常微分方程基本知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个不亲自检查桥梁每一个部分的坚固性就不过桥的旅行者,是不可能走远的;甚至在数学中,有些事情亦须冒险。
-----Horace Lamb
------题记
概述:
数学家谋求用微积分解决越来越多的问题,他们很快发现不得不对付一类新的问题,他们做的比他们有意识去探求的还多。比较简单的问题引导到可以用初等函数计算的积分,而某些比较困难的问题则引起不能如此表达的积分,如椭圆积分就是实例。这两类问题属于微积分范围,然而没解决更为复杂的问题,就需要专门的技术,这样,微分方程这门学科就应时兴起了。如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
下面就对常微分方程加以介绍
常微分方程基本的概念
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
一个常微分方程(ODE)是未知函数的微分方程(亦称因变量)是一个唯一独立变量的作用。以简单形式,未知函数是一个真正或复杂明度函数,但更加一般,它也许传染媒介被重视或矩阵被重视:这对应于考虑常微分方程系统为一个唯一作用。常微分方程根据因变量的最高的衍生物的命令进一步被分类关于出现于等式的独立变量。最重要的论点为应用是优先处理和第二级次的微分方程。在古典文学也被区分在微分方程之间明确地解决关于最高的衍生物和微分方程以含蓄形式。
常微分方程的内容
定义1 凡含有未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程.微分方程中出现的未知函数最高阶
导数的阶数,称为微分方程的阶.定义式如下:F(x, y, y¢, ...., y(n)) = 0
定义2 任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解).当通解中的各任意常数都取特定值时所得到的解,称为方程的特解.
一般地说,n 阶微分方程的解含有 n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的解数相同,这种解叫做微分方程的通解。通解构成一个函数族。
如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。
常微分方程的特点
常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。
求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。
后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。
一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。
大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。
常微分方程的应用
现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。
常微分方程的发展
20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。
从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解。常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。在很长一段时间里,人们致力于“求通解”。但是以下三种原因使得这种“求通解”的努力,逐渐被放弃。
第一,能求得通解的方程显然是很少的。在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,为数是很小的。高阶方程中,线性方程仍可以用叠加原理求解,即□阶齐次方程的通解是它的□个独立特解的线性组合,其系数是任意常数。非齐次方程的通解等于相应齐次方程的通解加上非齐次方程的特解,这个特解并且可以用常数变易法通过求积分求得。求齐次方程的特解,当系数是常数时可归结为求一代数方程的根,这个代数方程的次数则是原方程的阶数;当系数是变数时,则只有二种极特殊的情况(欧拉方程、拉普拉斯方程)可以求得。至于非线性高阶方程则除了少数几种可降阶情形(如方程(1)就是这几种情形都有的一个方程)之外,可以求得通解的为数就更小了。□阶方程也可以化为一阶方程组(未知函数的个数和方程的个数都等于□)早已为人们所知,并且在此后起着一定作用,但对于通解的寻求仍无济于事。
在偏微分方程方面,一阶方程可以归结为一阶常微分方程组,但是如上所述,一阶常微分方程组可以求得通解的还是很少的。高阶方程中几乎只有少数二阶方程(如□,以及□,当用瀑布法时在一系列不变量中有一个开始为零的情形,和少数极个别的非线性方程如□□-□□□=□0等等)可以求得通解。在线性情形,推广常数变易法则是杜阿美原理。