最新-立体几何综合练习题(附详解)[原创] 精品
立体几何练习题及答案
立体几何练习题及答案在学习立体几何的过程中,练习题对于巩固知识、提高应用能力起着至关重要的作用。
本文将为大家提供一些立体几何的练习题,并给出详细的答案解析,以帮助读者更好地理解和掌握立体几何的知识。
一、球的表面积和体积1. 某个球的半径为3cm,求其表面积和体积。
解析:球的表面积公式为S = 4πr²,体积公式为V = (4/3)πr³。
将半径r代入公式进行计算即可。
表面积:S = 4π(3)² = 4π(9) ≈ 113.04cm²体积:V = (4/3)π(3)³ = (4/3)π(27)≈ 113.04cm³因此,该球的表面积约为113.04cm²,体积约为113.04cm³。
二、立方体的表面积和体积2. 一个立方体的边长为5cm,求其表面积和体积。
解析:立方体的表面积公式为S = 6a²,体积公式为V = a³。
将边长a代入公式进行计算即可。
表面积:S = 6(5)² = 6(25) = 150cm²体积:V = (5)³ = 5(5)(5) = 125cm³因此,该立方体的表面积为150cm²,体积为125cm³。
三、圆柱的表面积和体积3. 一个圆柱的底面半径为4cm,高度为10cm,求其表面积和体积。
解析:圆柱的表面积公式为S = 2πr² + 2πrh,体积公式为V = πr²h。
将底面半径r和高度h代入公式进行计算即可。
表面积:S = 2π(4)² + 2π(4)(10) = 2π(16) + 2π(40) ≈ 321.2cm²体积:V = π(4)²(10) = π(16)(10) ≈ 502.4cm³因此,该圆柱的表面积约为321.2cm²,体积约为502.4cm³。
立体几何专题专练100题(含详解)
1.(本题满分15分)如图,在三棱锥D -ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(Ⅰ)求证:平面ABD ⊥平面DEF ;(Ⅱ)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成的角的正弦值.答案及解析:1.(Ⅰ)如图,由题意知⊥DE 平面ABC所以DE AB ⊥,又DFAB ⊥所以⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分(Ⅱ)解法一:由DC DB DA ==知ECEB EA ==所以E 是ABC ∆的外心又BC AB ⊥所以E 为AC 的中点…………………………………9分过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC , 60=∠BAC 得2=DE ,3=EF 所以7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B 所以)2,2,0(--=DA ,)2,1,3(--=DB ……………………………………9分设平面DAB 的法向量为),,(z y x n =由⎪⎩⎪⎨⎧=⋅=⋅00DB n DA n 得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-=n ………………12分设EB 与n 的夹角为θ所以7213722||||cos ==⋅=n EB nEB θ所以BE 与平面DAB 所成的角的正弦值为721………………………………15分2.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AA 1=AC=2AB=2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.答案及解析:2.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)证明A1C⊥面ABC1,即可证明:平面ABC1⊥平面A1ACC1;(2)证明AC⊥面ABB1A1,利用等体积转换,即可求三棱锥D﹣ABC1的体积.【解答】(1)证明:在直三棱锥ABC﹣A1B1C1中,有A1A⊥面ABC,而AB⊂面ABC,∴A1A⊥AB,∵A1A=AC,∴A1C⊥AC1,又BC1⊥A1C,BC1⊂面ABC1,AC1⊂面ABC1,BC1∩AC1=C1∴A1C⊥面ABC1,而A1C⊂面A1ACC1,则面ABC1⊥面A1ACC1…(2)解:由(1)知A1A⊥AB,A1C⊥面ABC1,A1C⊥AB,故AB⊥面A1ACC1,∴AB⊥AC,则有AC⊥面ABB1A1,∵D是线段BB1的中点,∴.…【点评】本题考查线面垂直、平面与平面垂直的判定,考查三棱锥D﹣ABC1的体积,考查学生分析解决问题的能力,正确运用定理是关键.3.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.答案及解析:3.【考点】空间中直线与直线之间的位置关系;直线与平面平行的判定.【分析】本题是高考的重要内容,几乎年年考,次次有:(1)的关键是找出直角三角形,也就是找出图中的线线垂直.(2)的关键是找出平面PAD中可能与EF平行的直线.【解答】解:(1)证明:∵PA⊥平面ABCD,而CD⊂平面ABCD,∴PA⊥CD,又CD⊥AD,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD、(2)取CD的中点G,连接EG、FG.∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD,∴平面EFG∥平面PAD,又∵EF⊂平面EFG,∴EF∥平面PAD.【点评】线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a∥α,b⊂α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).4.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:4.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.5.已知在三棱锥S﹣ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.答案及解析:5.【考点】直线与平面垂直的判定.【专题】证明题.【分析】要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明【解答】证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两相交线,∴AD⊥面SBC.【点评】本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题6.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AP=AB=,点E 是棱PB的中点.(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若AD=1,求二面角B﹣EC﹣D的平面角的余弦值.答案及解析:6.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.(Ⅱ)由BC⊥平面PAB,AD⊥AE.取CE的中点F,连结DF,连结BF,则∠BFD为所求的二面角的平面角,由此能求出二面角B﹣EC﹣D的平面角的余弦值.【解答】(Ⅰ)证明:如图1,由PA⊥底面ABCD,得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,而点E是棱PB的中点,所以AE⊥PB.由题意知BC⊥AB,又AB是PB在面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE.因为AE⊥PB,AE⊥BC,所以AE⊥平面PBC.(Ⅱ)解:由(Ⅰ)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE.在Rt△PAB中,PA=AB=,AE=PB==1.从而在Rt△DAE中,DE==.在Rt△CBE中,CE==,又CD=,所以△CED为等边三角形,取CE的中点F,连结DF,则DF⊥CE,∵BE=BC=1,且BC⊥BE,则△EBC为等腰直角三角形,连结BF,则BF⊥CE,所以∠BFD为所求的二面角的平面角,连结BD,在△BFD中,DF=CD=,BF=,BD==,所以cos∠BFD==﹣,∴二面角B﹣EC﹣D的平面角的余弦值为﹣.【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.7.如图所示,四棱锥P ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点,二面角PADB为60°.(1)证明:平面PBC⊥平面ABCD;(2)求直线EF与平面PBC所成角的正弦值.答案及解析:7.证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.考点:直线与平面所成的角;平面与平面垂直的判定.专题:证明题;转化思想;综合法;空间位置关系与距离;空间角.分析:(1)连接PE,BE,由已知推导出∠PEB为二面角P﹣AD﹣B的平面角,推导出BE⊥PB,BE⊥BC,由此能证明平面PBC⊥平面ABCD.(2)连接BF,由BE⊥平面PBC,得∠EFB为直线EF与平面PBC所成的角,由此能求出直线EF与平面PBC所成角的正弦值.解答:证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.点评:本题考查面面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养8.(15分)(2010秋•杭州校级期末)如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,分别为AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)求直线AD与平面BEF所成角的正弦值.答案及解析:8.【考点】平面与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)通过证明CD⊥平面ABC,CD∥EF,说明EF⊂平面BEF,即可证明平面BEF⊥平面ABC;(2)过A作AH⊥BE于H,连接HF,可得AH⊥平面BEF,推出∠AFH为直线AD与平面BEF所成角.在Rt△AFH中,求直线AD与平面BEF所成角的正弦值.【解答】解:(1)证明:∵AB⊥平面BCD,∴AB⊥CD.又∵CD⊥BC,∴CD⊥平面ABC.∵E、F分别为AC、AD的中点,∴EF∥CD.∴EF⊥平面ABC,∵EF⊂平面BEF,∴平面BEF⊥平面ABC.(2)过A作AH⊥BE于H,连接HF,由(1)可得AH⊥平面BEF,∴∠AFH为直线AD与平面BEF所成角.在Rt△ABC中,为AC中点,∴∠ABE=30°,∴.在Rt△BCD中,BC=CD=1,∴.∴在Rt△ABD中,∴.∴在Rt△AFH中,,∴AD与平面BEF所成角的正弦值为.【点评】证明两个平面垂直,关键在一个面内找到一条直线和另一个平面垂直;利用三垂线定理找出二面角的平面角,解三角形求出此角,是常用方法.9.答案及解析:9.10.(12分)(2015秋•拉萨校级期末)如图,边长为2的正方形ABCD中,(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF(2)当BE=BF=BC时,求三棱锥A′﹣EFD的体积.答案及解析:10.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(1)由正方形ABCD知∠DCF=∠DAE=90°,得A'D⊥A'F且A'D⊥A'E,所以A'D⊥平面A'EF.结合EF⊂平面A'EF,得A'D⊥EF;(2)由勾股定理的逆定理,得△A'EF是以EF为斜边的直角三角形,而A'D是三棱锥D﹣A'EF的高线,可以算出三棱锥D﹣A'EF的体积,即为三棱锥A'﹣DEF的体积.【解答】解:(1)由正方形ABCD知,∠DCF=∠DAE=90°,∴A'D⊥A'F,A'D⊥A'E,∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.∴A'D⊥平面A'EF.又∵EF⊂平面A'EF,∴A'D⊥EF.(2)由四边形ABCD为边长为2的正方形故折叠后A′D=2,A′E=A′F=,EF=则cos∠EA′F==则sin∠EA′F==•A′E•A′F•sin∠EA′F=故△EA′F的面积S△EA′F由(1)中A′D⊥平面A′EF可得三棱锥A'﹣EFD的体积V=××2=.【点评】本题以正方形的翻折为载体,证明两直线异面垂直并且求三棱锥的体积,着重考查空间垂直关系的证明和锥体体积公式等知识,属于中档题.11.(12分)(2015秋•沧州月考)如图,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,点D,E,F分别为OA,OB,OC的中点,BD与AE相交于H,CD与AF相交于G,将△ABO 沿OA折起,使二面角B﹣OA﹣C为直二面角.(Ⅰ)在底面△BOC的边BC上是否存在一点P,使得OP⊥GH,若存在,请计算BP的长度;若不存在,请说明理由;(Ⅱ)求二面角A﹣GH﹣D的余弦值.答案及解析:11.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【专题】数形结合;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(Ⅰ)根据条件便知H,G分别为△AOB,△AOC的重心,从而有GH∥EF∥BC,并可说明∠BOC为直角,过O作OP⊥BC,从而有OP⊥GH,而根据摄影定理便有,这样即可求出BP的长度;(Ⅱ)根据上面知OB,OC,OA三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,从而可以根据条件求出图形上一些点的坐标,从而可以得到向量的坐标,可设平面AGH的法向量为,而根据即可求出,同样的方法可以求出平面DGH的一个法向量,根据cos=即可得出二面角A﹣GH﹣D的余弦值.【解答】解:(Ⅰ)H,G分别为△AOB和△AOC的重心;∴;连接EF,则GH∥EF;由已知,EF∥BC,∴GH∥BC;∵OA⊥OB,OA⊥OC,二面角B﹣OA﹣C为直二面角;∴∠BOC为直角;∴在Rt△BOC中,过O作BC的垂线,垂足为P,OP⊥BC,又BC∥GH;∴OP⊥GH,则由摄影定理得:OB2=BP•BC;∴;(Ⅱ)分别以OB,OC,OA为x,y,z轴,建立如图所示空间直角坐标系,则:O(0,0,0),A(0,0,2),D(0,0,1),B(4,0,0),C(0,2,0),H(),;∴,;设为平面AGH的法向量,则:;取x1=1,则y1=2,z1=1,∴;设为平面DGH的法向量,则:;取x2=1,则;∴;∴由图可知二面角A﹣GH﹣D为锐角,∴该二面角的余弦值为.【点评】考查三角形重心的概念及其性质,平行线分线段成比例,三角形中位线的性质,以及二面角的平面角的定义,直角三角形的摄影定理的内容,建立空间直角坐标系,利用空间向量解决二面角问题的方法,平面的法向量的概念及求法,能求空间点的坐标,根据点的坐标求向量的坐标,向量垂直的充要条件,以及向量夹角的余弦公式,清楚两平面所成二面角的大小和两平面的法向量夹角的关系.12.(12分)(2014•芜湖模拟)如图,E是以AB为直径的半圆上异于A、B的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB=2AD=2.(1)求证:EA⊥EC;(2)设平面ECD与半圆弧的另一个交点为F.①试证:EF∥AB;②若EF=1,求三棱锥E﹣ADF的体积.答案及解析:12.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积;直线与平面平行的性质.【专题】空间位置关系与距离.【分析】(1)利用面面垂直的性质,可得BC⊥平面ABE,再利用线面垂直的判定证明AE⊥面BCE,即可证得结论;(2)①先证明AB∥面CED,再利用线面平行的性质,即可证得结论;②取AB中点O,EF的中点O′,证明AD⊥平面ABE,利用等体积,即可得到结论.【解答】(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC⊂平面ABCD∴BC⊥平面ABE∵AE⊂平面ABE,∴BC⊥AE∵E在以AB为直径的半圆上,∴AE⊥BE∵BE∩BC=B,BC,BE⊂面BCE∴AE⊥面BCE∵CE⊂面BCE,∴EA⊥EC;(2)①证明:设面ABE∩面CED=EF∵AB∥CD,AB⊄面CED,CD⊂面CED,∴AB∥面CED,∵AB⊂面ABE,面ABE∩面CED=EF∴AB∥EF;②取AB中点O,EF的中点O′,在Rt△OO′F中,OF=1,O′F=,∴OO′=∵BC⊥面ABE,AD∥BC∴AD⊥平面ABE∴V E﹣ADF =V D﹣AEF===【点评】本题考查面面垂直的性质,线面垂直的判定与性质,考查线面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.13.(12分)(2014•浙江模拟)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:13.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.14.如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC=,D、E 分别是SA、SC的中点.(I)求证:平面ACD⊥平面BCD;(II)求二面角S﹣BD﹣E的平面角的大小.答案及解析:14.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据面面垂直的判定定理证明AD⊥平面BCD即可证明平面ACD⊥平面BCD.(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角S﹣BD﹣E的余弦值.【解答】证明:(I)∵∠ABC=,∴BA⊥BC,建立如图所示的坐标系,则C(0,,0),A(2,0,0),D(1,0,1),E(0,,1),S(0,0,2),则=(﹣1,0,1),=(0,,0),=(1,0,1),则•=(﹣1,0,1)•(0,,0)=0,•=(﹣1,0,1)•(1,0,1)=﹣1+1=0,则⊥,⊥,即AD⊥BC,AD⊥BD,∵BC∩BD=B,∴AD⊥平面BCD;∵AD⊂平面BCD;∴平面ACD⊥平面BCD;(II)=(0,,1),则设平面BDE的法向量=(x,y,1),则,即,解得x=﹣1,y=,即=(﹣1,,1),又平面SBD的法向量=(0,,0),∴cos<,>==,则<,>=,即二面角S﹣BD﹣E的平面角的大小为.【点评】本题主要考查空间面面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.15.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.答案及解析:15.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】计算题;空间位置关系与距离;空间角.【分析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A﹣PC﹣D的平面角的余弦值.【解答】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…(2分)可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.(4分)∵ED⊂平面PED∴平面PED⊥平面PAC(6分)(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)(8分)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)(10分)∴cos<,(11分)由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.(12分)【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC ﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.16.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.答案及解析:16.(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.考点:直线与平面垂直的性质;用空间向量求平面间的夹角.专题:计算题;证明题;综合题;数形结合;转化思想.分析:(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.解答:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.点评:此题是个中档题.考查线面垂直的性质定理和判定定理,以及应用空间向量求空间角问题,查了同学们观察、推理以及创造性地分析问题、解决问题能力.17.如图,在三棱锥P﹣ABC中,∠ABC=90°,PA⊥平面ABC,E,F分别为PB,PC的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面PAB.答案及解析:17.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)根据三角形中位线定理可得EF∥BC,进而根据线面平行的判定定理可得EF∥平面ABC;(2)根据PA⊥平面ABC,可得PA⊥BC,结合∠ABC=90°,及线面垂直的判定定理可得BC⊥平面PAB,进而由线面垂直的第二判定定理可得EF平面PAB,最后由面面垂直的判定定理可得平面AEF⊥平面PAB.【解答】证明:(1)∵E,F分别为PB,PC的中点.∴EF∥BC,又∵BC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC;(2)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又∵∠ABC=90°,∴AB⊥BC,又∵PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB,由(1)中EF∥BC,∴EF⊥平面PAB,又∵EF⊂平面AEF,∴平面AEF⊥平面PAB.【点评】本题考查的知识点是线面平行的判定定理,线面垂直的判定定理,面面垂直的判定定理,是空间线面关系的简单综合应用,难度中档.18.(14分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(Ⅰ)求证:AC⊥平面BCE;(Ⅱ)求三棱锥A﹣CDE的体积;(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.答案及解析:18.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】(I)如图所示,取AB的中点N,连接CN,可得四边形ADCN是正方形,可得NA=NB=NC,可得AC⊥CB,利用AF⊥平面ABCD,AF∥BE,可得BE⊥平面ABCD,即可证明.=V三棱锥E﹣ACD=即可得出.(II)利用V三棱锥A﹣CDE(III)线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,可得BM⊥EN,利用线面面面垂直的判定与性质定理可得:CN⊥平面ABEF,可得CN⊥BM,又BM⊥CE.即可证明BM⊥平面CEN.【解答】(I)证明:如图所示,取AB的中点N,连接CN,则四边形ADCN是正方形,可得NA=NB=NC,∴AC⊥CB,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,又BE∩BC=B,∴AC⊥平面BCE.=V三棱锥E﹣ACD===.(II)解:V三棱锥A﹣CDE(III)解:线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,∴BM⊥EN,∵CN⊥AB,平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,∴CN⊥平面ABEF,∴CN⊥BM,又CN∩EN=N,∴BM⊥平面CEN,∴BM⊥CE.【点评】本题考查了线面面面垂直的判定与性质定理、正方形的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.19.(13分)如图,在正方体A1B1C1D1﹣ABCD中,(1)在正方体的12条棱中,与棱AA1是异面直线的有几条(只要写出结果)(2)证明:AC∥平面A1BC1;(3)证明:AC⊥平面BDD1B1.答案及解析:19.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(1)画出正方体ABCD﹣A1B1C1D1,根据异面直线的概念即可找出与棱AA1异面的棱.(2)连接AC,A1C1,则A1C1∥AC,利用线面平行的判定定理即可证明;(3)由DD1⊥面AC,知DD1⊥AC,由DD1⊥BD,能够证明AC⊥平面BDD1B1.【解答】解:(1)与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.(2)证明:连接AC,A1C1,则A1C1∥AC,∵AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴AC∥平面A1BC1;(3)证明:∵DD1⊥面AC,AC⊂平面AC,∴DD1⊥AC,∵AC⊥BD,DD1∩BD=D,BD⊂平面BDD1B1,DD1⊂平面BDD1B1∴AC⊥平面BDD1B1.【点评】考查异面直线的概念,直线与平面垂直的证明,直线与平面平行的判定,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.20.如图,在正方体ABCD﹣A1B1C1D1中,(1)证明:BC1⊥面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角.答案及解析:20.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)要证BC1⊥面A1B1CD;应通过证明A1B1⊥BC1.BC1⊥B1C两个关系来实现,两关系容易证明.(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.在RT△A1BO中求解即可.【解答】解:(1)连接B1C交BC1于点O,连接A1O.在正方体ABCD﹣A1B1C1D1中因为A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又∵BC1⊥B1C,又BC1∩B1C=O∴BC1⊥平面A1B1CD(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.设正方体的棱长为a在RT△A1BO中,A1B=a,BO=a,所以BO=A1B,∠BA1O=30°,即直线A1B和平面A1B1CD所成的角为30°.【点评】本题考查空间直线与平面垂直关系的判断,线面角大小求解,考查空间想象能力、推理论证、计算、转化能力.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:PA∥平面EDB;(2)证明:平面PAC⊥平面PDB.答案及解析:21.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(1)欲证PA∥平面EDB,根据直线与平面平行的判定定理可知只需证PA与平面EDB内一直线平行,连接AC,交BD于O,连接EO,根据中位线定理可知EO∥PA,PA⊄平面EDB,EO⊂平面EDB,满足定理所需条件;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PDB.【解答】证明:(1)设AC与BD相交于点O,则O为AC的中点.∵E是P的中点,∴EO∥PA又∵EO⊂平面EDB,PA⊄平面EDB,∴PA∥平面EDB;(2)∵PO⊥平面ABCD,∴PD⊥AC又∵四边形ABCD为正方形,∴AC⊥BD从而AC⊥平面PBD,∴平面PAC⊥平面PBD.【点评】本题考查直线与平面平行的判定,以及平面与平面垂直的判定,考查空间想象能力,逻辑思维能力,计算能力,是中档题.22.如图,在直三棱柱ABC=A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.(1)求证:BC⊥A1B;(2)若AD=,AB=BC=2,P为AC的中点,求二面角P﹣A1B﹣C的平面角的余弦值.答案及解析:22.【考点】用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由已知得A1A⊥平面ABC,A1A⊥BC,AD⊥BC.由此能证明BC⊥A1B.(Ⅱ)由(Ⅰ)知BC⊥平面A1AB,从而BC⊥AB,以B为原点建立空间直角坐标系B﹣xyz,利用向量法能求出二面角P﹣A1B﹣C的平面角的余弦值.【解答】(Ⅰ)证明:∵三棱柱ABC﹣A1B1C1为直三棱柱,∴A1A⊥平面ABC,又BC⊂平面ABC,∴A1A⊥BC,∵AD⊥平面A1BC,且BC⊂平面A1BC,∴AD⊥BC.又AA1⊂平面A1AB,AD⊂平面A1AB,A1A∩AD=A,∴BC⊥平面A1AB,又A1B⊂平面A1BC,∴BC⊥A1B.(Ⅱ)解:由(Ⅰ)知BC⊥平面A1AB,AB⊂平面A1AB,从而BC⊥AB,如图,以B为原点建立空间直角坐标系B﹣xyz∵AD⊥平面A1BC,其垂足D落在直线A1B上,∴AD⊥A1B.在Rt△ABD中,AD=,AB=2,sin∠ABD==,∠ABD=60°,在直三棱柱ABC﹣A1B1C1中,A1A⊥AB.在Rt△ABA1中,AA1=AB•tan60°=2,则B(0,0,0),A(0,2,0),C(2,0,0),P(1,1,0),A 1(0,2,2),,=(0,2,2),,设平面PA1B的一个法向量,则,即,得,设平面CA1B的一个法向量,则,即,得,,∴二面角P﹣A1B﹣C平面角的余弦值是.…【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.23.(16分)如图,在正方体ABCD﹣A1B1C1D1的棱长为a,E为棱AB上的一动点.(1)若E为棱AB的中点,①求四棱锥B1﹣BCDE的体积②求证:面B1DC⊥面B1DE(2)若BC1∥面B1DE,求证:E为棱AB的中点.答案及解析:23.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】(1)①四棱锥B1﹣BCDE的底面为直角梯形BEDC,棱锥的高为B1B,代入体积公式即可;②面B1DC∩面B1DE=B1D,故只需在平面B1DE找到垂直于交线B1D的直线即可,由DE=B1E=a可易知所找直线为等腰△EB1D底边中线;(2)辅助线同上,由中位线定理可得OF∥DC,且OF=DC,从而得出OF∥EB,由BC1∥面B1DE可得EO∥B1C,故四边形OEBF是平行四边形,得出结论.【解答】证明:(1)①∵正方体ABCD﹣A1B1C1D1∴B1B平面BEDC,•B1B=•(a+)•a•a=.∴V=•S梯形BCDE②取B1D的中点O,设BC1∩B1C=F,连接OF,∵O,F分别是B1D与B1C的中点,∴OF∥DC,且OF=DC,又∵E为AB中点,∴EB∥DC,且EB=DC,∴OF∥EB,OF=EB,即四边形OEBF是平行四边形,∴OE∥BF,∵DC⊥平面BCC1B1,BC1⊂平面BCC1B1,∴BC1⊥DC,∴OE⊥DC.又BC1⊥B1C,∴OE⊥B1C,又∵DC⊂平面B1DC,B1C⊂平面B1DC,DC∩B1C=C,∴OE⊥平面B1DC,。
立体几何大题综合(含答案)
立体几何大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.3.(2022秋·广东肇庆·高二校考期中)如图在棱长为1的正方体1111ABCD A B C D -中,E 为11A B 的中点,F 为AB 的中点,H 为1DD 的中点,K 为1BB 的中点.(1)求直线1A H 到直线KC 的距离;(2)求直线FC 到平面1AEC 的距离.4.(2022秋·广东江门·高二校考期中)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.6.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形ABCD 中,,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.7.(2022秋·广东江门·高二台山市第一中学校考期中)如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ==ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.9.(2022秋·广东江门·高二江门市第二中学校考期中)如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.10.(2022秋·广东阳江·高二校联考期中)图1是直角梯形ABCD ,//AB DC ,90,2,3,2D AB DC AD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.11.(2022秋·广东深圳·高二深圳外国语学校校考期中)如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,E 为侧棱PC的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C的值;若不存在,请说明理由.13.(2022秋·广东茂名·高二统考期中)在直四棱柱1111ABCD A B C D -中,四边形ABCD 为平行四边形,M为1AA 的中点,1BC BD ==,1AB AA ==(1)求证:DM ⊥平面1BDC ;(2)求平面1MBC 与平面1D B C 夹角的余弦值.14.(2022秋·广东揭阳·高二惠来县第一中学校考期中)已知四棱锥P ABCD -中,底面ABCD 是矩形,且2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PM PA的值;若不存在,说明理由.15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.16.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.17.(2022秋·广东珠海·高二珠海市第二中学校考期中)如图1,在MBC 中,24BM BC BM BC ==⊥,,,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --求出PG PC 的值;若不存在,请说明理由.18.(2022秋·广东广州·高二广州市第八十九中学校考期中)如图,已知梯形ABCD ,AB //CD ,,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.19.(2022秋·广东东莞·高二校考期中)如图,在长方体ABCD-A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动.(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.21.(2022秋·广东广州·高二统考期中)如图,在四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,PA =,G 为CD 的中点,E ,F 是棱PD 上两点(F 在E 的上方),且2EF =.(1)若BF //平面AEG ,求DE ;(2)当点F 到平面AEC 的距离取得最大值时,求直线AG 与平面AEC 所成角的正弦值.22.(2022秋·广东广州·高二校联考期中)在多面体ABCDEF 中,平面ABCD 为正方形,2AB =,3AE =,DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=> ,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.23.(2022秋·广东佛山·高二佛山市顺德区容山中学校考期中)如图,圆柱的轴截面ABCD 为正方形,点E 在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.24.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图,四棱锥P ABCD -的底面为菱形,,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PG CG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.25.(2022秋·广东江门·高二校考期中)如图甲,在矩形ABCD 中,2AB AD E ==为线段DC 的中点,ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.26.(2022秋·广东惠州·高二统考期中)如图,在四棱锥P ABMN -中,PNM △是边长为2的正三角形,AN NP ⊥,AN BM ∥,3AN =,1BM =,AB =C ,D 分别是线段AB ,NP 的中点.(1)求证:平面ANMB ⊥平面NMP ;(2)求直线CD 与平面ABP 所成角的正弦值.27.(2022秋·广东广州·高二校联考期中)如图,在四棱锥P ABCD -中,平面PAD ⊥平面,2,4,ABCD PA AD BD AB ====,BD 是ADC ∠的平分线,且BD BC ⊥.(1)若点E 为棱PC 的中点,证明:BE 平面PAD ;(2)已知二面角P AB D --的大小为60 ,求平面PBD 和平面PCD 的夹角的余弦值.28.(2022秋·广东珠海·高二珠海市斗门区第一中学校考期中)如图,等腰直角△ACD 的斜边AC 为直角△ABC 的直角边,E 是AC 的中点,F 在BC 上.将三角形ACD 沿AC 翻折,分别连接DE ,DF ,EF ,使得平面DEF ⊥平面ABC .已知2AC =,30B ∠=︒,(1)证明:EF ∥平面ABD ;(2)若DF =A BC D --的余弦值.29.(2022秋·广东阳江·高二统考期中)如图,在四面体ABCD 中,ABC 是正三角形,ACD 是直角三角形,ABD CBD ∠=∠,AB =BD .(1)求证:平面ACD ⊥平面ABC ;(2)若DE mDB = ,二面角D AE C --的余弦值为17,求m .30.(2022春·广东广州·高二执信中学校考期中)已知△ABC 是边长为6的等边三角形,点M ,N 分别是边AB ,AC 的三等分点,且13AM AB =,13CN CA =,沿MN 将△AMN 折起到A MN '△的位置,使90A MB '∠=︒.(1)求证:A M '⊥平面MBCN ;(2)在线段BC 上是否存在点D ,使平面A ND '与平面A MB '所成锐二面角的余弦值为13若存在,设()0BD BC λλ=> ,求λ的值;若不存在,说明理由.立体几何大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.(2)以AD 方向为x 轴正方向,妨设正方体边长为1,则()0,0,0A 面1AD E 的法向量为(),,n x y z = ,则设直线1D C 与平面1AD E 所成角为2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.则()()()0,0,0,1,0,0,0,1,0,C O B B (,1,0),(0,,0)E m F m ,(1,A F '=- 则(1)(1)11A F C E m m ''⋅=-+-⨯+ ∴A F C E ''⊥ ,故A F C E ''⊥.(2)由(1)知1BB '=,而B BEF V '-故当S 取到最大值时,三棱锥111111的中点,F 为AB的中点,H为1DD的中点,K为1BB的中点.(1)求直线1A H到直线KC的距离;(2)求直线FC到平面1AEC的距离.【详解】(1)长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.【详解】(1)以D 为原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),(0,0,2),(2,0,0),(2,2,0),(0,2,0),(1,1,1),G P A B C F 明显面PCD 的一个法向量为()1,0,0n =r ,又()0,1,1GF = ,()()1,0,00,1,10n GF ∴⋅=⋅= ,GF n ∴⊥ ,又GF ⊄面PCD ,//GF ∴面PCD ;(2)(1,0,2),(2,2,2)PG PB =-=- ,设平面PGB 的一个法向量为(,,)m a b c = ,00m PB m PG ⎧⋅=⎪∴⎨⋅=⎪⎩ ,即222020a b c a c +-=⎧⎨-=⎩,令1c =,则2,1a b ==-所以平面PGB 的一个法向量为(2,1,1)m =- ,又()2,0,0CB = ,所以点C 到平面PGB 的距离4263||411CB m d m ⋅===++ 5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.【详解】(1)∵AB ⊥平面PAD ,PE ⊂平面PAD ,∴PE AB ⊥,又∵PAD 是等腰直角三角形,E 是斜边AD 的中点,∴PE AD ⊥,又∵AD ⊂平面ABCD ,AB ⊂平面ABCD ,AB AD A ⋂=,∴PE ⊥平面ABCD又∵BD ⊂平面ABCD ,∴PE BD ⊥;因为22PA AB ==,则()000E ,,,(0,1,1)B ,()010A ,,则(0,1,1)EB = ,(1,0,0)EP = ,PA 设平面PBE 的一个法向量为(n = 00EB n y z EP n x ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取1y =,则z 设点A 到平面PBE 的距离为h ,则∴点A 到平面PBE 的距离为226.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.【详解】(1)如图,作,FG EA AG EF ,连接EG ,AF ,BG ,∵EF CD ∥且EF AG ∥,AG CD ∴ ,即点G 在平面ABCD 内,所以四边形CDAG 为平行四边形,四边形AEFG 为平行四边形.又90ADC ∠=︒,BG AG ∴⊥,因为⊥AE 平面ABCD ,BG ⊂平面ABCD ,所以AE BG ⊥,又因为AG AE A = ,,AG AE ⊂平面AEFG ,∴BG ⊥平面AEFG ,因为AF ⊂平面AEFG ,BG AF ∴⊥.AE AG ⊥ ,所以平行四边形AEFG 为矩形,又因为AE EF =,所以矩形AEFG 为正方形,所以AF EG ⊥,又因为BG EG G = ,,BG EG ⊂平面BGE ,所以AF ⊥平面BGE ,因为BE ⊂平面BGE ,所以AF BE ⊥.(2)由(1)知AG ,AD ,AE 为三条两两互相垂直的直线,所以以A 为原点,AG 为x 轴,AD 为y 轴,AE 为z 轴建立空间直角坐标系A xyz -,如图,则(0,0,0),(1,0,0),(0,0,1),(0,2,0)A G E D ,设()001,,0,[1,2]M y y ∈,∴(0,2,1)ED =- ,()01,2,0DM y =- ,设平面EMD 的法向量为(,,)n x y z = ,则00n ED n DM ⎧⋅=⎪⎨⋅=⎪⎩,即()02020y z x y y -=⎧⎨+-=⎩,令1y =,得02,2z x y ==-,所以平面EMD 的法向量为()02,1,2n y =- ,又⊥AE 平面ABCD ,即⊥AE 平面AMD ,ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)侧棱2PA PD ==,底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.【详解】(1)PA PD = ,O 为AD 的中点,PO AD ∴⊥,侧面PAD ⊥底面ABCD ,侧面PAD ⋂底面ABCD AD =,PO ⊂平面PAD ,PO ∴⊥平面ABCD ;(2) 底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,OC AD ∴⊥,又PO ⊥平面ABCD ,∴以O 为原点,OC 所在直线为x 轴,OD 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,易得平面PAD 的法向量(1,0,0m =设平面PCD 的法向量(,,n x y z = 设二面角C PD A --夹角为θ,则1cos 3m n m n θ⋅==⋅ ,则sin θ2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.(2)由题意,可构建如下图示的空间直角坐标系,令2x =,故(2,1,1)m =- ,又(1,0,0)n = 是面PAD 的一个法向量,所以26cos ,3||||6m n m n m n ⋅<>=== 故平面PMC 与平面PAD 的夹角的余弦值10.(2022秋·广东阳江·高二校联考期中)图90,2,3,2D AB DCAD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.(2)如图②,以D 为坐标原点,DA ,DE 的方向分别为空间直角坐标系.D xyz -则(0,0,0),(3,0,0),(3,2,0),(0,1,0)D A BE ,F 33(,,0)22,133(,,3)22C ,31(,,3)BC =-- ()3,0,0DA = ,DC = 正方形,E 为侧棱PC 的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.【详解】(1)因为底面ABCD 为矩形,所以//AB CD .又AB ⊄平面PCD ,且CD ⊂平面PCD ,所以//AB 平面PCD .又AB ⊂平面ABE ,且平面ABE ⋂平面PCD EF =,所以//AB EF .又因为//AB CD ,所以//CD EF因为E 为PC 的中点,所以F 为PD 的中点.(2)如图所示,以A 为原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则(2,0,0),(2,2,0),(0,0,2),(1,1,1)B C P E ,设(,,)n x y z = 是平面ABE 的法向量,则0,0n AE n AB ⋅=⋅= ,即200x x y z =⎧⎨++=⎩令1y =,则平面ABE 的一个法向量为(0,1,1)n =- 又因为(0,0,2)AP = ,所以点P 到平面ABE 的距离为222|||00+01+21|2||011AP n n ⋅⨯⨯⨯==++ (-),即点P 到平面ABE 的距离为2.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C 的值;若不存在,请说明理由.【详解】(1)如图1,连接BD ,由题意,△ADB 是正三角形,设M 是AB 的中点,则DM ⊥AB ,所以DM ⊥DC ,又DD 1⊥平面ABCD ,所以DM ⊥平面DD 1C 1C.以D 为原点,建立如图所示的空间直角坐标系,则D (0,0,0),D 1(0,0,3),C (0,2,0),B (3,1,0),则BC =(-3,1,0),1BD =(-3,-1,3).显然,平面D 1CD 的一个法向量是()1,0,0m = ,设平面BD 1C 的法向量为n = (x ,y ,z ),则1=30,330,n BC x y n BD x y z ⎧⋅-+=⎪⎨⋅=--+=⎪⎩ 令x =3,得n = (3,3,2),设二面角B -D 1C -D 的平面角为θ,由几何体的特征可知θ为锐角,则cos ||||m n m n θ⋅=⋅=33941++⨯=34.故二面角B -D 1C -D 的平面角的余弦值为34.(2)设11D P D C=λ,即有11λD P D C =,其中01λ≤≤由(1)知D 1(0,0,3),C (0,2,0),则()10,2,3D C =- ,所以P (0,2,33)λλ-+,又D (0,0,0),B (3,1,0),1111为1AA的中点,1BC BD==,1AB AA==(1)求证:DM⊥平面1BDC;(2)求平面1MBC与平面1D B C夹角的余弦值.则()0,0,0D,21,0,2M⎛⎫⎪⎪⎝⎭,2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【详解】(1)解:因为PAD 是正三角形,O 为AD 的中点,所以PO AD ⊥,因为CD ⊥平面PAD ,PO ⊂平面PAD ,PO CD ∴⊥,,,AD CD D AD CD Q Ç=Ì平面ABCD ,PO ∴⊥平面ABCD ,因为AD BC ∥且AD BC =,O 、G 分别为AD 、BC 的中点,所以AO BG ∥且AO BG =,所以四边形ABGO 为平行四边形,15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.则()0,0,0O ,()23,0,0A ,()10,2,4D -,()1123,2,0B C =-∴- ,AB P 为1AD 的中点,则(P()3,3,2BP =∴- ,(BC =- 则33202320n BP x y z n BC x y ⎧⋅=-+=⎪⎨⋅=--=⎪⎩4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.【详解】(1) 平面ABC ⊥平面BCDE ,平面ABC ⋂平面BCDE BC =,CD BC ⊥,BE ⊂平面BCDE ,CD \^平面ABC ,则以C 为原点,,,CA CB CD正方向为,,x y z 轴,可建立如图所示的空间直角坐标系,则()0,0,0C ,()22,0,0A()22,0,23AD ∴=- ,DE设平面ADE 的法向量为n =则2223220AD n x z DE n y ⎧⋅=-+=⎪⎨⋅==⎪⎩DB n ⋅ ,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --的余弦值为10若存在,求出PG PC 的值;若不存在,请说明理由.由题意得(0,1,0),(0,0,2),(2,0,0),(2,2,0),D P B C 所以(1,0,1)DE = ,(2,0,2),PB PD =-=设平面PBD 的法向量(,,)n x y z =,则22020PB n x z PD n y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,解得(1,2,1)n = 设直线DE 与平面PBD 所成角为θ,n DE ⋅,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.令(03)FM λλ=≤≤,则(3,0,0),(0,1,0),(,0,3),(3,0,A B M E λ1111AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.延长DM交AB于点G,可证点G是线段再过点G作GF//AB1与线段BB1交于点20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体11111 AB=,点E在棱AB上移动.2(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.【详解】(1)以D 为坐标原点,分别以1DA DC DD 、、所在直线为x y z 、、轴,建立如图的坐标系,则()()()()()110,0,0,1,0,1,0,0,1,1,0,00,2,0D A D A C ,,所以()11,0,1DA = ,设()1,,0E t ,所以()11,,1D E t =- ,所以11110DA D E ⋅=-= ,故11DA D E ⊥ 所以11D E A D ⊥;(2)设平面1ACD 的法向量为(),,n x y z =r,则()()11,0,1,1,2,0AD AC =-=-,由10,0n AD n AC ⋅=⋅=,得020x z x y -+=⎧⎨-+=⎩,令1x =得11,,12n ⎛⎫= ⎪⎝⎭;(3)当E 为AB 的中点时,()1,1,0E ,则()11,1,1D E =-,由点到平面的距离公式,得()12221111111231112n D E d n ⨯+⨯+⨯-⋅===⎛⎫++ ⎪⎝⎭,边长为2的正方形,PA=,G为CD的中点,E,F是棱PD上两点(F在E的上方),且2EF=.(1)若BF//平面AEG,求DE;(2)当点F到平面AEC的距离取得最大值时,求直线AG与平面AEC所成角的正弦值.则()0,0,0A ,()2,2,0C ,()1,2,0G ,因为2EF =,所以EFC 的面积为定值,又点A 到平面EFC 的距离为定值,所以三棱锥A -EFC 的体积为定值,即三棱锥所以要使点F 到平面AEC的距离最大,则AEC △即E 到AC 的距离最小时,点F 到平面AEC 的距离最大,设()0,2,3E t t -,则()0,2,3AE t t =- ,AC22AE AC⎛⎫⋅ DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=>,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.【详解】(1)∵2AB AD ==,3AE =,5DE =,∴222AD DE AE +=,即AD DE ⊥,又∵在正方形ABCD 中,AD DC ⊥,且DE DC D ⋂=,DE ⊂平面EDC ,DC ⊂平面EDC ,∴AD ⊥平面EDC ,又AD ⊂平面ABCD ,∴平面ABCD ⊥平面EDC ;(2)由(1)知,EDC ∠是二面角E AD C --的平面角,作OE CD ⊥于点O ,则cos 1OD DE EDC =⋅∠=,2OE =,且平面ABCD ⊥平面EDC ,平面ABCD ⋂平面EDC CD =,OE ⊂平面EDC ,∴OE ⊥平面ABCD ,取AB 中点M ,连接OM ,则OM CD ⊥,如图,建立空间直角坐标系,则()2,1,0A -,()2,1,0B ,()0,1,0D -,()0,1,0C ,()0,0,2E ,()2,2,0DB = ,()2,2,0EF λλ=,()0,1,2EC =- ,设平面CEF 的一个法向量为(),,m x y z=,则20220m EC y z m EF x y λλ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11,1,2m ⎛⎫=-- ⎪⎝⎭ ,()22,21,2BF λλ=--,()0,2,0AB = ,设平面ABF 的一个法向量为(),,n a b c =,在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.【详解】(1)由题知AB ⊥面,BEC EC ⊂面BEC ,则AB EC ⊥,由BC 为底面圆的直径,则EC BE ⊥,由BE AB B =I ,,BE AB ⊂面ABE ,则(220,,,1,33BM CA ⎛⎫=-=-+ ⎪ ⎪⎝⎭设()(,,2,CN CA λλλλλ==-∈设面BMN 的法向量为(,,n x y z =r 13λ-⎛⎫,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PGCG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.则()()(0,0,0,3,1,0,3,1,0A BC-()31,,1,0,1,122AE AF ⎛⎫=-= ⎪ ⎪⎝⎭ (0,0,AG AP PG AP PC λ=+=+=设平面AEF 的法向量(,,m a b =ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.【详解】(1)证明:连接BE ,取线段AE 的中点O ,连接,DO OC ,在Rt ADE V 中,DA DE ==,1DO AE DO ∴⊥=,在OEC △中,11,2OE AE ==()()()1,0,1,1,1,0,2,0,0,D C A B -平面ADE 的法向量()10,1,0n =,在平面直角坐标系xOy 中,直线设H 的坐标为(),2,0t t -,()(。
立体几何练习题及解析
立体几何练习题及解析一、选择题1. 下列哪个是正方体?A. 圆柱体B. 球体C. 锥体D. 正四面体解析:正确答案为D。
正四面体是一个具有四个等边三角形面的多面体,也是一种立体几何体。
2. 以下哪个是圆锥体?A. 立方体B. 正方形C. 圆柱体D. 球体解析:正确答案为C。
圆柱体的两个底面都是同心圆,且高度与底面的半径相等。
3. 以下哪个不是球体的属性?A. 没有棱B. 没有边C. 没有顶点D. 没有底面解析:正确答案为D。
球体没有底面,它是由无数个相同半径的小球面组成的。
二、填空题1. 立方体有多少个面?解析:立方体有6个面。
2. 锥体有多少个顶点?解析:锥体有1个顶点。
3. 正四面体有多少个边?解析:正四面体有6个边。
三、计算题1. 一个圆柱体的底面半径为5 cm,高度为8 cm,计算其体积和表面积。
解析:圆柱体的体积公式为V = πr²h,表面积公式为S = 2πrh + 2πr²。
将底面半径r = 5 cm,高度h = 8 cm代入公式计算得:V = π(5)²(8) = 200π cm³S = 2π(5)(8) + 2π(5)² = 80π + 50π = 130π cm²2. 一个球体的半径为10 cm,计算其体积和表面积。
解析:球体的体积公式为V = (4/3)πr³,表面积公式为S = 4πr²。
将半径r = 10 cm代入公式计算得:V = (4/3)π(10)³ = 4000π/3 cm³S = 4π(10)² = 400π cm²3. 一个正方体的边长为6 cm,计算其体积和表面积。
解析:正方体的体积公式为V = a³,表面积公式为S = 6a²。
将边长a = 6 cm代入公式计算得:V = 6³ = 216 cm³S = 6(6)² = 216 cm²四、解答题1. 画出一个平行六面体,其中底面是边长为4 cm的正方形,高度为6 cm。
立体几何基础题题库(360道附详细答案)
S P
S
SS
S
PP
P
R
RR
Pபைடு நூலகம்
Q
R Q
QR
R
P
QR P PQ
Q
R
P
R
Q
QS
R
SS
Q
R
S
SQ R
Q
Q
RP
Q
P
R
S SQ R
P S
R Q
(A)
(B)
(C)
(D)
D
解析: A 项: PS 底面对应的中线,中线平行 QS,PQRS 是个梯形
D'
P
A'
S
C'
B'
R
D
A
B 项: 如图
Q
C B
C 项:是个平行四边形
EG2 FH 2 =2 (EF 2 FG2 ) = 1 ( AC2 BD2 ) 1 (a2 2b)
2
2
27. 如图,在三角形⊿ABC 中,∠ACB=90º, AC=b,BC=a,P 是⊿ABC 所在平面外一点,PB⊥AB, 点,AB⊥MC,求异面直 MC 与 PB 间的距离.
M 是 PA 的中
四边形矛盾。∴EF 和 AD 为异面直线.
26. 在空间四边形 ABCD 中,E,H 分别是 AB,AD 的中点,F,G 分别是 CB,CD 的中点,若 AC + BD
= a ,AC BD =b,求 EG2 FH 2 . A
解析:四边形 EFGH 是平行四边形,…………(4 分)
E H
B F
D
G C
得 OX2+OY2+OZ2=37,OP= 37 .
立体几何练习题(含答案)
立几测001试一、选择题:1.a 、b 是两条异面直线,下列结论正确的是( )A .过不在a 、b 上的任一点,可作一个平面与a 、b 都平行B .过不在a 、b 上的任一点,可作一条直线与a 、b 都相交C .过不在a 、b 上的任一点,可作一条直线与a 、b 都平行D .过a 可以且只可以作一个平面与b 平行2.空间不共线的四点,可以确定平面的个数为 ( )A.0 B.1 C.1或4 D.无法确定3.在正方体1111ABCD A B C D -中,M 、N 分别为棱1AA 、1BB 的中点,则异面直线CM 和1D N 所成角的正弦值为 ( ) A.19 B.2345 254.已知平面α⊥平面β,m 是α内的一直线,n 是β内的一直线,且m n ⊥,则:①m β⊥;②n α⊥;③m β⊥或n α⊥;④m β⊥且n α⊥。
这四个结论中,不正确...的三个是 ( )A.①②③ B.①②④ C.①③④ D.②③④5.一个简单多面体的各个面都是三角形,它有6个顶点,则这个简单多面体的面数是( ) A. 4 B. 5 C. 6 D. 86. 在北纬45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为(设地球半径为R )( ) A.R π42 B. R 3π C. R 2π D. 3R7. 直线l ⊥平面α,直线m ⊂平面β,有下列四个命题(1)m l ⊥⇒βα// (2)m l //⇒⊥βα (3)βα⊥⇒m l // (4)βα//⇒⊥m l 其中正确的命题是( )A. (1)与(2)B. (2)与(4)C. (1)与(3)D. (3)与(4)8. 正三棱锥的侧面均为直角三角形,侧面与底面所成角为α,则下列不等式成立的是( ) A. 60πα<< B.46παπ<< C.34παπ<< D.23παπ<<9.ABC ∆中,9AB =,15AC =,120BAC ∠=︒,ABC ∆所在平面α外一点P 到点A 、B 、C 的距离都是14,则P 到平面α的距离为( )A.7 B.9 C.11 D.1310.在一个45︒的二面角的一个平面内有一条直线与二面角的棱成角45︒,则此直线与二面角的另一个平面所成角的大小为 ( )A.30︒ B.45︒ C.60︒ D.90︒11. 如图,E, F 分别是正方形SD 1DD 2的边D 1D,DD 2的中点, 沿SE,SF,EF 将其折成一个几何体,使D 1,D,D 2重合,记作 D.给出下列位置关系:①SD ⊥面DEF; ②SE ⊥面DEF;③DF ⊥SE; ④EF ⊥面SED,其中成立的有: ( )A. ①与② B. ①与③ C. ②与③ D. ③与④12. 某地球仪的北纬60度圈的周长为6πcm,则地球仪的表面积为( )A. 24πcm 2B. 48πcm 2C. 144πcm 2D. 288πcm 2二、填空题(本大题共4小题,每小题4分,共16分) 13. 直二面角α—MN —β中,等腰直角三角形ABC 的斜边BC ⊂α,一直角边AC ⊂β,BC 与β所成角的正弦值是46,则AB 与β所成角大小为__________。
高中数学立体几何习题(含答案与解析)
立体几何试卷五一、选择题1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角 5、若直线l 平面α,直线a α⊂,则l 与a 的位置关系是A 、l aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 二、填空题1、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).2、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为3、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .4、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1. 5.正三棱锥P -ABC 中,三条侧棱两两垂直,且侧棱长为a ,则P 点到面ABC 的距离是6.三个平面两两垂直,它们的三条交线交于一点O ,P 到三个面的距离分别是6,8,10,则OP 的长为 。
(理科)已长方体的全面积是8,则其对角线长的最小值是 认为正确的一种条件即可,不必考虑所有可能的情形.) 三、解答题1、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(10分) 2、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥BD . (12分)3、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)4、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,H G FE DB A CSD CB A四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域. (12分)5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)1C O 面11AB D ;(2 )1AC ⊥面11AB D . (14分)6、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AFAC AD λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)7、如图3所示,一个圆锥形的空杯子上面放着一个半球形冰淇淋,如果冰淇淋融化了,会溢出杯子吗?8、矩形ABCD 中,1,(0)AB BC a a ==>,PA ⊥平面AC ,BC 边上存在点Q ,使得PQ QD ⊥,求a 的取值范围.参考答案选择ACDDDB填空1、小于2、平行3、菱形4、1111AC B D 对角线与互相垂直5、设P 点到面ABC 的距离为h ,由体积公式可得:()3261231a h a =⋅,故a h 332=。
高三精选立体几何大题30题(含详细解答)
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
高中几何体试题及答案解析
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
立体几何大题训练题(含答案)
立体几何大题训练题一、解答题(共17题;共150分)1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC= ,AB=4,BC=3,CD= ,AD=2 ,PA=4.(1)证明:CD⊥平面PAD;(2)求二面角B-PC-D的余弦值..2.如图,在四棱锥中,平面,在四边形中,,,,,,.(1)证明:平面;(2)求B点到平面的距离3.如图,在四棱锥中,底面为长方形,底面,,,为的中点,F 为线段上靠近B 点的三等分点.(1)求证:平面;(2)求平面与平面所成二面角的正弦值.4.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.5.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且MC=2MB,求点C到平面POM的距离.6.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值. 7.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.8.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.9.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值。
10.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(1)求证:直线平面;(2)求平面和平面所成的锐二面角的余弦值.11.如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,∠ABC=90°.∠BAC=30°,A1A=A1C=AC,E,F 分别是AC,A1B1的中点(1)证明:EF⊥BC(2)求直线EF与平面A1BC所成角的余弦值.12.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.13.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.14.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.15.如图所示多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,点E,F分别为AD,BP的中点,AD =3,AP=3 ,PC .(1)求证:EF//平面PDC;(2)若∠CDP=120°,求二面角E﹣CP﹣D的平面角的余弦值.16.如图,四棱锥中,侧棱垂直于底面,,,为的中点,平行于,平行于面,.(1)求的长;(2)求二面角的余弦值.17.如图,在斜三棱柱中,侧面,,,,.(Ⅰ)求证:平面平面;(Ⅱ)若为中点,求二面角的正切值.答案解析部分一、解答题1.【答案】(1)解:连接,由∠ABC= ,AB=4,BC=3,则,又因为CD= ,AD=2 ,所以,即,因为PA⊥平面ABCD,平面ABCD,所以,因为,所以CD⊥平面PAD;(2)解:以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为z轴,建立空间直角坐标系,如图:作交与点G,,即,所以,,所以,所以,,,,则,,,设平面的一个法向量为,则,即,令,则,,即,设平面的一个法向量为,则,即,令,则,,即,由,所以二面角B-PC-D的余弦值为.【解析】【分析】(1)连接,证出,利用线面垂直的性质定理可得,再利用线面垂直的判定定理即可证出.(2)以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为轴,建立空间直角坐标系,分别求出平面的一个法向量与平面的一个法向量,利用向量的数量积即可求解.2.【答案】(1)解:在平面中,,,,则,又,∴,即,又平面,则,又,∴平面.(2)解:在平面中,过A作BC的平行线交CD的延长线于M,因为,,,则,又因为,,所以.所以又,则,所以,在中,.因为,则面,所以由可知:,,所以,则,因此P点到平面的距离为.【解析】【分析】(1)在三角形中,由勾股定理可证得,由平面,可得,根据线面垂直的判定定理即可证得结论;(2) 在平面中,过A作BC的平行线交CD 的延长线于M,因为利用等体积转换即可求得距离.3.【答案】(1)证明:,为线段中点,.平面,平面,.又底面是长方形,.又,平面.平面,. 又,平面.(2)解:由题意,以为轴建立空间直角坐标系,则,,,,,.所以, ,,,设平面的法向量,则,即,令,则,,,同理可求平面的法向量,,,即平面与平面所成角的正弦值为.【解析】【分析】(1)通过,可证明平面,进而可得,结合证明线面垂直.(2)以为轴建立空间直角坐标系,可求出平面的法向量,平面的法向量,则可求出两向量夹角的余弦值,从而可求二面角的正弦值.4.【答案】(1)解:由已知可得,BF⊥PF,BF⊥EF,又,∴BF⊥平面PEF.∴又平面ABFD,平面PEF⊥平面ABFD.(2)解:作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE= .又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量. 设DP与平面ABFD所成角为,则.∴DP与平面ABFD所成角的正弦值为.【解析】【分析】(1)在翻折过程中,作于H,由得到,从而得到面面垂直;(2)DP与平面所成的角就是,在三角形中求其正弦值.5.【答案】(1)∵PA=PC=AC=4 且O是AC的中点∴PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)过点C作CH⊥OM交OM于点H又∵PO⊥平面ABC∴∴CH的长度为点C到平面POM的距离在△COM中,CM= ,OC=2,∠OCM=45°∴∴OM=∴【解析】【分析】(1)由线面垂直的判定定理易得;(2)由线面垂直可得面面垂直,易找点面距,可求.6.【答案】(1)PA=PC=AC=4 且O是AC的中点PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)∵PO⊥平面ABC,∴PO⊥OB∴AB=BC=2 O是AC的中点∴OB⊥AC OB⊥平面PAC如图所示以O为坐标原点,为x轴正方向建立如图所示的直角坐标系O-xyz则P(0,0,)A(,0,-2,0),C(0,2,0),B(2,0,0)平面PAC法向量为=(1,0,0)设M(x,2-x,0)平面PAC法向量为=(1,λ,μ),=(0,2,), = (x,4-x,0)则即即得到,∴x=-4(舍),x=即M∴PAM的法向量记PC与平面PAM所成的角为θ∴即PC与平面PAM所成的角为的正弦值为.【解析】【分析】(1)由线面垂直的判定定理易得;(2)先由条件建系,找到点M的位置,再用公式求线面角.7.【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.8.【答案】(1)解:由已知得,平面,平面,故.又,所以平面.(2)由(1)知.由题设知,所以,故,.以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,.设平面EBC的法向量为=(x,y,x),则即所以可取= .设平面的法向量为=(x,y,z),则即所以可取=(1,1,0).于是.所以,二面角的正弦值为.【解析】【分析】(1)根据题意由线面垂直的性质得出线线垂直,再由线线垂直的判定定理出线面垂直。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
立体几何基础题题库(600道附详细答案)
立体几何基础题题库(有详尽答案)1、二面角 l 是直二面角, A, B ,设直线 AB 与 、 所成的角分别为∠ 1 和∠ 2,则( A )∠ 1+∠ 2=90 0 (B )∠ 1+ ∠ 2≥900( C )∠ 1+ ∠ 2≤ 900(D )∠ 1+∠ 2<900分析: CA 12B,以下图作协助线,分别作两条与二面角的交线垂直的线,则∠ 1和∠2分别为直线 AB 与平面所成的角。
依据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的全部角中最小的角ABO2 Q ABO1 90o2 1 90o2. 以下各图是正方体或正四周体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面 的一个...图是PSPPSSPSSSSPSPQPPRRR PPQRR Q RRPQ RP QPRPRQPQQPR RS SSQQ R SQSSQRRQS SR QQQ( A )( B )( C )(D )D分析: A 项:PS PQS , PQRS 是个梯形底面对应的中线,中线平行D'SC 'PA'DAQB 项:如图B'RCBC 项:是个平行四边形D项:是异面直线。
3. 有三个平面,β,γ ,以下命题中正确的选项是( A )若,β,γ 两两订交,则有三条交线(B)若⊥ β,⊥ γ,则β∥γ( C)若⊥ γ,β∩=a,β∩γ=b,则 a⊥ b(D)若∥ β,β∩γ=,则∩γ=D分析: A 项:如正方体的一个角,三个平面订交,只有一条交线。
B项:如正方体的一个角,三个平面相互垂直,却两两订交。
C项:如图4.以下图,在正方体 ABCD -A1B1C1D1的侧面 AB 1内有一动点 P 到直线 AB 与直线 B1C1的距离相等,则动点 P 所在曲线的形状为A B A B A B A B D CO O O A BPP P PP D1C1A 1B 1 A 1 B 1 A 1 B 1 A 1 B1A 1 B1CD' C'A' B'PD C分析: B1C1 平面 AB1B1C1 A P 点到定点 B 的距离与到定直线AB 的PB,,如图:B距离相等,成立坐标系绘图时能够以点B1B 的中点为原点成立坐标系。
最新-立体几何综合练习题(附详解)[原创] 精品
立体几何练习题 一、选择题1.两条异面直线在同一平面内的射影不可能是( )A.两条相交直线B.两条平行直线C.两条重合直线D.一条直线和这条直线外一点2.设命题甲:“直四棱拄1111D C B A ABCD -中,平面1ACB 与对角面D D BB 11垂直”;命题乙:“直四棱柱1111D C B A ABCD -是正方体”。
那么,甲是乙的( )A .充分必要条件 B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件3.某电视台的颁奖礼盒用如下方法做成:先将一个奖品放入一个正方体内,再将正方体放在一个球内,使正方体内接于球;然后再将该球放入一个正方体内,球内切于该正方体,再将正方体放入一个球内,正方体内接于球,……如此下去,正方体与球交替出现.如果正方体与球共有13个,最大正方体的棱长为162cm ,奖品为羽毛球、篮球、乒乓球拍、手表、项链之一,则奖品只能是(构成礼品盒材料的厚度忽略不计)( ) A .项链 B.项链或手表 C.项链或手表,或乒乓球拍 D.项链或手表,或乒乓球拍,或篮球4.已知平面α//平面β,直线α⊂l ,点l P ∈,平面βα、间的距离为8,则在β内到点P 的距离为10且到直线l 的距离为9的点的轨迹是( )A.一个圆B.两条直线C.四个点D.两个点5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛原来水的( )A .2923 B.2723 C.2719 D.5531(第5题)二、填空题6.一个十二面体共有8个顶点,其中两个顶点处各有6条棱,其他顶点处各有相同数目的棱,则其他顶点各有 条棱7.AB 是异面直线b a 、的公垂线段,b a AB 、,2=成30角,在a 上取P 点使4=AP ,则点p 到b 的距离等于SCBA8.如图所示,二面角βα--CD 的大小为θ,点A 在平面α内,ACD ∆的面积为S ,且m CD =,过A 点的直线交平面于B ,CD AB ⊥,且AB 与平面β所成的角为 30,则当=θ 时,BCD ∆的面积取得最大值。
立体练习题和答案
立体练习题和答案立体几何是高中数学中的一个重要分支,它涉及到空间中的点、线、面以及它们之间的关系。
以下是一些立体练习题以及相应的答案,供学生练习和参考。
练习题1:空间直线与平面的位置关系题目:在空间直角坐标系中,直线l1过点A(1, 2, 3)且与向量\( \vec{a} = (4, -1, 2) \)平行,直线l2过点B(-1, 1, 0)且与向量\( \vec{b} = (1, 2, -1) \)平行。
求证l1与l2平行。
答案:首先,我们可以写出直线l1和l2的参数方程。
对于直线l1,参数方程为:\[ x = 1 + 4t, \quad y = 2 - t, \quad z = 3 + 2t \]对于直线l2,参数方程为:\[ x = -1 + t, \quad y = 1 + 2t, \quad z = -t \]由于直线l1与向量\( \vec{a} \)平行,直线l2与向量\( \vec{b} \)平行,我们可以比较它们的向量方向。
直线l1的方向向量为\( \vec{a} \),直线l2的方向向量为\( \vec{b} \)。
由于\( \vec{a} = 4\vec{b} \),这表明l1和l2的方向向量是成比例的,因此l1与l2平行。
练习题2:空间多面体的体积题目:一个正四面体的顶点坐标分别为A(1, 0, 0),B(-1, 0, 0),C(0, 1, 0),D(0, -1, √3)。
求此正四面体的体积。
答案:首先,我们可以计算出正四面体的边长。
由于A和B的坐标只在一个轴上不同,它们之间的距离是2。
同理,C和D,以及B和D之间的距离也是2。
接下来,我们可以利用四面体的高来计算体积。
高h可以通过向量\( \vec{AB} \)和\( \vec{CD} \)的点积来求得,因为\( \vec{AB} \)和\( \vec{CD} \)垂直。
计算得到:\[ h = \frac{|\vec{AB} \cdot \vec{CD}|}{|\vec{AB}|} =\frac{|-1 - 0 + 0 - 0|}{\sqrt{1^2 + 0^2 + 0^2}} = \sqrt{3} \]正四面体的体积V可以通过公式V = \(\frac{1}{3}\) * 底面积 * 高来计算。
立体几何测试题带答案解析
姓名____________班级___________学号____________分数______________一、选择题1 .下列说法正确的是( )A .三点确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .平面α和平面β有不同在一条直线上的三个交点2 .若α//β,a//α,则a 与β的关系是( )A .a//βB .a β⊂C .a//β或a β⊂D .A a =β3 .三个互不重合的平面能把空间分成n 部分,则n 所有可能值为( )A .4、6、8B .4、6、7、8C .4、6、7D .4、5、7、84 .一个体积为1的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为( )A .36B .8C .38D .125 .若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是( )A .l ∥aB .l 与a 异面C .l 与a 相交D .l 与a 没有公共点6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为( )A .1:2:3B .1:4:9C .2:3:4D .1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为( )A .π12B .π24C .π36D .π488 .若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A .相交B .异面C .平行D .异面或相交9 .设正方体的棱长为233,则它的外接球的表面积为 ( )A .π38B .2πC .4πD .π3410.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 A .π7 B .π14 C .π21 D .π2811.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )A .12l l ⊥,23l l ⊥13//l l ⇒B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒ 1l ,2l ,3l 共面D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面12.如图,正方体1111A B C D A B C D -中,E ,F分别为棱A B ,1C C 的中点,在平面11A D D A 内且与平面1D E F 平行的直线 ( ) A .有无数条 B .有2条C .有1条 D .不存在二、填空题13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸,计算这个几何体的表面积是______.14.如图,在正方体1111A B C D A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P A B C -的主视图与左视图的面积的比值 为_________.ABCD A 1 B 1C 1D 1EF15.如图,正方体1111A B C D A B C D -中,2A B =,点E 为A D 的1A B C ,中点,点F 在C D 上,若//E F 平面则E F =________.16.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)矩形;(3)正方形;(4)正六边形.其中正确的结论是____________.(把你认为正确的序号都填上)三、解答题17.如图1,空间四边形ABCD 中,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边BC ,CD 上的点,且32==CDCG CBCF ,求证:直线EF ,GH ,AC 交于一点.18.如果一个几何体的主视图与左视图都是全等的长方形,边长分别是4cm 与2cm 如图所示,俯视图是一个边长为4cm 的正方形. (1)求该几何体的全面积.(2)求该几何体的外接球的体积.PDC B A 1A 1D 1B 1C 左视主视AB C DE F 1A 1B 1C 1D19.空间四边形ABCD 的对角线AC=8,BD=6,M 、N 分别为AB 、CD 的中点,MN=5,求异面直线AC 与BD 所成的角20.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S .21.如图,四棱柱1111A B C D A B C D -中,底面A B C D 是正方形,侧棱1A A ⊥底面A B C D ,E为1A A 的中点.求证:1A C ∥平面E B D .ABCDNM 俯视图主视图左视图4224422.如图是一个长方体截去一个角所得的多面体的直观图及它的正(主)视图和侧(左)视图(单位:cm).(I)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积;(Ⅲ)在所给直观图中连结'B C ,证明:'B C ∥平面E F G .直观图E正视图AB B 1A 1 CC 1ED 1 D全国卷设置参考答案一、选择题 1. C 2. C 3. B 4. A 5. D 6. B 7. B 8. D 9. D 10. D 11.答案:B解析:A 答案还有异面或者相交,C 、D 不一定 12. A二、填空题 13. 11π 14. 116. (2),(3),(4) 三、解答题17.提示:FG EH //且FG EH ≠,四边形EFGH为梯形.设EF 与GH 交于点P ,证∈P (平面 ABC 平面DAC ).18.解:(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64cm2几何体的全面积是64cm 2..6(2)由长方体与球的性质可得,长方体的对角线是球的直径,记长方体的对角线为d,球的半径是r,d=63641616==++所以球的半径r=3因此球的体积v=3336273434cmr πππ=⨯=,所以外接球的体积是336cm π 1219.解:取AD 的中点Q,连接MQ 、NQ又∵M、N 分别是AB 、CD 的中点 ∴MQ∥BD,NQ∥AC 且AC NQ BD MQ 21,21==∴∠MQ N 为异面直线AC 与BD 所成角或补角 又AC=8,BD=6,MN=5∴△MQN 中,MQ=3,NQ=4,MN=5即△MQN 为直角三角形且∠MQN=90° ∴异面直线AC 与BD 所成的角为90°20.参考答案:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为1h 的等腰三角形,左、右侧面均为底边长为6,高为2h 的等腰三角形. (1)几何体的体积为为116846433V S h ==⨯⨯⨯=矩形.(2)正侧面及相对侧面底边上的高为:15h ==,左、右侧面的底边上的高为:2h ==故几何体的侧面面积为:S = 2×(12×8×5+12402=+考查内容:简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,三视图所表示的立体模型,球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式) 认知层次:b 难易程度:中21.参考答案:连接A C ,设A C B D F =,连接E F ,因为底面A B C D 是正方形, 所以F 为A C 的中点. 又E 为1A A 的中点,所以E F 是△1A A C 的中位线. 所以E F ∥1A C .因为E F ⊂平面E B D ,1A C ⊄平面E B D , 所以1A C ∥平面E B D .考查内容:直线与平面平行的判定定理,空间图形的位置关系的简单命题 认知层次:c 难易程度:中ABB 1A 1 C C 1 ED 1 D F22.解:(Ⅰ)如图俯视图(Ⅱ)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭3284(c m )3=(Ⅲ)证明:在长方体A B C D A B C D ''''-中,连结A D ',则A D B C ''∥.因为E G ,分别为A A ',A D ''中点, 所以A D E G '∥,从而E G B C '∥.又B C '⊄平面E F G , 所以B C '∥平面E F GABC DE FGA 'B 'C 'D '。
立体几何综合大题20道
立体几何综合大题(理科)40 道及答案1、四棱锥中 , ⊥底面 ,,,.( Ⅰ) 求证 : ⊥平面;( Ⅱ) 若侧棱上的点满足 , 求三棱锥的体积。
【答案】( Ⅰ) 证明 : 由于BC=CD,即BCD 为等腰三角形,又ACB ACD ,故 BD AC .由于PA底面ABCD ,因此PA BD ,从而BD与平面PAC 内两条订交直线PA, AC都垂直,故⊥平面。
( Ⅱ) 解:S BCD 1BC ? CD ? sin BCD1 2 2 sin23. 223由 PA1SBCD PA13 23 2 .底面 ABCD 知V P BDC33由 PF7FC , 得三棱锥F BDC 的高为1PA , 81113131故:V F BDC S BCD PA243838V P BDF V P BCD V F BCD17 2442、如图,四棱锥P ABCD 中,四边形ABCD 为矩形,PAD 为等腰三角形,APD 90 ,平面 PAD平面ABCD,且AB1, AD 2 ,E, F 分别为PC和 BD 的中点.(Ⅰ)证明: EF P 平面PAD;(Ⅱ)证明:平面PDC平面PAD;(Ⅲ)求四棱锥 P ABCD 的体积.O【答案】(Ⅰ)证明:如图,连接AC .∵四边形 ABCD 为矩形且F是BD的中点.∴F也是 AC 的中点.又E 是PC的中点, EF P AP∵ EF平面 PAD , PA 平面 PAD ,因此 EF P 平面PAD ;(Ⅱ)证明:∵平面 PAD平面 ABCD , CD AD ,平面 PAD I平面ABCD AD ,因此平面 CD平面 PAD ,又 PA 平面 PAD ,因此PA CD又 PA PD , PD , CD 是订交直线,因此 PA 面PCD又 PA平面 PAD ,平面 PDC平面 PAD ;(Ⅲ)取 AD 中点为 O .连接 PO , PAD 为等腰直角三角形,因此 PO AD ,由于面 PAD面 ABCD 且面 PAD I 面 ABCD AD ,因此, PO面 ABCD ,即 PO 为四棱锥 P ABCD 的高.由 AD 2 得PO 1.又 AB1.∴四棱锥 P ABCD 的体积V 1PO AB AD2 33考点:空间中线面的地址关系、空间几何体的体积.3、如图,在四棱锥P ABCD 中,PD平面 ABCD,CD PA ,DB均分ADC,E为PC的中点,DAC45o,AC 2 .(Ⅰ)证明: PA ∥平面 BDE ;(Ⅱ)若 PD 2, BD 2 2,求四棱锥 E ABCD 的体积【答案】(Ⅰ)设 AC BD F ,连接 EF,PD 平面 ABCD , CD平面ABCD,PD CD又CD PA, PD PA P, PD , PA平面PADCD 平面 PAD , AD平面PAD CD AD∵DAC 45 , ∴ DA DC ,∵ DB 均分ADC , F 为AC中点, E 为PC中点,∴EF 为 CPA 的中位线 .∵ EF ∥PA, EF平面BDE,PA平面BDE∴PA ∥平面 BDE .( Ⅱ) 底面四边形 ABCD 的面积记为 S;S S ADC S ABC1221232 2 .2222点 E为线段 PC的中点,VE ABCD1S1PD1212 2 .32323考点: 1. 线面平行的证明; 2. 空间几何体的体积计算 .4、如图,在四棱锥中,底面为菱形,其中,为的中点.,(1)求证: AD 平面 PQB ;(2)若平面平面ABCD ,且M为PC的中点,求四棱锥M ABCD 的体积.【答案】( 1)Q PA PD ,Q为中点,AD PQ连DB ,在ADB中,AD AB,,ABD 为等边三角形,为的中点,AD BQ ,PQ BQ Q , PQ平面PQB,BQ平面PQB, AD 平面 PQB .( 2)连接QC , 作MH QC 于 H .Q PQ AD , PQ平面PAD ,平面 PAD平面ABCD AD ,平面平面 ABCD,PQ 平面 ABCD , QC平面 ABCD , PQ QCPQ / / MH .MH平面 ABCD ,又 PM 12 PC ,MH1PQ132 3 .2222在菱形 ABCD 中,BD 2 ,SABD1AB AD sin 600 =122 3 = 3 ,222 S菱形ABCD 2SABD2 3 .V M ABCD 113.S菱形ABCD MH 2 31 3325 、如图,是矩形中边上的点,为边的中点,,现将沿边折至地址,且平面平面.⑴ 求证:平面平面;⑵求四棱锥的体积 .【答案】 (1)证明:由题可知,(2),则.6、已知四棱锥中,是正方形, E 是的中点,PEA BD C(1) 若PD AD ,求PC与面AC所成的角(2)求证:平面(3)求证:平面 PBC⊥平面 PCD【答案】平面,是直线在平面 ABCD 上的射影,是直线 PC 和平面 ABCD 所成的角。
《立体几何》综合试卷与答案
设直线 l 的倾斜角为 α,则 tan α= 715,∴cos α=78,故 A 正确; P 在第一象限内,若|F1P|=|F1F2|,则|PF1|=|F1F2|=2c,|PF2|=2c-2a, 由余弦定理得4c2+4c2-8c22c-2a2=78,整理得 3e2-8e+4=0,解得 e= 2 或 e=23(舍),故 B 错误;
二、多项选择题(本大题共4小题,每小题5分,共20分,全部选对的得5
分,部分选对的得2分,有选错的得0分)
9.若圆C:x2+y2-2x+4y-20=0上有四个不同的点到直线l:4x+3y+c
=0的距离为2,则c的取值可能是
A.-13
√B.13
√C.15
D.18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
即 4c2=4a2+16a2-2×2a×4a·-21=28a2, 得 c= 7a,
由此可得双曲线 C 的离心率 e=ac= 7.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2+2 ∴切线 l 的方程为 y-4=43(x+2),即 4x-3y+20=0. 又直线m与切线l平行, ∴直线m的方程为4x-3y=0. 故切线 l 与直线 m 间的距离 d= 4|20+-2-0|32=4.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
5.过点P(-2,4)作圆C:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0 与切线l平行,则切线l与直线m间的距离为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何练习题 一、选择题1.两条异面直线在同一平面内的射影不可能是( )A.两条相交直线B.两条平行直线C.两条重合直线D.一条直线和这条直线外一点2.设命题甲:“直四棱拄1111D C B A ABCD -中,平面1ACB 与对角面D D BB 11垂直”;命题乙:“直四棱柱1111D C B A ABCD -是正方体”。
那么,甲是乙的( )A .充分必要条件 B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件3.某电视台的颁奖礼盒用如下方法做成:先将一个奖品放入一个正方体内,再将正方体放在一个球内,使正方体内接于球;然后再将该球放入一个正方体内,球内切于该正方体,再将正方体放入一个球内,正方体内接于球,……如此下去,正方体与球交替出现.如果正方体与球共有13个,最大正方体的棱长为162cm ,奖品为羽毛球、篮球、乒乓球拍、手表、项链之一,则奖品只能是(构成礼品盒材料的厚度忽略不计)( ) A .项链 B.项链或手表 C.项链或手表,或乒乓球拍 D.项链或手表,或乒乓球拍,或篮球4.已知平面α//平面β,直线α⊂l ,点l P ∈,平面βα、间的距离为8,则在β内到点P 的距离为10且到直线l 的距离为9的点的轨迹是( )A.一个圆B.两条直线C.四个点D.两个点5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛原来水的( )A .2923 B.2723 C.2719 D.5531(第5题)二、填空题6.一个十二面体共有8个顶点,其中两个顶点处各有6条棱,其他顶点处各有相同数目的棱,则其他顶点各有 条棱7.AB 是异面直线b a 、的公垂线段,b a AB 、,2=成30角,在a 上取P 点使4=AP ,则点p 到b 的距离等于SCBA8.如图所示,二面角βα--CD 的大小为θ,点A 在平面α内,ACD ∆的面积为S ,且m CD =,过A 点的直线交平面于B ,CD AB ⊥,且AB 与平面β所成的角为 30,则当=θ 时,BCD ∆的面积取得最大值。
9.对于四面体ABCD 给出下列四个命题①若CD BD AC AB ==,,则AD BC ⊥②若,,BD AC CD AB ==则AD BC ⊥③若,,CD BD AC AB ⊥⊥则AD BC ⊥④若,,AC BD CD AB ⊥⊥则AD BC ⊥.其中真命题的序号是 (写出所有真命题的序号)10.如图,长方形中,,32BC AB =把它折成正三棱柱的侧面,使AD 与BC 重合,长方形的对角线AC 与折痕线EF 、GH 分别交于M 、N ,则截面MNA 与棱柱的底面DFH 所成的角等于(第8题) (第10题)三、解答题11.正四棱柱1AC 中,底面ABC D 是边长为4的正方形,11C A 与11D B 交于点M ,且BN AM ⊥(1)求1AA 的长(2)求异面直线BN 与1AD 所成的角(3)对于n 个向量n a a a a ,,,,321 ,如果存在不全为零的n 个实数n λλλλ,,,,321 ,使得02211=+++n n a a a λλλ 成立,则n 个向量n a a a ,,,21 叫做线性相关,不是线性相关的向量叫做线性无关,判断CD BN AM ,,是否线性相关,并说明理由12.如图所示,在矩形ABCD 中,⊥==PA a BC AB ,,1平面1,=PA ABCD (1)在BC 边上是否存在点Q ,使得QD PQ ⊥,说明理由NMH GF EDCBADCBAβα(2)若BC 边上有且仅有一个点Q ,使QD PQ ⊥,求AD 与平面PDQ 所成角的正弦值 (3)在(2)的条件下,能求出平面PDQ 与平面PAB 所成的角的大小吗?(第12题) (第14题)作业题:13.已知斜三棱柱111C B A ABC -的各棱长均为2,侧棱1BB 与底面ABC 所成角为3π,且侧面11A ABB 垂直于底面ABC(1)求证:点1B 在平面ABC 上的射影为AB 的中点 (2)求二面角B AB C --1的大小(3)判断C B 1与A C 1是否垂直,并证明你的结论14.已知ABCD 为直角梯形,BC AD //,PA BC AB AD BAD ,2,1,90====∠⊥平面ABCD(1)若异面直线PC 与BD 所成的角为θ,且63cos =θ,求||PA (2)在(1)的条件下,设E 为PC 的中点,能否在BC 上找到一点F ,使?CD EF ⊥ (3)在(2)的条件下,求二面角D PC B --的大小ABC PQPDCB A15.点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M ,1BB PN ⊥交1CC 于点N(1)求证:MN CC ⊥1(2)在任意DEF ∆中有余弦定理:DEF EF DF EF DF DE ∠⋅-+=cos 2222,拓展到空间,类比三角形的余弦定理,求出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明 答案:CCBCB6、47、228、60 9、①④ 10、3011、解:(1)以D 为原点,1DD DC DA 、、所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系。
设1AA 的长为a ,则),2,2()22044a a N B --=∴,,(),,,()0,0,4(A ,)2,4,2(a M )2,4,2(a AM -=∴由⊥得028402=+-∴=⋅a22=∴a 即1AA 的长为22(2)可得)22,0,4(),22,2,2(1-=--=AD36||||,cos 111=⋅>=<∴AD BN AD 36arccos ,1>=∴<AD (3)由)0,4,0(),22,2,2(),2,4,2(-=--=-=00)0,4,0()22,2,2()2,4,2(321321===⇒=-+--+-λλλλλλ线性无关12.(1)假设BC 边上存在Q 点,使得QD PQ ⊥,则连结AQ ,必有90=∠AQD ,故问题转化为:在边BC 上是否存在点Q ,使得90=∠AQDABC1C 1B 1A由平面几何知识,问题又可转化为:以AD 为直径作圆,是否与BC 边有交点? 易知,当AD AB 21≤时,即2≥a 时,BC 边上存在点Q ,使得 90=∠AQD ,从而由三垂线定理有QD PQ ⊥; 当,21AD AB >即2<a 时,不存在点Q ,使得QD PQ ⊥ (2)当BC 边上有且仅有一个点Q ,使得QD PQ ⊥,可知,2=BC 点Q 为BC 边上的中点⊥∴⊥⊥DQ PA DQ AQ DQ , 平面PAQ∴平面⊥PAQ 平面PQD ,过A 作PQ AE ⊥于E 点,连接⊥∴AE DE ,平面PDQADE ∠∴为AD 与平面PDQ 所成的角。
在PAD Rt ∆中,36,=∴⋅=⋅AE PQ AE AQ PA 在AED Rt ∆中,36,=∴⋅=⋅AE PQ AE AQ PA 在AED Rt ∆中,66sin ==AD AE ADE (3)延长AB DQ 、交于F 点,则二面角A PF D --为所求⊥∴⊥⊥AD PA AD AB AD ,, 平面PAB ,过A 作PF AH ⊥于H 点,连结DH ,则DHA PF DH ∠∴⊥,为二面角A PF D --的平面角在PAFRt ∆中,552=∴⋅=⋅AH FA PA PF AH 在DAHRt ∆中,5a r c t a n 5t a n =∠∴==DHA AHADDHA ∴平面P Q D 与平面PAB 所成角为5arctan13.解:(1)在平面11A ABB 内过1B 点作AB D B ⊥1于D侧面⊥1BA 平面⊥∴D B ABC 1,平面ABC BA B 1∠∴是1BB 与平面ABC 所成的角,111,60A ABB BA B =∠是菱形,1ABB ∆∴是正三角形D ∴是AB 中点,即1B 在平面ABC 上的射影为AB 中点(2)连接ABC CD ∆ ,为正三角形,AB CD ⊥∴,又 平面⊥ABC 平面B A 1,⊥∴CD 平面B A 1,在平面1BA 内过D 作1AB DE ⊥于E ,连结,CE 则1AB CE ⊥CED ∠∴是二面角B AB C --1的平面角在CED Rt ∆中,360sin 2==CD ,连1BA 交1AB 于O ,则2233tan ,2321,3======DECDCED BO DE OB∴所求二面角B AB C --1为2arctan(3)A C BC 11⊥,连接 ,1BC 四边形C C BB 11是菱形,⊥⊥∴CD CB BC ,11面11A ABB 且⊥∴⊥AB AB D B ,1面⊥∴⊥∴C B C B AB CD B 111,,平面1ABC ,11AC C B ⊥∴ 14.(1)解:以A 点为原点,AP AB AD 、、所在直线分别作为x 轴、y 轴、z 轴建立空间直角坐标系,设a PA =||,则);0,0,1(),0,1,0(),0,1,2(),,0,0(D B C a P )0,1,1(),,1,2(-=-=∴a 由已知得:63521||||cos 2=+⋅=⋅=a BD PC θ),0(1>=∴a a 即1||=PA (2)设能在BC 上找到点F ,使.CD EF ⊥设),0,1,(x F 由(1)知)1,0,0(P ,)21,21,1(E ∴, 则),21,21,1(--=x EF 又有0211,)0,1,1(=+-=⋅∴⊥--=x CD EF CD EF CD 21=∴x 即存在点)0,1,21(F 满足要求 (3)PC EF ⊥∴=-⋅--=⋅0)1,1,2()21,21,21(又CD EF ⊥ 且⊥∴=⋂EF C CD PC ,平面⊂EF PCD ,平面PCB∴平面⊥PCD 平面,PCB 故二面角D PC B --的大小为 9015.(1)证明:⊥∴⊥⊥⇒11111,,//CC PN CC PM CC BB CC 平面PMNMN CC ⊥⇒1(2)解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+= 其中α为平面B B CC 11与平面11A CC 所组成的二面角⊥1CC 平面,P M N∴上述的二面角为MN P ∠,在P MN ∆中, MNPMN PN MN PN PM cos 2222⋅-+=MNP CC MN CC PN CC MN CC PN CC PM cos )()(211212212212⋅⋅⋅-⋅+⋅=⋅⇒由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=。