圆柱体积公式推导课件
圆柱体积PPT课件xiod
(× )
4分米 10分米
0.8米
求各圆柱的 体积。
0.5分米
圆柱形水桶内所盛水的体积,就 叫做这个圆柱形容器的容积。
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
一、复习旧知
请你说一说如何计算 能不能将圆柱转化成我 圆柱的体积怎样计 你会计算上面这些图形的 长方体、正方体的体 算呢? 们学过的立体图形,计 体积吗? 积? 算出它的体积呢?
乙
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
乙
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
乙
图1 :
h=h
甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
谢 谢
做一做
(2)、一个圆柱行罐头盒的 内底面半径是5厘米,高15厘 米。它的容积是多少? 3.14×5×15
2
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( ×) (2)圆柱体的高越长,它的体积越大。( ×) (3)圆柱体的体积与长方体的体积相等。(× )
真 棒!
高
长 宽 棱长
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h
长
v 正 =a
V=s底 h
3
圆柱体积的大小与哪些条件有关?
圆柱体积公式推导课件(动画演示)
圆柱体的局限性
由于圆柱体的形状限制,它可能 不适合所有应用场景。例如,在 需要更复杂形状或特定功能的场
合,其他形状可能更适合。
02
圆柱体积公式推导
圆柱体积公式推导的背景
圆柱体是三维空间中常见的几何形状之一,其体积计算在数学、物理、工程等领域 具有广泛的应用。
圆柱体积公式推导的目的是为了解决实际问题,如计算圆柱形物体的容积、液体或 气体的体积等。
圆柱体积公式的推导过程。
圆柱体积公式的应用
圆柱体积公式可以应用于计算 圆柱形物体的容积,如水桶、 油罐等。
圆柱体积公式也可以用于计算 液体或气体的体积,如在化学 实验、流体动力学等领域的应 用。
圆柱体积公式还可以用于计算 圆柱形物体的质量、密度等物 理量,如在物理学、工程学等 领域的应用。
03
动画演示
未来圆柱体积公式推导的应用前景
随着数学教育的不断深入和普及,圆柱体积公式的推导将会被广泛应用于各个领 域。同时,随着虚拟现实技术的不断发展,未来的圆柱体积公式推导将会更加真 实、生动和有趣。
THANKS
感谢观看
圆柱体与球体的关系
球体的体积是圆柱体的2/3,但它们的 表面积相等。
05
总结与展望
总结圆柱体积公式推导的过程
圆柱体积公式推导过程
通过动画演示,将圆柱体切割成无数个小的长方体,然后 分别求出这些小长方体的体积,最后将这些体积相加,得 到圆柱体的总体积。
动画演示的优点
通过动画演示,可以直观地展示圆柱体被切割和重组的过 程,帮助学生更好地理解圆柱体积公式的推导过程。
圆柱体积公式推导课件(动画演示)
目 录
• 圆柱体介绍 • 圆柱体积公式推导 • 动画演示 • 圆柱体积公式的实际应用 • 总结与展望
圆柱体积公式推导
V=s底 h
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
底面积
长方体的体积=底面积×高
底面积
圆柱体的体积
人教版(六年级下册)
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
01
c
a
b
v长=a b h 02
添加标题
单击此处输入你的正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点;
a
v =a 添加标题
猜想:如何求圆
单正击此处输入3 你的正柱文,体文的字体是积您?思想的提炼,
请尽量言简意赅的阐述观点;
3. V圆柱= πr2h
一根圆柱形柱子, 底面半径是0.4米,高 是5米。它的体积是多 少?
V= πr2h
=3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
1
12×12×50=7200(立方厘 米)
7200 ÷90=80(厘米)
3
答:这根钢材长80厘米。
2
长方体的体积=圆柱体的体积
是r,则(
)
V= πr2h
练一练:
1、计算下面圆柱的体积。 s=50dm 2 s=20cm 2 8dm 4cm
圆柱体积=底面积×高
2.
一根圆柱形钢材,底面积 是50平方厘米,高是1.5米。 它的体积是多少?
1.5米=150厘米 V=Sh=50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
的容积是多少立方米?
圆柱体积公式推导3
?!
方法:[幻灯片放映] ->[设置 放映方式]
控制:人工换片/定时自动换片 播放动画效果? 播放旁白? 循环播放? 绘图笔现场应用 状态(放映/编辑) 状态转换
幻灯片制作原则
提纲文章 演讲提纲,现场展开.
短语化 5/7/9 >……
提炼、力求简洁.
视觉效果 图形、直观、动静有度、色彩分明、简洁.
(视觉效果是演示文稿的支持和补充)
(1)水桶底面积
3.14×(
20 2
)²
=3.14×10²
=314(平方厘米)
(2)水桶容积
314 × 25
=7850(立方厘米) =7.85(立方分米)
答:这个水桶的容积是7.85立方分米
做一做
1.一根圆柱形的木料,底面积为75平方厘米, 长90 厘米。它的体积是多少?
75×90=6750(立方厘米)
•情绪控制的重要性 •如何进行情绪控制
示例
公司角色多与个定位动作连动
全面 产品与服务与提供者
技术与产品供应商 应用集成商
信息服务运营商
课程内容
创建演示文稿 修饰幻灯片 幻灯片连接
放映设置和打印
幻灯片的连接
• 串连(要制作完整的PowerPoint演示文
稿 ,要将单张幻灯片连接起来,似“串 ★珍思珠路”:)。 散串性:单张幻灯片的内容可以是独立 的,需要通过线索把这些“珍珠”串起 来。
2.一个圆柱形的罐头底面半径是5厘米,高15 厘米。它的容积是多少?
3.14×5²×15=1177.5(立方厘米)
练一练
1、填表
底面积S(m²) 高h(m) 圆柱的体积 V(m³)
15
3
45
6.4
圆柱与圆锥圆柱圆柱体积公式的推导与计算ppt
05
圆柱与圆锥体积公式的实际应用
圆柱与圆锥体积公式在工业设计中的应用
机械零件设计
圆柱和圆锥体积公式在机械零件设计中具有广泛应用,例如 计算圆柱体的体积和表面积等,可用于分析机械零件的制造 、设计和性能等方面。
圆柱与圆锥圆柱圆柱体积 公式的推导与计算
xx年xx月xx日
contents
目录
• 圆柱与圆锥的基本概念 • 圆柱体积公式的推导 • 圆锥体积公式的推导 • 圆柱与圆锥体积的比较与计算 • 圆柱与圆锥体积公式的实际应用 • 其他相关问题的探讨
01
圆柱与圆锥的基本概念
圆柱的定义与性质
定义
以矩形的一边所在直线为旋转轴,其余各边旋转形成的面所围成的旋转体叫 做圆柱
圆柱与圆锥表面积的计算
圆柱的表面积
底面积 + 侧面积 = πr^2 + 2πrh
圆锥的表面积
底面积 + 侧面积 = πr^2 + πrl
利用三维软件进行圆柱与圆锥的设计与建模
AutoCAD
创建三维模型,进行参数化设计,具备强大的建模能力。
SolidWorks
具备强大的三维建模能力,易学易用,支持大部分文件格式的导入和导出。
容。
THANKS
谢谢您的观看
性质
圆柱的底面是两个完全相等的圆形,侧面是一个矩形
圆锥的定义与性质
定义
以直角三角形的一条直角边所在直线为旋转轴,旋转形成的面所围成的旋转体叫 做圆锥
性质
圆锥的底面是一个圆形,侧面是一个扇形
圆柱与圆锥的相似之处
圆柱体积公式推导课件
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
圆柱体的体积= 底面积 ×高
努 力 吧 !
想一想、填一填:
把圆柱体切割拼成近似( ),它们 的( )相等。长方体的高就是圆柱体的 ( ),长方体的底面积就是圆柱体的 ( ),因为长方体的体积=( 底面积×高
答:它的体积是2.512立方米。
Байду номын сангаас个圆柱形的太阳 能水桶 ,如右图 (数据是从里面量 的)。这个水桶可 以装多少水?
------------15dm-----6dm
一个圆柱的体积是25.12立 方分米,底面积是6.28平方分 米,求圆柱的高是多少分米?
25.12 ÷6.28 =4(分米) 答:圆柱的高是4分米。
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
观察与讨论
(1)拼成的长方体的体积与圆柱的体积 有什么关系? (2)长方体的底面积与圆柱的底面积有 什么关系?
(3)长方体的高与圆柱的高有什么关系?
长方体的体积=底面积×高
( 4)圆柱体、长方体和正方体的体积都可以用底面 积乘高的方法来计算。 (√ ) √ (5)圆柱体体积一定,圆柱体底面积越大高就越小。 ( ) (6)圆柱的底面积扩大3倍,体积也扩大3倍 。 ( ×)
练一练:
1、计算下面圆柱的体积。
8dm
10
㎝
4㎝
2
3.14 ×0.42×5=2.512(立方米)
),所以圆柱体的体积=(底面积×高)。用 字母“V”表示( ),“S”表示 ( ),“h”表示( ),那么,圆柱 体体积用字母表示为( )
《圆柱的认识》PPT课件
《圆柱的认识》PPT课件•圆柱基本概念与性质•圆柱表面积计算方法•圆柱体积计算公式及应用目录•典型例题解析与讨论•学生自主操作实践环节•课堂小结与课后作业布置圆柱基本概念与性质圆柱定义及特点圆柱定义圆柱特点底面侧面高030201底面、侧面和高等元素圆柱与长方体关系形状差异01面积与体积计算02应用场景03圆柱表面积计算方法侧面积计算公式推导公式推导圆柱侧面积定义设圆柱底面半径为面展开后矩形的长为底面周长2πr,宽为h。
因此,侧面积注意事项底面积计算方法回顾圆的面积公式圆柱底面积计算注意事项总表面积计算实例演示实例1解法实例2解法圆柱体积计算公式及应用体积计算公式推导过程圆柱体积公式为公式推导实际应用举例分析圆柱形水桶计算水桶能装多少水,需要用到圆柱体积公式。
已知水桶的底面半径和高,即可求出其容积。
圆柱形油罐计算油罐内油的容量,同样需要用到圆柱体积公式。
通过测量油罐的底面半径和高,可以计算出油的容量。
圆柱形零件在机械工程中,经常需要计算圆柱形零件的体积。
已知零件的底面半径和高,即可利用公式求出其体积。
与其他几何体积关系探讨与长方体体积关系与球体体积关系与圆锥体积关系典型例题解析与讨论求表面积或体积类问题01020304例题1解析例题2解析涉及比例关系类问题例题1解析例题2解析例题1解析例题2解析创新题型展示与思路拓展学生自主操作实践环节测量步骤首先使用卷尺或游标卡尺测量圆柱的高度;接着使用直尺或游标卡尺测量圆柱的底面直径。
准备工具卷尺、游标卡尺、直尺等测量工具。
数据记录将测量得到的高度和底面直径数据记录在表格中,以便后续计算使用。
利用工具测量圆柱尺寸计算给定条件下圆柱表面积和体积公式回顾回顾圆柱表面积和体积的计算公式,即表面积=2πrh+2πr²,体积=πr²h。
数据代入将测量得到的圆柱高度和底面直径数据代入公式中进行计算。
结果呈现将计算得到的圆柱表面积和体积结果呈现在表格中,以便后续分析使用。
圆柱体积的推导公式
πr r ,切拼成的立体图形越接近长方体。
3、它的高变了吗?
1、拼成的长方体的体积与原来的圆柱体体积是否相等?
2、它的底面积变了吗?
长方体的体积=底面积×高
V=∏r2h
(2)已知圆的直径和高:
V=∏( )2h
d
2
(3)已知圆的周长和高:
V=∏(C÷d÷2 )2h
试一试
16平方米
8 米
9 米
15平方米
(1)你会计算它们的体积吗? (2)试写出它们的体积公式。
2
2
8dm
4cm
3、将一个圆柱体沿着底面直径切成两个半圆柱,表面积增加了40平方厘米,圆柱的底面直径为4厘米,这个圆柱的体积是多少立方厘米?
讨论、展示
(1)已知圆的半径和高,怎样求圆柱的体积?
(2)已知圆的直径和高,怎样求圆柱的体积?
(3)已知圆的周长和高,怎样求圆柱的体积?
(1)已知圆的半径和高:
圆柱的体积公式推导
单击此处添加副标题
执教:郭富贵
汇报人姓名
3
2
4
1
复习提纲
怎样求长方体、正方体的体积? 计算公式是什么?
1 圆面积公式是怎样推导的?
2 怎样求圆柱的侧面积、表面积? 计算公式各是什么?
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
圆的面积公式推导过程:
底面积×高
底面积×高
一、填表。
15 3 45 40 4 160
一根圆柱形钢材,底面积是50平方厘米,高是1.5米。它的体积是多少?
圆柱体积=底面积×高
1.5米=150厘米
50×150=7500(立方厘米) 答:它的体积是7500立方厘米。
圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)
统一公式:V=( Sh )
新知讲解
根据长方体、正方体的体 积计算公式以及左图叠硬 币过程,你能大胆猜想一 下圆柱体的体积应该怎样 求吗?
从叠硬币来看,用“底积 ×高”能计算出圆柱的体积。
新知讲解
你还记我们是如何推导出圆的面积计算公式的吗?
转化的思想
C r
2
新知讲解
a.你准备把圆柱体转化成什 么立体图形?
新知讲解
例
笑笑了解到一根柱子 从水杯里面量,水
的底面半径为0.4m,高 杯的底面直径是6cm,
为5m。你能算出它的 高是16cm,这个水
体积吗?
杯能装多少毫升水?
柱子的体积: 3.14×0.42×5
=0.5024×5 =2.512(m3)
杯子的容积:
3.14×(6÷2)2×16
=28.26×16 =452.16(cm3) 452.16 cm3=452.16 mL
04
会计算只给底面半径或直径和高的圆柱体的体积。
长方体体积=长×宽×高 正方体体积=边长³ 长(正)方体的体积=底面积×高
新知讲解
回忆了老朋友, 我们再来认识一 位新朋友。
老朋友
新朋友 (圆柱体)
新知讲解
他们在讨论什么问题呢?
一个圆柱体所占空间的大小叫做圆柱的体积。
新知讲解
你能根据已有知 识补充完整并用 语言来叙述吗?
V=( abh)
V=( a3 )
新知讲解
1. 想一想,填一填。 (1)7.8立方米=( 7800 )立方分米
3升56毫升=( 3056 )毫升=( 3056 )立方厘米 (2)一个圆柱形水杯(水杯厚度忽略不计),它的底面积是10 cm2, 高是12 cm,则这个水杯可以装水 ( 0.12 )升。 (3)一个圆柱的体积是62.8立方厘米,底面半径是2厘米,则高是 ( 5 )厘米。
圆柱的体积公式推导
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
已知S 、h 直接求 v
已知r 、h 先求( ) 再求v
已知d、 h 先求( ) 再求v
已知C,先求( ),再求
一个圆柱形粮囤,从里面量得底面半径 是1.5米,高2米。如果每立方米玉米约 重750千克,这个粮囤能装多少吨玉米?
高
长宽
棱长
长方体的体积= 正方体的体积=棱 长×宽×高 长×棱长×棱长
v长=a b h V=s
h
v正
=a 3
底
圆柱体积的大小与哪些条 件有关?
图1:
h=h
甲
乙
讨论题:
1.甲圆柱与乙圆柱谁的体积大?
2.它们的什么条件是相同的?
3.圆柱的体积大小与什么有关?
图1:
h=h
甲
乙
讨论题:
1.甲圆柱与乙圆柱谁的体积大?
一个圆柱形木桶,高6.28分米,将它的 侧面展开正好是正方形。这个木桶的体 积是多少?
一个底面是正方形的长方体,底面边长4厘 米,高是6厘米,请你求出它的体积?如果
把它削成一个最大的一圆柱体,这个圆柱 的体积是多少立方分米?
直柱体的体积 = 底面积×高
V =s h
想
试
(1)你会计算它们的体积吗?
2.它的底面积变了吗?
3.它的高变了吗?
一根圆柱形钢材,底面
例4
积是20平方厘米,高是 1.5米。它的体积是多 少?1.5米=150厘米
V=SH =20×150=3000(立方
厘米)
答:它的体积是3000立方厘米。
做一做
(1)一根圆柱形木料,底面积为 75平方厘米,长90厘米,它的体
圆柱体体积的公式推导
6 4
练习: 圆柱的底面周长是12.56厘米,高
是10厘米。它的体积是多少?
一个圆柱的体积是80立方厘米, 底 面积是16平方厘米。它的高是多 少厘米?
2、过把瘾,我是小判官。
(1)一根圆钢所占空间的大小
是指它的体积。
(√ )
(2)长方体、正方体和圆柱体
都可用底面积乘高来计算
它们的体积。
例 一根圆柱形的钢材,底面积是50平方厘米, 高是2.1米。它的体积是多少?
2.1米=210厘米 50 ×210=10500(立方厘米) 答:它的体积是10500立方厘米。
50平方厘米=0.005平方米
0.005 ×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。
练习: 1、求下面圆柱体的体积。(单位:厘米)
谢谢观看! 2020
(√ )
(3)体积相等的两个圆柱体, 它们的底面积一定相等。( × )
(4)高相等的两个圆柱体,
底面半径长的那个圆柱
体体积大。
(√ )
练一练
1、判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。(×) (2)圆柱体的高越长,它的体积越大。 (×) (3)圆柱体的体积与长方体的体积相等。 (×) (4)圆柱体的底面直径和高可以相等。 (√ )
圆柱的体积
西街小学
宋云芝
高
宽 长
棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
底面积
用“S”表示底面积,正方体、长方体的体积计算公式都 可以写成:
V=sh
圆的面积推导
r
c 2
S=πr2
想一想、填一填:
把圆柱体切割拼成近似( 长方体 ,它们 的( 体积 )相等。长方体的高就是圆柱体的 ( 高 ),长方体的底面积就是圆柱体的 (底面积 ),因为长方体的体积=(底面积×高), 所以圆柱体的体积=( 底面积×高 )。用 字母“V”表示(体积 ),“S”表示底(面积 , “h”表示高( ),那么,圆柱体体积用字 母表示为V(=Sh )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=Biblioteka 面积×高底面积长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
圆柱体的体积= 底面积 ×高
努 力 吧 !
想一想、填一填:
把圆柱体切割拼成近似( ),它们 的( )相等。长方体的高就是圆柱体的 ( ),长方体的底面积就是圆柱体的 ( ),因为长方体的体积=( 底面积×高
答:它的体积是2.512立方米。
一个圆柱形的太阳 能水桶 ,如右图 (数据是从里面量 的)。这个水桶可 以装多少水?
------------15dm-----6dm
一个圆柱的体积是25.12立 方分米,底面积是6.28平方分 米,求圆柱的高是多少分米?
25.12 ÷6.28 =4(分米) 答:圆柱的高是4分米。
),所以圆柱体的体积=(底面积×高)。用 字母“V”表示( ),“S”表示 ( ),“h”表示( ),那么,圆柱 体体积用字母表示为( )
2、判断正误,对的画“√”,错误的画“×”
(1)圆柱体的底面积越大,它的体积越大。 (2)圆柱体的高越长,它的体积越大。 (3)圆柱体的体积与长方体的体积相等。 (×) (×) (×)
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
观察与讨论
(1)拼成的长方体的体积与圆柱的体积 有什么关系? (2)长方体的底面积与圆柱的底面积有 什么关系?
(3)长方体的高与圆柱的高有什么关系?
长方体的体积=底面积×高
( 4)圆柱体、长方体和正方体的体积都可以用底面 积乘高的方法来计算。 (√ ) √ ) (5)圆柱体体积一定,圆柱体底面积越大高就越小。 ( (6)圆柱的底面积扩大3倍,体积也扩大3倍 。 ( ×)
练一练:
1、计算下面圆柱的体积。
8dm
10
㎝
4㎝
2
3.14 ×0.42×5=2.512(立方米)