(k+2),由φ′(x)>0,得x>ln>0,φ′(x)<0得x<ln,∴φ(x)在(0,ln)上单调递减,注意到φ(0)=0,∴对任意x∈(0,ln),φ(x)<0,不符合题设,综上所述,k的取值范围为(4,+∞).【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想、是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-4:极坐标与参数方程]22.(10分)在直角坐标系xoy中,曲线C的参数方程为(t为参数,a >0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为.(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.【分析】(Ⅰ)求出直线的普通方程,设P(2cost,2sint),则P到直线l的距离,即可求点P 到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,则对∀t∈R,有acost﹣2sint+4>0恒成立,即(其中)恒成立,即可求a的取值范围.【解答】解:(Ⅰ)由,得,化成直角坐标方程,得,即直线l的方程为x﹣y+4=0.依题意,设P(2cost,2sint),则P到直线l的距离,当,即时,.故点P到直线l的距离的最小值为.(Ⅱ)∵曲线C上的所有点均在直线l的右下方,∴对∀t∈R,有acost﹣2sint+4>0恒成立,即(其中)恒成立,∴,又a>0,解得,故a的取值范围为.【点评】本题考查极坐标方程与普通方程的互化,考查参数方程的运用,考查学生转化问题的能力,属于中档题.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|.(Ⅰ)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;(Ⅱ)若关于x的不等式f(x)<g(x)的解集为,求a+b的值.【分析】(Ⅰ)求出g(x)=a﹣|x﹣2|取最大值为a,f(x)的最小值4,利用关于x的不等式f(x)<g(x)有解,求实数a的取值范围;(Ⅱ)若关于x的不等式f(x)<g(x)的解集为,代入相应函数,求出a,b,即可求a+b的值.【解答】解:(Ⅰ)当x=2时,g(x)=a﹣|x﹣2|取最大值为a,∵f(x)=|x+1|+|x﹣3|≥4,当且仅当﹣1≤x≤3,f(x)取最小值4,∵关于x的不等式f(x)<g(x)有解,∴a>4,即实数a的取值范围是(4,+∞).(Ⅱ)当时,f(x)=5,则,解得,∴当x<2时,,令,得∈(﹣1,3),∴,则a+b=6.【点评】本题考查绝对值不等式,考查不等式的解法,考查学生分析解决问题的能力,属于中档题.。

2017高考模拟试卷理数及答案

2017高考模拟试卷理数及答案

高三(2017届)数学模拟试题(理科)第Ⅰ卷(共60分)一、选择题:(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.设集合A={x|x 2﹣2x ﹣3<0},B={x|y=lnx},则A ∩B=( )A (0,3)B (0,2)C (0,1)D (1,2) 2. 复数z=i 2(1+i)的虚部为( )A. 1B. iC. -1D. - i{}n a 中,4a 与14a 的等比中项为22,则27211log log a a +的值 为( )A .4B .3C .2D .1 4.在四边形ABCD 中,“AB =2DC ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 5.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0, |φ|<2π)的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(3πx -6π B.f (x )=5sin(6πx -6π)C.f (x )=5sin(3πx +6π) D. f (x )=5sin(6πx +6π)6.如右图所示的程序框图,若输出的88S =,则判断框内应填入的条件是( )A .3?k >B .4?k >C .5?k >D .6?k >7. 设323log ,log 3,log 2a b c π===,则( )A.a b c >>B.a cb >>C.b ac >> D. b c a >>8.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )x -5y O 5 2 5A .433 B .533 C .23 D .833x y 、满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-1,则实数m =( )A .6B .5C .4D .3 10.函数()2sin f x x x =+的部分图象可能是( )11. 已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率为3的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为A .95 B. 75 C. 58 D. 6512、已知定义在R 上的可导函数f(x)的导函数为/()f x ,满足/()f x <()f x ,且()(2)f x f x -=+,(2)1f =,则不等式()x f x e <的解集为( )A. ()2,-+∞B. (0,+∞)C.(1, +∞)D.(2, +∞)第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4个小题,每小题5分,共20分). 13. (4y x 的展开式中33x y 的系数为 。

2017届河南省扶沟县高级中学高三上学期开学检测理科数学试题及答案

2017届河南省扶沟县高级中学高三上学期开学检测理科数学试题及答案

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b |=|a-b ,则a ⋅b = ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,,则AC=( ) A. 5C. 2D. 15.已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是 A.221111x y >++B.22ln(1)ln(1)x y +>+ C.sin sin x y > D.22x y >6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 137.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588.设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >9.已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是 A.1(0,)2B.1(,1)2C.(1,2)D.(2,)+∞10.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P11.已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C与2C ,则2C 的渐近线方程为 A.0x ±= 0y ±= C.20x y ±= D.20x y ±=12.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A .60 B. 90 C.120 D.130第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .14.三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . 16.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则=+++n a a a 221ln ln ln 。

理综卷·2017届河南省扶沟县第二高级中学高三第一次模拟考试(含答案和解析

理综卷·2017届河南省扶沟县第二高级中学高三第一次模拟考试(含答案和解析

扶沟二高2017届高中毕业班第一次模拟考试理科综合可能用到的相对原子质量:H 1 C 12 O 16 Na 23 S 32 Ca 40 Fe 56 Zn 65第Ⅰ卷一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中。

只有一项是符合题目要求的。

1.水是生命之源,下列有关生物体内水的叙述,不合理的是A.胰岛素在肝脏细胞发挥作用的过程中只产生水,不消耗水B.人体细胞中的内质网、线粒体和核糖体都会产生水C.结合水是细胞的组成成分,越冬植物体内结合水的比例会升高D.绿色植物暗反应所需的还原剂最终来自叶绿体中水的光解2.下列关于生物学实验的叙述,正确的是A.高温煮熟的豆浆冷却后,不能与双缩脲试剂发生紫色反应B.健那绿染液处理的口腔上皮细胞中的线粒体已失去活性C.调查人类遗传病应选取发病率较高的单基因遗传病作为调查对象D.酒精在“绿叶中色素的提取”和“脂肪的鉴定”实验中的作用相同3.下列有关细胞分化、衰老和凋亡的叙述,正确的是A.生物的个体发育与细胞分化有关,细胞全能性的实现与细胞分化无关B.细胞凋亡不受基因的控制,与细胞凋亡有关的细胞器主要是溶酶体C.细胞分化是基因选择性表达的结果,但基因的选择性表达不一定导致细胞分化D.细胞衰老后,伴随核体积增大、染色质收缩,凋亡基因开始表达4.下图是免疫细胞之间相互作用的部分模式图,下列相关叙述正确的是A.细胞①有特异识别功能,吞噬病菌体现了生物膜的流动性B.细胞①将抗原呈递给细胞②,体现了细胞膜的信息交流功能C.免疫活性物质都来自免疫细胞,如图中的物质Ⅰ和物质ⅡD.细胞②和细胞③都在体液免疫和细胞免疫中发挥重要作用5.胰腺癌死亡率高达90%,曾夺走了乔布斯的生命。

近来发现胰腺癌患者血液中有一种含量较多的特殊物质——一种名为HSATⅡ的非编码RNA(即不编码蛋白质的RNA),这一特殊RNA可以作为胰腺癌的生物标记,用于胰腺癌的早期诊断。

下列有关叙述正确的是 A.这种特殊的非编码RNA在胰腺癌患者细胞的细胞质内合成B.核膜上的核孔可以让蛋白质和此种特殊的RNA自由进出C.作为胰腺癌生物标记的RNA,其翻译成的蛋白质中一般含20种氨基酸D.这种特殊的非编码RNA与mRNA彻底水解后,均可得到6种终产物6.在人类遗传病调查中发现某两个家系中都有甲遗传病(基因为A/a)和乙遗传病(基因为B/b)患者.两家系的遗传系谱图如下所示,其中Ⅰ1不携带乙病的致病基因。

2017年高考数学模拟试题与答案(理科)

2017年高考数学模拟试题与答案(理科)

正视图 俯视图侧视图2017年高考数学模拟试题与答案(理科)( 满分150分,时长120分钟)说明:本试卷由第Ⅰ卷和第Ⅱ卷组成。

第Ⅰ卷为选择题,第Ⅱ卷为非选择题,将答案写在答题纸上,在本试卷上答题无效。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共有12小题,每小题5分,共60分。

在每小题所给出的四个选项中有且只有一个选项是符合题目要求的1. 集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A∩B={-1},则a 的值是 A .2 B .0 或1 C .-1 D .02. 若(x -i )i =y +2i ,x ,y ∈R ,则复数x +y i =A .2+iB .-2+iC .1+2iD .1-2i 3. 由代数式的乘法法则类比推导向量的数量积的运算法则:①“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”; ②“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”; ③“(m+n)t =mt +nt”类比得到“(a+b)·c=a·c+b·c”; ④“t≠0,mt =xt ⇒m =x”类比得到“p≠0,a·p=x·p ⇒a =x”; ⑤“mn=nm”类比得到“a·b=b·a”; ⑥“ac bc =a b ”类比得到“a·c b·c =a b”.以上的式子中,类比得到的结论正确的个数是 A .1 B .2 C .3 D .4 4. 如图是某几何体的三视图,则该几何体的体积为A. 83B. 435.下列函数在其定义域上既是奇函数又是减函数的是A.()2x f x =B.()sin f x x x =C. 1()f x x=D.x x x f -=)( 6. 设,6.0log ,4.0log ,2.0log 3.02.01.0===c b a 则A. a>c>bB. a>b>cC.b>c>aD.c>b>a 7. 执行如图所示程序框图,则输出的S = A.-2012 B. 2012 C. -2013 D. 20138. 若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02且y x z +=2的最小值为4,则实数b 的值为9. 等差数列{}n a 前n 项和为n S ,且20162015120162015S S =+,则数列{}n a 的公差为 A .2017 B .2016 C .2 D .110. 已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线3y x =上,则sin(2)3πθ+=A. B. CD11. 我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有A .28个B .21个C .35个 D.56个12. 已知函数2,0,()4,0x a x f x x x x ⎧+≤⎪=⎨+>⎪⎩有最小值,则实数a 的取值范围是 A .(4,)+∞ B .(,4]-∞ C .[4,)+∞ D .(,4)-∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分. 共20分。

河南省周口市高考数学一模试卷(理科)

河南省周口市高考数学一模试卷(理科)

河南省周口市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018高一上·杭州期中) 已知集合, 0,, 0,1,,则A .B .C .D . 0,1,2. (2分)为虚数单位,则().A .B .C .D . 13. (2分)“”是“函数为奇函数”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件4. (2分)(2017·朝阳模拟) “现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是()A . 甲B . 乙C . 丙D . 乙和丙都有可能5. (2分)(2017·衡水模拟) 执行如图程序框图,则输出结果为()A . 5B . 4C . 3D . 26. (2分) (2016高二上·宁阳期中) 若变量x,y满足,则x2+y2的最大值是()A . 4B . 9C . 10D . 127. (2分) (2018高一下·黄冈期末) 如图,已知A , B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A . 36πB . 64πC . 144πD . 256π8. (2分) (2016高一下·枣阳期中) 在三角形ABC中,分别根据下列条件解三角形,其中有两个解的是()A . a=8b=16A=30°B . a=25b=30A=150°C . a=30b=40A=30°D . a=72b=60A=135°9. (2分)已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A . 21B . 42C . 63D . 8410. (2分) (2017高三上·廊坊期末) 如图,双曲线的中心在坐标原点O,M、N分别为双曲线虚轴的上、下端点,A是双曲线的右顶点,F是双曲线的右焦点,直线AM与FN相交于点P,若∠APF是锐角,则此双曲线的离心率的取值范围是()A . (,+∞)B . (1+ ,+∞)C . (0,)D . (,+∞)二、填空题: (共5题;共5分)11. (1分) (2017高一下·西安期末) 已知平面区域D由以A(2,4)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成,若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=________.12. (1分)(2020·成都模拟) 成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有 8000 人参考,则估计成都市该次统考中成绩 X 大于 114 分的人数为________.13. (1分) (2019高一下·合肥期中) 每项为正整数的数列满足,且,数列的前6项和的最大值为,记的所有可能取值的和为,则 ________.14. (1分)(2014·安徽理) 设a≠0,n是大于1的自然数,(1+ )n的展开式为a0+a1x+a2x2+…+anxn .若点Ai(i,ai)(i=0,1,2)的位置如图所示,则a=________.15. (1分)(2020·武汉模拟) 若函数f(x)在(0,)上单调递减,则实数a的取值范围为________.三、解答题: (共6题;共55分)16. (10分)已知函数,x∈R.(1)求函数f(x)的最大值;(2)若,θ∈R,求的值.17. (5分)(2017·朝阳模拟) 已知数列{an}是首项,公比的等比数列.设(n∈N*).(Ⅰ)求证:数列{bn}为等差数列;(Ⅱ)设cn=an+b2n ,求数列{cn}的前n项和Tn .18. (10分)(2017·邵阳模拟) 用如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1 , E是AC的中点.(1)求证:A1E∥平面BB1C1C;(2)若AC=BC,AB=2BB1 ,求二面角A﹣BA1﹣E的余弦值.19. (15分)(2017·佛山模拟) 我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表:(1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.试估计政府执行此计划的年度预算.20. (10分)已知函数.(1)当时,解关于的不等式;(2)若对任意及时,恒有成立,求实数的取值范围.21. (5分)(2020·呼和浩特模拟) 已知椭圆的离心率为,分别为椭圆的左、右焦点,点P为椭圆上一点,面积的最大值为 .(Ⅰ)求椭圆C的方程;(Ⅱ)过点作关于轴对称的两条不同直线分别交椭圆于与,且,证明直线过定点,并求的面积S的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题: (共6题;共55分) 16-1、16-2、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、。

河南省周口市数学高考理数一模试卷

河南省周口市数学高考理数一模试卷

河南省周口市数学高考理数一模试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)下列函数中,在内为增函数的是()A . y=sinxB . y=C .D . y=lnx-x2. (2分) (2016高一下·湖北期中) 已知等比数列{an}的各项均为正数,公比q≠1,设,,则P与Q的大小关系是()A . P>QB . P<QC . P=QD . 无法确定3. (2分) ac2>bc2是a>b的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件4. (2分) (2017·齐河模拟) 已知x、y满足则4x﹣y的最小值为()A . 4B . 6C . 12D . 165. (2分)(2017·齐河模拟) 将函数的图象向右平移个单位,再把所有的点的横坐标缩短到原来的倍(纵坐标不变),得到函数y=g(x)的图象,则图象y=g(x)的一个对称中心为()A .B .C .D .6. (2分)(2017·齐河模拟) 已知向量满足,,,则与夹角是()A .B .C .D .7. (2分)(2017·齐河模拟) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的表面积是17π,则它的体积是()A . 8πB .C .D .8. (2分)(2017·齐河模拟) 若不等式|x﹣2|+|x﹣3|<3的解集是(a,b),则()A .B .C .D . 39. (2分)(2017·齐河模拟) 已知F1 , F2是双曲线C:,b>0)的左、右焦点,若直线y=2x与双曲线C交于P、Q两点,且四边形PF1QF2是矩形,则双曲线的离心率为()A .B .C .D .10. (2分) (2017·齐河模拟) 设函数f(x)的导函数为f'(x),且满足,f(1)=e,则x>0时,f(x)()A . 有极大值,无极小值B . 有极小值,无极大值C . 既有极大值又有极小值D . 既无极大值也无极小值二、填空题 (共5题;共5分)11. (1分)同时抛掷两枚骰子,既不出现5点也不出现6点的概率为,则5点或6点至少出现一个的概率是________.12. (1分)(2017·齐河模拟) 在的二项展开式中,二项式系数之和为128,则展开式中x项的系数为________.13. (1分)(2017·齐河模拟) 执行如图的程序框图,如果输入的n是4,则输出的p是________.14. (1分)(2017·齐河模拟) 圆C1:x2+y2+2ax+a2﹣9=0和圆C2:x2+y2﹣4by﹣1+4b2=0只有一条公切线,若a∈R,b∈R,且ab≠0,则的最小值为________.15. (1分)(2017·齐河模拟) 已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若满足g(x)=﹣1的x有四个,则t的取值范围是________.三、解答题 (共6题;共45分)16. (10分)(2020·许昌模拟) 在直角坐标系中,曲线的参数方程为 ( 为参数),其中 ,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)已知曲线与曲线交于两点,点 ,求的取值范围.17. (10分) (2020高三上·闵行期末) 如图,在一个圆锥内作一个内接圆柱(圆柱的下底面在圆锥的底面上,上底面的圆在圆锥的侧面上),圆锥的母线长为是底面的两条直径,且,圆柱与圆锥的公共点恰好为其所在母线的中点,点是底面的圆心.(1)求圆柱的侧面积;(2)求异面直线和所成的角的大小.18. (10分) (2019高一下·浙江期中) 已知,, .(1)若,求的值;(2)若,求的值和在方向上的投影.19. (5分)(2017·齐河模拟) 某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在[80,90)的人数为12人.(Ⅰ)求此班级人数;(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.(i)甲不排在第一位乙不排在最后一位的概率;(ii)记甲乙二人排在前三位的人数为X,求X的分布列和数学期望.20. (5分)(2017·齐河模拟) 在直角坐标系中,椭圆C1:的左、右焦点分别为F1 ,F2 ,其中F2也是抛物线C2:y2=4x的焦点,点P为C1与C2在第一象限的交点,且.(Ⅰ)求椭圆的方程;(Ⅱ)过F2且与坐标轴不垂直的直线交椭圆于M、N两点,若线段OF2上存在定点T(t,0)使得以TM、TN 为邻边的四边形是菱形,求t的取值范围.21. (5分)(2017·齐河模拟) 已知函数f(x)=ln(1+x)﹣ax,.(Ⅰ)当b=1时,求g(x)的最大值;(Ⅱ)若对∀x∈[0,+∞),f(x)≤0恒成立,求a的取值范围;(Ⅲ)证明.参考答案一、选择题. (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共45分) 16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、。

河南省周口市高考数学一模试卷(理科)

河南省周口市高考数学一模试卷(理科)

河南省周口市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·渝中模拟) 已知复数z满足(1+i)•z=2﹣i(其中i为虚数单位),则|z|=()A .B .C .D .2. (2分)有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()A . 大前提错误B . 小前提错误C . 推理形式错误D . 非以上错误3. (2分)(2017·惠东模拟) 在△ABC中,,,则的值为()A . 3B . ﹣3C .D .4. (2分)命题P1:若函数在上为减函数,则;命题p2:是f (x)=tanx为增函数的必要不充分条件;命题p3:“a为常数,,”的否定是“a 为变量,”. 以上三个命题中,真命题的个数是()A . 3B . 2C . 1D . 05. (2分)(2017·鞍山模拟) 已知(1+x)n的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为()A . 29B . 210C . 211D . 2126. (2分)已知正方体的外接球的体积是π,则这个正方体的体积是()A .B .C .D .7. (2分) (2016高二下·洛阳期末) 已知数列{an}为等差数列,a1=1,公差d≠0,a1、a2、a5成等比数列,则a2015的值为()A . 4029B . 4031C . 4033D . 40358. (2分)若函数的图象向右平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A .B .C .D .9. (2分)(2018·兰州模拟) 在平面直角坐标系中,抛物线的焦点为,准线为为抛物线上一点,为垂足,若直线的斜率,则线段的长为()A .B .C .D .10. (2分)在等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,且b1=6,b2=a3 ,则满足bna26<1的最小正整数n为()A . 4B . 5C . 6D . 711. (2分) (2016高二下·汕头期中) 设f(n)= + + +…+ (n∈N*),那么f(n+1)﹣f(n)等于()A .B .C . +D . ﹣12. (2分) (2018高二下·通许期末) 已知定义在R上的函数满足:对任意x∈R,都有成立,且当时, (其中为的导数).设,则a,b,c三者的大小关系是()A .B .C .D .二、填空题 (共4题;共5分)13. (1分)设函数 y=f(x) ,当自变量由 x0 变到时,函数的改变量________.14. (1分) (2017高二下·汪清期末) 若双曲线的离心率e=2,则m=________.15. (1分)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平面线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是________.16. (2分) (2018高二上·台州月考) 公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中,,动点满足,若点的轨迹为一条直线,则 ________;若,则点的轨迹方程为________;三、解答题 (共7题;共70分)17. (10分) (2019高二上·林芝期中) 设数列的前项和为,为等比数列,且,.(1)求数列和的通项公式;(2)设,求数列的前项和.18. (10分)(2017·襄阳模拟) 为了引导居民合理用水,某市决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:阶梯级别第一阶梯水量第二阶梯水量第三阶梯水量月用水量范围(单位:立方米)(0,10](10,15](15,+∞)从本市随机抽取了10户家庭,统计了同一个月的用水量,得到如图所示的茎叶图.(1)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数的分布列和均值;(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到n户月用水量为第二阶梯水量的可能性最大,求出n的值.19. (10分) (2016高二上·包头期中) 如图,在三棱锥P﹣ABC中,△ABC是等边三角形,D是AC的中点,PA=PC,二面角P﹣AC﹣B的大小为60°;(1)求证:平面PBD⊥平面PAC;(2)求AB与平面PAC所成角的正弦值.20. (10分) (2017高二上·中山月考) 已知椭圆C:()上一点到它的左右焦点,的距离的和是6.(1)求椭圆C的离心率的值;(2)若轴,且在轴上的射影为点,求点的坐标.21. (10分) (2017高二下·邯郸期末) 已知函数f(x)= x2﹣alnx(a∈R)(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;(2)讨论方程f(x)=0解的个数,并说明理由.22. (10分) (2016高二下·曲靖期末) 在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=﹣.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1上的点P对应的参数为t= ,Q为C2上的动点,求PQ中点M到直线C3:(α为参数)距离的最小值.23. (10分)(2016·连江模拟) 已知函数f(x)=|x+a|+|x﹣3|(a∈R).(1)当a=1时,求不等式f(x)≥x+8的解集;(2)若函数f(x)的最小值为5,求a的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

河南省周口市数学高考理数一模试卷

河南省周口市数学高考理数一模试卷

河南省周口市数学高考理数一模试卷姓名:________班级:________成绩:________一、 选择题 (共 8 题;共 16 分)1. ( 2 分 ) (2017 高 一 下 · 正 定 期 末 ) 已 知 集 合 (),集合A.B.C.D.2. (2 分) 如果等差数列 中,, 那么()A . 14B . 21C . 28D . 353. (2 分) (2017·甘肃模拟) 执行如图所示的程序框图,则输出的结果是( ),则A . 14第 1 页 共 14 页B . 15 C . 16 D . 17 4. (2 分) 如图,某建筑工地搭建的脚手架局部类似于 4×2×3 的长方体框架(由 24 个棱长为 1 个单位长度 的正方体框架组合而成),一建筑工人从 A 点沿脚手架到点 B,每步走 1 个单位长度,且不连续向上攀登,则其行走 的最近路线共有( )A . 150 条 B . 525 条 C . 840 条 D . 1260 条5. (2 分) 方程 A . 一条直线(t 为参数)表示的曲线是( ).B . 两条射线C . 一条线段D . 抛物线的一部分6. (2 分) (2017 高二下·成都开学考) 已知命题 p:向量 =(1,2)与向量 =(2,k)的夹角为锐角的充要条件是 k>﹣1;命题 q:函数 f(x)=是偶函数,下列是真命题的是( )第 2 页 共 14 页A . p∧q B . (¬p)∧q C . p∧(¬q) D . p∨(¬q) 7. (2 分) 某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 B . 12 C. D. 8. (2 分) F1 , F2 是双曲线的两个焦点,Q 是双曲线上任一点,从焦点 F1 引∠F1QF2 的平分线的垂线,垂 足为 P,则点 P 的轨迹为. A . 直线 B.圆 C . 椭圆 D . 双曲线第 3 页 共 14 页二、 填空题 (共 5 题;共 5 分)9. (1 分) 已知, 为虚数单位,若,则________.10. (1 分) (2016 高一下·南平期末) △ABC 的内角 A,B,C 所对的边分别为 a,b,c,a2+b2﹣c2=6 ﹣ 2ab,且 C=60°,则△ABC 的面积为________.11. (1 分) (2018·鞍山模拟) 已知双曲线 垂线段,两条垂线段的和为 ,则双曲线的离心率为________.,过其中一个焦点分别作两条渐近线的12. (1 分) (2016·城中模拟) 已知圆 C:(x﹣a)2+(y﹣b)2=1,设平面区域 Ω: C∈Ω,且圆 C 与 x 轴相切,则 a2+b2 的最大值为________.,若圆心13. (1 分) (2017 高一上·广州月考) 已知,求的解析式为________.三、 解答题 (共 6 题;共 55 分)14. (10 分) (2017 高三上·同心期中) 下图为某仓库一侧墙面的示意图,其下部是矩形 ABCD,上部是圆弧AB,该圆弧所在的圆心为 O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗 EFGH(其中 E,F在圆弧 AB 上,G,H 在弦 AB 上).过 O 作,交 AB 于 M,交 EF 于 N,交圆弧 AB 于 P,已知(单位:m),记通风窗 EFGH 的面积为 S(单位: )(1) 按下列要求建立函数关系式:(i)设,将 S 表示成 的函数;(ii)设,将 S 表示成 的函数;(2) 试问通风窗的高度 MN 为多少时,通风窗 EFGH 的面积 S 最大?第 4 页 共 14 页15. (5 分) 2014 年“五一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进 服务区的先后每间隔 50 辆就抽取一辆的抽样方法抽取 40 名驾驶员进行询问调查,将他们在某段高速公路的车速 (km/t)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分 布直方图.(Ⅰ)求这 40 辆小型车辆车速的众数及平均车速(可用中值代替各组数据平均值);(Ⅱ)若从车速在[60,70)的车辆中任抽取 2 辆,求车速在[65,70)的车辆至少有一辆的概率.16. (10 分) (2017·九江模拟) 已知正六边形 ABCDEF 的边长为 2,沿对角线 AE 将△FAE 的顶点 F 翻折到点P 处,使得.(1) 求证:平面 PAE⊥平面 ABCDE; (2) 求二面角 B﹣PC﹣D 的平面角的余弦值. 17. (5 分) (2019·呼和浩特模拟) 已知函数,.(Ⅰ)令①当时,求函数在点处的切线方程;第 5 页 共 14 页②若时,恒成立,求 的所有取值集合与 的关系;(Ⅱ)记,是否存在,使得对任意的实数,函数在上有且仅有两个零点?若存在,求出满足条件的最小正整数 ,若不存在,请说明理由.18. (10 分) (2018·石家庄模拟) 已知椭圆 :的左、右焦点分别为 , ,且离心率为 , 为椭圆上任意一点,当 (1) 求椭圆 的方程;时,的面积为 1.(2) 已知点 是椭圆 上异于椭圆顶点的一点,延长直线,设直线 的斜率为 ,直线 的斜率为 ,求证:为定值.分别与椭圆交于点 , ,19. (15 分) (2019 高一下·上海期末) 对于任意 为“ 数列”.,若数列 满足(1) 已知数列: , , 是“ 数列”,求实数 的取值范围;,则称这个数列(2) 已知等差数列 范围;的公差,前 项和为 ,数列是“ 数列”,求首项 的取值(3) 设数列 的前 项和为 ,,且,.设,是否存在实数 ,使得数列 为“ 数列”. 若存在,求实数 的取值范围;若不存在,请说明理由.第 6 页 共 14 页一、 选择题 (共 8 题;共 16 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、二、 填空题 (共 5 题;共 5 分)9-1、 10-1、 11-1、 12-1、 13-1、三、 解答题 (共 6 题;共 55 分)参考答案第 7 页 共 14 页14-1、第 8 页 共 14 页14-2、15-1、第 9 页 共 14 页16-1、16-2、第 10 页 共 14 页17-1、18-1、18-2、19-1、19-2、19-3、。

河南省扶沟县高三数学第二次模拟考试试题 理

河南省扶沟县高三数学第二次模拟考试试题 理

河南省扶沟县2017届高三数学第二次模拟考试试题 理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.) 1.设命题p :x ∀>0,2log x <2x +3,则q ⌝为A .x ∀>0,2log x ≥2x +3B .x ∃>0,2log x ≥2x +3C .x ∃>0,2log x <2x +3D .x ∀<0,2log x ≥2x +32.已知复数m =4-xi ,n =3+2i ,若复数nm∈R ,则实数x 的值为 A .一6 B .6 C .83 D .一833.已知双曲线23x a -+22y a-=1,焦点在y 轴上.若焦距为4,则a 等于A .32 B .5 C .7 D .124.已知cos (23π-2θ)=-79,则sin (6π+θ)的值等于A .13B .±13C .-19D .195.设集合A ={(x 1,x 2,x 3,x 4)|x i ∈{-1, 0,1},i =1.2,3,4},那么集合A 中满足条件“21x +22x +23x +24x ≤3”的元素个数为A .60B .65C .80D .816.如图是某个几何体的三视图,则这个几何体体积是 A .2+2πB .2+3πC .4+3πD .4+2π7.设实数x ,y 满足60,40,2100,x y x y x y ⎧⎪⎨⎪⎩+-≥+2-1≤+-≤则2xy 的最大值为A .25B .49C .12D .24 8.已知等比数列{n a },且a 6+a 8=⎰,则a 8(a 4+2a 6+a 8)的值为A .2πB .42πC .82πD .162π9.若a 、b 、c ∈R +,且ab +ac +bc +=6-2a ,则2a +b +c 的最小值为A -lB 1C . 2D . 210.椭圆22154x y +=的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是A .BC D11.四面体A —BCD 中,AB =CD =10,AC =BD =AD =BC =,则四面体 A —BCD 外接球的表面积为A .50πB .100πC .200πD .300π12.设函数f (x )满足22x f (x )+3()x f x =xe ,f (2)=28e .则x ∈[2,+∞)时,f (x )的最小值为A .22eB .232eC .24eD .28e第Ⅱ卷 非选择题(共90分)本卷包括必考题和选考题两部分.第13—21题为必考题,每个试题考生都必须作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河南省周口市扶沟二中高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集U=N*,集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2}B.{4,6}C.{1,3,5}D.{2,4,6}2.(5分)已知i是虚数单位,复数z满足(i﹣1)z=i,则z的虚部是()A.B.C.D.3.(5分)若,则cos(π﹣2α)=()A.B.C.D.4.(5分)在区间上任选两个数x和y,则y<sinx的概率为()A.B.C.D.5.(5分)将函数图象上的点向右平移m(m>0)个单位长度得到点P',若P'位于函数y=cos2x的图象上,则()A.,m的最小值为B.,m的最小值为C.,m的最小值为D.,m的最小值为6.(5分)如图所示的程序框图中,如输入m=4,t=3,则输出y=()A.61 B.62 C.183 D.1847.(5分)在的展开式中,所有项的二项式系数之和为4096,则其常数项为()A.﹣110 B.﹣220 C.220 D.1108.(5分)已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,若|MF|=p,K是抛物线C的准线与x轴的交点,则∠MKF=()A.45°B.30°C.15°D.60°9.(5分)函数f(x)=|x|+(其中a∈R)的图象不可能是()A.B.C.D.10.(5分)已知P为矩形ABCD所在平面内一点,AB=4,AD=3,,,则=()A.﹣5 B.﹣5或0 C.0 D.511.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.1 D.212.(5分)已知函数f(x)=(2x2﹣x﹣1)e x,则方程e[f(x)]2+tf(x)﹣9=0(t∈R)的根的个数为()A.2 B.3 C.4 D.5二、填空题:本大题共4小题,每小题5分.13.(5分)双曲线(a>0,b>0)的一条渐进线与直线x﹣y+3=0平行,则此双曲线的离心率为.14.(5分)若实数x,y满足则的取值范围是.15.(5分)《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圆周率π=3),则该圆柱形容器能放米斛.16.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1,,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12分)某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中m的值并估计居民月均用电量的中位数;(Ⅱ)从样本里月均用电量不低于700度的用户中随机抽取4户,用X表示月均用电量不低于800度的用户数,求随机变量X的分布列及数学期望.19.(12分)在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.20.(12分)已知圆O:x2+y2=1过椭圆C:(a>b>0)的短轴端点,P,Q分别是圆O与椭圆C上任意两点,且线段PQ长度的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(0,t)作圆O的一条切线交椭圆C于M,N两点,求△OMN的面积的最大值.21.(12分)已知函数f(x)=2x+ax2+bcosx在点处的切线方程为.(Ⅰ)求a,b的值,并讨论f(x)在上的增减性;(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求证:.(参考公式:)[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sinθ.(Ⅰ)判断直线l与圆C的交点个数;(Ⅱ)若圆C与直线l交于A,B两点,求线段AB的长度.[选修4-5:不等式选讲]23.已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).(Ⅰ)若m=1,求不等式f(x)≥0的解集;(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.2017年河南省周口市扶沟二中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集U=N*,集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2}B.{4,6}C.{1,3,5}D.{2,4,6}【解答】解:由韦恩图可知阴影部分表示的集合为(C U A)∩B,∴(C U A)∩B={4,6}.故选:B.2.(5分)已知i是虚数单位,复数z满足(i﹣1)z=i,则z的虚部是()A.B.C.D.【解答】解:∵(i﹣1)z=i,∴,∴z的虚部是﹣.故选:D.3.(5分)若,则cos(π﹣2α)=()A.B.C.D.【解答】解:由,可得:sinα=.∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.故选:D.4.(5分)在区间上任选两个数x和y,则y<sinx的概率为()A.B.C.D.【解答】解:在区间上任选两个数x和y,区域的面积为,满足y<sinx的区域的面积为=(﹣cosx)=1,∴所求概率为.故选:C.5.(5分)将函数图象上的点向右平移m(m>0)个单位长度得到点P',若P'位于函数y=cos2x的图象上,则()A.,m的最小值为B.,m的最小值为C.,m的最小值为D.,m的最小值为【解答】解:将函数图象上的点向右平移m(m>0)个单位长度得到点P',若点P'位于函数y=cos2x的图象上,∴t=cos(2•+)=cos=﹣,且t=cos2(+m)=﹣sin2m,∴sin2m=,∴2m的最小值为,m的最小值为,故选:D.6.(5分)如图所示的程序框图中,如输入m=4,t=3,则输出y=()A.61 B.62 C.183 D.184【解答】解:m=4,t=3,y=1,第一次循环,i=3≥0,y=6;第二次循环,i=2≥0,y=20;第三次循环,i=1≥0,y=61;第四次循环,i=0≥0,y=183,第五次循环,i=﹣1<0,输出y=183,故选:C.7.(5分)在的展开式中,所有项的二项式系数之和为4096,则其常数项为()A.﹣110 B.﹣220 C.220 D.110【解答】解:在的展开式中,所有项的二项式系数之和为2n=4096,则n=12;所以的展开式中,=••=(﹣1)r••,通项公式为T r+1令4﹣r=0,解得r=3,所以其常数项为(﹣1)3•=﹣220.故选:B.8.(5分)已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,若|MF|=p,K是抛物线C的准线与x轴的交点,则∠MKF=()A.45°B.30°C.15°D.60°【解答】解:由题意,|MF|=p,则设点M(,p),∵K(﹣,0),∴k KM=1,∴∠MKF=45°,故选:A.9.(5分)函数f(x)=|x|+(其中a∈R)的图象不可能是()A.B.C.D.【解答】解:当a=0时,函数f(x)=|x|+=|x|,函数的图象可以是B.当a=1时,函数f(x)=|x|+=|x|+,函数的图象可以类似A;当a=﹣1时,函数f(x)=|x|+=|x|﹣,x>0时,|x|﹣=0只有一个实数根x=1,函数的图象可以是D;所以函数的图象不可能是C.故选:C.10.(5分)已知P为矩形ABCD所在平面内一点,AB=4,AD=3,,,则=()A.﹣5 B.﹣5或0 C.0 D.5【解答】解:P为矩形ABCD所在平面内一点,AB=4,AD=3,∴AC=5,∵,,∴PA2+PC2=AC2,∴PA⊥,∴⊥,∴=0,故选:C.11.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.1 D.2【解答】解:根据三视图知几何体是:三棱锥P﹣ABC如图所示:,A、C分别是长方体的底面棱长的中点,所以几何体的体积V==故选:B.12.(5分)已知函数f(x)=(2x2﹣x﹣1)e x,则方程e[f(x)]2+tf(x)﹣9=0(t∈R)的根的个数为()A.2 B.3 C.4 D.5【解答】解:∵函数f(x)=(2x2﹣x﹣1)e x,∴f′(x)=(2x﹣1)(x+2)e x,且f(﹣2)=,f()=﹣,f(x)的大致图象如图,令t=f(x),设方程e[f(x)]2+tf(x)﹣9=0的两根为m1,m2,则m1m2=﹣=f(﹣2)f(),若m1=,m2=﹣,有三根;若0<m1<有三根,此时m2<﹣无根,也有三根,当m1>有1根,此时﹣<m2<0有两根,也有三根,故选:B.二、填空题:本大题共4小题,每小题5分.13.(5分)双曲线(a>0,b>0)的一条渐进线与直线x﹣y+3=0平行,则此双曲线的离心率为.【解答】解:根据题意,双曲线的方程为:,其焦点在x轴上,则其渐近线方程为y=±x,又由其一条渐进线与直线x﹣y+3=0平行,则有=1,c==a,则该双曲线的离心率e==;故答案为:.14.(5分)若实数x,y满足则的取值范围是[,4] .【解答】解:由约束条件作出可行域,B(0,2),联立,解得A(1,2),=,其几何意义为可行域内的动点与定点P(,0)连线的斜率.∵,.∴的取值范围是[,4].故答案为:[,4].15.(5分)《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圆周率π=3),则该圆柱形容器能放米2700斛.【解答】解:设圆柱的底面半径为r,则2πr=54,r=9,故米堆的体积为π×92×18=4374立方尺,∵1斛米的体积约为1.62立方尺,∴4374÷1.62≈2700斛,故答案为2700.16.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1,,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为.【解答】解:∵△ABC的外接圆半径R为1,,∴由正弦定理,可得:sinA=,∵边BC上一点D满足BD=2DC,且∠BAD=90°,∴A=120°,∠CAD=30°,BD=a=,CD=a=,∴如图,由正弦定理可得:,可得:b=sin∠2=sin∠1==c,∴△BAC是等腰三角形,底角是30°,∴sinB=,可得:c=1,∴S==.△ABC故答案为:.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【解答】解:(Ⅰ)当n=1时,a1=2S1+1=2a1+1,解得a1=﹣1.当n≥2时,a n=2S n+1,a n﹣1=2S n﹣1+1,两式相减得a n﹣a n﹣1=2a n,化简得a n=﹣a n,﹣1所以数列{a n}是首项为﹣1,公比为﹣1的等比数列,可得.(Ⅱ)由(Ⅰ)得,+b n=2,;当n为偶数时,b n﹣1当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=(n+1)﹣(2n+1)=﹣n.所以数列{b n}的前n项和.18.(12分)某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中m的值并估计居民月均用电量的中位数;(Ⅱ)从样本里月均用电量不低于700度的用户中随机抽取4户,用X表示月均用电量不低于800度的用户数,求随机变量X的分布列及数学期望.【解答】解:(Ⅰ)1﹣100×(0.0004+0.0008+0.0021+0.0025+0.0006+0.0004+0.0002)=2m×100,∴m=0.0015.设中位数是x度,前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以400<x<500,,故x=408,即居民月均用电量的中位数为408度.(Ⅱ)200户居民月均用电量在[700,800)度的户数是8,月均用电量在[800,900]度的户数是4.故随机变量X的取值为0,1,2,3,4,且,,,,,所以随机变量X的分布列为:故.19.(12分)在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【解答】证明:(I)取AB的中点D,连结CD,DF,DE.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴A1E=,EF==,DE==,DF==,∴EF2+DE2=DF2,∴DE⊥EF,又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,∴EF⊥平面CDE,又CD⊂平面CDE,∴CD⊥EF,又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴sin<>==.∴直线AC1与平面CEF所成角的正弦值为.20.(12分)已知圆O:x2+y2=1过椭圆C:(a>b>0)的短轴端点,P,Q分别是圆O与椭圆C上任意两点,且线段PQ长度的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(0,t)作圆O的一条切线交椭圆C于M,N两点,求△OMN的面积的最大值.【解答】解:(Ⅰ)∵圆O过椭圆C的短轴端点,∴b=1,又∵线段PQ长度的最大值为3,∴a+1=3,即a=2,∴椭圆C的标准方程为.(Ⅱ)由题意可设切线MN的方程为y=kx+t,即kx﹣y+t=0,则,得k2=t2﹣1.①联立得方程组,消去y整理得(k2+4)x2+2ktx+t2﹣4=0.其中△=(2kt)2﹣4(k2+4)(t2﹣4)=﹣16t2+16k2+64=48>0,设M(x1,y1),N(x2,y2),则,,则.②将①代入②得,∴,而,等号成立当且仅当,即.)max=1.综上可知:(S△OMN21.(12分)已知函数f(x)=2x+ax2+bcosx在点处的切线方程为.(Ⅰ)求a,b的值,并讨论f(x)在上的增减性;(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求证:.(参考公式:)【解答】(Ⅰ)解:由题意知f'(x)=2+2ax﹣bsinx,∴解得故,.当时,f'(x)为减函数,且,∴f'(x)>0,f(x)为增函数.(Ⅱ)证明:由f(x1)=f(x2),得,所以,两边同除以x1﹣x2,得,所以,令,得,得.因为,所以,因为,又,易知,所以,又x0∈(0,π),所以sinx0>0,故f'(x0)<0,得.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sinθ.(Ⅰ)判断直线l与圆C的交点个数;(Ⅱ)若圆C与直线l交于A,B两点,求线段AB的长度.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数).∴消去参数t得直线l的普通方程为,∵圆C的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,∴由ρ2=x2+y2,ρsinθ=y,得圆C的直角坐标方程为x2+y2﹣2y=0.∵圆心(0,1)在直线l上,∴直线l与圆C的交点个数为2.(Ⅱ)由(Ⅰ)知圆心(0,1)在直线l上,∴AB为圆C的直径,∵圆C的直角坐标方程为x2+y2﹣2y=0.∴圆C的半径r==1,∴圆C的直径为2,∴|AB|=2.[选修4-5:不等式选讲]23.已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).(Ⅰ)若m=1,求不等式f(x)≥0的解集;(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵m=1时,f(x)=|x+2|﹣|x﹣2|+1.∴当x≤﹣2时,f(x)=﹣3,不可能非负;当﹣2<x<2时,f(x)=2x+1,由f(x)≥0可解得,于是;当x≥2时,f(x)=5>0恒成立.所以不等式f(x)≥0的解集为.(Ⅱ)由方程f(x)=x可变形为m=x+|x﹣2|﹣|x+2|.令作出图象如图所示.于是由题意可得﹣2<m<2.。

相关文档
最新文档