大学物理振动波动例题习题
大学物理--振动波动试题
振动、波动部分1.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) .[ ]2.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为(A) m k 32π1. (B) m k2π1. (C) m k 32π1. (D) m k62π1. [ ]3.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T/2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ] 4.一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) /6. (B) 5 /6. (C) -5 /6. (D) - /6.(E) -2 /3.[ ]5.一弹簧振子作简谐振动,总能量为E1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E2变为(A) E1/4. (B) E1/2.(C) 2E1. (D) 4 E1 . [ ]6.一质点作简谐振动,其振动方程为)cos(φω+=t A x .在求质点的振动动能时,得出下面5个表达式:(1))(sin 21222φωω+t A m . (2) )(cos 21222φωω+t A m .(3))sin(212φω+t kA . (4) )(cos 2122φω+t kA .(5))(sin 22222φω+πt m A Tmvv21其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期.这些表达式中 (A) (1),(4)是对的. (B) (2),(4)是对的. (C) (1),(5)是对的. (D) (3),(5)是对的. (E) (2),(5)是对的 .[ ]7.机械波的表达式为y = 0.03cos6 (t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]8.一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) ]2)(cos[π+'-=t t b u a y . (B) ]2)(2cos[π-'-π=t t b u a y . (C)]2)(cos[π+'+π=t t b u a y . (D)]2)(cos[ππ-'-=t t b u a y . [ ]9.如图所示,两列波长为 的相干波在P 点相遇.波在S1点振动的初相是 1,S1到P 点的距离是r1;波在S2点的初相是 2,S2到P 点的距离是r2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk rr =-12. (B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ. (D ) π=-π+-k r r2/)(22112λφφ. [ ]10.两相干波源S1和S2相距 /4,( 为波长),S1的相位比S2的相位超前π21,在S1,S2的连线上,S1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) π21. (C) . (D) π23. [ ]11.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A/2处,且向负方向运动,则初相为______.SS 1S 2Pλ/412.一物体作简谐振动,其振动方程为)2135cos(04.0π-π=t x (SI) .(1) 此简谐振动的周期T =__________________;当t = 0.6 s 时,物体的速度v =__________________.13.一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 0.25 Hz .t = 0时x = -0.37 cm 而速度等于零,则振幅是_____________________,振动的数值表达式为______________________________.14.一简谐振动的旋转矢量图如图所示,振幅矢量长2 cm ,则该简谐振动的初相为____________.振动方程为______________________________.15.一单摆的悬线长l = 1.5 m ,在顶端固定点的竖直下方0.45 m 处有一小钉,如图示.设摆动很小,则单摆的左右 两方振幅之比A1/A2的近似值为_______________.16.图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x __________(SI)17.已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x1 = 10.0 m 和x2 = 16.0 m 的两质点振动相位差为__________.18.一平面简谐波沿x 轴负方向传播.已知 x = -1 m 处质点的振动方程为)c o s (φω+=t A y ,若波速为u ,则此波的表达式为__________.19.在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,则这两列波的振幅之比是A1 / A2 = ____________________.20.两相干波源S1和S2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S1距P 点3个波长,S2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.t0.45 m-21.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m-1. (1) 求振动的周期T 和角频率 .(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v0及初相 . (3) 写出振动的数值表达式.22.一物体作简谐振动,其速度最大值vm = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ; (2) 加速度的最大值am ;(3) 振动方程的数值式.23. 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相; (2) 振动的速度、加速度的数值表达式; (3) 振动的能量E ;(4) 平均动能和平均势能.24.一简谐振动的振动曲线如图所示.求振动方程.25.在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.-26.一质点同时参与两个同方向的简谐振动,其振动方程分别为x1 =5×10-2cos(4t + /3) (SI) , x2 =3×10-2sin(4t - /6)(SI)画出两振动的旋转矢量图,并求合振动的振动方程.27.一简谐波沿x轴负方向传播,波速为1 m/s,在x轴上某质点的振动频率为1 Hz、振幅为0.01 m.t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x轴的原点.求此一维简谐波的表达式.28.已知一平面简谐波的表达式为)37.0125cos(25.0xty-=(SI)(1) 分别求x1 = 10 m,x2 = 25 m两点处质点的振动方程;(2) 求x1,x2两点间的振动相位差;(3) 求x1点在t = 4 s时的振动位移.29.一平面简谐波沿x轴正向传播,其振幅和角频率分别为A和 ,波速为u,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O点分别为 / 8和3 / 8 两处质点的振动方程.(3) 求距O点分别为 / 8和3 / 8 两处质点在t = 0时的振动速度.x uOy30.如图所示,S1,S2为两平面简谐波相干波源.S2的相位比S1的相位超前 /4 ,波长 = 8.00 m,r1 = 12.0 m,r2 = 14.0 m,S1在P点引起的振动振幅为0.30 m,S2在P点引起的振动振幅为0.20 m,求P点的合振幅.31.设入射波的表达式为)(2cos1TtxAy+π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式;(2) 合成的驻波的表达式;(3) 波腹和波节的位置.P SS2。
物理中的波动与振动测试题
物理中的波动与振动测试题在物理学的世界里,波动与振动是两个极其重要的概念。
它们不仅存在于我们日常生活的方方面面,也是许多科学领域和技术应用的基础。
为了更好地理解和掌握这两个概念,让我们一起来看看下面的测试题。
一、选择题1、关于机械振动和机械波,下列说法正确的是()A 有机械振动必有机械波B 波的频率等于介质中各质点的振动频率C 波的传播速度与质点的振动速度相同D 在一个周期内,沿着波的传播方向,振动在介质中传播一个波长的距离2、一列沿 x 轴正方向传播的简谐横波,t = 0 时刻的波形如图所示。
此时质点 P 恰在波峰,质点 Q 恰在平衡位置且向上振动。
再过 02s,质点 Q 第一次到达波峰,则()A 波的周期为 12sB 波的传播速度为 20m/sC 10s 末质点 P 的位移为 0D 0 到 01s 时间内质点 P 通过的路程小于质点 Q 通过的路程3、一简谐横波沿水平绳向右传播,波速为 v,周期为 T,振幅为 A。
绳上两质点 M、N 的平衡位置相距 3/4 波长,N 位于 M 右方。
t = 0 时,M 位于平衡位置上方且向上运动,经过时间 t(t < T),M 位移仍为正值,但向下运动;N 位于平衡位置上方且向下运动。
则()A t 时刻,M 的位移为 AB t 时刻,N 的位移为 AC t 时刻,M 、N 的位移相同D t 时刻,M 、N 的速度相同4、如图所示,实线是沿 x 轴传播的一列简谐横波在 t = 0 时刻的波形图,虚线是这列波在 t = 02s 时刻的波形图。
已知该波的波速 v =08m/s,则下列说法正确的是()A 这列波的波长是 12cmB 这列波的周期是 015sC 这列波一定沿 x 轴负方向传播D 从 t = 0 时刻开始,x = 5cm 处的质点经 01s 振动到波峰二、填空题1、一个质点做简谐运动,其位移随时间变化的关系式为 x =5sin(2πt +π/4)cm,则该质点振动的振幅为______cm,周期为______s,初相为______。
大学物理A-振动波动练习题
8*、一平面简谐波,其振辐为A,频率为,沿X轴正向传播.设
t=t0时刻波形如所示.则X=0处质点振动方程为:
(A) y =Acos[2 (t +t0) + /2]; (B) y =Acos[2 (t -t0) + /2]; (C) y =Acos[2 (t -t0) - /2]; (D) y =Acos[2 (t -t0) + ]。
答案:[(C)]
4、图a为某质点振动图线,其初相记为1,图b为某列行波在
t=0时的波形曲线,0点处质点振动的初相记为2;图C为另一
行波在t=T/4时刻的波形曲线,0点处质点振动的初相为3,
则:
(A) 1 =2 =3 = / 2;
Y
(B) 1 =3 /2,2 =3 = / 2 ;
(C) 1 =2 =3 = 3 /2 ; (D) 1 =3 /2,2 = /2 ,3 =0 。
8m
6m
X
C
B
A
答案.:y =510 -2 cos( 4 t+0.2 x);
y =510 -2 cos( 4 t+0.2 x -1.2 ); y =510 -2 cos( 4 t-2.8 )。
11*、一平面简谐波在空中传播。己知波线上P点的振动规律为: y =Acos (t + );根据图中所示两种情况,分别列出以O点为 原点时的波动方程。对于图a是: 对于图b是:
3
Байду номын сангаас
(D)0 =- /2,2 = /2 ,3 = 。 0 1 2 4
u X(m)
答案:[(C)]
7*、一质点沿Y方向振动,振辐为A,周期为T,平衡位置在坐标原 点,己知t=0时刻质点向y轴负方向运动,由该点发出的波波长为, 则沿X轴正向传播的简谐波波动方程为:
大学物理 振动与波、波动光学练习题
06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
振动波动部分例题及作业
0 2
2 A 4 或 3 3
4 A 3 2 2
O
A
x
[例2]如图的谐振动x-t 曲线,试求其振 x/m 动表达式 2 解:由图知
[例7]两列相干平面简谐波沿x轴传播。 波源S1和S2相距d=30m,S1为坐标原点, 已知x1=9m和x2=12m处的两点是相邻的 两个因干涉而静止的点。求两波的波长 和两波源的最小位相差
S1
解:设S1、S2的初相位为1 、2 因x1和x2处为相邻干涉静止点,有0x1 Nhomakorabeax2
S2
x
x x2 2 (d x1 ) 2x1 [ 2 ] [1 ] (2k 1) 2 (d 2 x1 ) 2 1 (2k 1) 2 (d 2 x2 ) 同理 2 1 (2k 3)
2 T 4s T 2
x0 A
由旋转矢量法得
0.24 0.24 x 0 x 0.24 cos t m 2 (2) t=0.5s: 1 x 0.24 cos 0.17 m 2 2 2 2 F ma m x 0.01 ( ) 0.17 2 3 4.19 10 N
v0
即
x 0, v 0
2
2
O
x
[ 例 3] 质量为 0.01kg 物体作周期为 4s 、振 幅为0.24m的简谐振动。t=0时,位移 x=0.24m。求(1)谐振动表达式;(2)t=0.5s 时 , 物体的位置和所受的力; (3) 物体从 初始位置运动至 x =-0.12m 处所需的最短 时间 解:(1)设振动表达式为 x A cos( t ) 其中 A 0.24 m
振动波动例题
解:
t =0
x =0 y =0
y0= 0.03 cos(2 ×2.5 t π ) π 2
v0
π j= 2
π 2 x π y = 0.03 cos 2 ×2.5 t 2 π 0.24 π 50 x π 0.03 cos 5 t π =
2 6 0.03 cos 5 (t 10 x ) π π = 2 6
例1. 有一个和轻弹簧相联的小球,沿x 轴作振幅为A的简谐振动,其表达式用余弦 函数表示。若t =0 时,球的运动状态为: (1)x0=-A; (2)过平衡位置向x 正方向运动; (3)过x=A/2处向 x 负方向运动; A (4)过 处向 x 正方向运动; 2 试用矢量图示法确定相应的初相的值,并写 出振动表式。
由波形图得:t =1/3 s时
y/cm
10
x0
v< 0 y0 =-0.05
o
-5
20
x/cm
1 0.05 0.1cos( j ) 3
1 2 j 3 3
j
3
波动方程为:
πx + π y =10cos π t 20 3
O点(x =0)的振动方程为:
cm (1)
π π 解: A =0.24m ω = 2 = 2 = π =1.57s-1 T 2 4 x 0 = A =0.24m φ =0 t =0 v0 = 0
振动方程为: x = 0.24 cosπ t 2 (1) t =0.5s cos (π × 0.5 ) x = 0.24 2 = 0.24 cos 0.25π
= 0.24 ×
2 =0.17m 2
(2)
大学物理振动波动例题习题
振动波动一、例题(一)振动1。
证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3。
已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。
07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4。
沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。
25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。
大连理工大学大学物理振动与波动习题
振动与波动11. 一物体作简谐振动,振动方程为)4/cos(πω+=t A x ,在4/T t =(T 为周期)时,物体的加速度为[ ]。
A . 2/32A ω- B. 2/32A ω C. 2/22A ω- D.2/22A ω 2. 一简谐振动的曲线如图所示,则该振动的周期为[ ]。
A .10s B.11sC. 12sD.13s3. 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的2倍,重物的质量增加为原来的4倍,则它的总能量变为___________。
4. 将质量kg m 2.0=的物体挂在119-⋅=m N k 的轻弹簧下端构成一弹簧振子,假定在弹簧的固有长度处将物体由静止释放,让其作简谐振动,则振动频率为_____,振幅为______。
5. 一质点作简谐运动,振动方程为cm t x )7.0100cos(6ππ+=,某一时刻它在cm x 23=处,且向x 轴的负方向运动,它重新回到该位置所需最短的时间为________s 。
6. 两个简谐振动的曲线如图所示,两个振动的频率之比=21:νν________;加速度的最大值之比=M M a a 21:_______;初始速度之比=2010:v v ________。
7. 如图所示,在平板上放一质量为kg 1的物体,平板沿铅直方向作简谐振动,振幅为cm 2,周期为s 5.0,(1)平板位于最高点时,物体对平板的压力是多大?(2)平板应以多大的振幅振动时,才能使重物跳离平板?8. 弹簧下悬一质量为g 10的小球时,其伸长量为cm 9.4,将小球从平衡位置向下拉cm 1后,再给它向上的初速度15-⋅s cm ,求:小球的振动周期和任意时刻的振移和速度。
9. 如图所示,劲度系数为k的轻弹簧下挂一质量为M的盘子,一质量为m的物体从离盘子h高度处自由下落到盘中并与盘子一起振动,试求:(1)该系统的振动周期。
(2)该系统的振动振幅。
(3)取平衡位置为原点,位移向下为正,并以开始振动时作为计时起点,求振动方程。
《大学物理》波动练习题
《大学物理》波动练习题一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u xω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波形曲线与振动曲线有什么不同行? 试说明之. 答:波形曲线代表某一时间波的形状,它是质点的位移关于其空间位置的函数;振动曲线代表某一个质点的振动过程,它是质点的位移关于时间的函数。
5、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
6. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
7. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有π的相位差。
振动波动部分大练习
振动波动部分大练习一、填空题1. 一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.2. 三个简谐振动方程分别为 ⎪⎭⎫ ⎝⎛+=πω21cos 1t A x 、⎪⎭⎫ ⎝⎛+=πω67cos 2t A x 和⎪⎭⎫ ⎝⎛+=πω611cos 3t A x ,画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.3. 一倔强系数k =196牛顿/米的轻弹簧,下挂一质量为m = 1 kg 的物体,并作谐振动,则此物体从2A +位置运动到2A -位置(A 为振幅)的最短时间为_________________.4. 一声波在空气中的波长是0.25 m ,传播速度是340 m /s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.5. 如图所示为一平面简谐波在t = 2 s 时刻的波形图,该简谐波的表达式是________________________________________;P 处质点的振动方程是____________________________. (该波的振幅A 、波速u 与波长λ 为已知量)6. 在简谐波的一条射线上,相距0.2 m 两点的振动相位差为 π/6.又知振动周期为0.4 s ,则波长为_________________,波速为________________. 7. 一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律如图所示,则其初位相为__________.8. 两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为___________.9. 一简谐振动曲线如图所示,其振动周期T 为_______________,振动表达式为__________________.10. 一弹簧振子作简谐振动,振幅为A ,周期T = 4 s 。
大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)
第四篇 光学第一章 振动一、选择题1. 一质点作简谐振动, 其运动速度与时间的关系曲线如下图。
假设质点的振动规律用余弦函数描述,那么其初相应为:[ ] (A)6π (B) 65π (C) 65π- (D) 6π- (E) 32π-2. 如下图,一质量为m 的滑块,两边分别与劲度系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。
滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。
现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。
取坐标如下图,那么其振动方程为:[ ] ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos(A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D) ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (E)3. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。
假设t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,那么质点第二次通过x = -2cm 处的时刻为:[ ](A) 1s ; (B)s 32; (C) s 34; (D) 2s 。
4. 一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。
与其对应的振动曲线是: [ ]5. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的:[ ](A)167; (B) 169; (C) 1611; (D) 1613; (E) 1615。
(A)-(B)(C)(D)-06. 图中所画的是两个简谐振动的振动曲线,假设 这两个简谐振动可叠加,那么合成的余弦振动 的初相为: [ ] π21(A) π(B) π23(C) 0(D)二、填空题1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,0=t 时的初位移为0.04m, s -1,那么振幅A = ,初相位 =2. 两个弹簧振子的的周期都是0.4s, 设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,那么这两振动的相位差为 。
大学物理下波的振动部分的习题及答案
第九章 振动一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。
2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。
3、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。
答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dt xd 222ω−=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 4、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。
5、 一质量未知的物体挂在一劲度系数未知的弹簧上,只要测得此物体所引起的弹簧的静平衡伸长量,就可以知道此弹性系统的振动周期,为什么? 答案:因为kmT π2=,若知伸长量为l ,则有kl mg =,于是glT π2=。
6、 弹簧振子作简谐运动时,如果振幅增为原来的两倍而频率减小为原来的一半,问它的总能量怎样改变? 答:根据2222121A m kA E ω==,如果是保持质量不变通过减小劲度系数减小频率,则总能量不变;如果是保持劲度系数不变通过增大质量减小频率,则总能量将变为原来的4倍。
二、选择题1、一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A−,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( B )2、已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( D ):(A) ⎪⎭⎫ ⎝⎛−=ππ3232cos 2x t (B) ⎪⎭⎫ ⎝⎛+=ππ3232cos 2x t(C) ⎪⎭⎫ ⎝⎛−=ππ3234cos 2x t (D) ⎪⎭⎫ ⎝⎛+=ππ3234cos 2x t3、 两个同周期简谐运动曲线如图所示,1x 的相位比2x 的相位( B ):(A) 落后2π(B) 超前2π(C) 落后π (D) 超前π4、当质点以频率f作简谐运动时,它的动能的变化频率为( C ):(A)2f (B)f (C) f 2 (D) f 45、 一个沿x 轴做简谐振动的弹簧振子,己知其振幅为A ,周期为T ,如果在0t =时质点处于2A 处并且向x 轴正向运动,则振动方程为( D ): (A)⎪⎭⎫ ⎝⎛+=3T 2Acos x ππt (B) ⎪⎭⎫ ⎝⎛+=32T2Acos x ππt (C)⎪⎭⎫ ⎝⎛−=32T 2Acos x ππt (D) ⎪⎭⎫ ⎝⎛−=3T 2Acos x ππt 6、两个质点各自作简谐振动,他们的振幅相同、周期相同,第一个质点的振动方程为()αω+=t Acos x 1。
振动与波动测试题
(A)干涉现象是两列波叠加产生的现象; (B)两列相干波在 P 点相遇,若在某一时刻观察到 P 点的振动位移为零,则 P
点一定不是干涉加强点;
(C)两列相干涉在 P 点相遇,若某时刻观察到 P 点的振动位移既不等于两个分振
动的振幅之和,也不等于两个分振幅之差,则 P 点一定不是干涉加强点,也不是干涉 减弱点。
x ) λ d−x (C) y = A cos 2π (νt + ) λ
(A) y = A cos 2π (νt +
二、填空题
x ) λ 2d − x (D) y = A cos 2π (νt − ) λ
(B) y = A cos 2π (νt −
计2
1 、两列波在一根很长的弦线上传播,其方程为 y1 = 6.0 × 10 − 2 cos π
3、图 a 表示 t =0 时的余弦波的波形图,波沿 x 轴正向传播;图 b 为余弦振动曲线。 则图 a 中所表示的 x =0 处振动的初位相与图 b 所表示的振动的初位相 ( ) (A)均为零; (B)均为π/2 (C)均为-π/2
选2
(D)依次分别为π/2 与-π/2 (E)依次分别为-π/2 与π/2 4、在简谐波传播过程中,沿波传播方向相距 λ /2( λ 为波长)的两点的振动速度必 定 ( ) (A)大小相同,方向相反; (B)大小和方向均相同; (C)大小不同,方向相同; (D)大小不同而方向相反 5、平面简谐波在弹性媒质中传播时,在传播方向上媒质元若在负的最大位移处,则 其 ( ) (A)动能为零,势能最大; (B)动能为零,势能为零; (C)动能最大,势能最大; (D)动能最大,势能为零。 6、一弹簧振子作简谐振动,总能量为 E ,如果简谐振动振幅增加为原来的两倍, 重物的质量增加为原来的四倍,则它的总能量 E 变为: ( ) (A) E1 / 4 ; (B) E1 / 2 ; (C) 2 E1 ; (D) 4 E1 二、填空题 1、已知三个谐振动曲线如图所示,则振动方程 x 1= , x 2= , x 3= 。 2、已知质点的振动曲线如图,则其初位相为 ,其角频率为 。 3、一简谐振动用余弦函数表示,其曲线如图所示,则此简谐振动的三个特征量为 A= , ω= , ϕ= 。
大学物理振动与波练习题与答案
第二章 振动与波习题答案12、一放置在水平桌面上的弹簧振子,振幅2100.2-⨯=A 米,周期50.0=T 秒,当0=t 时 (1) 物体在正方向的端点;(2) 物体在负方向的端点;(3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。
求以上各种情况的谐振动方程。
【解】:π=π=ω45.02 )m ()t 4cos(02.0x ϕ+π=, )s /m ()2t 4cos(08.0v π+ϕ+ππ=(1) 01)cos(=ϕ=ϕ,, )m ()t 4cos(02.0x π=(2) π=ϕ-=ϕ,1)cos(, )m ()t 4cos(02.0x π+π=(3) 21)2cos(π=ϕ-=π+ϕ, , )m ()2t 4cos(02.0x π+π= (4) 21)2cos(π-=ϕ=π+ϕ, , )m ()2t 4cos(02.0x π-π=13、已知一个谐振动的振幅02.0=A 米,园频率πω4=弧度/秒,初相2/π=ϕ。
(1) 写出谐振动方程;(2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】:)m ()2t 4cos(02.0x π+π= , )(212T 秒=ωπ=15、图中两条曲线表示两个谐振动(1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。
【解】:振幅相同,频率和初相不同。
虚线: )2t 21cos(03.0x 1π-π= 米实线: t cos 03.0x 2π= 米16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为t 3cos 4x 1= 厘米)32t 3cos(2x 2π+= 厘米试用旋转矢量法求出合振动方程。
【解】:)cm ()6t 3cos(32x π+=17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。
(1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。
大学物理振动与波题库及答案
一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .A/ -A(C) 0.5 m . (D) 0.25 m . [ ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [ ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 21,21,0.05. (D) 2,2,0.05. [ ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ ]25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定x y O u(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y . (B) }]/)([cos{00φω+--=u x x t A y . (C) }]/)[(cos{00φω+--=u x x t A y . (D) }]/)[(cos{00φω+-+=u x x t A y . [ ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ ]28、一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ. (D) π=-π+-k r r 2/)(22112λφφ.[ ]31、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为 (A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . x y t =t 0u O其中的k = 0,1,2,3, …. [ ]32、有两列沿相反方向传播的相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ ]34、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2cos 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(cos 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ. (B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ ]39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ ] 二、填空题:(每题4分)41、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.42、三个简谐振动方程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.43、一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为x = ________________________(SI).44、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_____________________________.45、一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动 周期为______________________.46、在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.47、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.48、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所示,则两个简谐振动 的频率之比ν1∶ν2=__________________,加速度最 大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.50、有简谐振动方程为x = 1×10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同一个坐标上画出上述三个振动曲线.51、一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________.53、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零 的状态时,应对应于曲线上的________点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力 为-kA 的状态时,应对应于曲线上的____________点.x (cm)t (s)O- x (cm)54、一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________; φ =_______________.55、已知两个简谐振动曲线如图所示.x 1的相位比x 2 的相位超前_______.56、两个简谐振动方程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω 在同一坐标上画出两者的x —t 曲线.xtO57、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.58、已知三个简谐振动曲线如图所示,则振动方程分别为:x 1 =______________________,x 2 = _____________________,x 3 =_______________________.59、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表 x (cm)t (s)O 12示的振动方程为x =__________________________(SI).60、一质点作简谐振动的角频率为ω 、振幅为A .当t = 0时质点位于A x 21=处,且向x 正方向运动.试画出此振动的旋转矢量图.61、两个同方向的简谐振动曲线如图所示.合振动的振幅 为_______________________________,合振动的振动方程 为________________________________. 62、一平面简谐波.波速为6.0 m/s ,振动周期为0.1 s ,则波长为___________.在波的传播方向上,有两质点(其间距离小于波长)的振动相位差为5π /6,则此两质点相距___________.63、一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B _____________ ;C ______________ . 64、一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量, 此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.66、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时, 波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示. 可知波长λ = ____________; 振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.·---y (m)71、已知一平面简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播方向为x 轴正方向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).72、一横波的表达式是)4.0100(2sin 02.0π-π=t y (SI), 则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、一简谐波的频率为 5×104 Hz ,波速为 1.5×103 m/s .在传播路径上相距5×10-3 m 的两点之间的振动相位差为_______________.75、一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.76、已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.77、在简谐波的一条射线上,相距0.2 m 两点的振动相位差为π /6.又知振动周期为0.4 s ,则波长为_________________,波速为________________.78、一声纳装置向海水中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率ν = _________________ ,波长λ = __________________, 海水中声速u = __________________.79、已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.80、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.81、在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.82、两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y . S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.83、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.84、两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.85、一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.86、一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.87、在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.88、频率为ν = 5×107 Hz 的电磁波在真空中波长为_______________m ,在折射率为n = 1.5 的媒质中波长为______________m .89、在电磁波传播的空间(或各向同性介质)中,任一点的E 和H 的方向及波传播方向之间的关系是:_________________________________________________________________________________________________________.90、在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式为)/(2cos 600c x t E y -π=ν (SI),则磁场强度波的表达式是______________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)91、在真空中沿着x 轴负方向传播的平面电磁波,其电场强度的波的表达式为)/(2cos 800c x t E y +π=ν (SI),则磁场强度波的表达式是________________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)92、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )93、在真空中沿着负z 方向传播的平面电磁波的磁场强度为)/(2cos 50.1λνz t H x +π= (SI),则它的电场强度为E y = ____________________. (真空介电常量ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )94真空中一简谐平面电磁波的电场强度振幅为 E m = 1.20×10-2 V/m 该电磁波的强度为_________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )95、在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为___________________________. (真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )96、在地球上测得来自太阳的辐射的强度=S 1.4 kW/m 2.太阳到地球的距离约为1.50×1011 m .由此估算,太阳每秒钟辐射的总能量为__________________.97、在真空中沿着z 轴负方向传播的平面电磁波,O 点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为_____________________________________.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.98、电磁波在真空中的传播速度是_________________(m/s)(写三位有效数字).99、电磁波在媒质中传播速度的大小是由媒质的____________________决定的.100、电磁波的E 矢量与H 矢量的方向互相____________,相位__________.三、计算题:(每题10分)101、一质点按如下规律沿x 轴作简谐振动:)328cos(1.0π+π=t x (SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值.102、一质量为0.20 kg 的质点作简谐振动,其振动方程为)215cos(6.0π-=t x (SI).求:(1) 质点的初速度;(2) 质点在正向最大位移一半处所受的力.z yxO103、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为 4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.104、有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相.105、质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.106、一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.107、一质量为10 g 的物体作简谐振动,其振幅为2 cm ,频率为4 Hz ,t = 0时位移为 -2 cm ,初速度为零.求(1) 振动表达式;(2) t = (1/4) s 时物体所受的作用力.108、两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.109、一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.110、在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长∆l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求(1) 小球的振动周期; (2) 振动能量.111、一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?112、一横波沿绳子传播,其波的表达式为)2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.113、一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.114、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.115、一简谐波沿x 轴负方向传播,波速为1 m/s ,在x 轴上某质点的振动频率为1 Hz 、振幅为0.01 m .t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x 轴的原点.求此一维简谐波的表达式.116、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.117、一横波方程为 )(2cos x ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.118、如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程; (2) 该质点的速度表达式与加速度表达式.119、一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流;(2) 波的平均能流密度;(3) 波的平均能量密度.120、一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .O P大学物理------振动与波参考答案一、选择题1 - 5 CBDBB 6 -10 BCBBD 11-15 EBBBC 16-20 ACDCB 21-25 DBCCA 26-30 ABACD 31-35 DCCDB 36-40 CCCBC二、填空题41.(1) π; (2)2/π-; (3)3/π; 42. 略; 43. 21510cos[6]2t ππ-⨯+; 44. (1)2cos[]2A t T ππ-, (2) 2cos[]3A t T πλ+;45. 2 46. 1:2; 47. m 05.0,π205.0- or 09.36-; 48. 25210cos[]22x t π-=⨯- ; 49. 1:2,1:4,1:2; 51. 0,s m /3; 52. 1:1; 53. e a f b ,,,;54. cm 10,s rad /6/π,3/π;55. 3/4π; 56. 略 ;57.(1),...2,1,0,2/)12(=+n n ,(2),...2,1,0,=n n ,(3),...2,1,0,2/)14(=+n n ,; 58. t πcos 1.0,)2/cos(1.0ππ-t ,)cos(1.0ππ±t ; 59. ]24cos[04.0ππ-t ; 60. 略; 61. 21A A -, ]22cos[12ππ+-=t T A A x ; 62. m 6.0,m 25.0; 63. 向下,向上;64. cm 30,30; 65. c /2π,c B /,cd ; 66. s m /503;67. π;68. m 8.0,m 2.0,Hz 125;69. m 233.0;70. u x x /)(12-ω;71. ]24cos[1.0x t ππ-;72. cm 2,cm 5.2,Hz 100,51~2500;73. b a /; 74. 3/π; 75. 0;76. aE ; 77. m 4.2, s m /0.6;78. Hz 4100.5⨯,m 21086.2-⨯,s m /1043.13⨯; 79. m 2107.1~17-⨯; 80. )23cos(2.02x t πππ+-; 81. 4; 82. 0; 83. 0; 84. A 2; 85. m 2,Hz 45; 86. s m /100; 87. 2/λ; 88. m 6, m 4; 89. H E S ⨯= ; 90. )](2cos[59.1c x t H z -=πν; 91. )](2cos[12.2cx t H z +-=πν; 92. ])(cos[754πω+--=c z t E y ; 93. )](2cos[565λνπz t +; 94. 271091.1--⨯wm ;95. ]62cos[39.2ππν+=t H y ; 96. J 26100.4⨯;97. ]32cos[796.0ππν+-=t H y ;98. 81000.3⨯; 99. με,; 100. 垂直,相同,相同三、计算题101、解:周期 25.0/2=π=ωT s ,振幅 A = 0.1 m ,初相 φ = 2π/3,v max = ω A = 0.8π m/s ( = 2.5 m/s ),a max = ω 2A = 6.4π2 m/s 2 ( =63 m/s 2 ).102、解:(1) )25sin(0.3d d π--==t t x v (SI) t 0 = 0 , v 0 = 3.0 m/s .(2) x m ma F 2ω-==A x 21= 时, F = -1.5 N . 103、解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m取下m 1上m 2后, 2.11/2==m k ω rad/sω/2π=T =0.56 st = 0时, φcos m 10220A x =⨯-=-φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI)或 x = 2.05×10-2cos(11.2t +3.36) (SI)104、解:(1) 13.3/==l g ω rad/s ,5.0)2/(=π=ων Hz(2) t = 0 时,x 0 = -6 cm= A cos φ, v 0 = 20 cm/s= -A ω sin φ由上二式解得 A = 8.8 cm ,φ = 180°+46.8°= 226.8°= 3.96 rad ,(或-2.33 rad )105、解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 (2) )318sin(1042π+π⨯π-==-t x v (SI))318cos(103222π+π⨯π-==-t x a (SI)(3) 2222121A m kA E E E P K ω==+==7.90×10-5 J(4) 平均动能 ⎰=TK t m T E 02d 21)/1(v⎰π+π⨯π-=-T t t m T 0222d )318(sin )104(21)/1(= 3.95×10-5 J = E 21同理 E E P 21== 3.95×10-5 J106、解: (1) 1s 10/-==m k ω, 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A得 3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI)107、解:(1) t = 0时,x 0 = -2 cm = -A , 故初相 φ = π ,ω = 2 πν = 8 π s -1)8cos(1022π+π⨯=-t x (SI)(2) t = (1/4) s 时,物体所受的作用力 126.02=-=x m F ω N 108、解:依题意画出旋转矢量图。
振动与波动常见题型
o
2 y 0 . 04 cos t 2 5
②.波函数
y 0 . 04 m a o
b
u
P
t
x 2 y 0 . 04 cos t 5 0 . 08 2
0 .2 m
③. P 点的振动方程
x P 0 .4 m
例5:已知波函数 y 2 10 求:A、、、u。
解:由 y A cos 2
3
3
cos( 400 t 20 x ) m
x t u m
x y 2 10 cos 400 t 20 3 A 2 10 m u 20 m/s
x 10
)
m
求: (1)波传播方向;
(2)波的频率,周期,波长,波速;
(3)介质元振动的最大速度,最大加速度;
(4)波线上相距1米远的两点的位相差。
解: ①:x 前“+”表示该波沿x 轴负方向传播。 ②:
4
u 1 0 m /s
2
2H z
T
1
0 .5 s
u T 5m
x
设运动方程为:
x A cos( t )( SI )
A F S 0 .5 J 1 2 kA
2
x
o
k m
2 ( rad / s )
A 0 . 204 ( m )
依题意,有:x 0 A , v 0 0
x 0 . 204 cos( 2 t )( SI )
T /u
0 . 04 m
振动波动练习题
3 x 一、填空题E = ,此时系统的动能 E = ,1.1 一 质 点 做 简 谐 振 动 的 振 动 方 程 为Pk⎛π ⎫ 当弹簧振子处于 x = 处时,系统的动能和 x = 0.5 c os π t + ⎪ (SI ),则该质点振动的振幅⎝⎭ A = m ,周期 T = s , 初相势能相等。
1.8 两同方向同频率简谐振动的合成,已知振动方ϕ0 = ,t = 1s 时的相位ϕ = ,t = 0⎧x = 3cos(2πt + π )cm时刻该质点的位置坐标 x = m ,速度方向⎪ 1 程分别为⎨ 3,则合振动的 7π沿 x 轴 (选填“正向”或“负向”)。
⎪ = 4 cos(2πt + ⎩ 2 )cm 31.2 一个沿 x 轴做简谐振动的弹簧振子,其振动方程用余弦函数表示,t = 0 时质点过平衡位置向负向 振动,则该振动的初相ϕ0 = 。
(初相在(-π ,π ] 内取值)振幅为cm ,合振动的初相 ϕ0 =(初相在(-π ,π ] 内取值)。
1.9 两同方向同频率简谐振动的合成,已知振动方⎧x = 3cos(π t - π )cm 1.3 一个沿 x 轴做简谐振动的弹簧振子,振幅为 A ,⎪ 1 程分别为⎨ 6 ,则合振动的振 5π A⎪x = 4 c os(π t + )cm 其振动方程用余弦函数表示,t = 0 时质点过 x =2向正向振动,则该振动的初相ϕ0 = 。
(初相在(-π ,π ] 内取值)1.4 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取做t = 0 ,则该振动 初相ϕ = (初相在(-π ,π ] 内取值)⎩⎪ 2 6幅 A = cm ,合振动的初相ϕ0 = (初相在(-π ,π ] 内取值)。
1.10已 知 一 简 谐 波 波 函 数 为y = 0.2 c os π(10t - x ) (SI ),则该简谐波的振幅21.5 一水平弹簧振子做简谐振动,已知振动周期T = 3s ,则质点从平衡位置振动到振幅一半位置处所需的最短时间为 s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动波动
一、例题
(一)振动
1.证明单摆是简谐振动,给出振动周期及圆频率。
2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;
(2) t = 0.5s 时,质点的位置、速度和加速度;
(3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3. 已知两同方向,同频率的简谐振动的方程分别为:
x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+
求:(1)合振动的初相及振幅.
(2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?
(二)波动
1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。
在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,
求:(1)波动方程
(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。
已知
原点的振动曲线如图所示。
求:(1)原点的振动表达式;
(2)波动表达式;
(3)同一时刻相距m 1的两点之间的位相差。
3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。
S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4.沿X 轴传播的平面简谐波方程为:
310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为
固定端,求反射波的方程。
二、习题课
(一)振动
1. 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。
若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,
O 2.25m A
x t O A/2
-A x 1 x 2 则质点第二次通过x = -2 cm 处的时刻为[ ]
(A) 1 s (B) (2/3) s (C) (4/3) s (D) 2 s
2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为
(A) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B) ⎪⎭⎫ ⎝⎛-=33
2cos 2ππt x ;
(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D) ⎪⎭⎫ ⎝⎛-=33
4cos 2ππt x 。
3.一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率[ ]
(A) 2ω (B) ω2 (C) 2/ω (D) ω /2
4.当质点以频率ν 作简谐振动时,它的动能的变化频率为[ ]
(A) 4 ν (B) 2 ν (C) ν (D) 1/2 ν 5.图中所画的是两个简谐振动的振动曲线。
若这两个简谐振动可叠加,则合成的余弦振动的初相为[ ] (A) π23 (B) π21 (C) π (D) 0 6.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动的初相为__________。
振动方程为______________________________。
7.两个弹簧振子的周期都是0.4 s ,设开始时第一个振子
从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________。
8.一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的______________。
(设平衡位置处势能为零)。
当这物块在平衡位置时,弹簧的长度比原长长l ,这一振动系统的周期为_________。
9.一简谐振动的振动曲线如图所示, 求振动方程
10. 一物体同时参与两个同方向上的简谐振动: 110.04cos(2)(SI)2
x t ππ=+ 20.03cos(2)(SI)x t ππ=+
求此物体的振动方程。
(二)波动
1. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则[ ]
(A) 波的频率为a (B) 波的传播速度为 b/a
2 1 -2 o 1 x (m) t (s)
ω ω πt x O t =0 t = t π/4 o )(cm x )(s t 4 2 1
x
O u l P y (C) 波长为 π / b (D) 波的周期为2π / a
2.如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为
cos(t )y A ωϕ=+则波的表达式为[ ]
(A) }]/)([cos{0φω+--=u l x t A y
(B) })]/([cos{0φω+-=u x t A y
(C) )/(cos u x t A y -=ω (D) }]/)([cos{0φω+-+=u l x t A y
3.一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中:[ ]
(A) 它的势能转换成动能 (B) 它的动能转换成势能 (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加
(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小
4.两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前/2π,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起两谐振动的相位差是:[ ]
(A) 0 (B) /2π (C) π (D) 3/2π
5.在波长为λ 的驻波中,两个相邻波腹之间的距离为[ ]
(A) λ /4 (B) λ /2 (C) 3λ/4 (D) λ
6. 在简谐波的一条传播路径上,相距m 2.0的两点的振动位相差为6π,又知振动周期为s 4.0,则波长为 ;波速为 。
7.图示一平面简谐波在t = 2 s 时刻的波形图,波的振幅为0.2 m ,周期为4 s ,则图中P 点处质点的振动方程为________。
8. 一平面简谐波沿x 轴负方向传播。
已知x = -1 m 处质点的振动方程为:)cos(
φω+=t A y ,若波速为u ,则此波的表达式为_______
9.如图所示为一平面简谐波在0=t 时刻的波形图,设
此简谐波频率为250Hz ,且此时质点P 的运动方向向下,
求:
(1) 该波的波动方程;
(2) 在距原点o 为m 100处质点的振动方程与振动速
度表达式。
10.一平面简谐波以速度-120m s u =⋅ 沿直线传播,波线上点 A 的简谐运动方程为2310cos(4π)A y t -=⨯ 求:
(1)以 A 为坐标原点,写出波动方程; (2)以 B 为坐标原点,写出波动方程;
(3)求出 BC ,CD 两点间的相位差. 11.1S 和2S 是波长均为λ的两个相干波的波源,相距43λ,1S 的位相比2S 的位相超前
2
π,若两波单独传播时,在过1S 和2S 的直线上各点的强度相同,不随距离变化,且两波的强度都是0I ,求在1S 和2S 的连线上1S 外侧和2S 外侧各点的合成波的强度。
S S 2 P λ/4 x (m)
传播方向 O A P y (m) y x o 100m A
-2/2A P u 5 9 x o 8。