高考理科数学导数题型归纳(1)

合集下载

高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件

高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件
--
题型二 讨论函数的单调性例2(2019湖北八校联考一,21)已知函数f(x)=x3+ x2-4ax+1(a∈R).(1)略;(2)若函数h(x)=a(a-1)ln x-x3+3x+f(x),讨论函数h(x)的单调性.
--
--
解题心得在判断函数f(x)的单调性时,若f'(x)中含有参数不容易判断其正负时,需要对参数进行分类讨论,分类的标准:(1)按导函数是否有零点分大类;(2)在大类中按导函数零点的大小分小类;(3)在小类中按零点是否在定义域中分类.
当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.
--
--
题型二 求函数的极值、最值例2(2019四川成都七中一模,21)已知函数f(x)=xsin x+2cos x+ax+2,其中a为常数.(1)略;(2)求函数f(x)在[0,π]上的最小值.
--
解: (2)对∀x∈[0,π],f'(x)=xcos x-sin x+a,令g(x)=xcos x-sin x+a,g'(x)=-xsin x≤0,所以f'(x)在区间[0,π]上单调递减.当a≤0时,f'(x)≤f'(0)=a≤0,∴f(x)在区间[0,π]上单调递减,故fmin(x)=f(π)=aπ.当a≥π时,f'(x)≥f'(π)=a-π≥0,∴f(x)在区间[0,π]上单调递增,故fmin(x)=f(0)=4.当0<a<π时,因为f'(0)=a>0,f'(π)=a-π<0,且f'(x)在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x0∈(0,π),使得f'(x0)=0,且f(x)在[0,x0]上单调递增,在[x0,π]上单调递减.故f(x)的最小值等于f(0)=4和f(π)=aπ中较小的一个值.

导数常考题型归纳总结

导数常考题型归纳总结

导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。

在高中数学中,导数是一个常考的内容。

为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。

一、常数函数求导常数函数的导数始终为零。

这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。

二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。

设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。

例如,对于y=x^2,求导后得到dy/dx=2x。

对于y=x^3,求导后得到dy/dx=3x^2。

这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。

三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。

即dy/dx = e^x。

这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。

四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。

根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。

这个公式对于解决对数函数的导数问题非常有用。

五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。

我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。

这些公式可以根据求导的定义进行推导,同学们需要牢记。

六、复合函数求导复合函数指的是由多个函数复合而成的函数。

对于复合函数的导数求解,我们可以利用链式法则。

链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。

通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。

导数常见题型归纳

导数常见题型归纳

导数常见题型归纳1.高考命题回顾例1.(2013全国1)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

分析:⑴2d c b 4,a ==== ⑵由⑴知()24x f 2++=x x ,()()12+=x ex g x设()()()()24122---+=-=x x x ke x f x kg x F x,则()()()122-+='xke x x F 由已知()100≥⇒≥k F ,令()k x x x F ln ,20-==⇒='①若21e k <≤则021≤<-x ,从而当()1,2x x -∈时,()0<'x F ,()x F 递减()+∞∈,1x x 时,()>'x F 0,()x F 递增。

()()()02x 111≥+-=≥x x x F F故当2-≥x 时()0≥x F 即()()x kg x f ≤恒成立。

②若2e k = 则()()()02222>-+='-ee x e x F x 。

()2->x 。

所以()x F 在()+∞-,2上单调递增,而()02=-F .所以-2x ≥时,()0≥x F 恒成立。

③若2e k >,则()()02222222<--=+-=---e k e ke F ,从而()0≥x F 不可能恒成立即()()x kg x f ≤不恒成立。

综上所述。

k 的取值范围[]2,1e例2.(2013全国2)已知函数)ln()(m x e x f x+-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >. 分析:(Ⅰ)1m =。

导数的基本题型归纳

导数的基本题型归纳

导数基础题型题型一 导数与切线利用两个等量关系解题:①切点处的导数=切线斜率,即()k x f o =';②切点()o o y x ,代入曲线方程或者代入切线方程.切点坐标或切点横坐标是关键例1:曲线y =错误!在点-1,-1处的切线方程为A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2 例2:已知函数的图象在点1,f 1处的切线方程是x -2y +1=0,则f 1+2f ′1的值是B .1 D .2例3 求曲线132+=x y 过点1,1的切线方程练习题:1.已知函数y =ax 2+1的图象与直线y =x 相切,则a =D .12.曲线y =x 3+11在点P 1,12处的切线与y 轴交点的纵坐标是A .-9B .-3C .9D .153.设曲线y =错误!在点3,2处的切线与直线ax +y +1=0垂直,则a 等于A .2B .-2C .-错误!4.设曲线y =ax 2在点1,a 处的切线与直线2x -y -6=0平行,则a =________.5.已知直线l 1为曲线y =x 2+x -2在点1,0处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.求直线l 2的方程;题型二 用导数求函数的单调区间①求定义域;②求导;③令0)(='x f 求出x 的值;④划分区间注意:定义域参与区间的划分;⑤判断导数在各个区间的正负.例1:求函数c x x x y +-+=33123的单调区间.例2 求函数x a x a x x f )1(ln 21)(2+-+=的单调区间其中a >0例3:已知函数ax x y +=2在),1[+∞上为增函数,求a 的取值范围.练习题:1.求函数x x x f ln 2)(2-=的单调增区间.2.已知331)(23-++=x ax x x f 在]3,1[上单调递减,求a 的取值范围.题型三 求函数极值和最值①求定义域;②求导;③令0)(='x f 求出x 的值;④列表注意:定义域参与区间的划分;⑤确定极值点.;5,求出极值,区间端点的函数值,比较后得出最值例:求函数x x y ln 2-=的极值.例:求函数y =x +2cos x 在区间错误!上的最大值.例:已知函数fx =2x 3-6x 2+mm 为常数在-2,2上有最大值3,那么此函数在-2,2上的最小值为A .-37B .-29C .-5D .-11例:若函数b bx x x f 36)(3+-=在)1,0(内有极小值,则实数b 的取值范围是A .)1,0(B .)1,(-∞C .),0(∞+D .)21,0(练习题:1.设函数x xx f ln 2)(+=则 =21为fx 的极大值点 =21为fx 的极小值点 =2为fx 的极大值点 =2为fx 的极小值点2. 已知函数xbx a x x f +-=ln )(在1=x 处取得极值,则a 与b 满足 .,题型四、函数与导数图象的关系▲函数看增减,导数看正负例:若函数c=2)(的图象的顶点在第四象限,则函数f′x的图象是+bxxxf+练习题:1.下图是函数y=fx的导函数y=f′x的图象,则下面判断正确的是A.在区间-2,1内fx是增函数B.在1,3内fx是减函数C.在4,5内fx是增函数D.在x=2时fx取到极小值2. f′x是fx的导函数,f′x的图象如右图所示,则fx的图象只可能是A B C D。

高中数学导数知识点归纳的总结及例题(word文档物超所值)

高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(

函数)(x f 有1个极大值点,1个极小值点
y。

导数知识点总结及例题

导数知识点总结及例题

导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。

这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。

对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。

利用导数的定义,我们可以计算得到函数在某一点处的变化率。

1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。

例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。

这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。

1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。

也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。

二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。

例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。

2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。

我们把这个过程称为求导,求出的导数称为导函数。

导函数的值就是原函数在对应点处的导数值。

2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。

这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。

三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。

高考理科数学《导数的综合应用》题型归纳与训练

高考理科数学《导数的综合应用》题型归纳与训练

理科数学《导数的综合应用》题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数3()12f x ax x =-,导函数为()f x ', (1)求函数()f x 的单调区间;(2)若(1)6,()f f x '=-求函数在[—1,3]上的最大值和最小值。

【答案】略【解析】(I )22()3123(4)f x ax ax '=-=-,(下面要解不等式23(4)0ax ->,到了分类讨论的时机,分类标准是零)当0,()0,()(,)a f x f x '≤<-∞+∞时在单调递减; 当0,,(),()a x f x f x '>时当变化时的变化如下表:此时,()(,)f x -∞+∞在单调递增, 在(单调递减; (II )由(1)3126, 2.f a a '=-=-=得由(I )知,()(f x -在单调递减,在单调递增。

【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个,(1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不重复一遗漏。

还要注意一点的是,最后注意将结果进行合理的整合。

题型二 已知单调性求参数取值范围问题 例1 已知函数321()53f x x x ax =++-, 若函数在),1[+∞上是单调增函数,求a 的取值范围【答案】【解析】2'()2f x x x a =++,依题意在),1[+∞上恒有0y '≥成立, 方法1:函数2'()2f x x x a =++,对称轴为1x =-,故在),1[+∞上'()f x 单调递增,故只需0)1('≥f 即可,得3-≥a ,所以a 的取值范围是[3,)+∞;方法2: 由022≥++='a x x y ,得x x a 2--2≥,只需2max --2a x x ≥(),易得2max --23x x =-(),因此3-≥a ,,所以a 的取值范围是[3,)+∞; 【易错点】本题容易忽视0)1('≥f 中的等号 【思维点拨】已知函数()f x 在区间(,)a b 可导:1. ()f x 在区间(,)a b 内单调递增的充要条件是如果在区间(,)a b 内,导函数()0f x '≥,并且()f x '在(,)a b 的任何子区间内都不恒等于零;2. ()f x 在区间(,)a b 内单调递减的充要条件是如果在区间(,)a b 内,导函数()0f x '≤,并且()f x '在(,)a b 的任何子区间内都不恒等于零;说明:1.已知函数()f x 在区间(,)a b 可导,则()0f x '≥在区间内(,)a b 成立是()f x 在(,)a b 内单调递增的必要不充分条件2.若()f x 为增函数,则一定可以推出()0f x '≥;更加具体的说,若()f x 为增函数,则或者()0f x '>,或者除了x 在一些离散的值处导数为零外,其余的值处都()0f x '>;3. ()0f x '≥时,不能简单的认为()f x 为增函数,因为()0f x '≥的含义是()0f x '>或()0f x '=,当函数在某个区间恒有()0f x '=时,也满足()0f x '≥,但()f x 在这个区间为常函数. 题型三 方程与零点1.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A. (),2-∞-B. ()2,2-C. ()2,+∞D. ()()2,00,2-⋃ 【答案】D【解析】很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==,由题意得不等式: ()()122281210f x f x a a =-+< ,即: 2241,4,22a a a><-<< , 综上可得a 的取值范围是 ()()2,00,2-⋃.本题选择D 选项.【易错点】找不到切入点,“有三个零点”与函数的单调性、极值有什么关系?挖掘不出这个关系就无从下手。

高考数学导数压轴大题7大题型梳理归纳

高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

(完整word版)高考数学导数压轴题7大题型总结

(完整word版)高考数学导数压轴题7大题型总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数。

【高考理数】利用导数解决函数零点问题(解析版)

【高考理数】利用导数解决函数零点问题(解析版)

2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

导数研究函数单调性5种题型总结- 高考数学常考题型(新高考专用)

导数研究函数单调性5种题型总结- 高考数学常考题型(新高考专用)

第5讲 导数研究函数单调性5种题型总结【考点总结】含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系);(5)导数图像定区间;【题型目录】题型一:导函数为一次函数型题型二:导函数为准一次函数型题型三:导函数为二次可分解因式型题型四:导函数为二次不可因式分解型题型五:导函数为准二次函数型【典型例题】题型一:导函数为一次函数型【例1】(2023河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论函数()f x 的单调性; 【答案】(1)当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;【分析】(1)对函数求导,讨论0a 和0a >两种情况,即可得出函数的单调性;【详解】(1)由题知函数()f x 的定义域为()0,∞+,()22a a x f x x x-'=-= ①当0a ≤时,()0f x '<,此时函数()f x 在()0,∞+上单调递;②当0a >时,令()0f x '>,得02a x <<;令()0f x '<,得2a x >,所以函数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;【例2】(2022·辽宁营口·高二期末)已知函数()ln 1f x a x x =+-(其中a 为参数).(1)求函数()f x 的单调区间; 【答案】(1)答案见解析【分析】(1)求出原函数的导函数,然后对a 分类求得函数的单调区间;【详解】(1)()x a f x x+'=,,()0x ∈+∞, 当0a ≥时,()0f x '>,()f x ∴在(0,)+∞单调递增,当0a <时,令()0f x '=,得x a =-,(0,)x a ∈-时,()0f x '<,()f x 单调递减,(,)x a ∈-+∞时,()0,()f x f x '>单调递增;综上:0a ≥时,()f x 在(0,)+∞上递增,无减区间, 当0a <时,()f x 的单调递减区间为(0,)a -,单调递增区间为(,)a -+∞;【例3】(2022·江西·二模(文))己知函数()()R a x ax x f ∈++=1ln ,讨论()f x 的单调性。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

导数大题20种主要题型

导数大题20种主要题型

导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。

2. 给出函数解析式和区间,求函数在区间内的单调性。

二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。

4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。

三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。

6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。

四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。

8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。

五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。

10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。

六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。

12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。

七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。

14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。

八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。

高考导数题型归纳

高考导数题型归纳

导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。

答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。

2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

2019高中数学《导数》题型全归纳

2019高中数学《导数》题型全归纳

2019届高三理科数学《导数》题型全归纳学校:___________姓名:___________班级:___________一、导数概念29.函数,若满足,则__________.二、导数计算(初等函数的导数、运算法则、简单复合函数求导)1.下列式子不正确的是( )A. B.C. D.2.函数的导数为( )A. B.C. D.3.已知函数,则( )A. B. C. D.33.已知函数,为的导函数,则的值为______.34.已知,则__________.三、导数几何意义(有关切线方程)31.若曲线在点处的切线方程为_________.30.若曲线在点处的切线与曲线相切,则的值是_________.32.已知,过点作函数图像的切线,则切线方程为__________.4.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为( )A. 1B. ﹣4C. ﹣D. ﹣15.若曲线y=在点P处的切线斜率为﹣4,则点P的坐标是( )A. (,2)B. (,2)或(﹣,﹣2)C. (﹣,﹣2)D. (,﹣2)6.若直线与曲线相切于点,则( )A. 4B. 3C. 2D. 17.如果曲线在点处的切线垂直于直线,那么点的坐标为( )A. B. C. D.8.直线分别与曲线交于,则的最小值为( )A. 3B. 2C.D.四、导数应用(一)导数应用之求函数单调区间问题9.函数f(x)=x-lnx的单调递减区间为( )A. (0,1)B. (0,+∞)C. (1,+∞)D. (-∞,0)∪(1,+∞)10.函数f(x)=2x2-ln x的单调递减区间是( )A. B. 和 C. D. 和11.的单调增区间是A. B. C. D.12.函数在区间上( )A. 是减函数B. 是增函数C. 有极小值D. 有极大值13.已知函数在区间[1,2]上单调递增,则a的取值范围是A. B. C. D.(二)导数应用之求函数极值问题14.若是函数的极值点,则( )A. 有极大值B. 有极小值C. 有极大值0D. 有极小值015.已知函数在处有极大值,则的值为( )A. B. C. 或 D. 或16.函数在内存在极值点,则( )A. B. C. 或 D. 或17.已知函数有极大值和极小值,则实数的取值范围是( )A. B. C. 或 D. 或(三)导数应用之求函数最值问题18.函数y=2x3-2x2在[-1,2]上的最大值为( )A. -5B. 0C. -1D. 819.函数在闭区间上的最大值、最小值分别是( )A. B. C. D.20.函数f(x)= (e为自然对数的底数)在区间[-1,1]上的最大值是( )A. 1+B. 1C. e+1D. e-121.已知函数在上单调递减,且在区间上既有最大值,又有最小值,则实数a的取值范围是()A. B. C. D.22.已知函数有零点,则a的范围是()A. B. C. D.(五)恒成立问题23.已知函数,当时,恒成立,则实数的取值范围是( )A. B. C. D.24.若对于任意实数,函数恒大于零,则实数的取值范围是( )A. B. C. D.五、定积分25.设,则等于 ( )A. B. C. 1 D.26.定积分等于( )A. B. C. D.27.曲线y=与直线y=2x-1及x轴所围成的封闭图形的面积为( )A. B. C. D.28.如图所示,阴影部分的面积是( )A. B. C. D.分,以下搜集的为容易、中档题)(一)求有关单调区间、极值、最值35.已知函数,.(1)若,求函数的极值;(2)设函数,求函数的单调区间;36.已知函数f(x)=2x3+3mx2+3nx﹣6在x=1及x=2处取得极值.(1)求m、n的值;(2)求f(x)的单调区间.37.设(1)求曲线在点(1,0)处的切线方程;(2)设,求最大值.斜率为 .(1)求的解析式;(2)求在区间上的最大值与最小值.39.设函数过点(1)求函数的单调区间和极值;(2)求函数在上的最大值和最小值.40.已知函数(1)当时,求的单调增区间;(2)若在上是增函数,求的取值范围。

高考导数问题常见题型总结

高考导数问题常见题型总结

一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析题型一:利用导数研究函数的极值、最值。

1. 32()32f x x x =-+在区间[]1,1-上的最大值是 22.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P Θ所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f 当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

(完整版)高考数学导数题型归纳(最新整理)

(完整版)高考数学导数题型归纳(最新整理)

导数题型归纳请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;0)('=x f 第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数在区间D 上的导数为,在区间D 上的导数为,若在区间D 上,()y f x =()f x '()f x '()g x 恒成立,则称函数在区间D 上为“凸函数”,已知实数m 是常数,()0g x <()y f x =4323()1262x mx x f x =--(1)若在区间上为“凸函数”,求m 的取值范围;()y f x =[]0,3(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.2m ≤m ()f x (),a b b a -解:由函数 得4323()1262x mx x f x =--32()332x mx f x x '=--2()3g x x mx ∴=--(1) 在区间上为“凸函数”,()y f x = []0,3则 在区间[0,3]上恒成立 2()30g x x mx ∴=--<解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当时, 恒成立,0x =2()330g x x mx ∴=--=-<当时, 恒成立03x <≤2()30g x x mx =--<等价于的最大值()恒成立,233x m x x x ->=-03x <≤而()是增函数,则3()h x x x=-03x <≤max ()(3)2h x h ==2m ∴>(2)∵当时在区间上都为“凸函数” 2m ≤()f x (),a b 则等价于当时 恒成立2m ≤2()30g x x mx =--<解法三:变更主元法再等价于在恒成立(视为关于m 的一次函数最值问题)2()30F m mx x =-+>2m ≤22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩2b a ∴-=例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a 的取值范围. ],2,1[++∈a a x ()f x a '≤(二次函数区间最值的例子)解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a <<令得,0)(>'x f )(x f 令得的单调递减区间为(-,a )和(3a ,+),0)(<'x f )(x f ∞∞∴当x=a 时,极小值= 当x=3a 时,极大值=b. )(x f ;433b a +-)(x f (Ⅱ)由||≤a ,得:对任意的恒成立①)(x f '],2,1[++∈a a x 2243a x ax a a -≤-+≤则等价于这个二次函数 的对称轴()g x max min ()()g x a g x a≤⎧⎨≥-⎩22()43g x x ax a =-+2x a =01,a << (放缩法)12a a a a +>+=即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理导数题型归纳请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;’ 第二步:画两图或列表; 第三步:由图表可知;其中2、常见处理方法有三种:第一种:分离变量求最值)第二种:变更主元);例1:设函数()y f x =()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <D 上为“凸函数”,已知实数m 是常数,432()12x f x =-(1]上为“凸函数”,求m 的取值范围;(2m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:232x 得32()332x mx f x x '=-- (1)()y f x =在区间[]0,3上为“凸函数”,则2()30g x x mx ∴=--<在区间[0,3]上恒成立-解法一:从二次函数的区间最值入手:等价于max ()0g x <解法二:分离变量法:∵当0x =时,2()330g x x mx ∴=--=-<恒成立, 当03x <≤时,2()30g x x mx =--<恒成立等价于233x m x x x->=-的最大值(03x <≤)恒成立,而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h ==(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数”则等价于当2m ≤时2()30g x x mx =--<恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)301130x +>⇒-<<> 例),10(322R b a b x a ax ∈<<+-2解:(Ⅰ)22()43f x x ax a '=-+-令,0)(>'x f 得)(x f 令,0)(<'x f 得)(x f ∴当x=a 时,)(x f 极小值=43-(Ⅱ)由|)(x f '|≤a 则等二次函数max min ()()g x ag x a≤⎧⎨≥-⎩22()43g x x ax a =-+的对称轴x a =01,a <<2a a a +=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.max min ()(2)2 1.()(1)4 4.g x g a a g x g a a =+=-+=+=-+∴于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于又,10<<a ∴.154<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系3a a第三种:构造函数求最值题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,(Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

解:(Ⅰ)/2()32f x x ax =+∴/(1)31f b a ⎧=-⎨=+⎩,解得32a b =-⎧⎨=-⎩(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]-(Ⅲ)令2()()()(1)32th x f x g x x t x =-=-++-思路1:要使()()f x g x ≤恒成立,只需()0h x ≤思路2:二次函数区间最值二、题型一:解法1:转化为0)(0)(''≤≥x f x f 或解法2:利用子区间(即子集思想)区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n 话的区别:前者是后者的子集例4:已知R a ∈,函数x a x f )14()(+. (Ⅰ)如果函数)()(x f x g '=)的极大值和极小值;)∞+上的单调函数,求a 的取值范围.解:)1)(+'x f . (Ⅰ)∵()f x 'x x x f 3121)(3-=,341)(2-='x x f , 令0)(='x f ,解得:32±=x .列表如下:可知:()f x 的极大值为34)32(=-f ,()f x 的极小值为34)32(-=f .(Ⅱ)∵函数)(xf是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a'=++++≥,在给定区间R上恒成立判别式法则221(1)4(41)204a a a a∆=+-⋅⋅+=-≤,解得:02a≤≤.综上,a的取值范围是}2{≤≤aa.例5、已知函数3211()(2)(1)(0).32f x x a x a x a=+-+-≥(I)求()f x的单调区间;(II)若()f x在[0,1]上单调递增,求a(I)2()(2)1(1)(1).f x x a x a x x a'=+-+-=++-1、20,()(1)0,a f x x'==+≥当时恒成立当且仅当1x=-时取“=”号,()(,)f x-∞+∞在2、1210,()0,1,1,a f x x x a x'>==-=-<当时由得且1)a-)当()[0,1],f x在上单调递增则[]0,1是上述增区间的子集:1、0a=)单调递增符合题意2、[]0,110≤1a∴≤综上,a1]。

题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数232)1(31)(xkxxf+-=,kxxg-=31)(,且)(xf在区间),2(+∞上为增函数.(1)求实数k的取值范围;(2)若函数)(xf与)(xg的图象有三个不同的交点,求实数k的取值范围.解:(1)由题意x k x x f )1()(2+-='∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h , 令0)(='x h 得k x =或1=x 由(1)知1≤k ,①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意… ②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:()f x 即:1(1)(1)(1)2f g d b -=-⇒=--3221112(1)222x x x bx x b ∴+-=---整理得:即:3211(1)(1)022x b x x b ---+-=恒有含1x =-的三个不等实根(计算难点来了:)3211()(1)(1)022h x x b x x b=---+-=有含1x=-的根,则()h x必可分解为(1)()0x+=二次式,故用添项配凑法因式分解,十字相乘法分解:[]()21(1)(1)(1)102x x b x b x+-+--+=3211(1)(1)022x b x x b∴---+-=恒有含1x=-的三个不等实根等价于211(1)(1)022x b x b-++-=有两个不等于-1的不等实根。

题2:切线的条数问题====以切点x为未知数的方程的根的个数例7、已知函数32()f x ax bx cx=++在点的x的取值范围为(1,3),求:(1)()f x的解析式;(2实数m的取值范围.(1)由题意得:2'()323(f x ax bx c a x=++=∴在(,1)-∞上'()0f x<;在(1,3)上'()f x因此()f x在1x=处取得极小值4-∴4a b c++=-①,'(1)320f a b c=++=由①②③联立得:169abc=-⎧⎪=⎨⎪=-⎩,∴()f x x=-(2)设切点Q(,())t f t,y-2(3129)t t x t=-+-+令2'()6612g t t t=--=求得:1,2t t=-=122490m-+-<1611mm<⎧⇒⎨>-⎩故:11m-<m的范围为:(11,16)-题3:已知则有导函数=0的根的个数例8、解:函数的定义域为R(Ⅰ)当m=4时,f(x)=x3-x2+10x,()f x'=x2-7x+10,令()0f x'>,解得5,x>或2x<.令()0f x'<,解得25x<<可知函数f(x)的单调递增区间为(,2)-∞和(5,+∞),单调递减区间为()2,5.(Ⅱ)()f x'=x2-(m+3)x+m+6,要使函数y=f(x)在(1,+∞)有两个极值点,()f x'⇒=x2-(m+3)x+m+6=0的根在(1,+∞)根分布问题:则2(3)4(6)0;(1)1(3)60;31.2m mf m mm⎧⎪∆=+-+>⎪'=-+++>⎨⎪+⎪>⎩,解得m>3例9、已知函数23213)(xxaxf+=,,(≠∈aRa()x=14x4+f(x)(x∈R)有且仅有3个极值点,求a解:(1))1()(2'+=+=axxxaxxf当0>a时,令0)('>xf解得01>-<xax或所以)(xf的递增区间为),0()1,(+∞--∞a当0<a时,同理可得)(xf的递增区间为0((2)432113)42(gax xx x=++⇒223(()ax xx xx x ag x+=+'=+0x=或210x ax++=,2a<-方程210x ax++=40,>而当2a<-或()g x=有且仅有3个极值点1、.例1032()2x ax ax b=-+)(0>a在区间[]2,1-上的最大值是5,最小值是-11.(Ⅰ)求函数()f x的解析式;(Ⅱ)若]1,1[-∈t时,0(≤+'txxf)恒成立,求实数x的取值范围.解:(Ⅰ)32'2()2,()34(34)f x ax ax b f x ax ax ax x=-+∴=-=-令'()f x=0,得[]1240,2,13x x==∉-因此50=)(f(2)165,(1)5,(1)(2)f a f a f f-=-+=-+∴>-,即11516)2(-=+-=-af,∴1=a,∴.52(23+-=xxxf)(Ⅱ)∵xxxf43)(2-=',∴0(≤+'txxf)等价于0432≤+-txxx,令xxxttg43)(2-+=,则问题就是0)(g≤t在]1,1[-∈t上恒成立时,求实数x的取值范围,为此只需⎩⎨⎧≤≤-)1)1((gg,即⎩⎨⎧≤-≤-5322xxxx,解得10≤≤x,所以所求实数x的取值范围是[0,1].2、(根分布与线性规划例子)例11已知函数322()3f x x ax bx c=+++(Ⅰ)若函数()f x在1=x0=平行,求)(xf的解析式;(Ⅱ)当()f x在(0,1)x∈取得极大值且在x∈1)所在平面区域为S,经过原点的直线L将S分为面积比为解:(Ⅰ).由2()22f x x ax b'=++,函数()f x在=x∴220a b++=∵(0)1f=∴1c=又∵()f x在(0,1)0y+=平行,12=31x+…………………….7分(Ⅱ)解法一:b+及()f x在(0,1)x∈取得极大值且在(1,2)x∈取得极小值, ∴(0)0(1)0(2)0fff'>⎧⎪'<⎨⎪'>⎩即220480ba ba b>⎧⎪++<⎨⎪++>⎩令(,)M x y,则21x by a=-⎧⎨=+⎩∴12a yb x=-⎧⎨=+⎩∴20220460xy xy x+>⎧⎪++<⎨⎪++>⎩故点M所在平面区域S为如图△ABC,易得(2,0)A-,(2,1)B--,(2,2)C-,(0,1)D-,3(0,)2E-,2ABCS∆=同时DE 为△ABC 的中位线,13DECABED S S ∆=四边形 ∴所求一条直线L 的方程为:0x =另一种情况设不垂直于x 轴的直线L 也将S 分为面积比为1:3的两部分,设直线L 方程为y kx =,它与AC,BC 分别交于F 、G,则0k >,1S =四边形DEGF由220y kx y x =⎧⎨++=⎩得点F 的横坐标为:221F x k =-+由460y kx y x =⎧⎨++=⎩得点G∴OGE S S S ∆∆=-四边形DEGF 解得:12k =或58k =-(舍去综上,所求直线方程为:0x =(Ⅱ)解法二:由2()22f x x ax '=+,∴(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩即02248b a b a b >⎧⎪++⎨⎪++⎩∴a y b x =-⎧⎨=+⎩故点M 所在平面区域S 为如图△ABC, 易得(A -,(2,2)C -,(0,1)D -,3(0,)2E -,2ABC S ∆=同时DE 为△ABC 的中位线,13DECABED S S ∆=四边形∴所求一条直线L 的方程为:0x = 另一种情况由于直线BO 方程为:12y x =,设直线BO 与AC 交于H, 由12220y x y x ⎧=⎪⎨⎪++=⎩得直线L 与AC 交点为:1(1,)2H -- ∵2ABC S ∆=,1112222DEC S ∆=⨯⨯=,11222211122H ABO AOH S S S ∆∆∆=-=⨯⨯-⨯⨯=AB∴所求直线方程为:0x =或12y x = 3、(根的个数问题)例12已知函数32f(x)ax bx (c 3a 2b)x d (a 0)=++--+>的图象如图所示。

相关文档
最新文档