北师大版九年级数学上册期末复习测验%28三%29

合集下载

2021-2022学年北师大版九年级数学上册《第3章概率的进一步认识》期末综合复习训练(附答案)

2021-2022学年北师大版九年级数学上册《第3章概率的进一步认识》期末综合复习训练(附答案)

2021-2022学年北师大版九年级数学上册《第3章概率的进一步认识》期末综合复习训练(附答案)1.4件外观相同的产品中有2件不合格,现从中一次抽取2件进行检测,抽到一件产品合格一件产品不合格的概率是()A.B.C.D.2.一个不透明的袋子中装有除颜色外均相同的4个白球和若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量试验,发现摸到绿球的频率稳定在0.2,则摸到绿球的概率约为()A.0.2B.0.5C.0.6D.0.83.一个盒子里装有除颜色外都相同的3个球,其中2个红球,1个白球,现从盒子里随意摸出1个不放回,再摸出1个,两次均摸到红球的概率是()A.B.C.D.4.现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是()A.B.C.D.5.如图是超市的两个摇奖转盘,只有当两个转盘指针同时指在偶数上时才能获一等奖,则摇奖人中一等奖的概率是()A.B.C.D.6.有两个可以自由转动的转盘,每个转盘被分成如图所示的几个扇形,游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为7.一个不透明的袋子里装有黄、白、红三种颜色的球,摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过多次试验后,发现摸到红球的频率稳定在0.5,则摸到红球的概率约为()A.0.25B.0.5C.0.75D.0.858.在一个不透明的袋子里装有若干个白球和6个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.2个B.4个C.14个D.18个9.下列说法正确的是()A.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖B.某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等10.为了估计暗箱里白球的数量(箱内只有白球),将6个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现白球出现的频率稳定在0.6附近,那么可以估计暗箱里白球的个数约为()A.15B.10C.9D.411.52张扑克牌中(不含大小王),抽2张牌,抽出相同花色的概率为.12.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n100300400600100020003000发芽的频数m9628438057194819022848那么这种油菜籽发芽的概率是(结果精确到0.01).13.现有三个自愿献血者,其中两人血型为O型,一人为A型,若在三人中随机挑选一人献血,两年后又从此三人中随机挑选一人献血,那么两次献血的人血型均为O型的概率是.14.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为.15.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣2,1,2,它们除了数字不同外,其他都完全相同.小红先从布袋中随机摸出一个小球,记下数字作为k的值,再把此球放回袋中搅匀,再随机摸出一个小球,记下数字作为b的值,则直线y=kx+b 不经过第二象限的概率是.16.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为m2(结果取整数).17.某班学生做抛掷图钉的实验,实验结果如下:抛掷次数n3004005006007008009001000钉尖着地的频数122158193231274311352389 m钉尖着地的频率0.40670.39500.38600.38500.39140.38880.39110.3890根据以上信息,估计掷一枚这样的图钉,落地后钉尖着地的概率为(精确到0.01).18.某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生进行调查,调查问卷设置了A:非常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:等级频数频率A200.4B15bC100.2D a0.1(1)频数分布表中a=,b=,将频数分布直方图补充完整;(2)若该校有学生1000人,请根据抽样调查结果估算该校“非常了解”和“比较了解”防疫常识的学生共有多少人?(3)在“非常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.19.2020年初,由于疫情影响,开学延迟,为了不影响学生的学习,国务院、省市区教育行政部门倡导各校开展“停课不停教、停课不停学”,某校语文学科安排学生学习,内容包含老师推送的文本资料和视频资料两类,且这两类学习互不影响.已知其积分规则如下:每阅读一篇文本资料积1分,每日上限积6分;每观看一个视频资料积1分,每日上限积6分.经过抽样统计发现文本资科学习积分的分布表如表1所示,视频资料学习积分的分布表如表2所示.表1:123456学习文本资料积分人数200n30表2:123456观看视频资料积分人数002220(1)现随机抽取1人,估计学习文本积分为4分的概率是;估计观看视频积分为4分的概率是;(2)现随机抽取1人了解学习情况,估计其每日学习积分不低于9分的概率.(用树状图或列表)20.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某一数字,否则重转.(1)请用树状图或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2﹣5x+6=0的解时,则甲获胜;若指针所指的两个数字都不是方程x2﹣5x+6=0的解时,则乙获胜,问他们两人谁获胜的概率大?请分析说明.21.某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试.根据测试成绩绘制出的统计表和统计图(成绩均为整数,满分为10分). 已知甲组的平均成绩为8.7分. 甲组成绩统计表:成绩 7 8 9 10 人数1955请根据上面的信息,解答下列问题:(1)m = ,甲组成绩的中位数是 ,乙组成绩的众数是 ;(2)参考下面甲组成绩方差的计算过程,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定? S 甲2==0.81.(3)在甲组的5名满分同学中,有3名男生和2名女生,现从这5人中任选两人进行复测,请用列表或画树状图的方法求选中的这两人都是男生的概率.22.某校七、八年级各有500名学生,为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及8分以上为优秀),相关数据统计整理如下: 七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10. 七、八年级抽取学生的测试成绩统计表 (1)填空:a = ,b = .(2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可).(3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;(4)现从七、八年级获得10分的4名学生中随机抽取2人参加市党史知识竞赛,请用年级七年级八年级平均数88众数 a 7 中位数 8 b 优秀率80%60%列表法或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.23.大明宫国家遗址公园是世界文化遗产,全国重点文物保护单位,其地处长安城(今西安)北部的龙首原上,始建于唐太宗贞观八年(634年).小东周末乘坐公交车到遗址公园游玩,他从地图上查找路线时发现必须要换乘一次.在出发站点可供选择的有一辆空调车和两辆普通车,空调车用A表示,普通车分别用a、b表示,换乘站点可供选择的也有一辆空调车和两辆普通车,空调车用B表示,普通车分别用c、d表示.并且每辆车被选择的可能性相同.空调车投币2元,普通车投币1元(假设小东坐公交车时都选择投币).(1)小东在出发站点乘坐普通车的概率为.(2)请你用列表或画树状图的方法,求小东到达遗址公园恰好投币3元的概率.24.某中药制剂厂新研发了两种分别含有甲、乙药物成分的中药制剂,为了解这两种药物成分在实验白鼠体内的残留程度,进行如下试验:将200只白鼠随机分成AB两组,每组100只其中A组白鼠给服甲成分药剂,B组白鼠给服乙成分药剂每只白鼠给服的药物质量与含量均相同经过一段时间后用某种科学方法测算出残留在白鼠体内药物成分的百分比按药物成分残留百分比数据分段整理,根据这两组样本原始数据绘制成统计表:分组(x%)A组(只数)B组(只数)2.5≤x<3.5153.5≤x<4.58a4.5≤x<5.527155.5≤x<6.530b6.5≤x<7.522207.5≤x<8.51215若乙药物成分残留在实验白鼠体内的百分比不低于5.5的频率约为0.70.(1)a=;b=;(2)实验室常用各组数据的组中值代表各组的实际数据来估计数据的平均值,如对甲药物成分残留百分比的平均值估计如下:[(3×1)+(4×8)+(5×27)+(6×30)+(7×22)+(8×12)]=6.00,用上述方法估计乙药物成分残留百分比的平均值;(3)甲、乙药物成分如残留体内会对生物体产生一定不良副作用,对原始数据进一步分析得到两组数据的中位数、众数、方差如表所示,请根据数据分析两种待检药物哪种相对更安全?请说明理由.分组中位数众数方差A组 5.4 6.0 1.29B组 5.9 6.1 1.7425.一个不透明的袋子中,装有1个红球,1个绿球,n个白球,这些球除颜色外都相同.(1)搅匀后,从袋中随机摸出一个球,记录其颜色后放回;搅匀后,再从袋中随机摸出一个球,记录其颜色后放回,…,经过大量重复该试验,发现摸到绿球的频率值稳定于0.2,则n的值是.(2)当n=2时,从该不透明的袋子中一次摸出两个球,求摸出的两个球颜色相同的概率(用画树状图或列表法求).参考答案1.解:把2件合格产品记为A、B,2件不合格记为C、D,画树状图如图:共有12个等可能的结果,抽到一件产品合格一件产品不合格的有8个,∴抽到一件产品合格一件产品不合格的概率为=,故选:D.2.解:大量重复试验中,事件发生的频率可以估计概率,∵经大量试验,发现摸到绿球的频率稳定在0.2,∴摸到绿球的概率约为0.2,故选:A.3.解:画树状图如图:共有6个等可能的结果,两次均摸到红球的结果有2个,∴两次均摸到红球的概率为=,故选:A.4.解:把4张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,∴两张卡片正面图案恰好是“天问”和“九章”的概率为=,故选:A.5.解:方法一:由图可得,摇奖人中一等奖的概率是:===,故选:B.方法二:在第二个扇形统计图中,4对应的圆心角是240°,相当于4出现两次,3出现一次,树状图如下所示:由图可知,一共有6种可能性,其中两次都是都是偶数的有2种可能性,故摇奖人中一等奖的概率是=,故选:B.6.解:A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选:D.7.解:∵摸到红色球的频率稳定在0.5左右,∴摸到红色球的概率为0.5.故选:B.8.解:设袋中白球有x个,根据题意,得:,解得x=2.所以袋中白球有2个.故选:A.9.解:A.某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,此选项说法错误;B.某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616,此选项说法正确;C.当试验次数很大时,频率稳定在概率附近,此选项说法错误;D.试验得到的频率与概率可能相等,此选项说法错误;故选:B.10.解:设暗箱里白球的数量是x,则根据题意得:=0.6,解得:x=9,故选:C.11.解:52张扑克牌中(不含大小王),抽2张牌,所有可能出现的结果有52×52﹣52=52×51(种),其中2张花色相同的有(13×13﹣13)×4=13×12×4=52×12(种),所以抽出相同花色的概率为==,故答案为:.12.解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,每批粒数n100300400600100020003000发芽的频数m9628438057194819022848发芽的频率0.9600.9470.9500.9520.9480.9510.949故答案为:0.95.13.解:列表如下:O O AO(O,O)(O,O)(O,A)O(O,O)(O,O)(O,A)A(A,O)(A,O)(A,A)共有9种等可能的情况,两次献血的人血型均为O型的有4种情况,∴两次献血的人血型均为O型的概率为,故答案为:.14.解:所有可能的结果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为=,故答案为:.15.解:列表:共有9种等可能的结果数,其中符合条件的结果数为2,所以直线y=kx+b不经过第二象限的概率=.故答案为:.16.解:假设不规则图案面积为xm2,由已知得:长方形面积为20m2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:=0.35,解得x=7.故答案为:7.17.解:观察表格发现:随着实验次数的增多,顶尖着地的频率逐渐稳定到0.39附近,所以估计掷一枚这样的图钉,落地后钉尖着地的概率为0.39,故答案为:0.39.18.解:(1)20÷0.4=50(人),a=50×0.1=5(人),b=15÷50=0.3,故答案为:5,0.3;(2)1000×(0.4+0.3)=700(人),答:该校1000学生中“非常了解”和“比较了解”防疫常识的学生大约有700人;(3)用列表法表示所有可能出现的结果情况如下:共有20种等可能出现的结果情况,其中两人中至少有一名女生的有14种,所以两个学生中至少有一个女生的概率为=.答:两个学生中至少有一个女生的概率为.19.解:(1)由表2知,样本总人数为2+2+2=6(人),∴n=6﹣3﹣2=1,∴学习文本积分为4分的概率为:1÷6=,视频积分为4的概率为:2÷6=,故答案为:,;(2)根据题意作树状图如下:∴学习积分不低于9分的概率为:×+×=.20.解:(1)列表如下:12342(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)(2)因为,方程x2﹣5x+6=0的解是:x1=2,x2=3,所以,从上表中可看出,指针所指的两个数字有12种等可能的结果,其中两个数字都是方程x2﹣5x+6=0的解有4次,两个数字都不是方程x2﹣5x+6=0的解有2次,所以,P(甲胜)==,P(乙胜)=,所以,此游戏甲获胜的概率大.21.解:(1)m=20﹣2﹣9﹣6=3(人),把甲组成绩从小到大排列,中位数是第10、11个数的平均数,则中位数是=8.5(分),乙组成绩8分出现的次数最多,出现了9次,则乙组成绩的众数是8分.故答案为:3,8.5,8;(2)乙组平均成绩是:(2×7+9×8+6×9+3×10)=8.5(分),乙组的方差是:×[2×(7﹣8.5)2+9×(8﹣8.5)2+6×(9﹣8.5)2+3×(10﹣8.5)2]=0.75;∵S乙2<S甲2,∴乙组的成绩更加稳定.(3)列表如下:男1男2男3女1女2男1男1男2男1男3男1女1男1女2男2男2男1男2男3男2女1男2女2男3男3男1男3男2男3女1男3女2女1女1男1女1男2女1男3女1女2女2女2男1女2男2女2男3女2女1∵一共有20种等可能的结果,其中选中的两人均是男的情况共有6种等可能的结果,∴P(选中的两人都是男生)==.22.解:(1)由众数的定义得:a=8,八年级抽取学生的测试成绩的中位数为8(分),故答案为:8,8;(2)七年级的学生党史知识掌握得较好,理由如下:∵七年级的优秀率大于八年级的优秀率,∴七年级的学生党史知识掌握得较好;(3)500×80%+500×60%=700(人),即估计七、八年级学生对党史知识掌握能够达到优秀的总人数为700人;(4)把七年级获得10分的学生记为A,八年级获得10分的学生记为B,画树状图如图:共有12种等可能的结果,被选中的2人恰好是七、八年级各1人的结果有6种,∴被选中的2人恰好是七、八年级各1人的概率为=.23.解:(1)小东在出发站点乘坐普通车的概率为,故答案为:;(2)画树状图如图:共有9个等可能的结果,小东到达遗址公园恰好投币3元的结果有4个,∴小东到达遗址公园恰好投币3元的概率为.24.解:(1)b=100×0.70﹣20﹣15=35,a=100﹣20﹣15﹣35﹣15﹣5=10,故答案为:10,35;(2)[(3×5)+(4×10)+(5×15)+(6×35)+(7×20)+(8×15)]=6.00,答:乙药物成分残留百分比的平均值为6.00;(3)从中位数、众数、方差看,A组,即甲药物相对比较安全,理由:甲药物的残留在体内药物成分的中位数、众数、方差都比乙药物残留在体内药物成分要小.25.解:(1)根据题意得:=0.2,解得:n=3,则n的值为3,故答案为:3;(2)根据题意画图如下:共有12种等情况数,其中摸出的两个球颜色相同的有2种,则摸出的两个球颜色不同的概率是=.。

北师大版九年级上册数学期末试卷(A4打印版)

北师大版九年级上册数学期末试卷(A4打印版)

北师大版九年级上册数学期末试卷(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1-7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .18 8.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.分解因式:244m m ++=___________.3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、C5、B6、A7、C8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、()22m+3、30°或150°.4、5、12 76、 1三、解答题(本大题共6小题,共72分)1、x=323、(1)略;(2)2.4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。

北师大版初中数学九年级上册期末测试卷(困难 )(含答案解析)

北师大版初中数学九年级上册期末测试卷(困难 )(含答案解析)

北师大版初中数学九年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有( )A. 1个B. 2个C. 3个D. 4个2.如图,已知正方形ABCD的边长为3,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF、CF,则DF+CF的最小值是( )A. 3√5B. 4√3C. 5√2D. 2√133.已知一元二次方程ax2+bx+c=0(a≠0)和它的两个实数根为x1、x2,下列说法:①若a、c异号,则方程ax2+bx+c=0一定有实数根②若b2>5ac,则方程ax2+bx+c=0一定有两异实根③若b=a+c,则方程ax2+bx+c=0一定有两实数根④若a=1,b=2,c=3,由根与系数的关系可得x1+x2=−2,x1x2=3其中正确的结论的个数为( )A. 1个B. 2个C. 3个D. 4个4.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有( ) ①方程x2−x−2=0是倍根方程; ②若方程(x−2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0; ③若p、q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程; ④若方程ax2+bx+c=0是倍根方程,则必有2b2=9ac.A. 1个B. 2个C. 3个D. 4个5.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张.则她们拿到的贺卡都不是自己所写的概率.( )A. 0.5B. 13C. 23D. 0.256.书架上放着三本古典名著和两本外国小说,小明从中随机抽取两本,两本都是古典名著的概率是( )A. 425B. 925C. 310D. 1107.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.则下列结论正确的有( )A. ①②④B. ①③④C. ②③④D. ①②③8.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,与边CD交于点F,连接DP交AQ于点O,并与边BC交于点E,连接AE,下列结论:①AQ⊥DP;②AO2= OE⋅OP;③S△AOD=S四边形OECF.其中正确结论的个数( )A. 1B. 3C. 2D. 09.某几何体的主视图和左视图完全一样,如图所示,则该几何体的俯视图不可能是( )A. B. C. D.10.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如图所示,则这一堆方便面共有( )A. 5桶B. 6桶C. 9桶D. 12桶11.如图1,矩形的一条边长为x,周长的一半为y.定义(x,y)为这个矩形的坐标.如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域.已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是( )A. 点A的横坐标有可能大于3B. 矩形1是正方形时,点A位于区域②C. 当点A沿双曲线向上移动时,矩形1的面积减小D. 当点A位于区域①时,矩形1可能和矩形2全等12.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数y=√33x(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为( )A. ME=53B. ME=43C. ME=1D. ME=23第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,在正方形ABCD中,AB=4,点E是BC边上一个动点(不与点B,C重合),将△ABE沿AE翻折到△AB′E,再将△AB′E沿AB′翻折得到△AB′E′.当点E′恰好落在正方形ABCD的边所在的直线上时,线段BE的长度为______.14.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2−(2k+3)x+k2+3k+2=0的两个实数根,当k=______时,△ABC是以BC为斜边的直角三角形.15.在△ABC和△A′B′C′中,若∠B=∠B′,AB=6,BC=8,B′C′=4,则当A′B′=____________时,△ABC∽△A′B′C′.16.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为______.三、解答题(本大题共9小题,共72.0分。

新北师大版九年级数学[上册]第三章检测题(附答案)

新北师大版九年级数学[上册]第三章检测题(附答案)

新北师大版九年级数学[上册]第三章检测题(附答案)(时间:120分钟 满分:120分)一、选择题(每小题3分;共30分)1.事件A :打开电视;它正在播广告;事件B :抛掷一个均匀的骰子;朝上的点数小于7;事件C :在标准大气压下;温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C );则P (A )、P (B )、P (C )的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1;2;-3三个数中;随机抽取两个数相乘;积是正数的概率是( )1.D 23C. 13B. 0.A 3.如图;2×2的正方形网格中有9个格点;已经取定点A 和B ;在余下的7个点中任取一点C ;使△ABC 为直角三角形的概率是( D)25B. 12A. 47D. 37C. 4.袋子里有4个球;标有2;3;4;5;先抽取一个并记住;放回;然后再抽取一个;问抽取的两个球数字之和大于6的概率是() 34D. 58C. 712B. 12A. 5.掷两枚普通正六面体骰子;所得点数之和为11的概率为( )115D. 112C. 136B. 118A. 6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘;若其中一个转出红色;另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()12D. 13C. 34B. 14A.,第6题图),第7题图)7.如图所示的两个转盘中;指针落在每一个数上的机会均等;那么两个指针同时落在偶数上的概率是( )525D. 625C. 1025B. 1925A. 8.有三张正面分别写有数字-1;1;2的卡片;它们背面完全相同;现将这三张卡片背面朝上洗匀后随机抽取一张;以其正面的数字作为a 的值;然后再从剩余的两张卡片中随机抽取一张;以其正面的数字作为b 的值;则点(a ;b )在第二象限的概率是( )23D. 12C. 13B. 16A. 9.从长为10 cm;7 cm;5 cm;3 cm 的四条线段中任选三条能够组成三角形的概率是( )34D. 12C. 13B. 14A.其坐标分别为;轴上y 在2B ;1B 点;轴上x 在2A ;1A 点;在平面直角坐标系中;如图.10;为顶点作三角形O 其中的任意两点与点2B ;1B ;2A ;1A 分别以(0;2);2B (0;1);1B (2;0);2A (1;0);1A 所作三角形是等腰三角形的概率是( )12D. 23C. 13B. 34A. 二、填空题(每小题3分;共18分)11.一个布袋中装有3个红球和4个白球;这些除颜色外其他都相同.从袋子中随机摸出一个球;这个球是白球的概率为____.12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾;小明通过多次捕捞试验;发现鲤鱼、草鱼的概率是51%和26%;则水库里有____尾鲫鱼.13.在一个不透明的袋子中有10个除颜色外均相同的小球;通过多次摸球试验后;发现摸到白球的频率约为40%;估计袋中白球有____个.14.有两把不同的锁和三把钥匙;其中两把钥匙能打开同一把锁;第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁;一次能打开锁的概率是____.15.袋中装有4个完全相同的球;分别标有1;2;3;4;从中随机取出一个球;以该球上的数字作为十位数;再从袋中剩余3个球中随机取出一个球;以该球上的数字作为个位数;所得的两位数大于30的概率为____.16.一天晚上;小伟帮妈妈清洗茶杯;三个茶杯只有颜色不同;其中一个无盖.突然停电了;小伟只好把杯盖与茶杯随机地搭配在一起;则花色完全搭配正确的概率是____.三、解答题(共72分)17.(10分)小明有2件上衣;分别为红色和蓝色;有3条裤子;其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果;并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌;它们分别标有数字1;2;3;4.随机地摸取出一张纸牌记下数字然后放回;再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏;如果两次摸出纸牌上数字之和为奇数;则甲胜;如果两次摸出纸牌上数字之和为偶数;则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片;甲袋中的三张卡片上所标有的三个数值为-7;-1;3.乙袋中的三张卡片所标的数值为-2;1;6.先从甲袋中随机取出一张卡片;用x表示取出的卡片上的数值;再从乙袋中随机取出一张卡片;用y表示取出卡片上的数值;把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x;y)的所有情况;(2)求点A落在第三象限的概率.20.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域;并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏;游戏规则是:同时转动两个转盘;当转盘停止时;若指针所指两区域的数字之积为奇数;则欢欢胜;若指针所指两区域的数字之积为偶数;则乐乐胜;若有指针落在分割线上;则无效;需重新转动转盘.(1)试用列表或画树状图的方法;求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)现有一项资助贫困生的公益活动由你来主持;每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘;每个转盘被分成6个相等的扇形;参与者转动这两个转盘;转盘停止后;指针各指向一个数字(若指针在分格线上;则重转一次;直到指针指向某一数字为止).若指针最后所得的数字之和为12;则获一等奖;奖金20元;数字之和为9;则获二等奖;奖金10元;数字之和为7;则获三等奖;奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外;其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加;活动结束后至少有多少赞助费用于资助贫困生.22.(10分)甲、乙、丙3人聚会;每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同);将3件礼物放在一起;每人从中随机抽取一件.(1)下列事件是必然事件的是( )A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A);请列出事件A的所有可能的结果;并求事件A的概率.23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回;混合均匀后再摸出1个球.①求第一次摸到绿球;第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回;再摸出1个球;则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.新北师大版九年级数学上册第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分;共30分)1.事件A :打开电视;它正在播广告;事件B :抛掷一个均匀的骰子;朝上的点数小于7;事件C :在标准大气压下;温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C );则P (A )、P (B )、P (C )的大小关系正确的是( B )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1;2;-3三个数中;随机抽取两个数相乘;积是正数的概率是( B )1.D 23C. 13B. 0.A 3.如图;2×2的正方形网格中有9个格点;已经取定点A 和B ;在余下的7个点中任取一点C ;使△ABC 为直角三角形的概率是( D)25B. 12A. 47D. 37C. 4.袋子里有4个球;标有2;3;4;5;先抽取一个并记住;放回;然后再抽取一个;问抽取的两个球数字之和大于6的概率是( C) 34D. 58C. 712B. 12A. 5.掷两枚普通正六面体骰子;所得点数之和为11的概率为( A )115D. 112C. 136B. 118A. 6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘;若其中一个转出红色;另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( D)12D. 13C. 34B. 14A.,第6题图),第7题图)7.如图所示的两个转盘中;指针落在每一个数上的机会均等;那么两个指针同时落在偶数上的概率是( C )525D. 625C. 1025B. 1925A. 8.有三张正面分别写有数字-1;1;2的卡片;它们背面完全相同;现将这三张卡片背面朝上洗匀后随机抽取一张;以其正面的数字作为a 的值;然后再从剩余的两张卡片中随机抽取一张;以其正面的数字作为b 的值;则点(a ;b )在第二象限的概率是( B )23D. 12C. 13B. 16A. 9.从长为10 cm;7 cm;5 cm;3 cm 的四条线段中任选三条能够组成三角形的概率是( C )34D. 12C. 13B. 14A.其坐标分别为;轴上y 在2B ;1B 点;轴上x 在2A ;1A 点;在平面直角坐标系中;如图.10;为顶点作三角形O 其中的任意两点与点2B ;1B ;2A ;1A 分别以(0;2);2B (0;1);1B (2;0);2A (1;0);1A 所作三角形是等腰三角形的概率是( D )12D. 23C. 13B. 34A. 二、填空题(每小题3分;共18分)11.一个布袋中装有3个红球和4个白球;这些除颜色外其他都相同.从袋子中随机摸出.__47__这个球是白球的概率为;一个球 12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾;小明通过多次捕捞试验;发现鲤鱼、草鱼尾鲫鱼.__460__则水库里有26%;和51%的概率是 13.在一个不透明的袋子中有10个除颜色外均相同的小球;通过多次摸球试验后;发现摸个.__4__估计袋中白球有40%;到白球的频率约为 14.有两把不同的锁和三把钥匙;其中两把钥匙能打开同一把锁;第三把钥匙能打开另一.__12__一次能打开锁的概率是;把锁.任意取出一把钥匙去开任意一把锁 15.袋中装有4个完全相同的球;分别标有1;2;3;4;从中随机取出一个球;以该球上的数字作为十位数;再从袋中剩余3个球中随机取出一个球;以该球上的数字作为个位数;所得的两.__12__的概率为30位数大于 16.一天晚上;小伟帮妈妈清洗茶杯;三个茶杯只有颜色不同;其中一个无盖.突然停电了;.__16__则花色完全搭配正确的概率是;地搭配在一起小伟只好把杯盖与茶杯随机 三、解答题(共72分)17.(10分)小明有2件上衣;分别为红色和蓝色;有3条裤子;其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果;并求小明穿的上衣和裤子恰好都是蓝色的概率.解:画树状图:13=26=)都是蓝色(P 18.(10分)在一个不透明的口袋中装有4张相同的纸牌;它们分别标有数字1;2;3;4.随机地摸取出一张纸牌记下数字然后放回;再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏;如果两次摸出纸牌上数字之和为奇数;则甲胜;如果两次摸出纸牌上数字之和为偶数;则乙胜.这是个公平的游戏吗?请说明理由.)B 记为事件(:两次摸出纸牌上数字之和为奇数 理由如下;这个游戏公平)2( 14)1(解: 所以这个游戏;两次摸出纸牌上数字之和为奇数与和为偶数的概率相同;12=816=)B (P ;个8有公平19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片;甲袋中的三张卡片上所标有的三个数值为-7;-1;3.乙袋中的三张卡片所标的数值为-2;1;6.先从甲袋中随机取出一张卡片;用x 表示取出的卡片上的数值;再从乙袋中随机取出一张卡片;用y 表示取出卡片上的数值;把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ;y )的所有情况;(2)求点A 落在第三象限的概率.1)列表:可知;点A 落在第三29=)A (P ∴;两种情况)2-;1-(;)2-;7-(共有)A 事件(象限20.(10分)分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域;并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏;游戏规则是:同时转动两个转盘;当转盘停止时;若指针所指两区域的数字之积为奇数;则欢欢胜;若指针所指两区域的数字之积为偶数;则乐乐胜;若有指针落在分割线上;则无效;需重新转动转盘.(1)试用列表或画树状图的方法;求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.12=612所以欢欢胜的概率是;种6积为奇数的情况有;种情况12共有)1(解:所以游戏公平;两人获胜的概率相同;12=12-1得乐乐胜的概率为)1(由)2( 21.(10分)现有一项资助贫困生的公益活动由你来主持;每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘;每个转盘被分成6个相等的扇形;参与者转动这两个转盘;转盘停止后;指针各指向一个数字(若指针在分格线上;则重转一次;直到指针指向某一数字为止).若指针最后所得的数字之和为12;则获一等奖;奖金20元;数字之和为9;则获二等奖;奖金10元;数字之和为7;则获三等奖;奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外;其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加;活动结束后至少有多少赞助费用于资助贫困生.×)5×16+10×19+20×136)(2( 16=)三等奖(P ;19=)二等奖(P ;136=)一等奖(P )1(解: 2 000=5 000;5×2 000-5 000=5 000;即活动结束后至少有5 000元用于资助贫困生22.(10分)甲、乙、丙3人聚会;每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同);将3件礼物放在一起;每人从中随机抽取一件.(1)下列事件是必然事件的是( A )A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A );请列出事件A 的所有可能的结果;并求事件A 的概率.解:(2)依题意可画树状图:(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲;②丙甲乙;∴P (A )13=26=23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回;混合均匀后再摸出1个球.①求第一次摸到绿球;第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回;再摸出1个球;则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)①画树状图得:∵共有16种等可能的结果;第一次摸到绿球;第二次摸到红球的有4种情况;∴第一次摸个红球的有1个绿球和1②∵两次摸到的球中有;14=416第二次摸到红球的概率为:;到绿球 23)2( 12=816个红球的概率为:1个绿球和1∴两次摸到的球中有;种情况8。

最新2021-2022年北师大版九年级数学上期末检测题附答案解析

最新2021-2022年北师大版九年级数学上期末检测题附答案解析

九年级数学(上)(北师大版期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共30分) 1.(兰州中考)下列命题中正确的是( ) A .有一组邻边相等的四边形是菱形 B .有一个角是直角的平行四边形是矩形 C .对角线垂直的平行四边形是正方形 D .一组对边平行的四边形是平行四边形2.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( ) A .45︒B .55︒C .60︒D .75︒第2题图 第3题图3.(2021·浙江温州中考)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数xky =的图象经过点B ,则k 的值是( ) A. 1 B. 2C. 3D. 324.若2-=x 是关于x 的一元二次方程02522=+-a ax x 的一个根,则a 的值为( ) A.1或4B.-1或-4C.-1或4D.1或-45. 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当∠B =90°时,如图①,测得AC =2.当∠B =60°时,如图②,AC =( )第5题图 A .2B .2C .6D .226.(2021·天津中考)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x (x +1)=28B .12x (x -1)=28C .x (x +1)=28D .x (x -1)=287.(2021·山东青岛中考)如图,正比例函数x k y 11=的图象与反比例函数xk y 22=的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( ) A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2第7题图第8题图8.(2021·贵州安顺中考)如图,平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶29.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为()A.10B.15C.5 D.210.(2021·浙江温州中考)将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.mm第10题图第11题图二、填空题(每小题3分,共24分)11.(2021·兰州中考)如图,在一块长为22m,宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300 m 2. 设道路宽为x m ,根据题意可列出的方程为 .12.已知方程3x 2-19x +m =0的一个根是1,那么它的另一个根是_________,m =_________.13. (2021·天津中考)如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为 .第13题图14.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个. 15.反比例函数k y x=(k >0)的图象与经过原点的直线相交于A 、B 两点,已知A 点的坐标为(2,1),那么B 点的坐标为 . 16.设函数2y x=与1y x =-的图象的交点坐标为(a ,b ),则11ab -的值为_________.17.已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是______.18.一池塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个池塘里大约有鲢鱼___ __ 尾.三、解答题(共66分)19.(8分)(2021·福州中考)已知关于x的方程+(2m1)x+4=0有两个相等的实数根,求m的值.20.(8分)(2021·呼和浩特中考)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.第20题图21(8分)(2021·长沙中考)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?22.(6分)画出如图所示实物的三视图.第23题图23.(8分)(2021·安徽中考) 如图,管中放置着三根同样的绳子111AA BB CC 、、.(1)小明从这三根绳子中随机选一根,恰好选中绳子1AA 的概率是多少?(2)小明先从左端A B C 、、三个绳头中随机选两个打一个结,再从右端111A B C 、、三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.24.(8分)某池塘里养了鱼苗1万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5 kg ,第二网捞出25条,称得平均每条鱼重2.2 kg ,第三网捞出35条,称得平均每条鱼重2.8 kg ,试估计这池塘中鱼的质量.25.(10分)如图,在矩形ABCD 中,AD =5,AB =7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D '落在∠ABC 的角平分线上时,求DE 的长.第25题图第26题图26.(10分)如图,一次函数y =kx +b 与反比例函数xmy =的图象交于A(2,3),B (-3,n )两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx +b >xm的解集______________;(3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .期末检测题参考答案1.B 解析:有一组邻边相等的四边形的四条边不一定都相等,该四边形不一定是菱形,故A 错误;有一个角是直角的平行四边形的四个角都是直角,该四边形一定是矩形,故B 正确;对角线垂直的平行四边形是菱形,该四边形不一定是正方形,故C 错误;一组对边平行的四边形有可能是梯形,故D 错误.2.C 解析:∵ AC 是正方形ABCD 的对角线,∴ ∠BAC =45°. 又∵ △ADE 是等边三角形,∴ ∠DAE =60°.∵ AB =AD =AE ,∠BAE =∠BAD +∠DAE =90°+60°=150°, ∴ ∠ABE =∠AEB =12(180°-150°)=15°.∵ ∠BFC 是△ABF 的一个外角,∴ ∠BFC =∠BAF +∠ABF =45°+15°=60°.3.C 解析:如图,设点B 的坐标为(x ,y ), 过点B 作x BC ⊥轴于点C.在等边△ABO 中, OC =121=OA ,3=BC ,即x =1,y =3, 所以点B (1,).又因为反比例函数y =的图象经过点B (1,),所以k =xy =3. 第3题答图4.B 解析:把x =-2代入方程,得()225(2)202a a --⨯-+=,解得a =-1或a =-4.5.A 解析:当∠B =90°时,四边形ABCD 是正方形,由正方形的对角线长为2可知正方形的边长为2.转动四边形ABCD ,使它形状改变,但是它的边长不变,且是边长为2的菱形.当∠B =60°时,△ABC是等边三角形,所以AC =AB =2.6.B 解析:因为每个队都要和剩下的()1x -个队各赛1场,所以每个队各赛()1x -场,x 个队共赛()1x x -场.因为每场比赛都是两个队参加,这样每个队的比赛场数都重复计算了一次,所以这x 个队共比赛()112x x -场,所以列方程为()11282x x -=.7. D 解析:x k y 11=与xk y 22=的图象均为中心对称图形,则A 、B 两点关于原点对称,所以B 点的横坐标为-2,观察图象发现:在y 轴左侧,当-2<x <0时,正比例函数x k y 11=的图象上的点比反比例函数xk y 22=的图象上的点高;在y 轴右侧,当x >2时,正比例函数x k y 11=的图象上的点比反比例函数x ky 22=的图象上的点高.所以当21y y >时,x 的取值范围是-2<x <0或x >2.8.D 解析:因为四边形ABCD 是平行四边形,所以AD ∥BC ,AD =BC ,所以△EFD ∽△CFB ,所以=.又点E 是AD 的中点,所以DE =BC ,所以==. 9.C 解析:红球的个数为15×=5(个).10. A 解析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,所以A 项为主视图,B 项为左视图,C 项为俯视图,故A 选项正确.11. ()()2217300x x --=(或239740x x -+=,只要方程合理正确均可得分) 解析:如图所示,把小路平移后,草坪的面积等于图中阴影矩形的面积,即()()2217300x x --=,也可整理为239740x x -+=.第11题答图12.316,16 解析:将x =1代入方程可得m =16,解方程可得另一个根为316.13.518 解析:∵ AD =3,DB =2,∴ AB =AD +DB =5.∵ DE ∥BC ,∴ △ADE ∽△ABC , ∴ =,即=,解得DE =518,故答案为518.14.5 解析:当组成这个几何体的小正方体个数最少时,其俯视图对应如图所示,其中每个小正方形中的数字代表该位置处小正方体的个数.15.(-2,-1) 解析:设直线l 的表达式为y =ax ,因为直线l 和反比例函数的图象都经过A (2,1),将A 点坐标代入可得a =21,k =2,故直线l 的表达式为y =21x ,反比例函数的表达式为x y 2=,联立可解得B 点的坐标为(-2,-1).16.12- 解析:将(a ,b )分别代入表达式2y x =与1y x =-中,得ab 2=,1-=a b ,故12-=a a,022=--a a ,解得12-==a a 或,当2=a 时,1=b ,2111-=-b a ;当1-=a 时,2-=b ,2111-=-b a .17. BD =DC 解析:答案不唯一,只要能使结论成立即可.18.2 700 解析:池塘里鲢鱼的数量为10 000×(1-31%-42%)=10 000×27%=2 700.19.解:∵ 关于x 的方程+(2m 1)x +4=0有两个相等的实数根, ∴ Δ=4×1×4=0.∴ 2m 1=±4. ∴ m =或m =.20.证明:(1)∵ 四边形ABCD 是矩形, ∴ AD =BC ,AB =CD . 又∵ AC 是折痕,∴ BC = CE = AD ,AB = AE = CD . 又DE = ED ,∴ △ADE ≌△CED .(2)∵ △ADE ≌△CED ,∴ ∠EDC =∠DEA . 又△ACE 与△ACB 关于AC 所在直线对称, ∴ ∠OAC =∠CAB .而∠OCA =∠CAB ,∴ ∠OAC =∠OCA ,∴ 2∠OAC = 2∠DEA ,∴ ∠OAC =∠DEA ,∴ DE ∥AC . 21. 解: (1)设需购买甲种树苗x 棵,购买乙种树苗y 棵,根据题意,得{400,20030090 000,x y x y +=+=解得{300,100.x y == 答:需购买甲种树苗300棵,购买乙种树苗100棵.(2)设应购买甲种树苗a 棵,根据题意,得200a ≥300(400-a ),解得a ≥240.答:至少应购买甲种树苗240棵. 22.解:物体的三视图如图所示:第22题答图俯视图左视图主视图23. 解:(1)小明可选择的情况有三种,每种发生的可能性相等,恰好选中绳子AA 1的情况为一种,所以小明恰好选中绳子AA 1的概率13P. (2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种情况,列表或画树状图表示如下,每种情况发生的可能性相等.A 1B 1 B 1C 1 A 1C 1AB (AB ,A 1B 1) (AB ,B 1C 1)(AB ,A 1C 1) BC (BC ,A 1B 1)(BC,B 1C 1) (BC ,A 1C 1) AC(AC ,A 1B 1)(AC ,B 1C 1)(AC ,A 1C 1)右端左 端第23题答图其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳,所以能连接成为一根长绳的情况有6种:①左端连AB ,右端连A 1C 1或B 1C 1;②左端连BC ,右端连A 1B 1或A 1C 1;③左端连AC ,右端连A 1B 1或B 1C 1. 故P (这三根绳子连接成为一根长绳)=6293=.24.解:由题意可知三次共捕鱼40+25+35=100(条), 捕得鱼的总质量为40×2.5+25×2.2+35×2.8=253(千克), 所以可以估计每条鱼的质量约为253÷100=2.53(千克). 池塘中鱼的总质量为10 000×95%×2.53=24 035(千克).25.解:如图,过点D '作直线MN AB ⊥于点M ,交CD 于点N ,连接.BD '第25题答图 ∵BD '平分,ABC ∠∴45,ABD '∠=︒∴ 45MD B MBD ''==︒,∠∠∴ .MB MD '= 在Rt BD M '△中,设BM D M x '==,则7AM x =-. ∵ 5AD AD '==,在Rt AMD '△中,90AMD '=︒∠, ∴222AD AM D M ''=+,即2225(7)x x =-+,解得123, 4.x x ==∵ 90,90,NED ND E ND E MD A ''''+=︒+=︒∠∠∠∠∴ .NED MD A ''=∠∠ ∵ 90,END D MA ''==︒∠∠∴,AD M D EN ''△∽△∴ ,AD AMD E D N '=''∴ 5(5)7AD D N x D E AM x''⋅⨯-'==-.∵,DE D E '=∴ 2557xDE x -=-,故当3x =时,52DE =;当4x =时,5.3DE = 26.解:(1)∵ 点A (2,3)在xmy =的图象上,∴ m =6, ∴ 反比例函数的表达式为xy 6=, ∴ n =36﹣=-2. ∵ 点A (2,3),B (-3,-2)在y =kx +b 的图象上, ∴⎩⎨⎧+-=-+=,32,23b k b k 解得⎩⎨⎧==,1,1b k∴ 一次函数的表达式为y =x +1. (2)-3<x <0或x >2.(3)方法1:设AB 交x 轴于点D ,则D 的坐标为(-1,0),∴ CD =2,∴ S △ABC =S △BCD +S △ACD =21×2×2+21×2×3=5.方法2:以BC 为底,则BC 边上的高为3+2=5,∴ S △ABC =21×2×5=5.。

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。

2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。

北师大版九年级数学上册期末复习综合练习题(含答案)

北师大版九年级数学上册期末复习综合练习题(含答案)

北师大版九年级数学上册期末复习综合练习题(含答案)一、单选题1.一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A.23x-=162⎛⎫⎪⎝⎭B.2312x-=416⎛⎫⎪⎝⎭C.231x-=416⎛⎫⎪⎝⎭D.以上都不对2.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=3x(x>0)经过线段DC的中点E,若BD=4,则AG的长为()A.43B.3+2 C.23+1 D.33+13.反比例函数(k>0)的部分图象如图所示,A、B是图象上两点,AC⊥轴于点C,BD⊥轴于点D,若△AOC的面积为S,△BOD的面积为S,则S和S的大小关系为()A.S>S B.S= S C.S<S D.无法确定4.已知点A(-1,y1)、B(1,y2)、C(2,y3)是函数y=-图象上的三点,则y1、y2、y3的大小关系是()A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .无法确定5.如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:4B .1:3C .1:2D .1:16.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( )A .P 为定值,I 与R 成反比例B .P 为定值,2I 与R 成反比例C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例7.设12,x x 是方程21020x x +-=的两个根,则1211+x x 的值是( ) A .4B .5C .8D .108.用配方法解一元一次方程2630x x --=,经配方后得到的方程是( ) A .2(3)12x -=B .2(3)9x -=C .2(3)6x -=D .2(3)4x -=9.如图,在矩形ABCD 中,CBN ∠的正弦值等于13,BN 与CD 交于点N ,BND ∠的平分线NM 与AD 交于点M ,若7CD =,2DM AM =,则AD 的长为( )A .8B .9C .62D .31010.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A.B.C.D.11.已知一元二次方程:①x2﹣2x﹣3=0,②x2+2x+3=0.下列说法正确的是()A.①②都有实数解 B.①无实数解,②有实数解C.①有实数解,②无实数解 D.①②都无实数解12.如果关于x的一元二次方程kx2﹣31k x+1=0有两个不相等的实数根,那么k的取值范围是()A.0≤k<1且k≠0 B.k≥﹣13且k≠0C.0≤k<1 D.﹣13≤k<1且k≠0二、填空题13.如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;③正方形ABCD的面积等于四边形OEBF面积的4倍;④BE+BF=OA;⑤+=2OP·OB.正确结论的个数是()A.4个 B.3个 C.2个 D.1个14.如图所示,在四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,∠BAD=∠DCB,若不增加任何字母和辅助线,要使得四边形ABCD是矩形,则还需要增加一个条件是_______________.15.如图,在平行四边形ABCD 中,:2:3AE EB =,若28AEF S cm ∆=,则CDF S ∆=_______2cm .16.已知矩形ABCD 的四个顶点在反比例函数ky x=(k >0)的图象上,且AB =4,AD =2,则k 的值为_______.17.如图,在△MBN 中,已知:BM =6,BN =7,MN =10,点 A C ,D 分别是 MB ,NB ,MN 的中点,则四边形 ABCD 的周长 是_____.18.矩形的两条对角线的夹角是60°,一条对角线与短边的和为18cm ,则短边的长为_____cm .19.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.20.反比例函数y=(m -2)x 2m +1的函数值为13时,自变量x 的值是_________。

北师大版初三数学九年级上册期末复习题及答案

北师大版初三数学九年级上册期末复习题及答案

北师大版初三数学九年级上册期末复习题及答案一、选择题1.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 22.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .123.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=4.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .22 5.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-26.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .158.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断9.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70° 10.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .511.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223312.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .312y y y >=C .123y y y >>D .123y y y =>13.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个14.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1215.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.18.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.19.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.20.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____. 21.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).24.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.25.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 26.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.27.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.28.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)29.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.33.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?34.已知关于x 的方程x 2-(m+3)x+m+1=0.(1)求证:不论m 为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长. 35.(问题呈现)阿基米德折弦定理:如图1,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,点M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =DB +BA .下面是运用“截长法”证明CD =DB +BA 的部分证明过程.证明:如图2,在CD 上截取CG =AB ,连接MA 、MB 、MC 和MG . ∵M 是ABC 的中点, ∴MA =MC ① 又∵∠A =∠C ② ∴△MAB ≌△MCG ③ ∴MB =MG 又∵MD ⊥BC ∴BD =DG∴AB +BD =CG +DG 即CD =DB +BA根据证明过程,分别写出下列步骤的理由: ① , ② , ③ ;(理解运用)如图1,AB 、BC 是⊙O 的两条弦,AB =4,BC =6,点M 是ABC 的中点,MD ⊥BC 于点D ,则BD = ;(变式探究)如图3,若点M 是AC 的中点,(问题呈现)中的其他条件不变,判断CD 、DB 、BA 之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.四、压轴题36.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 37.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上;①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.38.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题解析:∵底面半径为3cm , ∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B .2.B解析:B 【解析】试题解析:可能出现的结果的结果有1种, 则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.3.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.4.C解析:C【解析】【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴BD=2222+=22,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.5.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.6.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .7.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.8.A解析:A 【解析】 【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似. 【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒, ∵A ACD ACD DCH 90∠∠∠∠+=+=︒, ∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒, ∴ADG CDH ∠∠=, 继而可得出AGD CHD ∠∠=, ∴ADG ~CDH . 故选:A . 【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.9.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.10.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 11.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b =3,∴a +b =33=; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.13.C解析:C【解析】【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=12AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n =360°÷30°=12;故选:D .【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.15.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C (2,-3),∴BC∥x 轴,而点A (1,-3)与C 、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.18.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.19.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴==−1±2,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.20.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).21.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.22.6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.23.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0), ∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.24.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案. 【详解】解:∵AD AB =AEAC ,AE =2,EC =6,AB =12, ∴12AD =226 , 解得:AD =3, 故答案为:3. 【点睛】本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.25.5 【解析】 【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x 由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5 【解析】 【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x 由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m 【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.26.216°. 【解析】 【分析】 【详解】圆锥的底面周长为2π×3=6π(cm), 设圆锥侧面展开图的圆心角是n°,则=6π, 解得n=216. 故答案为216°. 【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n⨯=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.27.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.28.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.29.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中, OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭,解得x=2,∴四个小正方形的面积和=242=16⨯. 故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.30.2+ 【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:5【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.三、解答题31.(1)6;(2)1m =. 【解析】 【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解. 【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒12412=⨯++6=;(2)∵22210x x m ++-=有两个相等的实数根, ∴b 2-4ac=22-4(2m-1)=0, ∴m=1. 【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键. 32.(1)49;(2)13【解析】 【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】解:列表得:相同有3种情况(1)P (两辆车中恰有一辆车向左转)=49; (2)P (两辆车行驶方向相同)=3193=. 【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.33.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元 【解析】 【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可. 【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去) 答:该基地这两年“早黑宝”种植面积的平均增长率为40%. (2)设售价应降低y 元,则每天可售出(20050)y +千克 根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y = 答:售价应降低3元. 【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键. 34.(1)见解析;(2)263。

北师大版九年级数学上册期末考试卷(含答案)

北师大版九年级数学上册期末考试卷(含答案)

北师大新版九年级上册数学期末复习试卷一.选择题1.在Rt△ABC中,∠C=90°,AB=4,AC=3,那么下列各式中正确的是()A.B.C.D.2.抛物线y=x2﹣4x+5的顶点坐标是()A.(﹣2,1)B.(2,1)C.(﹣2,﹣1)D.(2,﹣1)3.已知,如图,∠AOB=∠COD,下列结论不一定成立的是()A.AB=CD B.=C.△AOB≌△COD D.△AOB、△COD都是等边三角形4.关于反比例函数y=﹣,下列说法正确的是()A.图象过(1,2)点B.图象在第一、三象限C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大5.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米6.抢凳子是小时候常玩的游戏.人围成圈,将凳子放在中间,主持人开始敲鼓,此时人围着凳子按同一方向转圈.当敲击声停止时,就要抢坐在凳子上.因为凳子数量少于玩游戏的总人数,未抢坐到凳子上的玩家淘汰下场.现在甲、乙、丙3位同学准备玩抢凳子的游戏,谁先抢坐到凳子上谁获胜.如图,三人已站定,主持人要在他们中间放一个凳子,为使游戏公平,凳子应放在图中三角形的()A.三条高的交点B.重心C.内心D.外心7.对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小8.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A.B.C.D.9.若方程ax2+bx+c=0(a>0)的两个根是﹣3和1,则对于二次函数y=ax2+bx+c,当y>0时,x的取值范围是()A.﹣3<x<1B.x<﹣3或x>1C.x>﹣3D.x<110.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数);⑤3a+c>0.则其中正确的结论有()A.2个B.3个C.4个D.5个二.填空题11.如图,△ABC的顶点是正方形网格的格点,则tan A的值为A.B.C.D.12.将抛物线y=(x﹣1)2向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是.13.如图,某下水道的横截面是圆形的,水面CD的宽度为2米,F是线段CD的中点,EF经过圆心O交⊙O于点E,EF=3米,则⊙O直径的长是米.14.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有个.15.如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为100m,求山的坡度为.16.若⊙O的半径为5,点A到圆心O的距离为4,则点A在⊙O(填“内”、“上”或“外”).17.如图,D为⊙O上一点,=,∠AOB=50°,则∠ADC的度数是.18.如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始向B点以2cm/s的速度移动(不与点B重合);动点Q从点B开始向点C以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒四边形APQC的面积最小.三.解答题19.如图,在△ABC中,已知AB=AC.(1)尺规作图:画△ABC的外接圆⊙O(保留作图痕迹,不写画法).(2)连结OB,OC,若∠A=45°,BC=6,求扇形OBC的弧长.20.计算:(1)cos245°+sin60°•tan45°;(2)(cos60°)﹣3+(tan60°+)0﹣|3﹣8cos30°|.21.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,求⊙O的半径.22.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)23.如图已知二次函数y=x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)写出该二次函数图象的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.24.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)25.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围;(3)连接OM、ON,求三角形OMN的面积.27.如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠ADO=∠C;(2)若⊙O的半径为5,BE=2,求CD的长.28.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点A的坐标为(﹣1,0),点B的坐标为(3,0),且OB=OC.(1)写出C点的坐标;(2)求这个二次函数的解析式;(3)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.参考答案一.选择题1.解:由勾股定理知,BC===.∴sin A=,cos A=,tan A=,cot A=.故选:B.2.解:∵y=x2﹣4x+5=(x﹣2)2+1,∴顶点坐标为(2,1),故选:B.3.解:∵∠AOB=∠COD,∴AB=CD,=,∵OA=OB=OC=OD,∴△AOB≌△COD,∴ABC成立,则D不成立,故选:D.4.解:∵k=﹣2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选:D.5.解:由题意可得:sinα==,故BC=3sinα(m).故选:A.6.解:为了游戏公平,凳子的位置到三角形的三个顶点的距离相等,∴凳子放在三角形的外心处,故选:D.7.解:二次函数y=﹣2(x+3)2的图象开口向下,顶点坐标为(﹣3,0),对称轴为直线x=﹣3,当x<﹣3时,y随x的增大而增大,故A、B、C正确,D不正确,故选:D.8.解:A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;B、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m<0,相矛盾,故错误;D、由函数y=x+m的图象可知m=0,由函数y=的图象可知m<0,相矛盾,故错误.故选:B.9.解:∵a>0,故抛物线开口向上,由题意知,抛物线与x轴的两个交点坐标为(﹣3,0)、(1,0),∴当y>0时,x的取值范围是x<﹣3或x>1,故选:B.10.解:∵二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,∴点A(3,0)关于直线x=1对称点为(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故①正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac﹣b2<0,故③错误;∵当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确;∵b=﹣2a,a﹣b+c=0,∴a+2a+c=0,即3a+c=0,故⑤错误;综上,正确的有①②④.故选:B.二.填空题(共8小题)11.解:连接CD.则CD=,AD=2,则tan A===.12.解:根据题意y=(x﹣1)2向下平移2个单位,再向左平移1个单位,得y=(x﹣1+1)2﹣2,即y=x2﹣2.故答案为:y=x2﹣2.13.解:如图,连接OC,∵F是弦CD的中点,EF过圆心O,∴EF⊥CD.∴CF=FD.∵CD=2,∴CF=1,设OC=x,则OF=3﹣x,在Rt△COF中,根据勾股定理,得12+(3﹣x)2=x2.解得x=,∴⊙O的直径为.故答案为:.14.解:设袋子中白球有x个,由题意得,=0.4,解得:x=4,故袋子中白球有4个,故答案为:4.15.解:由题意得:AB=200m,BC=100m,根据勾股定理得:AC===100(m),所以tan∠A===.故山坡的坡度为,故答案为.16.解:∵r=5,d=4,∴d<r,∴点A在⊙O内,故答案为内.17.解:如图,连接OC,∵在⊙O中,=,∴∠AOC=∠AOB.∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故答案是:25°.18.解:设运动时间为t秒时(0≤t≤6),四边形APQC的面积为S,∵PB=AB﹣2t=12﹣2t,BQ=4t,∴S△BPQ=PB•BQ=(12﹣2t)•4t=24t﹣4t2,∴S=S△ABC﹣S△BPQ=AB•BC﹣(24t﹣4t2)=4t2﹣24t+144,∵S=4t2﹣24t+144=4(t﹣3)2+108,∴经过3秒四边形APQC的面积最小,故答案为3.三.解答题19.解:(1)如图,⊙O即为所求.(2)连结OB,OC.∵∠A=45°,∴∠BOC=90°,∵BC=6,∴OB=,∴扇形OBC的弧长=.20.解:(1)原式=+××1=+;(2)原式=8+1﹣=9﹣.21.解:如图:连接OA,由OC⊥AB于D,得:AD=DB=AB=4.设⊙O的半径为r,在Rt△OAD中,OA2=AD2+OD2∴r2=(r﹣1)2+42整理得:2r=17∴r=.所以圆的半径是.22.解:(1)共有3种等可能出现的结果,被分到“B组”的有1中,因此被分到“B组”的概率为;(2)用列表法表示所有等可能出现的结果如下:共有9种等可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)==.23.解:(1)把A(2,0)、B(0,﹣6)代入y=x2+bx+c,得:,解得,∴这个二次函数的解析式为y=﹣+4x﹣6.(2)∵y=﹣+4x﹣6=﹣(x﹣4)2+2,∴顶点为(4,2),(3)∵该抛物线对称轴为直线x=4,∴点C的坐标为(4,0),∴AC=OC﹣OA=4﹣2=2,∴S△ABC=×AC×OB=×2×6=6.24.解:由题意得:AD⊥CE,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin30°==,∴CF=15cm,在直角三角形ABG中,sin60°=,∴=,解得:BG=20,又∠ADC=∠BFD=∠BGD=90°,∴四边形BFDG为矩形,∴FD=BG,∴CE=CF+FD+DE=CF+BG+ED=15+20+2≈51.6(cm).答:此时灯罩顶端C到桌面的高度CE是51.6cm.25.解:(1)由题意可得:w=(x﹣20)[250﹣10(x﹣25)]=﹣10(x﹣20)(x﹣50)=﹣10x2+700x﹣10000;(2)∵w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∴当x=35时,w取到最大值2250,即销售单价为35元时,每天销售利润最大,最大利润为2250元.26.解:(1)将N(﹣1,﹣4)代入反比例解析式得:k=4,即反比例解析式为y=,将M(2,m)代入反比例解析式得:m=2,即M(2,2),将M与N坐标代入一次函数解析式得:,解得:.即一次函数解析式为y=2x﹣2;(2)根据图形得:x<﹣1或0<x<2时,反比例函数的值大于一次函数的值;(3)设一次函数与x轴交于A点,对于一次函数y=2x﹣2,令y=0,得到x=1,即OA=1,则S△MON=S△AOM+S△AON=×1×2+×1×4=1+2=3.27.(1)证明:∵OA=OD,∴∠A=∠ODA,∵∠A=∠C,∴∠ODA=∠C.(2)解:∵BA是直径,AB⊥CD∴CE=ED,∵OB=OD=5,BE=2,∴OE=3,∵∠DEO=90°,∴DE==4,∴CD=2DE=8.28.解:(1)由点B的坐标为(3,0),且OB=OC,得C(0,﹣3);(2)二次函数y=ax2+bx+c(a>0)的图象过A、B、C点,得,解得,这个二次函数的解析式y=x2﹣2x﹣3;(3)过点P作y轴的平行线与AG交于点Q,当x=2时,y=22﹣2×2﹣3=﹣3,G(2,﹣3),直线AG为y=﹣x﹣1.设P(x,x2﹣2x﹣3),则Q(x,﹣x﹣1),PQ=﹣x2+x+2.S△APG=S△APQ+S△GPQ=(﹣x2+x+2)×3当x=时,△APG的面积最大,此时P点的坐标为(,﹣),S△APG最大=××3=.。

(完整word)北师大版九年级数学上期期末复习试题

(完整word)北师大版九年级数学上期期末复习试题

九年级上册第一章《证明二》期末复习练习题一、选择题1. 如图1, 在Rt ΔABC 中, ∠ACB =90°BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E, 则CE 的长为( )A. B. C. D. 2图1 图2 图3 2. (2009年广西钦州)如图2, AC =AD, BC =BD, 则有( )A. AB 垂直平分CDB. CD 垂直平分ABC. AB 与CD 互相垂直平分D. CD 平分∠ACB3.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图3, 是一“赵爽弦图”飞镖板, 其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A. B. C. D.5.(2009恩施市)如图4, 长方体的长为15, 宽为10, 高为20, 点 离点 的距离为5, 一只蚂蚁如果要沿着长方体的表面从点 爬到点 , 需要爬行的最短距离是( )A. B. 25 C. D.6. (2009年宁波市)等腰直角三角形的一个底角的度数是( )A. 30°B. 45°C. 60°D. 90°7. (2009重庆綦江)如图5, 点A 的坐标是(2,2), 若点P 在x 轴上, 且△APO 是等腰三角形,则点P 的坐标不可能是( )A .(4, 0)B .(1.0)C .(-2 , 0)D .(2, 0) 图7图5图88. (2009威海)如图6, AB =AC,BD =BC, 若∠A =40°, 则∠ABD 的度数是( )A. B. C. D.9.(2009年温州)如图7, △ABC 中, AB =AC =6, BC =8, AE 平分∠BAC 交BC 于点E, 点D为AB 的中点, 连结DE, 则△BDE 的周长是( )A. 7+B. 10C. 4+2D. 1210.(2009年云南省)如图11, 等腰△ABC 的周长为21, 底边BC = 5, AB 的垂直平分线DE 交AB 于点D, 交AC 于点E, 则△BEC 的周长为( )A. 13B. 14C. 15D. 1611.(2009呼和浩特)在等腰 中, , 一边上的中线 将这个三角形的周长分为15和12两个部分, 则这个等腰三角形的底边长为( )A. 7B. 11C. 7或11D. 7或10ADB E C12.已知在 中, , 则 的值为( )A. B. C. D.13.观察下列图形, 则第 个图形中三角形的个数是( )A. B. C. D. 二、填空题1. (2009年重庆市江津区)等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm, 则其腰上的高为 cm.2. (2009年滨州)某楼梯的侧面视图如图2所示, 其中 米, , , 因某种活动要求铺设红色地毯, 则在AB 段楼梯所铺地毯的长度应为 .3. (2009年漳州)如图, 在菱形 中, , 、 分别是 、 的中点, 若 , 则菱形 的边长是_____________.4.如图, OP 平分 , , , 垂足分别为A, B .下列结论中不一定成立的是( )A. B. 平分 C. D. 垂直平分5. (2009年广州市)已知命题“如果一个平行四边形的两条对角线互相垂直, 那么这个平行四边形是菱形”, 写出它的逆命题: ________________________________三、解答题1. (2009年崇左)如图, 在等腰梯形ABCD 中, 已知AD//BC, AB =DC,AD =2,BC =4, 延长BC 到E, 使CE =AD.(1)证明: ΔBAD ≌ΔDCE ;(2)如果AC ⊥BD, 求等腰梯形ABCD 的高DF 的值.2. (2009年浙江省绍兴市)如图, 在 中, , 分别以 为边作两个等腰直角三角形 和 , 使.(1)求DBC 的度数;……第1个第2个 第3个 D AB EC F(2)求证: .3. 如图, 已知△ABC 为等边三角形, 点D.E 分别在BC.AC 边上, 且AE=CD,AD 与BE 相交于点F.(1)求证: ≌△CAD ;(2)求∠BFD 的度数.4.(2009年衡阳市)如图, △ABC 中, AB =AC, AD.AE 分别是∠BAC 和∠BAC 和外角的平分线, BE ⊥AE. (1)求证: DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.5. 在△ABC 中, AB=AC, D 是BC 的中点, 连结AD, 在AD 的延长线上取一点E, 连结BE, CE.(1)求证: △ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时, 四边形ABEC 是菱形? 并说明理由.A BC D E F。

最新北师版九年级初三数学上册北师大版九上第5章测试卷(3)

最新北师版九年级初三数学上册北师大版九上第5章测试卷(3)

第五章投影与视图测试卷一、选择题1.小明从正面观察如图所示的物体,看到的是()A.B.C.D.2.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A.B.C.D.4.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形5.由下列光线形成的投影不是中心投影的是()A.手电筒B.探照灯C.太阳D.电灯6.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的7.下列命题正确的是()A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.以上都有可能D.以上都不可能9.如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱10.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C.D.二.填空题11.我们常说的三种视图分别是指、、.12.请写出三种视图都相同的两种几何体是.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有个碟子.15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是cm2.三、作图题17.画出如图组合体的三种视图.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.四、解答题19.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?答案解析一、选择题1.小明从正面观察如图所示的物体,看到的是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选C.【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.2.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A.B.C.D.【考点】简单几何体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.故选B.【点评】此题主要考查三视图的知识、学生的观察能力和空间想象能力.4.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形【考点】平行投影.【分析】根据平行投影的性质进行分析即可得出答案.【解答】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:A.【点评】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.由下列光线形成的投影不是中心投影的是()A.手电筒B.探照灯C.太阳D.电灯【考点】中心投影.【分析】利用中心投影和平行投影的定义判断即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有C选项得到的投影为平行投影.故选C.【点评】本题考查了中心投影的定义,解题的关键是理解中心投影的形成光源是灯光.6.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【考点】平行投影.【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.7.下列命题正确的是()A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形【考点】平行投影与三视图.【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;故选C.【点评】本题考查了三视图,投影,视点的概念.8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.以上都有可能D.以上都不可能【考点】平行投影.【分析】根据圆形的物体与太阳光线的位置关系进行判断.【解答】解:圆形的物体在太阳光的投影下可能为圆形,也可能为椭圆形.故选C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.9.如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱【考点】平行投影.【分析】根据圆柱的左视图的定义直接进行解答即可.【解答】解:如图所示圆柱从左面看是矩形,故选:B.【点评】本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.10.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C.D.【考点】平行投影.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键二.填空题11.我们常说的三种视图分别是指主视图、俯视图、左视图.【考点】平行投影.【分析】根据三视图的定义求解.【解答】解:我们常说的三种视图分别是指主视图、俯视图、左视图.故答案为主视图、俯视图、左视图.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.记住三视图的定义.12.请写出三种视图都相同的两种几何体是球,正方体(答案不唯一).【考点】根据视图描述几何体.【专题】开放型.【分析】球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为球,正方体(答案不唯一).【点评】考查由三视图判断几何体;常见的三视图相同的几何体如球,正方体等应熟记.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称圆锥.【考点】根据视图描述几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥.【解答】解:根据三视图可以得出立体图形是圆锥,故答案为:圆锥.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有12个碟子.【考点】根据视图描述几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得三摞碟子数分别为3,4,5则这个桌子上共有12个碟子.故答案为:12.【点评】本题考查对三视图的理解应用及空间想象能力.15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同.【考点】平行投影.【专题】压轴题.【分析】根据平行投影特点,当物体的某个面平行于投影面时,即光线垂直这个面;这个面的正投影与这个面的形状、大小相同.【解答】解:根据平行投影特点得:这个面的正投影与这个面的形状、大小相同.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是36cm2.【考点】复杂几何体的三视图.【专题】计算题.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积为6×(1×1),从正面看面积为6×2×(1×1),从两个侧后面看面积为2×6×(1×1),底面看到的面积为6×(1×1),故这个几何体的表面积为36cm2.故答案为36cm2.【点评】几何体的表面积是所有围成几何体的表面面积之和.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.【考点】复杂几何体的三视图.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,1,左视图有2列,每列小正方形数目分别为2,3,2.俯视图有3列,每一列的正方形个数为3,3,3据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了画三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【考点】中心投影.【专题】作图题.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【解答】解:【点评】本题考查平行投影和中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、解答题19.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】平行投影.【专题】应用题;压轴题.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt△DCE,其中有CE=30米,∠DCE=30°,解三角形可得DE的高度,再由DB=BE+ED 可计算出新建楼房的最高高度.【解答】解:过点C作CE⊥BD于E.∵AB=40米,∴CE=40米,∵阳光入射角为30°,∴∠DCE=30°,在Rt△DCE中tan∠DCE=.∴,∴DE=40×=米,∵AC=BE=1米,∴DB=BE+ED=1+=米.答:新建楼房最高为米.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.需注意通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形.成功名言警句:2、对我来说,不学习,毋宁死。

北师大版数学九年级上期末复习压轴专题:反比例函数综合(三)

北师大版数学九年级上期末复习压轴专题:反比例函数综合(三)

北师大版数学九年级上期末复习压轴专题:反比例函数综合(三)1.如图,在平面直角坐标系中,A是第一象限内一点,过A作AC∥y轴交反比例函数y=(x>0)的图象于B点,E是y轴上一点,AE交反比例函数的图象于点D,若B是AC的中点,DE:AD=3:2,且△BDE的面积为,则k的值为()A.7 B.C.8 D.2.如图,在平面直角坐标系中,反比例函数y=(k>0,x>0)的图象上有A、B两点,它们的横坐标分别为2和4,△ABO的面积为3,则k的值为()A.2 B.4 C.6 D.83.如图,▱ABCD的顶点A的坐标为(﹣),顶点B在y轴上,顶点C、D在双曲线y =(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则▱ABCD面积为()A.8 B.10 C.12 D.164.如图,在平面直角坐标系中,△ABE的顶点E在y轴上,原点O在AB边上,反比例函数y=(k≠0)的图象恰好经过顶点A和B,并与BE边交于点C,若BC:CE=3:1,△OBE 的面积为,则k的值为()A.﹣2 B.﹣4 C.﹣6 D.﹣75.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC 的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.26.如图,反比例函数y=的图象与矩形ABCO的边AB,BC相交于E,F两点,点A,C在坐标轴上.若BE=nAE.则四边形OEBF的面积为()A.n+1 B.n C.D.7.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l 上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y =(x>0)的图象过点B、C,若△ABC的面积为1,则k的值为()A.1 B.2 C.3 D.68.如图,面积为1的矩形ABCD在第二象限,BC与x轴平行,反比例函数y=﹣(k≠0)经过B、D两点,直线BD所在直线y=kx+b与x轴、y轴交于E、F两点,且B、D为线段EF的三等分点,则b的值为()A.2B.2C.3D.39.如图,矩形OABC的边OA=2,OC=4,点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数y=(x>0)的图象与边BC交于点F.当四边形AOFE的面积最大时,FC的长度为()A.0.8 B.1 C.1.6 D.1.810.如图,在平面直角坐标系xOy中,Rt△OAB的直角顶点A在x轴上,∠B=30°,反比例函数y=(k≠0)在第一象限的图象经过OB边上的点C和AB的中点D,连接AC.已知S=4,则实数k的值为()△OACA.4B.6C.8D.1011.如图,等腰三角形ABC的底边BC在x轴正半轴上,点A在第一象限,延长AB交y轴负半轴于点D,延长CA到点E,使AE=AC,双曲线y=(x>0)的图象过点E.若△BCD 的面积为2,则k的值为()A.4B.4 C.2D.212.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣1213.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S=2,则k的值为()△BNCA.4 B.6 C.8 D.1214.如图,平行四边形OABC的顶点O,B在y轴上,顶点A在y=(k1<0)上,顶点C在y=(k2>0)上,则平行四边形OABC的面积是()A.﹣2k1B.2k2C.k1+k2D.k2﹣k115.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B.C.D.16.如图,两个反比例函数y=和y=(其中k1>0>k2)在第一象限内的图象是C1,第二、四象限内的图象是C2,设点P在C1上,PC⊥x轴于点M,交C2于点C,PA⊥y轴于点N,交C2于点A,AB∥PC,CB∥AP相交于点B,则四边形ODBE的面积为()A .|k 1﹣k 2|B .C .|k 1•k 2|D .17.如图,在平面直角坐标系中,点O 为坐标原点,点P 在直线y =﹣2x +8上,且点P 的横坐标是2,过点P 分别向x 轴、y 轴作垂线,交反比例函数y =的图象于点A 、点B ,则四边形OAPB 的面积是( )A .4B .C .D .518.如图,反比例函数y =(x >0)的图象经过Rt △BOC 斜边上的中点A ,与边BC 交于点D ,连接AD ,则△ADB 的面积为( )A .12B .16C .20D .2419.如图,矩形AOBC的面积为4,反比例函数y=的图象的一支经过矩形对角线的交点P,则k的值是()A.1 B.﹣2 C.﹣1 D.﹣20.如图,正方形ABCD的顶点A,B分别在x轴和y轴上,与双曲线y=恰好交于BC的中点E,若OB=2OA,则S的值为()△ABOA.6 B.8 C.12 D.16参考答案1.解:∵DE:AD=3:2,∴S△BDE :S△ADB=3:2∵△BDE的面积为,∴△ABD的面积为,∴S△ABE=+=,设OC=m,AB=n=BC,∴S△ABE=+==AB•OC=mn,即:mn=∵点B(m,n)在反比例函数y=图象上,∴k=mn=,故选:B.2.解:∵反比例函数y=(k>0,x>0)的图象上有A、B两点,它们的横坐标分别为2和4,∴A(2,),B(4,),作AC⊥x轴于C,BD⊥x轴于D,∵S△ABO =S△AOC+S梯形ACDB﹣S△BOD=S梯形ACDB=3,∴(+)(4﹣2)=3,解得k=4,故选:B.3.解:过点D作DF⊥x轴,垂足为F,过C、B作x、y轴的垂线相交于点G,连接BD,∵A(﹣),E(0,2),∴OA=,OE=2,AE==,∵▱ABCD,∴S△ABD =S△BCD,又∵四边形BCDE的面积是△ABE面积的3倍,∴S△ABE =S△BDE,∴AE=ED=2.5,∵△AEO∽△ADF,∴,∴DF=2•EO=4,∴D(,4)∴反比例函数的关系式为:y=,在Rt△ADF中,AF=,易证△ADF≌△BCG,∴BG=AF=3,CG=DF=4,当x=BG=3时,y=2,∴C(3,2)∴OB=CG﹣CH=4﹣2=2,=×4×=3,∴S△ABE又∵四边形BCDE的面积是△ABE面积的3倍,=4×3=12,∴▱ABCD的面积=4S△ABE故选:C.4.解:连接OC.作CK⊥x轴于K,BF⊥x轴于F.∵BC:CE=3:1,△OBE的面积为,=×=,∴S△OBC设C(m,),则B(4m,),∵S△OBC =S四边形OCBF﹣S△OBF=S四边形OCBF﹣S△OKC=S梯形CKFB,∴=•(﹣﹣)×3m,∴k=﹣7,故选:D.5.解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24或﹣24(舍去),∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.6.解:如图,连接OB.∵BE=nAE,∴S△OBE =n•S△OAE,∵E、F在y=上,四边形AOCB是矩形,∴S△AEO =S△OCF=,S△OBC=S△OBA,∴S△OBE =S△OBF=n,∴S四边形OFBE=n.故选:B.7.如图,过C作CD⊥y轴于D,交AB于E,∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),∵B,C在反比例函数的图象上,∴x(x+2a)=(x+a)(x+a),x=2a,=AB•CE=•2a•a=1,∵S△ABC∴a=1,∴x=2,∴B(2,3),∴k=6故选:D.8.解:延长AB、DC交x轴于点Q、P,延长AD、BC交y轴于点M、N,∵B、D为线段EF的三等分点,∴BE =BD =DF ,∵AM ∥BC ∥EO ,∴OP =PQ =QE ,ON =MN =MF ,∵ABCD 的面积为1,∴S 矩形QBNO =S 矩形ABCD =2,∴|k |=2,∴反比例函数的关系式为y =﹣,∴k =2,一次函数的关系式为y =2x +b ,即:F (0,b ),E (﹣,0),由题意得△EOF 的面积为, ∴×b ×=,解得,b =3,b =﹣3(舍去),故选:C .9.解:∵四边形OABC 为矩形,OA =2,OC =4,∴E (k ,2),F (4,k ),∴BE =4﹣k ,BF =2﹣k ,∴S △BEF =(4﹣k )(2﹣k )=k 2﹣k +4,∵S △OAE =S △OCF =×4×k =k ,S 矩形OABC =2×4=8,∴S 四边形AOFE =S 矩形OABC ﹣S △BEF ﹣S △OCF=8﹣(k 2﹣k +4)﹣k =﹣k 2+k +4 =﹣(k ﹣4)2+5, ∵﹣<0,∴当k =4时,四边形AOFE 的面积最大,∴CF =k =1.故选:B .10.解:在Rt △OAB 中,∠B =30°,∴可设OA =a ,则AB =OA =a , ∴点B 的坐标为(a ,a ), ∴直线OB 的解析是为∵D 是AB 的中点∴点D 的坐标为(a ,)∴k =又∵S=4,△OAC∴OA•y c=4,即•a•y c=4,∴y c=∴C(,)∴k=•=∴=∴a2=16,∴k==8.故选:C.11.解:如图,连接BE,∵等腰三角形ABC中,AB=AC,∴∠ABC=∠ACB,∵AE=AC,∴AE=AB,∴∠AEB=∠ABE,又∵∠AEB+∠ABE+∠ABC+∠ACB=180°,∴∠ABE+∠ABC=90°,即BE⊥BC,∴∠CBE=∠BOD=90°,又∵∠ACB=∠ABC=∠OBD,∴△CBE∽△BOD,∴=,即BC×OD=OB×BE,又∵△BCD的面积为2,∴BC×OD=4,∴OB×BE=4,又∵双曲线y=(x>0)的图象过点E,∴k=OB×BE=4,故选:A.12.解:设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴=,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选:D.13.解:∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB :S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=8,∵OM=MN=NC,∴OM=MC,∴S△AOM =S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=8.故选:C.14.解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CD0=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴△ABE与△COD的面积相等,又∵点C在y=的图象上,∴△ABE的面积=△COD的面积相等=|k2|,同理可得:△AOE的面积=△CBD的面积相等=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2﹣k1,故选:D.15.解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.16.解:∵AB∥PC,CB∥AP,∠APC=90°,∴四边形APCB是矩形.设P(x,),则A(,),C(x,),∴S矩形APCB=AP•PC=(x﹣)(﹣)=,∴四边形ODBE的面积=S矩形APCB ﹣S矩形PNOM﹣S矩形MCDO﹣S矩形AEON=﹣k1﹣|k2|﹣|k2|=.故选:D.17.解:如图,当x=2时,y=﹣2×2+8=4,即点P(2,4),∴S矩形OCPD=2×4=8,又∵点A、点B在反比例函数y=的图象上,∴S△AOC =S△BOD=|k|=×4=2,∴S四边形OAPB=8﹣2﹣2=4,故选:A.18.解:过A作AE⊥OC于E,设A(a,b),∵当A是OB的中点,∴B(2a,2b),∵反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,∴ab=16,∴S△BCO=2ab=32,∵点D在反比例函数数y=(x>0)的图象上,∴S=8,△OCD=32﹣8=24,∴S△BOD=12,∴△ADB的面积=S△BOD故选:A.19.解:作PE⊥x轴于E,PF⊥y轴于F,如图,∵点P为矩形AOBC对角线的交点,∴矩形OEPF的面积=矩形AOBC的面积=×4=1,∴|k|=1,而k<0,∴k=﹣1,故选:C.20.解:如图,过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABM=90°﹣∠CBN=∠BCN,∵∠M=∠N=90°,∴△ABM≌△BCN(AAS),∵OB=2OA,∴设OA=a,OB=2a,则BN=AM=2a,CN=BM=a,∴点C坐标为(2a,a),∵E为BC的中点,B(0,2a),∴E(a,1.5a),把点E代入双曲线y=得1.5a2=18,a2=12,=a•2a=12,∴S△ABO故选:C.。

2019年北师大版九年级上册期末专题《第三章概率的进一步认识》单元试卷-(数学)【精品版】

2019年北师大版九年级上册期末专题《第三章概率的进一步认识》单元试卷-(数学)【精品版】

期末专题突破:北师大版九年级数学上册第三章概率的进一步认识单元检测试卷一、单选题(共10题;共30分)1.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是().A. 16B. 18C. 20D. 222.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A. 9B. 12C. 15D. 183.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0. 2左右,则a的值约为( )A. 12B. 15C. 18D. 204.一个口袋中有红球、黄球共20个,这些除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一球,记下颜色后再放回口袋,不断重复这一过程,共摸了200次,发现其中有161次摸到红球.则这个口袋中红球数大约有()A. 4个B. 10个C. 16个D. 20个5.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A. B. C. D.6.下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是()A. 某种幼苗在一定条件下的移植成活率B. 某种柑橘在某运输过程中的损坏率C. 某运动员在某种条件下“射出9环以上”的概率D. 投掷一枚均匀的骰子,朝上一面为偶数的概率7.甲、乙两人进行象棋比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是()A. B. C. D.8.甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A. B. C. D.9.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A. B. C. D.二、填空题(共10题;共30分)10.一个仅装有球的不透明布袋里共有4个球(只有颜色不同),其中3个是红球,1个是白球,从中任意摸出一个球,记下颜色后不放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.11.在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:(结果精确到0.1).12.(2017•锦州)在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是________个.13.若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________.14.从1,2,3这三个数字中任意抽取两个,其和是偶数的概率是________.15.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出.他们约定若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).16.从-2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是________.17.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有________个白球.三、解答题(共8题;共60分)18.小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.19.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.20.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.21.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.22.在一个口袋中装有4个完成相同的小球,把它们分别标号1、2、3、4,小明从中随机地摸出一个球. (1)直接写出小明摸出的球标号为4的概率;(2)若小明摸到的球不放回,记小明摸出球的标号为,然后由小强再随机摸出一个球记为y.小明和小强在此基础上共同协商一个游戏规则当>y时,小明获胜,否则小强获胜.请问他们制定的游戏规则公平吗?请用树状图或列表法说明理由.23.一个不透明的袋子里装有红、黄、蓝三种颜色的球(除颜色以外,其余都相同),其中红球2个,黄球2个,从中随机摸出一个球是蓝色球的概率为.(1)求袋子里蓝色球的个数;(2)甲、乙两人分别从袋中摸出一个球(不放回),求摸出的两个球中一个是红球一个是黄球的概率.24.中秋节临,小红家自己制作月饼.小红做了三个月饼,1个芝麻馅,2个豆沙馅;小红的爸爸做了两个月饼,1个芝麻馅,1个豆沙馅(除馅料不同,其它都相同).做好后他们请奶奶品尝月饼,奶奶从小红做的月饼中拿了一个,从小红爸爸做的月饼中拿了一个.请利用列表或画树状图的方法求奶奶拿到的月饼都是豆沙馅的概率.25.王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.答案解析部分一、单选题1.【答案】A2.【答案】B3.【答案】B4.【答案】C5.【答案】D6.【答案】D7.【答案】B8.【答案】B9.【答案】C二、填空题10.【答案】11.【答案】0.712.【答案】1213.【答案】14.【答案】15.【答案】公平16.【答案】17.【答案】9三、解答题18.【答案】解:这个游戏规则对双方公平.理由如下:画树状图为:共有9种等可能的结果数,其中摸出的两张卡片的正面数字之积小于10的结果数为4;摸出的两张卡片的正面数字之积超过10的结果数为4,所以小明获胜的概率= ,小亮获胜的概率= .所以这个游戏规则对双方公平19.【答案】解:游戏不公平,理由如下:游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色.P(配紫色)= ,P(没有配紫色)= ,∵,∴这个游戏对双方不公平.20.【答案】解:根据题意列表如下:十位上则十位上的数字和个位上的数字之和为9的两位数有45和54,所以其概率为:.21.【答案】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小明胜的概率为,∵≠ ,∴这个游戏对双方不公平22.【答案】解:(1)小明摸出的球标号为4的概率为;(2)他们制定的游戏规则是公平的.理由如下:如图所示:由树状图可知,共有12种机会均等的情况,其中满足>y的有6种,∵P(小明获胜)=,P(小强获胜)=1﹣=,∴P(小明获胜)=P(小强获胜)故他们制定的游戏规则是公平的.23.【答案】解:(1)设袋子里蓝色球的个数为,根据题意得:,解得:=1;答:袋子里蓝色球的个数为1;(2)画树状图如下:由树状图可知:所有可能出现的结果共有20种,符合题意的结果有8种,∴P(一个是红球一个是黄球)==;答:摸出的两个球中一个是红球一个是黄球的概率为.24.【答案】解:用字母A表示芝麻馅,字母表示豆沙馅,画树状图:共有6种等可能的结果数,其中月饼都是豆沙馅的结果数为2,所以月饼都是豆沙馅的概率= .25.【答案】解:(1)“3点朝上”的频率为:,“5点朝上”的频率为:;(2)王勇的说法是错误的因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验次数足够大时,该事件发生的频率才能稳定在事件发生的概率附近,也才能用该事件发生的频率区估计其概率.李明的说法也是错误的,因为事件的发生具有随机性,所以投掷300次,出现“6点朝上”的次数不一定是30次.(3)列表:∴P(点数之和为3的倍数)=.。

(北师大版)九年级数学(上册)各章测试题与期中、期末测试题与答案(共10套)

(北师大版)九年级数学(上册)各章测试题与期中、期末测试题与答案(共10套)

北师大版九年级数学上册第一章测试题 班级: : 考号:一、填空题(本大题有10小题,每小题3分,共30分.将答案填在题中横线上) 1.在ABC ∆中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .2.如果等腰三角形的一个角是80°,那么顶角是 度.3.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .4. ABC ∆中,ο90=∠C ,AD 平分BAC ∠,交BC 于点D ,若7=DC ,则D 到AB 的距离是 .5.如图,ABC ∠=DCB ∠,需要补充一个直接条件才能使ABC ∆≌DCB ∆.甲、乙、丙、丁四位同学填写的条件分别是:甲“DC AB =”;乙“DB AC =”;丙“D A ∠=∠”;丁“ACB ∠=DBC ∠”.那么这四位同学填写错误的是 .6. 用反证法证明 “三角形中至少有一个角不小于60°时,假设“ ”,则与“ ”矛盾,所以原命题正确.7.补全“求作AOB ∠的平分线”的作法:①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以 为半径画弧,两弧在AOB ∠交于点C .③作射线OC 即为AOB ∠的平分线.8.一轮船以每小时20海里的速度沿正向航行.上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图),上午9时行到C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).9.在ABC ∆中,A ∠=90°,AC AB =,BD 平分B ∠交AC 于D ,BC DE ⊥于E ,若10=BC ,则DEC ∆的周长是 .10.如图是2002年8月在召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图小正方形的面积分别为522cm 和42cm ,则直角三角形的两条直角边的和是 cm .二、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)11.两个直角三角形全等的条件是( )(A )一锐角对应相等; (B )两锐角对应相等; (C )一条边对应相等; (D )两条边对应相等.12.到ABC ∆的三个顶点距离相等的点是ABC ∆的( ). (A )三边垂直平分线的交点; (B )三条角平分线的交点; (C )三条高的交点; (D )三边中线的交点. 13.如图,由21∠=∠,DC BC =,EC AC =,得ABC ∆≌EDC ∆的根据是( )(A )SAS (B )ASA (C )AAS (D )SSSABC D(第15题)(第18题)(第20题)(第3题)14.ABC ∆中,AC AB =,BD 平分ABC ∠交AC 边于点D ,ο75=∠BDC ,则A ∠的度数为( )(A )35° (B )40° (C )70° (D )110° 15.下列两个三角形中,一定全等的是( ) (A )有一个角是40°,腰相等的两个等腰三角形;(B )两个等边三角形; (C )有一个角是100°,底相等的两个等腰三角形;(D )有一条边相等,有一个角相等的两个等腰三角形.16.适合条件A ∠=B ∠ =C ∠31的三角形一定是( )(A )锐角三角形; (B )钝角三角形; (C )直角三角形; (D )任意三角形. 17.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇”填上适当的数字是( ).(A )3米 (B )4米 (C )5米 (D )6米18. 一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( ).(A )等腰三角形; (B )等边三角形; (C )直角三角形; (D )等腰直角三角形.19.如图,已知AC 平分PAQ ∠,点B 、B '分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =B A ',那么该条件不可以是( )(A)AC B B ⊥' (B)C B BC '=(C)ACB ∠=B AC '∠ (D)ABC ∠ =C B A '∠20.如图,AO FD ⊥于D ,BO FE ⊥于E ,下列条件:①OF 是AOB ∠的平分线;②EF DF =;③EO DO =;④OFD ∠=OFE ∠.其中能够证明DOF ∆≌EOF ∆的条件的个数有( )(A)1个 (B)2个 (C)3个 (D)4个三、解答题(本大题有6小题,共60分.解答需写出必要的文字说明、演算步骤或证明过程)21.(8分)已知:如图,A ∠=ο90=∠D ,BD AC =.求证:OC OB =.AB7(第7题)(第9题)(第10题)22.(8分)如图,OCB OBC ∠=∠,AOC AOB ∠=∠,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.23.(10分)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE =CD .求证:BD =DE .24.(10分)已知:如图,ABC ∆中,AC AB =,ο120=∠A .(1)用直尺和圆规作AB 的垂直平分线,分别交BC 、AB 于点M 、N (保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.AB C OAB C25. (本题满分12分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E 是BC 的中点,点A 在DE 上,且CDE BAE ∠=∠. 求证:CD AB =. 分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证CD AB =,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.AB C D E F A B C D E EF =DE (3)F GA B C D E (1) AB C D ECF ∥AB (2) F26.(12分)已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,可以说明:ACN ∆≌MCB ∆,从而得到结论:BM AN =.现要求:(1)将ACM ∆绕C 点按逆时针方向旋转180°,使A 点落在CB 上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“BM AN =”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA 的延长线与BN 相交于D 点,请你判断△ABD 与四边形MDNC 的形状,并说明你的结论的正确性.A BC MNBC N北师大版九年级数学上册第一章测试题参考答案一、DAABCDDCBD二、11.PC PB PA ==; 12. ο80或ο20; 13. ο75; 14.7; 15.乙;16.三角形的三个角都小于ο60,三角形的角和是ο180;17.大于DE 21的长为半径;18. 320;19.10;20. 10.三、21由A ∠=ο90=∠D ,BD AC =,BC BC =知BAC ∆≌CDB ∆,因此有DC AB =.又DOC AOB ∠=∠(对顶角),A ∠=ο90=∠D ,所以BAC ∆≌CDB ∆,所以OD AO =.又BD AC =,所以BO BD AO AC -=-,即OC OB =.22.∵ ∠OBC =∠OCB ,∴ OB =OC .又∵ ∠AOB =∠AOC ,OA =OA , ∴ △AOB ≌△AOC ,∴AB =AC .23. BD 是正三角形ABC 的AC 边的中线得AC BD ⊥,BD 平分ABC ∠,ο30=∠DBE .由CE CD =知∠CDE =∠E .由∠ACE = 120°,得∠CDE +∠E =60°,所以∠CDE =∠E =300,则有BD = DE .24.(1)作图略;(2)连接AM ,则BM =AM .∵ AB =AC ,∠BAC =120°,∴ ∠B =∠C =30°于是 ∠MAB =∠B =30°,∠MAC =90°.∴ .21CM AM =故CM BM 21=,即CM =2BM .25.方法一:作BF ⊥DE 于点F ,CG ⊥DE 于点G . ∴ ∠F =∠CGE =90°.又∵ ∠BEF =∠CEG ,BE =CE ,∴ △BFE ≌△CGE .∴ BF =CG .在△ABF 和△DCG 中,∵ ∠F =∠DGC =90°,∠BAE =∠CDE ,BF =CG ,∴ △ABF ≌△DCG .∴ AB =CD .方法二:作CF ∥AB ,交DE 的延长线于点F .∴ ∠F =∠BAE .又∵ ∠ABE =∠D ,∴ ∠F =∠D .∴ CF =CD .∵ ∠F =∠BAE ,∠AEB =∠FEC ,BE =C E ,∴ △ABE ≌△FCE .∴ AB =CF . ∴ AB =CD .方法三:延长DE 至点F ,使EF =DE .又∵ BE =CE ,∠BEF =∠CED ,∴ △BEF ≌△CED . ∴ B F=CD ,∠D =∠F . 又∵ ∠BAE =∠D ,∴ ∠BAE =∠F . ∴ AB =BF .∴ AB =CD .26.(1)作图略.(2)结论“AN =BM ”还成立. 证明:∵ CN =CB ,∠ACN =∠MCB =60°,CA =CM ,∴ △ACN ≌△MCB .∴ AN =BM . (3)△ABD 是等边三角形,四边形MDNC 是平行四边形.证明: ∵ ∠DAB =∠MAC =60°,∠DBA =60°∴ ∠ADB =60°.∴ △ABD 是等边三角形.∵ ∠ADB =∠AMC =60°,∴ ND ∥CM .∵ ∠ADB =∠BNC =60°,∴ MD ∥CN .∴ 四边形MDNC 是平行四边形.北师大版九年级数学上册第二章测试题班级: : 考号:一、选择题(每题3分,计30分)1.下列方程中,一元二次方程共有( ). ①2320x x += ②22340x xy -+= ③214x x -= ④21x =⑤2303xx -+= A . 2个 B .3个 C .4个 D . 5个 2.方程2(3)5(3)x x x -=-的根为( ). A . 52x =B .3x =C .125,32x x ==D . 125,32x x =-=- 3.若方程()a x =-24有解,则a 的取值围是( ). A .0≤a B .0≥a C .0>a D .无法确定4.若分式2926x x --的值为零,则x 的值为( ).A .3B .3或-3C .0D .-35.用配方法将二次三项式a 2+ 4a +5变形,结果是( ).A.(a –2)2+1B.(a +2)2+1C.(a –2)2-1D.(a +2)2-1 6.一元二次方程x 2-x+2=0的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根7.已知一个三角形的两边长是方程x 2-8x+15=0的两根,则第三边y 的取值围是( ). A .y<8 B .3<y<5 c .2<y<8 D .无法确定8.方程x 2+4x=2的正根为( ).A .2-6B .2+6C .-2-6D .-2+69.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,则原来的两位数中较大的数为( ). A .62 B .44 C .53 D .3510.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( ). A .5% B .20% C .15% D .10% 二、填空题(每题3分,计30分) 11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 ,其中常数项是 .12.方程22(2)250x x --=用 法较简便,方程的根为12____,____x x ==.13.方程22(2)(3)20mm x m x --+--=是一元二次方程,则____m =.14.已知方程22155k x x =+-的一个根是2,则k 的值是 ,方程的另一个根为 .15.当x=________时,代数式3x 2-6x 的值等于12.16.请你给出一个c 值, c= ,使方程x 2-3x+c=0无解. 17.已知x 2+4x -2=0,那么3x 2+12x +2002的值为 .18.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 .19.第二象限一点A (x —1,x 2—2),关于x 轴的对称点为B ,且AB=6,则x=_________. 20.两个正方形,小的正方形的边长是大的正方形的边长一半多4cm ,大的正方形的面积是小的正方形的面积2倍少32cm 2.则大、小两正方形的边长分别为____________. 三、解答题(共40分) 21.(6分)用适当的方法解方程: (1) 2)2)(113(=--x x ; (2) 4)2)(1(13)1(+-=-+x x x x .22.(5分)已知222a ax x y --=,且当1=x 时,0=y ,求a 的值.23.(5分)已知关于x 的方程x 2+kx -2=0的一个解与方程311=-+x x 解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个根.24.(8分)我们知道:对于任何实数x ,①∵2x ≥0,∴2x +1>0; ②∵2)31(-x ≥0,∴2)31(-x +21>0. 模仿上述方法解答:求证:(1)对于任何实数x ,均有:3422++x x >0;(2)不论x 为何实数,多项式1532--x x 的值总大于2422--x x 的值.25.(8分)若把一个正方形的一边增加2 cm ,把另一边增加1 cm ,所得的矩形比正方形面积多14 cm 2,求原来得正方形边长. 26.(8分)三个连续正奇数,最大数与最小数的积比中间一个数的6倍多3,求这三个正奇数.四、拓广提高(共20分) 27.(10分)某校2006年捐款1万元给希望工程,以后每年都捐款,计划到2008年共捐款4.75万元,问该校捐款的平均年增长率是多少?28.(10分)为了开阔学生视野,某校组织学生从学校出发,步行6km到科技展览馆参观.返回时比去时每小时少走1千米,结果返回时比去时多用了半小时.求学生返回时步行的速度.北师大版九年级数学上册第二章测试题参考答案一、选择题1.B 2.C 3.B 4.D 5.B 6.C 7.C 8.D 9.C 10. D 二、填空题11.7,0722-=-x 12.因式分解法,21,31-13.—2 14.3,3±15.51± 16.3等 17.2008 18.16 19.5- 20.16cm ,12cm 三、解答题21.(1)020173,222116322=+-=+--x x x x x ,4,3521==x x ; (2),6331244),2)(1(312)1(422-+=-++-=-+x x x x x x x x062=-+x x ,3,221-==x x22.把x=1,y=0代入得2,1,20212-==--=a a a a 23.(1)方程311=-+x x 的解为,x=2,把x=2代入方程x 2+kx -2=0得:4+2k-2=0,k=—1;(2)x 2—x -2=0的根为1,221-==x x ,所以方程x 2+kx -2=0的另一个根为—1. 24.(1)01)1(234222>++=++x x x ;(2)043)21(1)242(1532222>+-=+-=-----x x x x x x x 即1532--x x >2422--x x .25.设原正方形的边长为x ,则4,14)1)(2(2=+=++x x x x . 所以,原来得正方形边长为4cm .26.设中间一个正奇数为x ,则1,7,36)2)(2(21-==+=-+x x x x x 由于x 为正奇数,x=—1舍去,三个正奇数为5,7,9 四、拓广提高27.设该校捐款的平均年增长率是x ,则75.4)1(1)1(112=+⨯++⨯+x x , 整理,得75.132=+x x ,解得),(5.3%,505.021舍去不合题意-===x x ,所以,该校捐款的平均年增长率是50%. 28.设返回的速度为xkm/h ,则4,3,012,62116212-===-+=++x x x x xx (舍去)所以,学生返回时步行的速度为3km/h .北师大版九年级数学上册第三章测试题班级: : 考号:1、四边形的四个角中,最多时钝角有A 1 个B 2 个C 3 个D 4 个 2、四边形具有的性质是A 对边平行B 轴对称性C 稳定性D 不稳定性 3、一个多边形的每一个外角都等于720,则这个多边形的边数是A 四边B 五边C 六边D 七边 4、下列说法不正确的是A 平行四边形对边平行B 两组对边平行的四边形是平行四边形C 平行四边形对角相等D 一组对角相等的四边形是平行四边形 5、一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为A ︒30B ︒45C ︒60D ︒756、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是A 2对 B 3对 C 4对 D 5 对7、 菱形具有而平行四边形不具有的性质是A .角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直. 8、 平行四边形各角的平分线围成一个四边形,则这个四边形一定是 A. 矩形; B. 平行四边形; C. 菱形; D. 正方形9、 如图,在等腰梯形ABCD 中,AB ∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是A. 4a cm ;B. 5a cm ;C.6a cm ;D. 7a cm ;10、等边三角形的一边上的高线长为cm 32,那么这个等边三角形的中位线长为 A cm 3 B cm 5.2 C cm 2 D cm 4 二、耐心填一填:(把答案填放相应的空格里。

北师大版九年级数学上册期末压轴题综合复习题(含答案)

北师大版九年级数学上册期末压轴题综合复习题(含答案)

2021-2022年北师大版九年级数学上册期末压轴题综合复习题1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择题.A题:当点E是AB的中点时,矩形EFGH的面积是.B题:当BE=时,矩形EFGH的面积是8.3、在△ABC中,∠ABC=90°,ABnBC,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BM.PQ BQ②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.4、已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C 出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择题.A.若四边形BGEH为菱形,则BD的长为.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.7、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为.(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.17、如图,直线y=x+n交x轴于点A(﹣8,0),直线y=﹣x﹣4经过点A,交y轴于点B,点P是直线y=﹣x﹣4上的一个动点,过点P作x轴的垂线,过点B作y轴的垂线,两条垂线交于点D,连接PB,设点P的横坐标为m.(1)若点P的横坐标为m,则PD的长度为(用含m的式子表示);(2)如图1,已知点Q是直线y=x+n上的一个动点,点E是x轴上的一个动点,是否存在以A,B,E,Q为顶点的平行四边形,若存在,求出E的坐标;若不存在,说明理由;(3)如图2,将△BPD绕点B旋转,得到△BD′P′,且旋转角∠PBP′=∠OCA,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.18、如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.19、在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,的大小是否发生变化?如果变化,请说明理由;如果不变,请求出的值.(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.20、如图①,已知点A(﹣1,0),B(0,﹣2),▱ABCD的边AD与y轴交于点E,且E为AD的中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图③),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当点T在AF上运动时,的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.参考答案1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.1、【解答】(1)证明:∵∠PGB=∠EHP=∠BPE=90°,∴∠PBG=∠EPH(同角的余角相等),∴△PGB∽△EHP;(2)解:连接BE,∵PE⊥PB,∴∠BPE=90°,∵∠BCE=90°,∴∠BCE+∠BPE=180°,∴P,B,E,C四点共圆,∴∠PBE=∠PCE,在Rt△BPE与Rt△ADC中,∠D=∠BP E=90°,∠ACD=∠PBE,∴Rt△BPE∽Rt△ADC,∴=,即==;(3)设AP的长为x.∵AD=3,AB=4,∴由勾股定理得到:AC===5∵cos∠GAP===,∴AG=AP=x.同理,sin∠GAP===.则GP=x.在Rt△PBG中,PB2=BG2+PG2=(4﹣x)2+(x)2=x2﹣x+16,∵==.∴PE=PB,∴S矩形BPEF=PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择A或B题.A题:当点E是AB的中点时,矩形EFGH的面积是9.B题:当BE=2或4时,矩形EFGH的面积是8.2、【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AB=BC=CD=AD,∴∠A+∠B=180°,∵BE=BF=DH=DG,∴AE=AH=CF=CG,∴∠AEH=∠AHE=(180°﹣∠A),∠BEF=∠BFE=(180°﹣∠B),∴∠AEH+∠BEF=(180°﹣∠A)+(180°﹣∠B)=90°,同法可证:∠EFG=∠EHG=90°,∴四边形EFGH是矩形.(2)解:A题:连接AC,BD交于点O.∵AE=BE,∴AH=DH,BF=CF,CG=GD,∴EF=AC,EH=BD,∵AB=BC=6,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6,∵OB⊥AC,∴OB=3,BD=2OB=6,∴EF=3,EH=3,∴S矩形EFGH=EF•EH=9.故答案为9.B题:设BE=x,则AE=6﹣x,EF=x,EH=(6﹣x),由题意:x•(6﹣x)=8,解得x=4或2,∴BE=2或4.故答案为A或B,9,2或4.3、在△ABC中,∠ABC=90°,ABnBC=,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BMPQ BQ=.②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.3、【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH ∥BQ , ∴==.②简解:(射影定理)证2BM PM AM = 由BM =CM 得2CM PM AM = 则△PMC ∽△CMA 可得∠BPQ =∠BAC4、已知:矩形OABC 的顶点O 在平面直角坐标系的原点,边OA 、OC 分别在x 、y 轴的正半轴 上,且OA =3cm ,OC =4cm ,点M 从点A 出发沿AB 向终点B 运动,点N 从点C 出发沿CA 向终点A 运动,点M 、N 同时出发,且运动的速度均为1cm /秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t 秒. (1)当点N 运动1秒时,求点N 的坐标;(2)试求出多边形OAMN 的面积S 与t 的函数关系式;(3)t 为何值时,以△OAN 的一边所在直线为对称轴翻折△OAN ,翻折前后的两个三角形所组成的四边形为菱形?4、【解答】解:(1)∵t =1∴CN =1,AM =1 过N 作NE ⊥y 轴,作NF ⊥x 轴 ∴△CEN ∽△COA ,∴,即,∴EN =.(1分) 由勾股定理得:,,∴.(2分)(2)由(1)得,∴∴N 点坐标为. ∵多边形OAMN 由△ONA 和△AMN 组成 ∴=(3分) =(4分) ∴多边形OAMN 的面积S =.(0≤t≤4)(5分)(3)①直线ON为对称轴时,翻折△OAN得到△OA′N,此时组成的四边形为OANA′,当AN=A′N=A′O=OA,四边形OANA’是菱形.即AN=OA,∴5﹣t=3∴t=2.(6分)②直线OA为对称轴时,翻折△OAN得到△OAN′,此时组成的四边形为ONAN′,连接NN′,交OA于点G.当NN′与OA互相垂直平分时,四边形ONAN′是菱形.即OA⊥NN′,OG=AG=,∴NG∥CO,∴点N是AC的中点,∴CN=,∴(7分)③直线AN为对称轴时,翻折△OAN得到△O′AN,此时组成的四边形为ONO′A,连接OO’,交AN于点H.当OO′与AN互相垂直平分时,四边形ONO’A是菱形.即OH⊥AC,AH=NH=,由面积法可求得OH=,在Rt△OAH中,由勾股定理得,AH=.∴,∴.(8分)综上所述,t的值为.5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.5、【解答】解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t)=(3﹣t),∴AM=AQ+QM=t+(3﹣t)=(t+3)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴∴t=1(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择A题.A.若四边形BGEH为菱形,则BD的长为5.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.6、【解答】(1)证明:∵四边形ABCD和四边形BEFG是菱形,∴CD∥AG∥FH,BC∥GF,∠ABD=∠ABC,∠BGE=∠BGF,∴∠ABC=∠BGF,∴∠ABD=∠BGE,∴BH∥GE,∵EH∥BG,∴四边形BGEH是平行四边形;(2)解:A、∵四边形ABCD和四边形BGEH为菱形,∴AB=AD,∠ABD=∠CBD=∠GBE=60°,∴△ABD是等边三角形,∴BD=AB=5;故答案为:A,5;B、如图所示:∵四边形BHCF为矩形,∴CE=BE,∵EH∥BG,∴EH∥CD,∴EH是△BCD的中位线,∴BH=BD=3,∴CF=3;故答案为:3;8、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为(1,2).(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.7、【解答】解:(1)∵点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5,∴点B(1,2),故答案为:B(1,2);(2)如图1,过点B作BD⊥CO,则点D(1,0),∴OD=1,BD=2,∵AC⊥x轴,点A(﹣4,2),∴AC=2,CO=4,∴,且∠ACO=∠ODB=90°,∴△ACO∽△ODB,∴当点D为(1,0)时,△AOC与△BOD相似;∵△ACO∽△ODB,∴∠AOC=∠OBD,∠CAO=∠BOD,∵∠AOC+∠CAO=90°,∴∠AOC+∠BOD=90°,∴AO⊥BO,∵AC=2,CO=4,∴AO===2,∵OD=1,BD=2,∴OB===,过点B作BD'⊥OB,交x轴于D',∵∠ACO=∠OBD',∠BOD=∠CAO,∴△ACO∽△OCD',∴,∴OD'==5,∴D'(5,0)综上所述:当点D为(1,0)或(5,0)时,△AOC与△BOD相似;(3)连接DO,∵将△AOB折叠,使得点A刚好落在O处,∴AD=DO,∵DN2+ON2=DO2,∴DN2+4=(4﹣DN)2,∴DN=,∴点D坐标(﹣,2),∴BD=2+=,∵四边形BDPQ的周长=BD+PQ+PD+BQ=++PD+BQ,∴当PD+BQ最小时,四边形BDPQ的周长有最小值,作点B关于AO的对称点B'(﹣1,﹣2),过点D作DH∥AO,且DH=,∴H(,1),∴B'H为PD+BQ的最小值,∴B'H==,∴四边形BDPQ的周长最小值=++=.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.8、【解答】证明:(1)如图2,∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴▱OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形,理由是:由(1)得:四边形OEMF是平行四边形,∵四边形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵EM∥OC,∴∠EMB=∠OCB,∴∠EMB=∠OBC,∴BE=EM,∵BM=MC,EM∥OC,∴BE=OE,∴OE=EM,∴▱OEMF是菱形;故答案为:菱形;(3)如图4,ME=OB+MF,理由是:由(2)得:OB=OC,∴∠OBC=∠OCB,∵MF∥BE,∴∠OBC=∠BMF,∴∠OCB=∠BMF,∵∠OCB=∠FCM,∴∠FCM=∠BMF,∴FC═FM,由(1)得四边形OEMF是平行四边形,∴OF=EM,∵OF=OC+FC=OB+FM,∴ME=OB+MF.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.9、【解答】解:(1)∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D,∴在△GAB和△GC′D中,,∴△GAB≌△GC′D(AAS),∴BG=DG;(2)∵△GAB≌△GC′D,∴AG=C′G,设C′G=x,则GD=BG=8﹣x,∴x2+62=(8﹣x)2,解得:,∴;(3)∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,∴在Rt△ABD中,BD=10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是AB=AD.11、【解答】证明:(1)如图(2),∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,由折叠得:G、E、M将AD四等分,∴ED=BF,∵∠EOD=∠FOB,∴△EOD≌△FOB,∴OE=OF;(2)由(1)得:△EOD≌△FOB,∴OD=OB,连接AC,∴A、O、C共线,∵GT∥EO,∴=1,∴DT=OT,∵AE=ED,OT=DT,∴ET∥AC,ET=AO,即EQ∥AC,同理得:TQ=OC,∴EQ=AC,同理得:PF=AC,PF∥AC,∴PF=EQ,PF=EQ,∴四边形EPFQ是平行四边形,∵PF∥AC,F是BC的中点,∴P为AB的中点,同理得:Q为DC的中点,∴AP=QD=AB,∵AE=AD,∠BAD=∠ADC=90°,∴△APE≌△DQE,∴PE=EQ,∴▱EPFQ是菱形.(3)当AB=AD时,四边形EPFQ是正方形,理由是:∵E是AD的中点,P是AB的中点,∴AE=AD,AP=AB,∵AB=AD,∴AP=AE,∴△APE是等腰直角三角形,∴∠AEP=45°,同理∠QED=45°,∴∠PEQ=90°,由(2)得:四边形EPFQ是菱形,∴四边形EPFQ是正方形;故答案为:AB=AD.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形12、【解答】解:(1)∵AB,CD为边作菱形ABEF和菱形CDGH,∴EF∥AB,EF=AB,HG∥CD,HG=CD,∵四边形ABCD是正方形,∴AB∥CD,AB=CD,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∴FG=EH;(2)A、如图2,延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴∠BAF+∠DAM=90°,∠CDG+∠ADM=90°,∵∠BAF=60°,∠CDG=30°,∴∠DAM=30°,∠ADM=60°,∴∠ADM=180°﹣∠DAM﹣∠ADM=90°在Rt△ADM中,∠DAM=30°,AD=4,∴DM=AD=2,AM=2,∵AF=DG=4,∴FM=AF +AM=4+2,MG=MD +DG=6,∴S 四边形AFGD =S △FMG ﹣S △MAD=×FM ×GM ﹣×AM ×DM=×(4+2)×6﹣×2×2=12+4,B 、方法1、如图3.连接FD ,AG (简化图),∵∠BAF=∠CDG ,∴∠DAF=∠ADG在△ADF 和△ADG 中,,∴△ADF ≌△ADG ,∴∠ADF=∠DAG ,DF=AG ,∴∠ADF=(180°﹣∠AOD )在△AFG 和△DGF 中,, ∴△AFG ≌△DGF ,∠AGF=∠DFG ,∴∠DFG=(180°﹣∠FOG )∵∠FOG=∠AOD ,∴∠ADF=∠DFG ,∴AD ∥FG ,∵AB ⊥AD ,∴AB ⊥FG ,∵AB ∥EF ,∴EF ⊥FG ,∴∠EFG=90°,由(1)知,四边形EFGH 为平行四边形,∴平行四边形EFGH 是矩形,即:四边形EFGH是矩形.方法2、延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∵∠BAF=∠CDG,∴∠MAD=∠MDA,∴MA=MD,∵四边形ABCD是正方形,∴AB=CD,∵四边形ABEF,CDGH是菱形,∴MF=MG,∠AFE=∠DGH,∴∠EFG=∠HGF,由(1)知,四边形EFGH是平行四边形,∴∠AFE+∠HGF=180°,∴∠EFG=90°,∴平行四边形EFGH是矩形.13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.13、【解答】解:(1)特例探究:AF=DE.理由:如图2,∵四边形ABCD是正方形,∴AD=BA,∠DAE=∠B=90°,∵∠AOE=∠ADC=90°,∴∠ADE+∠DAO=∠BAF+∠DAO=90°,∴∠ADE=∠BAF,∴在ADE和△BAF中,,∴△ADE≌△BAF(ASA),∴AF=DE;(2)类比解答:AF与DE的数量关系为AF=DE.理由:如图1,在AB上取点M使得DM=DA,连接DM,交AF于N,则∠DAM=∠DMA,DM=AD=AB,∵∠DAB+∠B=180°,∠DMA+∠DME=180°,∴∠DME=∠B,∵∠AOE=∠ADC,∴∠ADO+∠DAO=∠ADO+∠CDO,∴∠DAO=∠CDO,又∵CD∥AB,AD∥BC,∴∠CDO=∠MED,∠DAO=∠BFA,∴∠MED=∠BFA,在△MED和△BFA中,,∴△MED≌△BFA(AAS),∴AF=DE;(3)拓展延伸:=.如图3,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵平行四边形ABCD的面积=AB×GM=BC×HN,∵AB=a,AD=b,∴=,∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,∵∠ADC=∠HOE,∴∠ADC+∠HOG=∠EOH+∠HOG=180°,∴∠DHO+∠DGE=360°﹣180°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,∴△GME∽△HNF,∴==.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.14、【解答】解:(1)如图1中,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,根据对称性可知,AE=AB,BE⊥AD,∴B、A、E共线,∵AF∥BC,∴EF=FC,∴BF=EC.(2)A、如图2中,当E、D、C共线时,由(1)可知:DE=DC,∵EB⊥AD,AD∥BC,∴EB⊥BC,∴∠EBC=90°,∴BD=DC=DE=CB,∴△BDC是等边三角形,∴∠C=60°,∵AB∥CD,∴∠ABC=180°﹣60°=120°.B、(1)中结论成立.理由如下:如图3中,设BE交AD于H.∵B、E关于AD对称,∴BE⊥AD,EH=BH,∵AD∥BC,∴BE⊥BC,∴∠EBC=90°,∵EH=HB,HF∥BC,∴EF=FC,∴BF=EC.故答案为A或B.(3)A、如图4中,作FH⊥CD于H.∵∠ABC=135°,AD∥BC,∴∠EAF=∠BAF=45°,∠ADC=135°,∠ADG=45°,∴∠AGD=90°,∵∠FHC=90°,∴∠FHC=∠EGC=90°,∴FH∥FG,∵FE=FC,∴HC=HG,∴FH=EG,∵△DFH是等腰直角三角形,∴DF=FH,∴EG=DF,∴=.B、如图5中,作FH⊥CD于H.同法可证:EG=2FH,DF=FH,∴=.故答案为A或B.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=b 或b(用含m,n,b的式子表示).15、【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择A或B题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.16、【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠ABC=90°,由折叠可知:BE=BE′,∠CB′E=∠ABC=90°,在Rt△BCE和Rt△ECB′中,∵EG=GC,∴BG=EC,GB′=EC,∴BG=GB′,在Rt△BCE中,∵∠BCE=30°,∴BE=CE,∴BE=EB′=B′G=BG,∴四边形BEB′G是菱形.(2)选A或B.故答案为A或B.A题:①结论:B′G=D′H,B′G∥D′H.理由:如图2中,由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∴B′G∥D′H.②连接GH,则四边形AEGH是平行四边形,∴AE=GH,设BE=EB′=m,则AE=m,∴m+m=4,∴m=4﹣4,∴GH=AE=8﹣4B题:①结论:B′G=D′H,B′G∥D′H.理由:由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,AD∥BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∵MN∥BC,∴MN∥BC∥AD,∴∠AD′M=∠DAD′=2∠4,∠CB′N=∠BCB′=2∠3,∴∠AD′M=∠CB′N,。

北师大版数学九年级上期末复习专题解答题专项:菱形性质与判定(三)

北师大版数学九年级上期末复习专题解答题专项:菱形性质与判定(三)

九年级上期末复习专题解答题专项:菱形性质与判定(三)1.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.2.如图1,△ABC中,∠ACB=90°,E是AB的中点,ED平分∠BEC交BC于点D,F在DE延长线上且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)如图2,若四边形ACEF是菱形,连接FC,BF,FC与AB交于点H,连接DH,在不添加任何辅助线的情况下,请直接写出图2中的所有等边三角形.3.如图,在菱形ABCD中,∠A=60°,AB=4,E是AD边上的动点,作∠BEF=60°交CD于点F,在AB上取点G使AG=AE,连结EG.(1)求∠EGB的度数;(2)求证:EF=BE;(3)若P是EF的中点,当AE为何值时,△EGP是等腰三角形.4.四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于点H,求DH的长.5.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.6.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是32cm.求:(1)两条对角线的长度;(2)菱形的面积.7.如图,菱形ABCD的对角线AC,BD相交于点O,延长AC到E,使CE=CO,连接EB,ED.(1)求证:EB=ED;(2)过点A作AF⊥AD,交BC于点G,交BE于点F,若∠AEB=45°,①试判断△ABF的形状,并加以证明;②设CE=m,求EF的长(用含m的式子表示).8.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.试问当△ABC满足什么条件时,四边形DBFE是菱形?为什么?9.已知:如图,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.10.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.参考答案1.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.2.(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE,∵AF=AE,∴AF=CE,∵ED平分∠BEC,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:△AFE,△AEC,△HDC,△CFB.3.(1)解:∵∠A=60°,AG=AE,∴△AGE是等边三角形,∴∠AGE=60°,∴∠EGB=120°;(2)证明:由(1)知,∠EGB=120°,∵四边形ABCD为菱形,∴AB∥CD,AB=AD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=120°,∴∠DEF+∠DFE=60°,∴∠D=∠EGB,∵△AGE是等边三角形,∴AE=AG,∠AEG=60°,∴DE=GB,∵∠BEF=60°,∴∠DEF+∠GEB=60°,∴∠DFE=∠GEB,∴△DFE≌△GEB(ASA),∴EF=BE;(3)解:∵△DFE≌△GEB,∴DF=GE,当EG=EP时,过E作EM⊥AB垂足为M,设AE=x,∵△AGE是等边三角形,∴AM=x,EM=x,∴BM=4﹣x,∵P为EF的中点,∴EF=2EP,由(2)知EF=BE,∴EB=2EG=2AE=2x,在Rt△EBM中,EM2+BM2=EB2,即(x)2+(4﹣x)2=(2x)2,解得,(舍去),即AE=;当EG=GP时,过G作GQ⊥EF,垂足为Q,过B作BH⊥CD垂足为H,连接BF,设AE=x,∵△AGE是等边三角形,∴EG=x,∵EF=EB,∠BEF=60°,∴△BEF为等边三角形,∴∠EFB=∠BEF=60°,EF=BF,∵△BEG≌△EFD,∴∠BEG=∠EFD,DF=EG,∴∠GEQ=∠BFH,CF=4﹣x,∵∠EQG=∠FHB=90°,∴△EGQ∽△FBH,∴EG:BF=EQ:FH,设△BEF的边长为a,则BF=EF=a,∵P为EF的中点,∴EP=a,∵EG=GP=x,∴EQ=EP=a,在Rt△BCH中,BC=AB=4,∠C=∠A=60°,∴CH=2,∴BH=,∴HF=2﹣(4﹣x)=x﹣2,∵BF2=BH2+HF2,∴a2=()2+(x﹣2)2,∵EG:BF=EQ:FH,∴,即a2=4x2﹣8x,∴解得,(舍去),即AE=;当EP=GP时,点P在EG的中垂线上,即P点AC上,而运动期间P不可能位于线段AC上,∴P在AC上不存在,综上,AE=或;即当AE为或时,△EGP是等腰三角形.4.解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD=6,AC⊥BD,在Rt△AOB中,AB==10,∵S菱形ABCD=•AC•BD,S=DH•AB,菱形ABCD∴DH•10=×12×16,∴DH=.5.(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°﹣120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=×6=3,OB=×6=3,∵四边形ABCD是菱形,∴OD=OB=3,∴四边形AODE的面积=OA•OD=3×3=9.6.解:(1)菱形ABCD的周长为32cm,∴菱形的边长为32÷4=8cm∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°(菱形的邻角互补),∴∠ABC=60°,∠BCD=120°,∴△ABC是等边三角形,∴AC=AB=8cm,∵菱形ABCD对角线AC、BD相交于点O,∴AO=CO,BO=DO且AC⊥BD,∴BO=4cm,∴BD=8cm;(2)菱形的面积=AC•BD=×8×8=32(cm2).7.(1)证明:∵四边形ABCD是菱形,∴EA⊥BD,OB=OD,∴EB=ED(2)解:①结论:△ABF是等腰三角形(AB=AF);理由:∵∠AEB=45°,EO⊥OB,∴△BOE是等腰直角三角形,∴∠OBE=∠OEB=45°,∵AG⊥BC,∴∠AGB=∠BOC=90°,∴∠GAC+∠ACB=90°,∠ACB+∠OBC=90°,∴∠CAG=∠CBO=∠ABO,∵∠ABF=∠ABO+∠OBE=∠ABO+45°,∠AFB=∠CAG+∠AEB=∠CAG+45°,∴∠AFB=∠ABF,∴AB=AF,∴△ABF是等腰三角形.②作EH⊥AF交AF的延长线于H.由题意CE=OC=OA=m,OB=AC═OD=2m,AE=3m,AB=AF=m,tan∠CBO=tan∠CAG==,∴EH=m,AH=m,∴FH=AH﹣AF=m,在Rt△EFH中,EF===m.8.解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,∴四边形DBFE是菱形.9.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE,∴平行四边形AEDF是菱形.10.证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.。

北师大版九年级数学上册综合复习检测试卷(1-6章)

北师大版九年级数学上册综合复习检测试卷(1-6章)

北师大版九年级数学上册综合复习检测试卷(1-6章)姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为()A.(0,0)B.(0,1)C.(﹣3,2)D.(3, 2)2 . 如图,若⊙O的弦AB垂直平分半径OC,则四边形OACB是()A.正方形B.菱形C.矩形D.平行四边形3 . 在下列方程中,是一元二次方程的有()①;②;③;④A.个B.个C.个D.个4 . 如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上5 . 如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm6 . 如图,AD=BC,∠C=∠D=90°,下列结论中不成立的是()A.∠DAE=∠CBE B.CE=DE C.△DAE与△CBE不一定全等D.∠1=∠27 . 如图所示,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为()A.3.2 cm B.8 cm C.10 cm D.20 cm8 . 如图,已知点P是△ABC中边AC上的一点,联结BP,以下条件不能识别△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABCC.BC:BP=AC:AB D.AC:AB=AB:AP9 . 某机械厂七月份生产零件万个,计划八、九月份共生产零件万个,设该厂八、九月份平均每月生产零件的增长率为,那么满足的方程是()A.B.C.D.10 . 以下列各组线段为边,不能组成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.2cm,2cm,3cm二、填空题11 . 如果,那么的值是_____________________12 . 如果直线y=mx与双曲线y=的一个交点A的坐标为(3,2),则它们的另一个交点B的坐标为___________.13 . 已知棱柱的侧棱长为6,俯视图是边长为4的等边三角形,则此棱柱的侧面积为________.14 . 如图四边形ABCD∽四边形A'B'C'D',则CD=_____,∠D=______度.15 . 请写一个一元二次方程,使它有一根是2:_____.16 . 如图,正方形ABCD中,BE距平分∠ABD交AD于E,于F ,于P,已知正方形ABCD的边长BC=2,则AP的长是______.17 . 若关于x的方程|x2﹣x﹣2|=k有四个不相等的实数根,则整数k的值为_____.18 . 小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3,若将实数对(x,﹣3x)放入其中,得到一个新数为5,则x=________.19 . 已知、为方程的两实根,则________.三、解答题20 . 李老伯想用24米长的旧木料,靠米长的围墙造一个如图所示的猪舍,它们的平面图是一排大小相等的三个长方形,总面积为32平方米.(1)求猪舍的长BC和宽AB各为多少米?(2)题中围墙的长度米对猪舍的长和宽是否有影响?怎样影响?21 . 年月日贵州环保行活动“美丽乌江拒绝污染”正式开启,乌江支流由于长期采磷及磷化工发展造成了总磷污染.当地政府提出五条整改措施,力求在天以内使总磷含量达标(即总磷浓度低于).整改过程中,总磷浓度与时间(天)的变化规律如图所示,其中线段表示前天的变化规律,且线段所在直线的表达式为:,从第天起,该支流总磷浓度与时间成反比例关系.(1)求整改全过程中总磷浓度与时间的函数表达式;(2)该支流中总磷的浓度能否在天以内达标?说明理由.22 . 解方程:x2- 4x= 1.23 . 如图,已知反比例函数的图象与一次函数的图象交于、两点,.(1)求反比例函数和一次函数的关系式;(2)在直线上是否存在一点,使∽,若存在,求点坐标;若不存在,请说明理由.24 . k为何值时,函数是反比例函数?k为何值时在每一象限内y随x的增大而增大?k为何值时在每一象限内y随x的增大而减小?25 . 身高相同的甲、乙、丙三位同学星期天到野外去比赛放风筝,看谁放得高(第一名可得分,第二名可得分,第三名可得分).甲、乙、丙放出的线长分别为、、,线与地平.面的夹角分别为、、.假设风筝线是拉直的,请你给三位同学打一下分数.26 . 关于x的方程有实数根,求的取值范围.27 . 如图,四边形ADBC内接于⊙O,AD平分∠EDC,AE∥BC交直线BD于E(1)求证:AE是⊙O的切线;(2)若CD为直径,tan∠ADE=2,求sin∠BDC的值.28 . 一封闭电路中,当电压是6V时,回答下列问题:(1)写出电路中的电流I(A)与电阻R(Ω)之间的函数关系式.(2)画出该函数的图象.(3)如果一个用电器的电阻是5Ω,其最大允许通过的电流为1A,那么只把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、8、9、三、解答题1、2、3、4、5、6、7、8、9、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期数学期末复习测验(三)
一、用心选一选(每小题3分,共30分)
1、一个几何体的主视图、左视图、俯视图依次是圆、半圆、半圆,则该几何体是( )
A 、球
B 、半个球
C 、圆柱
D 、半个圆柱
2、在“掷一枚均匀的硬币”的试验中,如果没有硬币,可用来代替的试验物品是( )
A 、正四面体
B 、正六面体
C 、圆柱体
D 、黑、白两粒围棋子
3、已知2是方程02232=-a x 的一个根,则2a -1的值是( ) A 、3 B 、4 C 、5 D 、6
4、若分式1
322+--x x x 的值为0,则x 的值为( ) A 、-1 B 、3 C 、-1或3 D 、-3或1
5、下列命题是假命题的是( )
A 、在等腰三角形中,两腰上的中线相等.
B 、有一个角是60°的等腰三角形是等边三角形.
C 、在等腰三角形中,底边上的高与顶角的角平分线重合
D 、一角为36°的等腰三角形中,必有一个角是72°.
6、顺次连结矩形各边中点所得的四边形一定是( )
A 、梯形
B 、矩形
C 、菱形
D 、正方形
7、已知正比例函数)0(11≠=k x k y 与反比例函数)0(22≠=k x k y 的图象有一个交点(-2, -1),则它们的另一个交点坐标是( )
A 、(2,1)
B 、(-2,-1)
C 、(-2,1)
D 、(2, -1)
8、如图,P 是反比例函数的图象上的一点,过点P 分别向x 轴、y 轴作垂
线,所得到的图中的阴影部分的面积为6,则该反比例函数的表达式为( ) A 、x y 6-= B 、x y 6= C 、x y 3-= D 、x
y 3= 9、如果矩形的面积为6,那么该矩形的长y 与宽x 之间的函数关系用图象可以大致表示为( )
A 、
B 、
C 、
D 、
10、边长为2的正方形的一个顶点到这个正方形各边中点的距离之和为( )
A 、52
B 、2+3
C 、2+52
D 、2+5
二、细心填一填(每小题3分,共30分)
11、把方程2(x -2)2=x(x -1)化为一元二次方程的一般形式为 .
12、方程x 2=3x 的根为 .
13、如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向
旋转60°,得到△CBP ′,若PB=3,则PP ′= 。

14、已知△ABC 的周长为20cm,D 、E 、F 分别为A B 、B C 、CA 的中点,则△DEF 的
周长为 cm.
15、若点(m,n)在反比例函数)0(≠=
k x
k y 的图象上,其中m,n 是方程x 2-2x -8=0的两根,则k= . x
y O
P x y O x y O x y O x y O
16、已知反比例函数x k y 2-=的图象在第一、三象限内,则k 的取值范围是 . 17、某钢铁厂去年1月份钢产量为4万吨,三月份钢产量为4.84万吨,
那么2、3月份平均每月的增长率是 . 18、如右图,是屋架设计图的一部分,其中BC ⊥AC,DE ⊥AC,点D 是AB 的
中点,∠A=30°,AB=7.2m,那么BC= m,DE= m. 19、把一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转 盘两次,两次均是红色的概率是:______________________.
20、为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条鱼做上标记,然后放回湖里,经过一段时间,待带标记的鱼完全混合于鱼群后,第二次再捕上200条,若其中带有标记的鱼有10条,那么估计湖里大约有 条鱼.
三、耐心做一做(共60分)
21、已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.
求证:D 在∠BAC 的角平分线上.(8分)
22、如图,四边形ABCD 是平行四边形,且AP=CQ ,求证:四边形PBQD 是平行四边形.(8分)
23. 甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜。

清你解决下列问题:
(l )利用树状图(或列表)的方法表示游戏所有可能出现的结果;
(2)求甲、乙两人获胜的概率。

24.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医
院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.
A
B
D
E C B C D P A
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;
(2)求恰好选中医生甲和护士A 的概率.
25、曲靖市某厂工业废气年排放量为450万立方米,为改善我市的大气环境质量,决定分两期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同。

(1)求每期减少的百分率是多少?(8分)
(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完后共需投入多少万元?(6分)
26、如图(1),已知,矩形ABCD 的边AD=3,对角线长为5,将矩形ABCD 置于直角坐标系内,点C 与原点O 重合,且反比例函数的图象的一个分支位于第一象限.
(1)、求图(1)中,点A 的坐标是多少?(4分)
(2)、若矩形ABCD 从图(1)的位置开始沿x 轴的正方向移动,每秒移动1个单位,1秒后点A 刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.(6分)
(3)矩形ABCD 继续向x 轴的正方向移动,A B 、AD 与反比例函数图象分别交于P 、Q 两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC 的面积S 1、△QDC 的面积S 2与t 的函数关系式.(6分)
A x y O (C)
B D 图(1) 图(2) x y O A
B C D
y
(4)、在(3)的情况下,当t 为何值时, S 2=
710S 1 ?(6分)
27.如图所示,一次函数b kx y +=的图像与反比例函数x
k y =的图像交于M 、N 两点。

(1)求反比例函数和一次函数的解析式 (2)求△MON 的面积
(3)根据图像写出使反比例函数的值大于一次函数的值的x
28、重庆百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少(9分)
29、某池塘里养了鱼苗1万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称的平均每条鱼重2.2千克,第三网捞出35条,称的平均每条鱼重2.8千克,试估计这池塘中鱼的重量。

30、如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?(6分)。

相关文档
最新文档