2020年高考文科数学江苏卷

合集下载

2020年江苏省高考数学试卷 试题+答案详解

2020年江苏省高考数学试卷 试题+答案详解
24.在三棱锥 A—BCD 中,已知 CB=CD= 5 ,BD=2,O 为 BD 的中点,AO⊥平面 BCD,AO=2,
E 为 AC 的中点. (1)求直线 AB 与 DE 所成角的余弦值;
1
(2)若点 F 在 BC 上,满足 BF= BC,
4
设二面角 F—DE—C 的大小为θ,求 sinθ的值.
25.甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任 取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 Xn,恰有 2 个 黑球的概率为 pn,恰有 1 个黑球的概率为 qn. (1)求 p1·q1 和 p2·q2; (2)求 2pn+qn 与 2pn-1+qn-1 的递推关系式和 Xn 的数学期望 E(Xn)(用 n 表示) .
a1
d 2
q 2
1
aq120
,∴
d
q
4
.
b1 1 q
1
b1 1
12【答案】 4 5
【解析】∵
5x2
y2
y4
1,∴
y
0

x2
1 y4 5y2

x2
y2
1 y4 5y2
y2
1 5y2
+
4y2 5
2
1 4y2 4 , 5y2 5 5
当且仅当
1 5y2
4y2 5
,即
x2
3 , y2 10
等差数列 an 的前 n 项和公式为 Pn
na1
nn 1
d 2
d n2 2
a1
d 2
n

等比数列bn 的前
n

2020年江苏省高考数学试卷(文科)-含详细解析

2020年江苏省高考数学试卷(文科)-含详细解析

2020年江苏省高考数学试卷(文科)副标题题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10. 将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 12. 已知5x 2y 2+y 4=1(x,y ∈R),则x 2+y 2的最小值是______.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______. 二、解答题(本大题共6小题,共90.0分)15. 在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a =3,c =√2,B =45°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos∠ADC =−45,求tan∠DAC 的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18.在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.答案和解析1.【答案】{0,2}【解析】解:集合B ={0,2,3},A ={−1,0,1,2}, 则A ∩B ={0,2}, 故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题. 2.【答案】3【解析】解:复数z =(1+i)(2−i)=3+i , 所以复数z =(1+i)(2−i)的实部是:3. 故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查. 3.【答案】2【解析】解:一组数据4,2a ,3−a ,5,6的平均数为4, 则4+2a +(3−a)+5+6=4×5, 解得a =2. 故答案为:2.运用平均数的定义,解方程可得a 的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种, 则点数和为5的概率为P =436=19. 故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值. 本题考查古典概率的求法,考查运算能力,属于基础题. 5.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3,由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】32【解析】解:双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,可得√5a=√52,所以a=2,所以双曲线的离心率为:e=ca =√4+52=32,故答案为:32.利用双曲线的渐近线方程,求出a,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7.【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.8.【答案】13【解析】解:因为sin2(π4+α)=23,则sin2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23,解得sin2α=13,故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.【答案】12√3−π2【解析】【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题.通过棱柱的体积减去圆柱的体积,即可推出结果.【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3,圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm3,故答案为:12√3−π2.10.【答案】x =−5π24【解析】【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x −π6),求g(x)的所有对称轴x =7π24+kπ2,k ∈Z ,从而可判断平移后的图象中与y 轴最近的对称轴的方程, 【解答】解:因为函数y =3sin(2x +π4)的图象向右平移π6个单位长度可得 g(x)=f(x −π6)=3sin(2x −π3+π4)=3sin(2x −π12),则y =g(x)的对称轴为2x −π12=π2+kπ,k ∈Z , 即x =7π24+kπ2,k ∈Z ,当k =0时,x =7π24,当k =−1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24.11.【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和:n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d 2)n ,{b n }中,当公比q =1时,其前n 项和S n =nb 1,所以{a n +b n }的前n 项和S n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为:b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12.【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y 2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 整理得:PA ⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0.当m =0时,PA ⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求.本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题.14.【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6,如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径,要使面积S △PAB 最大,则P ,D 位于C 的两侧,并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2,可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去), 显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5. 故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点. 所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1, 所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1;(2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1. 本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.16.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55, 所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525,因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值;(2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.17.【答案】解:(1)ℎ2=−1800b 3+6b ,点B 到OO′的距离为40米,可令b =40, 可得ℎ2=−1800×403+6×40=160, 即为|O′O|=160,由题意可设ℎ1=160, 由140a 2=160,解得a =80, 则|AB|=80+40=120米; (2)可设O′E =x ,则CO′=80−x ,由{0<x <400<80−x <80,可得0<x <40,总造价为y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)] =k800(x 3−30x 2+160×800), y′=k 800(3x 2−60x)=3k 800x(x −20),由k >0,当0<x <20时,y′<0,函数y 递减;当20<x <40时,y′>0,函数y 递增,所以当x =20时,y 取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E 为20米时,桥墩CD 与EF 的总造价最低.【解析】(1)由题意可令b =40,求得ℎ2,即O′O 的长,再令ℎ1=|OO′|,求得a ,可得|AB|=a +b ;(2)可设O′E =x ,则CO′=80−x ,0<x <40,求得总造价y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)],化简整理,应用导数,求得单调区间,可得最小值. 本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.18.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t1−t )=t 2−4t =(t −2)2−4≥−4,当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以9+16=95,即m =−6或12, 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP 方程,再结合椭圆的右准线为:x =4,得点Q 为(4,32⋅4−t1−t ),再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时,AB 可以最为同底,所以若S 2=3S 1,则O 到直线AB 距离d 1与M 到直线AB 距离d 2,之间的关系为d 2=3d 1,根据点到直线距离公式可得d 1=35,d 2=95,所以题意可以转化为M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,根据两平行直线距离公式可得,m =−6或12,然后在分两种情况算出M 点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.19.【答案】解:(1)由f(x)=g(x)得x =0,又f′(x)=2x +2,g′(x)=−2x +2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x , 经检验:ℎ(x)=2x ,符合任意, (2)ℎ(x)−g(x)=k(x −1−lnx), 设φ(x)=x −1−lnx ,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤−1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当k+1>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].423所以函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)(x−x0)+(x04−2x03)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8,t2=λ,则λ∈[1,2],由图象可知,n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√7,即n−m≤√7.【解析】(1)由f(x)=g(x)得x=0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x=k+1≤0时,当k+1>0时进行讨论,进而得出答案.(3)因为f(x)=x4−2x2,求导,分析f(x)单调性及图象得函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)x−3x04+2x02,可推出直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D上恒成立;在分析g(x)−ℎ(x)=0,设4x2−4(t3−t)x+3t4−2t2−8=0,两根为x1,x2,由韦达定理可得x1+ x2,x1x2,所以n−m=|x1−x2|=√t6−5t4+3t2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n 2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1Sn=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4, 则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.。

2020年江苏省高考数学试卷(含答案详解)

2020年江苏省高考数学试卷(含答案详解)

2
”数列,且
an>0,求数列
an
的通项公式;
(3)对于给定的λ,是否存在三个不同的数列an 为“λ–3”数列,且 an≥0?若存在,求λ的取值范围;若不存
在,说明理由,
数学Ⅱ(附加题) 【选做题】本题包括 A、B、C 三小题,请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答..若
A(1,
π) 3
在直线 l
:
cos
2 上,点 B(2 ,
π) 6
在圆 C
:
4 sin
上(其中
0,
0 2 ).
(1)求 1 , 2 的值
(2)求出直线 l 与圆 C 的公共点的极坐标. C.[选修 4-5:不等式选讲] 23.设 x R ,解不等式 2 | x 1| | x | 4 .
【必做题】第 24 题、第 25 题,每题 10 分,共计 20 分.请在答.题.卡.指.定.区.域.内作答,解答 时应写出文字说明、证明过程或演算步骤. 24.在三棱锥 A—BCD 中,已知 CB=CD= 5 ,BD=2,O 为 BD 的中点,AO⊥平面 BCD,AO=2,E 为 AC 的
中点.
(1)求直线 AB 与 DE 所成角的余弦值;
1
(2)若点 F 在 BC 上,满足 BF= BC,设二面角 F—DE—C 的大小为θ,求 sinθ的值.
4
25.甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任取一个球交换放 入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 Xn,恰有 2 个黑球的概率为 pn,恰有 1 个黑球 的概率为 qn. (1)求 p1·q1 和 p2·q2; (2)求 2pn+qn 与 2pn-1+qn-1的递推关系式和 Xn 的数学期望 E(Xn)(用 n 表示) .

2020年江苏省高考数学试卷含答案

2020年江苏省高考数学试卷含答案

2020年江苏省高考数学试卷一、填空题1. 已知集合B={0,2,3},A={−1,0,1,2},则A∩B=________.2. 已知i是虚数单位,则复数z=(1+i)(2−i)的实部是________.3. 已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是________.4. 将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.5. 下图是一个算法流程图,若输出y值为−2,则输入x的值是________.6. 在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是________.7. 已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(−8)的值是________.8. 已知sin2(π4+α)=23,则sin2α的值是________.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是________cm2.10. 将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是________.11. 设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.已知{a n+b n}的前n项和S n=n2−n+2n−1(n∈N∗),则d+q的值是________.12. 已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是________.13. 在△ABC中,AB=4,AC=3,∠BAC=90∘,D在边BC上,延长AD到P,使得AP=9.若PA→=mPB→+(32−m)PC→(m为常数),则CD的长度是________.14. 在平面直角坐标系xOy中,已知P(√32,0),A,B是圆C:x2+(y−12)2=36上的两个动点,满足PA=PB,则△PAB面积的最大值是________.二、解答题在三棱柱ABC−A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF//平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,∠B=45∘.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示.谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点). 桥墩EF每米造价k万元,桥墩CD每米造价32k万元(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP→⋅QP→的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.已知关于x的函数y=f(x),y=g(x)与ℎ(x)=kx+b(k,b∈R)在区间D上恒有f(x)≥ℎ(x)≥g(x). (1)若f(x)=x2+2x,g(x)=−x2+2x,D=(−∞,+∞),求ℎ(x)的表达式;(2)若f(x)=x2−x+1,g(x)=k ln x,ℎ(x)=kx−k,D=(0,+∞),求k的取值范围;(3)若f(x)=x4−2x2,g(x)=4x2−8,ℎ(x)=4(t3−t)x−3t4+2t2(0<|t|≤√2),D=[m,n]⊂[−√2,√2],求证:n−m≤√7.已知数列{a n}(n∈N∗)的首项a1=1,前n项和为S n.设λ和k为常数,若对一切正整数n,均有S n+11k−S n1k=λan+11k成立,则称此数列为“λ−k”数列.(1)若等差数列是“λ−1”数列,求λ的值;(2)若数列{a n}是“√33−2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ−3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.平面上的点A(2,−1)在矩阵M=(a1−1b)对应的变换作用下得到点B(3,−4).(1)求实数a,b的值;(2)求矩阵M的逆矩阵M−1.设x∈R,解不等式2|x+1|+|x|<4.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n−1+q n−1的递推关系式和X n的数学期望E(X n) (用n表示).参考答案与试题解析2020年江苏省高考数学试卷一、填空题1.【答案】{0,2}【解答】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2}.故答案为:{0,2}.2.【答案】3【解答】解:z=(1+i)(2−i)=3+i,则实部为3.故答案为:3.3.【答案】2【解答】解:由4+2a+(3−a)+5+65=4,可知a=2.故答案为:2.4.【答案】19【解答】解:总事件数为6×6=36,满足条件的事件为(1, 4),(2, 3),(3, 2),(4, 1)为共4种,则点数和为5的概率为436=19.故答案为:19.5.【答案】−3【解答】解:由题可知当y=−2时,当x>0时,y=2x=−2,无解;当x<0时,y=x+1=−2,解得:x=−3.故答案为:−3.6.【答案】3【解答】解:由x2a−y25=1得渐近线方程为y=±√5ax.∵a>0,∴a=2,∴c2=a2+5=9,∴c=3,∴离心率e=ca=32.故答案为:32.7.【答案】−4【解答】解:y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)=−f(8)=−823=−4.故答案为:−4.8.【答案】13【解答】解:因为sin2(π4+α)=23,由sin2(π4+α)=12[1−cos(π2+2α)]=12(1+sin2α)=23,解得sin2α=13.故答案为:13.9.【答案】12√3−π2【解答】解:记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,内孔的体积为V2,则V1=6×12×2×2×sin60∘×2=12√3,V2=π×(0.5)2×2=π2,所以V=V1−V2=12√3−π2.故答案为:12√3−π2.10.【答案】x=−5π24【解答】解:设平移后的图象为g(x). 因为y=3sin(2x+π4),将函数y=3sin(2x+π4)的图象向右平移π6个单位长度得:g(x)=3sin(2x−π3+π4)=3sin(2x−π12),则g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z.当k=0时,x=7π24,当k=−1时,x=−5π24,所以平移后的图象中与y轴最近的对称轴的方程是x=−5π24.故答案为:x=−5π24.11.【答案】4【解答】解:因为{a n+b n}的前n项和为:S n=n2−n+2n−1(n∈N∗),当n=1时,a1+b1=1,当n≥2时,a n+b n=S n−S n−1=2n−2+2n−1,所以当n≥2时,a n=2(n−1),b n=2n−1,且当n=1时,a1+b1=0+1=1成立,则d=a2−a1=2−0=2,q=b2b1=21=2,则d+q=4.故答案为:4.12.【答案】45【解答】解:4=(5x2+y2)⋅4y2≤[(5x2+y2)+4y22]2=254(x2+y2)2,故x2+y2≥45,当且仅当5x2+y2=4y2=2,即x2=310,y2=12时取(x2+y2)min=45.故答案为:45.13.【答案】185【解答】解:由向量系数m+(32−m)=32为常数,结合等和线性质可知|PA→||PD→|=321,故PD=23PA=6,AD=PA−PD=3=AC,故∠C=∠CDA,故∠CAD=π−2C.在△ABC中,cos C=ACBC=35.在△ADC,由正弦定理CDsin∠CAD=ADsin C,即CD=sin(π−2C)sin C⋅AD=sin2Csin C⋅AD=2AD cos C=2×35×3=185.故答案为:185.14.【答案】10√5【解答】解:如图,作PC 所在直径EF ,交AB 于点D ,∵ PA =PB ,CA =CB =R =6, ∴ PC ⊥AB .∵ EF 为直径,要使面积S △PAB 最大,则P ,D 位于C 点两侧,并设CD=x , 计算可知PC =1,故PD =1+x, AB =2BD =2√36−x 2, 故S △PAB =12AB ⋅PD =(1+x )⋅√36−x 2.令x =6cos θ,其中θ∈(0, π2),S △PAB =(1+x )√36−x 2=(1+6cos θ)⋅6sin θ =6sin θ+18sin 2θ.记函数f (θ)=6sin θ+18sin 2θ,则f ′(θ)=6cos θ+36cos 2θ=6(12cos 2θ+cos θ−6). 令f ′(θ)=6(12cos 2θ+cos θ−6)=0, 解得cos θ=23或cos θ=−34<0(舍去),显然,当0<cos θ<23时, f ′(θ)<0, f (θ)单调递减;当23<cos θ<1时,f ′(θ)>0,f (θ)单调递增. 结合cos θ在(0,π2)递减,故cos θ=23时,f (θ)最大,此时sin θ=√1−cos 2θ=√53, 故f (θ)max =6×√53+36×√53×23=10√5,即△PAB 面积的最大值是10√5. 故答案为:10√5. 二、解答题【答案】证明:(1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF//AB 1.因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1.(2)因为B 1C ⊥平面ABC , AB ⊂面ABC , 所以B 1C ⊥AB .又因为AB ⊥AC , AC ∩B 1C =C ,AC ⊂面AB 1C ,B 1C ⊂面AB 1C , 所以AB ⊥面AB 1C . 因为AB ⊂面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解答】证明:(1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF//AB 1.因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1.(2)因为B 1C ⊥平面ABC , AB ⊂面ABC , 所以B 1C ⊥AB .又因为AB ⊥AC , AC ∩B 1C =C ,AC ⊂面AB 1C ,B 1C ⊂面AB 1C , 所以AB ⊥面AB 1C . 因为AB ⊂面ABB 1,所以平面AB 1C ⊥平面ABB 1. 【答案】解:(1)由余弦定理,得cos B =cos 45∘=a 2+c 2−b 22ac=262=√22, 因此b 2=5,即b =√5. 由正弦定理c sin C =b sin B,得√2sin C=√5√22,因此sin C =√55. (2)因为cos ∠ADC =−45<0 ,所以sin ∠ADC =√1−cos 2∠ADC =35,∠ADC ∈(π2, π), 所以∠C ∈(0, π2),所以cos ∠C =√1−sin 2∠C =2√55, 所以sin ∠DAC =sin (π−∠DAC)=sin (∠ADC +∠C) =sin ∠ADC cos ∠C +cos ∠ADC sin ∠C =2√525. 因为∠DAC ∈(0, π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin ∠DACcos ∠DAC =211 .【解答】解:(1)由余弦定理,得cos B =cos 45∘=a 2+c 2−b 22ac=26√2=√22, 因此b 2=5,即b =√5. 由正弦定理c sin C =b sin B,得√2sin C=√5√22, 因此sin C =√55. (2)因为cos ∠ADC =−45<0 ,所以sin ∠ADC =√1−cos 2∠ADC =35,∠ADC ∈(π2, π),所以∠C ∈(0, π2),所以cos ∠C =√1−sin 2∠C =2√55, 所以sin ∠DAC =sin (π−∠DAC)=sin (∠ADC +∠C) =sin ∠ADC cos ∠C +cos ∠ADC sin ∠C =2√525. 因为∠DAC ∈(0, π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin ∠DAC cos ∠DAC=211.【答案】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80米,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x ,由{0<x <40,0<80−x <80, 解得:0<x <40,则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k 800(3x 2−60x )=3k 800x (x −20).因为k >0,所以令y ′=0,得x =0或20,所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【解答】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80米,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x ,由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k800(x 3−30x 2+160×800)(0<x <40),则y ′=k 800(3x 2−60x )=3k 800x (x −20). 因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【答案】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32), 设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t 2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OP →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3,即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0, 所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以9+16=95,即m =−6或12.当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0,或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4).联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【解答】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32),设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OP →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3,即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =−6或12.当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4). 联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【答案】(1)解:由f (x )=g (x ),得x =0, f ′(x )=2x +2,g ′(x )=−2x +2, 所以f ′(0)=g ′(0)=2,所以,函数ℎ(x )的图像为过原点,斜率为2的直线, 所以ℎ(x )=2x ,经检验:ℎ(x )=2x 符合题意.(2)解:ℎ(x )−g (x )=k (x −1−ln x ), 设φ(x )=x −1−ln x , 则φ′(x )=1−1x =x−1x,可得φ(x )≥φ(1)=0,所以当ℎ(x )−g (x )≥0时, k ≥0.令p(x)=f (x )−ℎ(x )=x 2−x +1−(kx −k ) =x 2−(k +1)x +(1+k )≥0, 得当x =k +1≤0时, f (x )在(0,+∞)上递增,所以p (x )>p (0)=1+k ≥0, 所以k =−1;当k +1>0时, Δ≤0, 即(k +1)2−4(k +1)≤0, (k +1)(k −3)≤0, −1<k ≤3.综上, k ∈[0,3].(3)证明:因为f (x )=x 4−2x 2,所以f ′(x )=4x 3−4x =4x (x +1)(x −1), 所以函数y =f (x )的图像在x =x 0处的切线为y =(4x 03−4x 0)(x −x 0)+(x 04−2x 02) =(4x 03−4x 0)x −3x 04+2x 02,可见直线y =ℎ(x )为函数y =f (x )的图像 在x =t(0<|t|≤√2)处的切线. 又因为当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1.(2)√S n+1−√S n=√33√a n+1,a n+1=S n+1−S n=√33√a n+1(√S n+1+√S n),因此√S n+1+√S n=√3√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n),所以S n+1=4S n.又S1=a1=1,S n=4n−1,a n=S n−S n−1=3⋅4n−2,n≥2.综上,a n={1,n=1,3⋅4n−2,n≥2.(n∈N∗)(3)若存在三个不同的数列{a n}为“λ−3”数列,则Sn+113−S n13=λa n+113,则S n+1−3S n+123S n13+3S n+113S n23−S n=λ3a n+1=λ3(S n+1−S n).由a1=1,a n≥0,且S n>0,令p n=(S n+1S n)13>0,则(1−λ3)p n3−3p n2+3p n−(1−λ3)=0,λ=1时,p n=p n2,由p n>0可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯一,不存在三个不同的数列{a n};λ≠1时,令t=31−λ3,则p n3−tp n2+tp n−1=0,则(p n−1)[p n2+(1−t)p n+1]=0,①t≤1时,p n2+(1−t)p n+1>0,则p n=1,同理不存在三个不同的数列{a n};②1<t<3时,Δ=(1−t)2−4<0,p n2+(1−t)p n+1=0无解,则p n=1,同理不存在三个不同的数列{a n};③t=3时,(p n−1)3=0,则p n=1,同理不存在三个不同的数列{a n};④t>3即0<λ<1时,Δ=(1−t)2−4>0,p n2+(1−t)p n+1=0有两解α,β.设α<β,α+β=t−1>2,αβ=1>0,则0<α<1<β,则对任意n∈N∗,S n+1S n=1或S n+1S n=α3(舍去)或S n+1S n=β3,由于数列{S n}从任何一项求其后一项均有两种不同的结果,所以这样的数列{S n}有无数多个,则对应的数列{a n}有无数多个,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【解答】解:(1)k =1时,a n+1=S n+1−S n =λa n+1, 由n 为任意正整数,且a 1=1,a n ≠0, 可得λ=1. (2)√S n+1−√S n =√33√a n+1, a n+1=S n+1−S n =√33√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3√a n+1, 即√S n+1=23√3a n+1, S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1,a n =S n −S n−1=3⋅4n−2,n ≥2. 综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗)(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1, 则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n };λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解, 则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0,则p n =1,同理不存在三个不同的数列{a n }; ④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β.设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β, 则对任意n ∈N ∗,S n+1S n=1或S n+1S n=α3(舍去)或S n+1S n=β3,由于数列{S n }从任何一项求其后一项均有两种不同的结果, 所以这样的数列{S n }有无数多个, 则对应的数列{a n }有无数多个,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1. 【答案】解:(1)由题意,知(a 1−1b )⋅(2−1)=(2a −1−2−b )=(3−4),则{2a −1=3,−2−b =−4,解得a =2,b =2. (2)有(1)知,矩阵M =(21−12),设矩阵M 的逆矩阵为M −1=(mn p q ),∴ M ⋅M −1=(21−12)⋅(m n pq )=(2m +p 2n +q −m +2p −n +2q )=(1001), {2m +p =1,2n +q =0,−m +2p =0,−n +2q =1,解得m =25,n =−15,p =15,q =25,∴ M −1=(25−151525).【解答】解:(1)由题意,知(a 1−1b )⋅(2−1)=(2a −1−2−b )=(3−4),则{2a −1=3,−2−b =−4,解得a =2,b =2. (2)有(1)知,矩阵M =(21−12),设矩阵M 的逆矩阵为M −1=(mn pq ),∴ M ⋅M −1=(21−12)⋅(m n pq )=(2m +p 2n +q −m +2p −n +2q )=(1001), 即{2m +p =1,2n +q =0,−m +2p =0,−n +2q =1,解得m =25,n =−15,p =15,q =25,∴ M −1=(25−151525).【答案】解: 2|x +1|+|x|={3x +2, x >0,x +2, −1≤x ≤0,−3x −2, x <−1,∵ 2|x +1|+|x|<4,∴ {3x +2<4,x >0或{x +2<4,−1≤x ≤0或{−3x −2<4,x <−1,解得0<x <23或−1≤x ≤0或−2<x <−1,∴ −2<x <23,∴ 不等式的解集为{x|−2<x <23}. 【解答】解: 2|x +1|+|x|={3x +2, x >0,x +2, −1≤x ≤0,−3x −2, x <−1,∵ 2|x +1|+|x|<4,∴ {3x +2<4,x >0或{x +2<4,−1≤x ≤0或{−3x −2<4,x <−1,解得0<x <23或−1≤x ≤0或−2<x <−1, ∴ −2<x <23,∴ 不等式的解集为{x|−2<x <23}. 【答案】解:(1)由题意可知:p 1=13,q 1=23,则p 2=13p 1+23×13q 1=727, q 2=23p 1+(23×23+13×13) q 1=1627.(2)由题意可知:p n+1=13p n +23×13q n =13p n +29q n ,q n+1=23p n +(23×23+13×13)q n +23(1−p n −q n )=−19q n +23,两式相加可得2p n+1+q n+1=23p n +13q n +23=13(2p n +q n )+23,则:2p n +q n =13(2p n−1+q n−1)+23,所以,2p n +q n −1=13(2p n−1+q n−1−1).因为2p 1+q 1−1=13,数列{2p n +q n −1}是首项为13,公比为13的等比数列, 所以2p n +q n −1=(13)n , 即2p n +q n =(13)n+1,所以E (X n )=2p n +q n +0×(1−p n −q n )=(13)n+1.【解答】解:(1)由题意可知:p 1=13 ,q 1=23,则p 2=13p 1+23×13q 1=727,q 2=23p 1+(23×23+13×13) q 1=1627.(2)由题意可知:p n+1=13p n +23×13q n =13p n +29q n ,q n+1=23p n +(23×23+13×13)q n +23(1−p n −q n )=−19q n +23, 两式相加可得2p n+1+q n+1=23p n +13q n +23=13(2p n +q n )+23, 则:2p n +q n =13(2p n−1+q n−1)+23,所以,2p n +q n −1=13(2p n−1+q n−1−1).因为2p 1+q 1−1=13,数列{2p n +q n −1}是首项为13,公比为13的等比数列, 所以2p n +q n −1=(13)n ,即2p n +q n =(13)n+1,所以E (X n )=2p n +q n +0×(1−p n −q n )=(13)n+1.。

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)

2020年普通高等学校招生全国统一考试数学(江苏卷,含答案)参考公式:样本数据12,,,n x x x L 的方差221111(),n n i i i i s x x x x n n ===-=∑∑其中一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置........上..1.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 ▲ 。

【解析】考查复数的减法、乘法运算,以及实部的概念。

-202.已知向量a r 和向量b r 的夹角为30o,||2,||3a b ==r r ,则向量a r 和向量b r 的数量积a b ⋅r r = ▲。

【解析】 考查数量积的运算。

32332a b ⋅=⋅⋅=r r 3.函数32()15336f x x x x =--+的单调减区间为 ▲ .【解析】 考查利用导数判断函数的单调性。

2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-。

亦可填写闭区间或半开半闭区间。

4.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= ▲ .【解析】 考查三角函数的周期知识。

注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案

绝密★启用前2020 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4 页,均为非选择题(第1 题~第20 题,共20 题)。

本卷满分为160 分,考试时间为120 分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V =Sh ,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14 小题,每小题5 分,共计70 分.请把答案填写在答.题.卡.相.应.位.置.上..1.已知集合A = {-1, 0,1, 2}, B = {0, 2, 3},则A B =.2.已知i 是虚数单位,则复数z = (1+ i)(2 - i) 的实部是.3.已知一组数据4, 2a, 3 -a, 5, 6 的平均数为4,则a 的值是.4.将一颗质地均匀的正方体骰子先后抛掷2 次,观察向上的点数,则点数和为5 的概率是.5.如图是一个算法流程图,若输出y 的值为-2 ,则输入x 的值是.n 2 6. 在平面直角坐标系 xOy 中,若双曲线x ﹣ y a 2 5 =1(a >0)的一条渐近线方程为 y= 5x ,则该双曲线的离 2心率是 .27. 已知 y =f (x )是奇函数,当 x ≥0 时, f ( x ) = x 3,则 f (-8)的值是 .8. 已知sin 2(π+ α ) 4 = 2,则sin 2α 的值是.39. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为 2 cm ,高为2 cm ,内孔半轻为 0.5 cm ,则此六角螺帽毛坯的体积是 cm.10. 将函数 y = 3sin(2x π) 的图象向右平移 π个单位长度,则平移后的图象中与 y 轴最近的对称轴的方程是﹢46.11. 设{a n }是公差为 d 的等差数列,{b n }是公比为 q 的等比数列.已知数列{a n +b n }的前 n 项和S = n 2- n + 2n -1(n ∈ N + ) ,则 d +q 的值是 .12. 已知5x 2 y 2 + y 4 = 1(x , y ∈ R ) ,则 x2+ y 2 的最小值是.13. 在△ABC 中, AB = 4,AC = 3,∠BAC =90︒,D 在边 BC 上,延长 AD 到 P ,使得 AP =9,若PA = mPB + ( 3- m )PC (m 为常数),则 CD 的长度是.214. 在平面直角坐标系 xOy 中,已知 P ( 3,0) ,A ,B 是圆 C :x 2 + ( y - 1)2= 36 上的两个动点,满足 PA = PB , 22则△PAB 面积的最大值是.二、解答题:本大题共 6 小题,共计 90 分,请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在三棱柱 ABC -A 1B 1C 1 中,AB ⊥AC ,B 1C ⊥平面 ABC ,E ,F 分别是 AC ,B 1C 的中点.2(1) 求证:EF ∥平面 AB 1C 1; (2) 求证:平面 AB 1C ⊥平面 ABB 1.16. 在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,已知a = 3, c = 2, B = 45︒ .(1) 求sin C 的值;(2) 在边 BC 上取一点 D ,使得cos ∠ADC = - 4,求tan ∠DAC 的值.517. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底 O 在水平线 MN 上、桥 AB 与MN 平行,OO '为铅垂线( O ' 在 AB 上).经测量,左侧曲线 AO 上任一点 D 到 MN 的距离h 1 (米)与 D 到OO '的距离 a (米)之间满足关系式 h =1a 2 ;右侧曲线 BO 上任一点 F 到 MN 的距离h (米)与 F 到OO ' 的距离1402b (米)之间满足关系式h = -1b 3 + 6b .已知点 B 到OO '的距离为 40 米.2800(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于OO ' 的桥墩 CD 和 EF ,且 CE 为 80 米,其中 C ,E 在 AB 上(不包括端点).7 y n桥墩 EF 每米造价 k (万元)、桥墩 CD 每米造价 3k (万元)(k >0).问O 'E 为多少米时,桥墩 CD 与 EF 的总造价2最低18. 在平面直角坐标系 xOy 中,已知椭圆 E : x 2+ = 1 的左、右焦点分别为 F 1,F 2,点 A 在椭圆 E 上且43在第一象限内,AF 2⊥F 1F 2,直线 AF 1 与椭圆 E 相交于另一点 B .(1) 求△AF 1F 2 的周长;(2) 在 x 轴上任取一点 P ,直线 AP 与椭圆 E 的右准线相交于点 Q ,求OP ⋅ QP 的最小值;(3) 设点 M 在椭圆 E 上,记△OAB 与△MAB 的面积分别为 S 1,S 2,若 S 2=3S 1,求点 M 的坐标.19. 已知关于 x 的函数 y =f (x ), y =g (x ) 与h (x ) = kx + b (k , b ∈ R ) 在区间 D 上恒有 f (x ) ≥ h (x ) ≥ g (x ) .(1)若 f ( x ) = x 2 + 2x ,g ( x ) = - x 2 + 2x ,D = (-∞,+ ∞) ,求 h (x )的表达式;(2) 若 f (x ) = x 2 - x + 1,g (x ) = k ln x ,h (x ) = kx - k , D = (0,+ ∞) ,求 k 的取值范围;(3) 若f (x ) = x 4 - 2x 2,g (x ) = 4x 2 - 8 ,h (x ) = 4 (t 2 - t )x - 3t 4 + 2t 2 (0 <t ≤ 2) D = [m , n ] ⊆ ⎡- 2, 2 ⎤ 求⎣ ⎦证: n - m ≤ .20. 已知数列{a }(n ∈ N *) 的首项 a 1=1,前 n 项和为 S n .设 λ 与 k 是常数,若对一切正整数 n ,均有1 11S n +1k - S n k = λa n +1k 成立,则称此数列为“λ–k ”数列. (1) 若等差数列{a n } 是“λ–1”数列,求 λ 的值;(2) 若数列{a n } 是“ 3 - 2 ”数列,且 a n >0,求数列{a n } 的通项公式;3(3) 对于给定的 λ,是否存在三个不同的数列{a n } 为“λ–3”数列,且 a n ≥0?若存在,求 λ 的取值范围;若不存在,说明理由,25 ⎢ ⎥, ) 数学Ⅱ(附加题)【选做题】本题包括 A 、B 、C 三小题,请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修 4-2:矩阵与变换]21. 平面上点 A (2, -1) 在矩阵 M = ⎡a -1 1 ⎤对应的变换作用下得到点 B (3, -4) . b ⎣⎦(1) 求实数a , b 的值; (2) 求矩阵 M 的逆矩阵 M -1 .B .[选修 4-4:坐标系与参数方程]22. 在极坐标系中,已知点 A (ρ , π) 在直线l : ρ cos θ = 2 上,点 B (ρ π在圆C : ρ = 4 s in θ 上(其中ρ ≥ 0 , 132 60 ≤ θ < 2π ).(1)求 ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修 4-5:不等式选讲]23. 设 x ∈ R ,解不等式2 | x + 1| + | x |≤ 4 .【必做题】第 24 题、第 25 题,每题 10 分,共计 20 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.24. 在三棱锥A —BCD 中,已知 CB =CD = ,BD =2,O 为BD 的中点,AO ⊥平面 BCD ,AO =2,E 为 AC 的中点.(1) 求直线 AB 与 DE 所成角的余弦值; 1 (2) 若点 F 在 BC 上,满足 BF =4BC ,设二面角 F —DE —C 的大小为 θ,求 sin θ 的值.25. 甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 X n ,恰有 2 个黑球的概率为 p n ,恰有 1 个黑球的概率为q n.(1)求p1·q1 和p2·q2;(2)求2p n+q n 与2p n-1+q n-1 的递推关系式和X n 的数学期望E(X n)(用n 表示) .答案解析一、填空题:本大题共14 小题,每小题5 分,共计70 分.请把答案填写在答.题.卡.相.应.位.置.上..1.已知集合A = {-1, 0,1, 2}, B = {0, 2, 3},则A B =.【答案】{0, 2}【解析】【分析】根据集合交集即可计算.【详解】∵ A ={-1, 0,1, 2}, B ={0, 2, 3}∴A I B ={0, 2}故答案为:{0, 2}.【点睛】本题考查了交集及其运算,是基础题型.2.已知i 是虚数单位,则复数z = (1+ i)(2 - i) 的实部是.【答案】3【解析】4 1 【分析】根据复数的运算法则,化简即可求得实部的值.【详解】∵复数 z = (1 + i )(2 - i )∴ z = 2 - i + 2i - i 2 = 3 + i ∴复数的实部为 3.故答案为:3.【点睛】本题考查复数的基本概念,是基础题.3. 已知一组数据4, 2a , 3 - a , 5, 6 的平均数为4,则a 的值是 .【答案】2【解析】【分析】根据平均数的公式进行求解即可.【详解】∵数据4, 2a , 3 - a , 5, 6 的平均数为 4 ∴ 4 + 2a + 3 - a + 5 + 6 = 20 ,即a = 2 . 故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.4. 将一颗质地均匀的正方体骰子先后抛掷 2 次,观察向上的点数,则点数和为 5 的概率是 .1 【答案】 9【解析】【分析】分别求出基本事件总数,点数和为 5 的种数,再根据概率公式解答即可. 【详解】根据题意可得基本事件数总为6 ⨯ 6 = 36 个.点数和为 5 的基本事件有(1, 4) , (4,1) , (2, 3) , (3, 2) 共 4 个.∴出现向上的点数和为5 的概率为 P = = .36 9故答案为: 1.9【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5. 如图是一个算法流程图,若输出y 的值为-2 ,则输入 x 的值是 .5 x 2 y【答案】-3【解析】【分析】根据指数函数的性质,判断出 y = x + 1 ,由此求得 x 的值. 【详解】由于2x > 0 ,所以 y = x +1 = -2 ,解得 x = -3 . 故答案为: -3【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.6. 在平面直角坐标系 xOy 中,若双曲线x ﹣ y a 2 5 =1(a >0)的一条渐近线方程为 y= 5x ,则该双曲线的离 2心率是 .3 【答案】 2【解析】【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.2 2 【详解】双曲线 - a 25 = 1,故b = .由于双曲线的一条渐近线方程为 y = 5 x ,即 b = 2 a 5 ⇒ a = 2 , 2所以c =3故答案为:2= c = 3 ,所以双曲线的离心率为 a = 3.2【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.27. 已知 y =f (x )是奇函数,当 x ≥0 时, f ( x ) = x 3 【答案】-4,则 f (-8)的值是 .【解析】a 2 +b 2 4 + 5 23 2【分析】先求 f (8) ,再根据奇函数求 f (-8)【详解】 f (8) = 83 = 4 ,因为 f (x ) 为奇函数,所以 f (-8) = - f (8) = -4 故答案为: -4【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.8. 已知sin2(π + α ) 4 = 2,则sin 2α 的值是 .3 1【答案】 3【解析】【分析】直接按照两角和正弦公式展开,再平方即得结果.【详解】Q sin 2 (π+ α ) = ( 2 cos α + 2 sin α )2 = 1(1+ sin 2α ) 4 2 2 2∴ 1 (1+ sin 2α ) = 2 ∴sin 2α = 1 2 3 31故答案为:3【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为 2 cm ,高为2 cm ,内孔半轻为 0.5 cm ,则此六角螺帽毛坯的体积是 cm.【答案】12 - π2【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为6⨯ 3 ⨯ 22⨯ 2=12 433 3 n 1 =圆柱体积为π ( 1)2⋅ 2 =π22所求几何体体积为12 - π2故答案为: 12 -π2【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.10. 将函数 y = 3sin(2x π) 的图象向右平移 π 个单位长度,则平移后的图象中与 y 轴最近的对称轴的方程是﹢ 46.【答案】 x =- 5π24【解析】【分析】先根据图象变换得解析式,再求对称轴方程,最后确定结果. 【详解】 y = 3sin[2(x - π) + π] = 3sin(2x -π) 64122x -ππ7π k π= + k π (k ∈ Z )∴ x = + 12 2 24 2当 k = -1 时 x =- 5π24 故答案为: x =- 5π24 (k ∈ Z ) 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.11. 设{a n }是公差为 d 的等差数列,{b n }是公比为 q 的等比数列.已知数列{a n +b n }的前 n 项和S = n 2- n + 2n -1(n ∈ N + ) ,则 d +q 的值是 .【答案】4 【解析】【分析】结合等差数列和等比数列前 n 项和公式的特点,分别求得{a n },{b n } 的公差和公比,由此求得d + q . 【详解】设等差数列{a n } 的公差为d ,等比数列{b n } 的公比为q ,根据题意q ≠ 1 .等差数列{a }的前n 项和公式为 P = na + n (n -1) d = d n 2 + ⎛ a - d ⎫n ,n n 12 2 1 2 ⎪ 等比数列{b }的前n 项和公式为Qb (1- q n ) ⎝ ⎭= - b 1 q n + b 1 , nn1- q1- q1- q⎪ 依题意 S = P + Q ,即n 2 - n + 2n -1 = dn 2+ ⎛ a -d ⎫ n - b 1 q n + b1 ,nnn212 ⎪1- q1- q⎧ d = 12 ⎝⎭⎧d = 2 ⎪ d ⎪ ⎪a 1 - = -1 ⎪a 1 = 0通过对比系数可知⎨ 2 ⇒ ⎨q = 2 ,故d + q = 4 . ⎪q = 2 ⎪ ⎪ b ⎪⎩b 1 = 1故答案为: 4⎪ 1 = -1 ⎪⎩1- q 【点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.12. 已知5x 2 y 2 + y 4 = 1(x , y ∈ R ) ,则 x2+ y 2 的最小值是.4 【答案】 5【解析】【分析】根据题设条件可得 x 2= 1- y 4 5y 2 ,可得 x 2 + y 2= 1- y 4 5 y 2+ y 2 1 4 y 2 5 y 2 +5 ,利用基本不等式即可求解.【详解】∵ 5x 2 y 2 + y 4 = 1∴ y ≠ 0 且 x 2=1- y 4 5y 22 2 1- y 421 4 y2 4 1 = 4 y 2 23 2 1 ∴ x + y = 5y 2 + y = + 5y 2 5≥ 2 = 5 ,当且仅当 5y 2 5 ,即 x = , y 10 = 时取等号. 2 ∴ x 2 + y 2 的最小值为 4. 5故答案为: 4.5【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥ 或≤ 时等号能否同时成立).13. 在△ABC 中, AB = 4,AC = 3,∠BAC =90︒,D 在边 BC 上,延长 AD 到 P ,使得 AP =9,若PA = mPB + ( 3- m )PC (m 为常数),则 CD 的长度是.25y 2 5 2 1 ⋅ 4 y =PD = PB + ⎝ ⎭PCm ⎛ 3 - m ⎫ 2 ⎪ θ (π θ ) - = =18 【答案】 5【解析】【分析】根据题设条件可设 PA = λ PD (λ > 0) ,结合 PA = mPB + ⎛ 3 - m ⎫PC 与 B , D , C 三点共线,可求得λ ,再根据 2 ⎪ ⎝ ⎭勾股定理求出 BC ,然后根据余弦定理即可求解. 【详解】∵ A , D , P 三点共线,∴可设 PA = λ PD (λ > 0) ,∵PA = mPB + ⎛ 3 - m ⎫PC , 2 ⎪ ⎝ ⎭⎛ 3 ⎫ ∴ λ PD = mPB + - m PC ,即 , 2 ⎪⎝⎭ λ λ若 m ≠ 0 且m ≠ 3,则 B , D , C 三点共线,2⎛ 3 - m ⎫3∴m 2 ⎪,即λ = ,λ+ ⎝λ⎭= 12∵ AP = 9 ,∴ AD = 3 ,∵ AB = 4 , AC = 3 , ∠BAC = 90︒,∴BC = 5 , 设CD = x , ∠CDA = θ ,则 BD = 5 - x , ∠BDA = π -θ .AD 2 + CD 2 - AC 2∴根据余弦定理可得cos == 2 A D ⋅ C Dx AD 2 + BD 2 - AB 2, cos 62AD ⋅ BD(5 - x )2 - 76(5 - x ) ,∵cos θ + cos (π -θ ) = 0 ,x(5 - x )2 - 718 ∴ += 0 ,解得 x =,66(5- x )5∴ CD 的长度为18 .5当 m = 0 时, PA = 3PC , C , D 重合,此时CD 的长度为0 ,23 + 14 45 当 m = 3 时, PA = 3PB , B , D 重合,此时 PA = 12 ,不合题意,舍去.22故答案为:0 或18 .5【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出PA = λ PD (λ > 0) .14. 在平面直角坐标系 xOy 中,已知 P ( 3,0) ,A ,B 是圆 C :x 2 + ( y - 1)2= 36 上的两个动点,满足 PA = PB , 22则△PAB 面积的最大值是 .【答案】10【解析】【分析】根据条件得 PC ⊥ AB ,再用圆心到直线距离表示三角形 PAB 面积,最后利用导数求最大值. 【详解】Q PA = PB ∴ PC ⊥ AB设圆心C 到直线 AB 距离为 d ,则|AB |=2 36 - d 2 ,| PC |= = 1所以 S V PAB≤ 1⋅ 2 36 - d 2 (d +1) = 2令 y = (36 - d 2 )(d +1)2 (0 ≤ d < 6)∴ y ' = 2(d +1)(-2d 2 - d + 36) = 0∴ d = 4 (负值舍去)当0 ≤ d < 4 时,y ' > 0 ;当4 ≤ d < 6 时,y ' ≤ 0 ,因此当d = 4 时,y 取最大值,即S PAB 取最大值为10 ,故答案为:10【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.二、解答题:本大题共 6 小题,共计 90 分,请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在三棱柱 ABC -A 1B 1C 1 中,AB ⊥AC ,B 1C ⊥平面 ABC ,E ,F 分别是 AC ,B 1C 的中点.5(36 - d 2 )(d +1)2 5(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.【答案】(1)证明详见解析;(2)证明详见解析.【解析】【分析】(1)通过证明EF //AB1,来证得EF // 平面AB1C1.(2)通过证明AB ⊥平面AB1C ,来证得平面AB1C ⊥平面ABB1 .【详解】(1)由于E, F 分别是AC, B1C 的中点,所以EF //AB1.由于EF ⊂/平面AB1C1, AB1⊂平面AB1C1,所以EF // 平面AB1C1.(2)由于B1C ⊥平面ABC ,AB Ì平面ABC ,所以B1C ⊥AB .由于AB ⊥AC, AC ⋂B1C =C ,所以AB ⊥平面AB1C ,由于AB Ì平面ABB1,所以平面AB1C ⊥平面ABB1.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 16.在△ABC 中,角A,B,C 的对边分别为a,b,c,已知a = 3, c =2, B = 45︒.5 1- cos 2 ∠ADC 1- sin 2 C 5 5 4⎛ π ⎫(1) 求sin C 的值;(2) 在边 BC 上取一点 D ,使得cos ∠ADC = - 4,求tan ∠DAC 的值.5【答案】(1) sin C =5;(2) tan ∠DAC = 2 . 511【解析】【分析】(1) 利用余弦定理求得b ,利用正弦定理求得sin C .(2) 根据cos ∠ADC 的值,求得sin ∠ADC 的值,由(1)求得cos C 的值,从而求得sin ∠DAC , cos ∠DAC的值,进而求得tan ∠DAC 的值.【详解】(1)由余弦定理得b 2= a 2+ c 2- 2ac cos B = 9 + 2 - 2⨯ 3⨯ 2 ⨯2 = 5 ,所以b = .2由正弦定理得c = b ⇒ sin C = c sin B = 5 .sin C sin B b 5(2)由于cos ∠ADC = - , ∠ADC ∈ ,π ,所以sin ∠ADC = = 3.52 ⎪5⎝ ⎭由于∠ADC ∈⎛ π ,π ⎫ ,所以C ∈⎛ 0, π ⎫ ,所以cos C = = 2 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭ 5所以sin ∠DAC = sin (π - ∠DAC ) = sin (∠ADC + ∠C )= sin ∠ADC ⋅ cos C + cos ∠ADC ⋅ sin C = 3 ⨯ 2 5 + ⎛ - 4 ⎫⨯ 5 = 2 5 .55 5 ⎪ 5 25 由于∠DAC ∈⎛ 0, π ⎫,所以cos ∠DAC =⎝ ⎭= 11 . 2 ⎪ ⎝ ⎭ 所以tan ∠DAC = sin ∠DAC cos ∠DAC 25= 2.111- sin 2∠DAC【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底 O 在水平线 MN 上、桥 AB 与MN 平行,OO '为铅垂线( O ' 在 AB 上).经测量,左侧曲线 AO 上任一点 D 到 MN 的距离h 1 (米)与 D 到OO '的距离 a (米)之间满足关系式 h =1a 2 ;右侧曲线 BO 上任一点 F 到 MN 的距离h (米)与 F 到OO ' 的距离1402b (米)之间满足关系式h = -1b 3 + 6b .已知点 B 到OO '的距离为 40 米.2800(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于OO ' 的桥墩 CD 和 EF ,且 CE 为 80 米,其中 C ,E 在 AB 上(不包括端点).桥墩 EF 每米造价 k (万元)、桥墩 CD 每米造价 3k (万元)(k >0).问O 'E 为多少米时,桥墩 CD 与 EF 的总造价2最低【答案】(1)120 米(2) O 'E = 20 米 【解析】【分析】(1) 根据A,B 高度一致列方程求得结果;(2) 根据题意列总造价的函数关系式,利用导数求最值,即得结果.【详解】(1)由题意得 1| O 'A |2 = -1⨯ 403 + 6⨯ 40∴| O 'A |= 8040800∴|AB |=| O 'A | + | O 'B |= 80 + 40 = 120 米(2) 设总造价为 f (x ) 万元, | O 'O |=1⨯802 = 160 ,设| O 'E |= x ,40f (x ) = k (160 + 1 x 3 - 6x ) + 3 k [160 - 1(80 - x )2 ], (0 < x < 40)800 2 40y 2 ∴ f (x ) = k (160 + 1 x 3 - 3 x 2 ),∴ f '(x ) = k ( 3 x 2 - 6x ) = 0∴ x = 20 (0 舍去)800 80 800 80当0 < x < 20 时, f '(x ) < 0 ;当20 < x < 40 时, f '(x ) > 0 ,因此当 x = 答:当O 'E = 20 米时,桥墩 CD 与EF 的总造价最低.20 时, f (x ) 取最小值,【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.18. 在平面直角坐标系 xOy 中,已知椭圆 E :x 2+ = 1 的左、右焦点分别为 F 1,F 2,点 A 在椭圆 E 上且 4 3在第一象限内,AF 2⊥F 1F 2,直线 AF 1 与椭圆 E 相交于另一点 B .(1) 求△AF 1F 2 的周长;(2) 在 x 轴上任取一点 P ,直线 AP 与椭圆 E 的右准线相交于点 Q ,求OP ⋅ QP 的最小值;(3) 设点 M 在椭圆 E 上,记△OAB 与△MAB 的面积分别为 S 1,S 2,若 S 2=3S 1,求点 M 的坐标.【答案】(1)6;(2)-4;(3)M (2, 0) 或⎛ - 2 , - 12 ⎫.7 7 ⎪ ⎝ ⎭【解析】【分析】(1) 根据椭圆定义可得 AF 1 + AF 2 = 4 ,从而可求出△AF 1 F 2 的周长;(2) 设 P( x ,0) ,根据点 A 在椭圆 E 上,且在第一象限, AF ⊥ F F ,求出 A ⎛1,3 ⎫,根据准线方程得 021 22 ⎪ ⎝ ⎭Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3) 设出设 M( x 1, y 1 ) ,点 M 到直线 AB 的距离为d ,由点O 到直线 AB 的距离与 S 2 = 3S 1 ,可推出d = 9,根据点到直线的距离公式,以及 M ( x , y ) 满足椭圆方程,解方程组即可求得坐标.51 12【详解】(1)∵椭圆 E 的方程为x+y= 4 3120 0 Q 0 0 0 0 ∴F 1 (-1, 0), F 2 (1, 0) 由椭圆定义可得: AF 1 + AF 2 = 4 .∴△AF 1 F 2 的周长为4 + 2 = 6(2) 设 P( x 0 ,0) ,根据题意可得 x 0 ≠ 1.∵点 A 在椭圆 E 上,且在第一象限, AF 2 ⊥ F 1F 2∴ A ⎛1, 3 ⎫ 2 ⎪ ⎝ ⎭∵准线方程为 x = 4∴Q (4, y Q )∴ OP ⋅ Q P = ( x , 0)⋅(x - 4, - y ) = ( x - 4) x = (x - 2)2- 4 ≥ -4 ,当且仅当 x = 2 时取等号. ∴ OP ⋅ QP 的最小值为-4 .(3) 设 M( x 1, y 1 ) ,点 M 到直线 AB 的距离为 d .∵A ⎛1, 3 ⎫,F (-1, 0) 2 ⎪ 1 ⎝ ⎭∴直线 AF 的方程为 y =3( x +1)1 4∵点O 到直线 AB 的距离为 3, S 52 = 3S 1∴ S = 3S = 3⨯ 1 ⨯ AB ⨯ 3 =AB ⋅ d 2 12 5∴d = 95∴ 3x 1 - 4 y 1 + 3 = 9 ①x 2 y 2∵ 1 + 1 = 1 ②4 3⎧x =- 2⎧x 1 = 2 ⎪ 1 7 ∴联立①②解得⎨ y = 0 , ⎨12 .⎩ 1 ⎪ y =-⎪⎩ 1 71 279∴M (2, 0)或⎛-2, -12 ⎫.7 7 ⎪ ⎝⎭【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据S2= 3S1推出d =是解答本题的关键.519.已知关于x 的函数y = f (x), y =g(x) 与h(x) =kx +b(k, b ∈R) 在区间D 上恒有f (x) ≥h(x) ≥g(x) .(1)若f (x)=x2+ 2x,g (x)=-x2+ 2x,D = (-∞,+∞) ,求h(x)的表达式;(2)若f (x) = x2-x +1,g(x) = k ln x,h(x) = kx -k, D = (0,+∞) ,求k 的取值范围;(3)若f (x) = x4- 2x2,g(x) = 4x2- 8 ,h(x) = 4 (t 2-t )x-3t 4+ 2t 2 (0 < t ≤2) D = [m, n]⊆⎡-2, 2 ⎤求⎣⎦证:n -m ≤.【答案】(1)h (x)= 2x ;(2)k ∈[0, 3];(3)证明详见解析【解析】【分析】(1)求得f (x)与g (x)的公共点,并求得过该点的公切线方程,由此求得h (x)的表达式.(2)先由h (x)-g (x)≥ 0 ,求得k 的一个取值范围,再由f (x)-h (x)≥ 0 ,求得k 的另一个取值范围,从而求得k 的取值范围.(3)先由f (x)≥h (x),求得t 的取值范围,由方程g (x)-h (x)= 0 的两个根,求得n -m 的表达式,利用导数证得不等式成立.【详解】(1)由题设有-x2+ 2x ≤kx +b ≤x2+ 2x 对任意的x ∈R 恒成立.令x = 0 ,则0 ≤b ≤ 0 ,所以b = 0 .因此kx ≤x2+ 2x 即x2 +(2 -k )x ≥ 0 对任意的x ∈R 恒成立,所以∆=(2 -k )2 ≤ 0 ,因此k = 2 .故h (x)= 2x .(2)令F (x)=h (x)-g (x)=k (x -1- ln x)(x> 0),F (1)= 0 .又F'(x)=k ⋅x -1. x2 2 7 ( 若k < 0 ,则 F (x ) 在( 0,1)上递增,在(1, +? 符合题意.) 上递减,则 F ( x ) ≤ F (1) = 0 ,即h ( x ) - g ( x ) ≤ 0 ,不当 k = 0 时, F (x ) = h ( x ) - g ( x ) = 0, h ( x ) = g ( x ) ,符合题意.当 k > 0 时, F ( x ) 在( 0,1)上递减,在(1, +?) 上递增,则 F ( x ) ≥ F (1) = 0 ,即 h (x ) - g ( x ) ≥ 0 ,符合题意.综上所述, k ≥ 0 .由 f (x ) - h ( x ) = x 2 - x +1- (kx - k ) = x 2 - (k +1) x + (k +1) ≥ 0 当 x = k +1< 0 ,即k < -1 时, y = x 2 - (k +1) x + k +1 在 0, +? 2因为 f (0) - h (0) = k +1 < 0 ,故存在 x 0 ∈(0, +∞) ,使 f (x ) - h ( x ) < 0 ,不符合题意. 当 x =k +1= 0 ,即k = -1 时, f (x ) - h ( x ) = x 2 ≥ 0 ,符合题意. 2) 为增函数,当 x = k +1 > 0 ,即k > -1 时,则需∆ = (k +1)22综上所述, k 的取值范围是k ∈[0, 3]. - 4 (k +1) ≤ 0 ,解得-1 < k ≤ 3 .(3) 因为 x4- 2x 2≥ 4 (t 3- t )x - 3t 4 + 2t 2 ≥ 4x 2- 8 对任意 x ∈[m , n ] ⊂ [-2, 2] 恒成立,x 4- 2x 2≥ 4(t 3- t )x - 3t 4 + 2t 2对任意 x ∈[m , n ] ⊂ [-2, 2] 恒成立,等价于(x - t )2(x2+ 2tx + 3t 2- 2)≥ 0 对任意 x ∈[m , n ] ⊂ [-2, 2] 恒成立.故 x 2 + 2tx + 3t 2 - 2 ≥ 0 对任意 x ∈[m , n ] ⊂ [- 2, 2] 恒成立令 M (x ) = x 2 + 2tx + 3t 2 - 2 ,当0 < t 2 < 1, ∆ = -8t 2 + 8 > 0, -1 < -t < 1 ,此时n - m ≤ + t < +1 < ,当1 ≤ t 2 ≤ 2 , ∆ = -8t 2 + 8 ≤ 0 ,但4x 2- 8 ≥ 4(t 3- t )x - 3t 4 + 2t 2对任意的 x ∈[m , n ] ⊂ [-2, 2] 恒成立. 等价于4x 2- 4(t 3- t ) x + (3t 2+ 4)(t 2- 2) ≤ 0 对任意的 x ∈[m , n ] ⊂ [-2, 2] 恒成立.t 6 - 5t 4 + 3t 2 + 8 λ3 - 5λ 2 + 3λ + 8 7 7 3 1 2max maxn 4x 2 - 4(t 3 - t ) x + (3t 2 + 4)(t 2 - 2) = 0 的两根为 x , x ,则 x 1 + x 2 = t - t , x 1 ⋅ x 2 =3t 4 - 2t 2 - 8,4所以n - m = x - x == .12令t 2 = λ, λ ∈[1, 2] ,则n - m = .构造函数P (λ ) = λ3- 5λ 2+ 3λ + 8(λ ∈[1, 2]) , P '(λ ) = 3λ 2 -10λ + 3 = (λ - 3)(3λ -1) ,所以λ ∈[1, 2]时, P '(λ ) < 0 , P (λ ) 递减, P (λ ) = P (1) = 7 . 所以(n - m ) = ,即n - m ≤ . 【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.20. 已知数列{a }(n ∈ N * ) 的首项 a 1=1,前 n 项和为 S n .设 λ 与 k 是常数,若对一切正整数 n ,均有1 11S n +1k - S n k = λa n +1k 成立,则称此数列为“λ–k ”数列. (1) 若等差数列{a n } 是“λ–1”数列,求 λ 的值;(2) 若数列{a n } 是“ 3 - 2 ”数列,且 a n >0,求数列{a n } 的通项公式;3(3) 对于给定的 λ,是否存在三个不同的数列{a n } 为“λ–3”数列,且 a n ≥0?若存在,求 λ 的取值范围;若不存在,说明理由, 【答案】(1)1(2)a n ⎧ 1, n = 1⎨ n -2⎩3⋅ 4 , n ≥ 2(3) 0 < λ < 1【解析】【分析】(1) 根据定义得 S n +1 - S n = λa n +1 ,再根据和项与通项关系化简得 a n +1 = λa n +1 ,最后根据数列不为零数列得结果;111S =4S S a (2) 根据定义得 S n +12 - S n 2 =(S n +1 - S n )2 ,根据平方差公式化简得 3n +1 n ,求得 n ,即得 n ; ( x + x - 4x x 1 2 ) 21 2= 33 n n n n +1 nn +1 n n +1 ⎩n n +1 S 1 1 1(3) 根据定义得 Sn +13 - S n 3 = λa n +13 ,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1) S n +1 - S n = λa n +1 ∴ a n +1 = λa n +1 Q a 1 = 1∴ a n +1 ≡/ 0∴λ = 111(2) Q a n > 0∴ S n +1 > S n ∴ S n +12 - S n 2 > 0111Q S n +12 - S n 2 = (S n +1 - S n )2 31 1 11 1 1 1∴(Sn +12 - S 2 )2 =3 (S n +1 2 - S n 2 )(S n +1 2 + S n 2 )1111 1 1 1 ∴ S n +12 - S n 2 = 3(S n +1 2 + S n 2 )∴ S n +1 2 =2S n 2 ∴ S n +1 =4S n ∴ S n = 4n -1S = a = 1, S = 4n -1 1 1 n∴a = 4n -1 - 4n -2 = 3⋅ 4n -2 , n ≥ 2∴a n ⎧ 1, n = 1 ⎨ n -2⎩3⋅ 4 , n ≥ 2(3)假设存在三个不同的数列{a n } 为"λ - 3" 数列.111 11S n +1 3- S n 3= λa n +1 3∴(S n +1 3 - S 3 )3=λ3 (S - S n ) 11112211∴ Sn +13= S n3 或(S n +1 3 - S 3 )2 = λ3 (S3 + S n 3 + Sn +1 3S n3)221 1∴ S n +1 = S n 或(λ3 -1)Sn +13+ (λ3 -1)S 3 + (λ3 + 2)S 3 S 3 = 0n ∵对于给定的λ ,存在三个不同的数列{a n } 为"λ - 3" 数列,且a n ≥ 0⎧1, n = 1 2 2 1 1∴a n = ⎨0, n ≥ 2 或(λ3 -1)S n +13 + (λ3 -1)S n 3 + (λ3 + 2)S n +13 S n 3 = 0 (λ ≠ 1) 有两个不等的正根.221 1(λ3 -1)S n +1 3 + (λ3 -1)S 3 + (λ3 + 2)S 2 13 S n 3 = 0 (λ ≠ 1)可转化为 1(λ3-1)S 2 3 n +1 + (λ3 -1) + (λ3+ 2)S 13 n +1 = 0 (λ ≠ 1) ,不妨设⎛ S n +1 ⎫3 = x ( x > 0) ,则S n 3 S n 3⎪ ⎝ n ⎭ (λ3 -1)x 2 + (λ3 + 2)x + (λ3 -1) = 0 (λ ≠ 1) 有两个不等正根,设 f ( x ) = (λ3 -1)x 2 + (λ3 + 2)x + (λ3 -1) = 0 (λ ≠ 1) .=⎢ ⎥⎨1 2 ⎢⎥ = ①当λ < 1 时, ∆ = (λ3 + 2)2 - 4(λ3 -1)2 > 0 ⇒ 0 < λ3 < 4 ,即0 < λ < 1,此时f (0) = λ3-1 < 0 , x 对 (λ3 + 2) = -> 0 ,满足题意.2(λ3-1)②当λ > 1 时, ∆ = (λ3 + 2)2 - 4(λ3 -1)2 > 0 ⇒ 0 < λ3 < 4 ,即1 < λ < 3 4 ,此时f (0) = λ3-1 > 0 , x 对 (λ3 + 2) = -< 0 ,此情况有两个不等负根,不满足题意舍去.2(λ3-1)综上, 0 < λ < 1【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.数学Ⅱ(附加题)【选做题】本题包括 A 、B 、C 三小题,请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修 4-2:矩阵与变换]21. 平面上点 A (2, -1) 在矩阵 M = ⎡a -1 1 ⎤对应的变换作用下得到点 B (3, -4) . b ⎣⎦(1) 求实数a , b 的值; (2) 求矩阵 M 的逆矩阵 M -1 .⎡ 2 - 1 ⎤ 【答案】(1) ⎧a = 2;(2)M -1= ⎢ 5 5 ⎥. ⎩b = 2⎢ ⎥ ⎢ ⎥ ⎢⎣5 5 ⎥⎦【解析】【分析】(1) 根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数a , b 的值;(2) 设出逆矩阵,由定义得到方程,即可求解.【详解】(1)∵平面上点 A (2, -1) 在矩阵 M = ⎡ a -11⎤对应的变换作用下得到点 B (3, -4) b⎡ a ∴ ⎢-1 ⎣ ⎦1⎤ ⎡ 2 ⎤ ⎡ 3 ⎤b ⎥ ⎢-1⎥ ⎢-4⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎧2a -1 = 3 ⎧a = 2 ∴ ⎨-2 - b = -4,解得⎨ = 2⎩⎩b(2 2, ) 4 3⎢1 2 ⎥, ) ⎪ ⎩5 (2)设 M -1 =⎡m n ⎤ ,则 MM -1 = ⎡ 2m + c2n + d ⎤ = ⎡1 0⎤ ⎢c d ⎥ ⎢-m + 2c - n + 2d ⎥ ⎢0 1⎥⎣ ⎦ ⎧m = 2 ⎣ ⎦ ⎣ ⎦⎪ ⎧2m + c = 1 ⎪ 1 ⎪2n + d = 0⎪n =- ⎪ ⎪ 5 ∴ ⎨-m + 2c = 0 ,解得⎨1⎪⎪⎩-n + 2d = 1⎪c = ⎪ 5 ⎪⎪d = ⎩ 5⎡ 2 - 1 ⎤∴ M -1= ⎢ 5 5 ⎥ ⎢⎥ ⎢⎣5 5 ⎥⎦【点睛】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题.B .[选修 4-4:坐标系与参数方程]22. 在极坐标系中,已知点 A (ρ , π) 在直线l : ρ cos θ = 2 上,点 B (ρ π在圆C : ρ = 4 s in θ 上(其中ρ ≥ 0 , 132 60 ≤ θ < 2π ).(1)求 ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1) ρ = 4,ρ = 2 (2) π1 2【解析】【分析】(1)将 A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为 x 轴的正半轴,建立平面直角坐标系,ρ cos π13= 2,∴ ρ1= 4 ,因为点 B 为直线θ =π上,故其直角坐标方程为 y =63 x , 3又 ρ = 4 sin θ 对应的圆的直角坐标方程为: x 2 + y 2 - 4 y = 0 ,⎧ y = 3 x ⎧x = 0 ⎧⎪x = 由⎨ 3解得⎨ y = 0 或⎨ ,⎪x 2 + y 2 - 4 y = 0 ⎩ ⎪⎩ y = 1 2ρ cos θ 5 对应的点为(0, 0),( 3,1),故对应的极径为 ρ2= 0 或 ρ2 = 2 .(2) = 2, ρ = 4 s in θ ,∴4 s in θ cos θ = 2,∴sin 2θ = 1,θ ∈[0, 2π ),∴θ = π , 5π,4 4当θ = π时 ρ = 2 2 ;4 当θ =5π 时 ρ = -2 4π< 0 ,舍;即所求交点坐标为当(2 2,), 4【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.C .[选修 4-5:不等式选讲]23. 设 x ∈ R ,解不等式2 | x + 1| + | x |≤ 4 .【答案】 ⎡-2, 2 ⎤⎢⎣ 3 ⎥⎦【解析】【分析】根据绝对值定义化为三个方程组,解得结果⎧x < -1 ⎧ -1 ≤ x ≤ 0 ⎧ x > 0 【详解】 ⎨-2x - 2 - x ≤ 4 或⎨2x + 2 - x ≤ 4 或⎨2x + 2 + x ≤ 4⎩ ⎩ ⎩∴-2 ≤ x < -1或-1≤ x ≤ 0 或0 < x ≤ 23所以解集为⎡-2, 2 ⎤⎢⎣ 3 ⎥⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.【必做题】第 24 题、第 25 题,每题 10 分,共计 20 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.24. 在三棱锥A —BCD 中,已知 CB =CD = ,BD =2,O 为BD 的中点,AO ⊥平面 BCD ,AO =2,E 为 AC 的中点.2(1) 求直线 AB 与 DE 所成角的余弦值;(2) 若点 F 在 BC 上,满足 BF = 1BC ,设二面角 F —DE —C 的大小为 θ,求 sin θ 的值.4【答案】(1)15 (2) 2 39 15 13【解析】【分析】(1) 建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2) 先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.详解】(1) 连CO Q BC = CD , BO = OD ∴CO ⊥ BD以OB ,OC ,OA 为 x , y , z 轴建立空间直角坐标系,则 A (0, 0, 2), B (1, 0, 0), C (0, 2, 0), D (-1, 0, 0) ∴ E (0,1,1)uuuruuur u u u r uu ur ∴ -1 AB = (1, 0, -2), DE = (1,1,1)∴cos < AB , DE >= = - 15从而直线 AB 与 DE 所成角的余弦值为1515(2) 设平面 DEC 一个法向量为n 1 = (x , y , z ),DC = (1, 2, 0), ⎧⎪n 1 ⋅ DC = 0∴⎧x + 2 y = 0⎨n ⋅ DE = 0 ⎨x + y + z = 0 ⎪⎩ 1⎩令 y = 1∴ x = -2, z = 1∴ n 1 = (-2,1,1) 设平面 DEF 一个法向量为5 3156 78 12 13 3 3 91 7 1⎧⎪n ⋅ DF = 0 ⎧7 x + 1 y = 0 n = (x , y , z ), DF = DB + BF = DB + BC = ( , , 0), ⎨ 2 ∴⎪ 4 1 2 12 1 1 14 4 2 ⎪n ⋅ DE = 0 ⎨ ⎩ 2 ⎪x + y + z = 0令 y 1 = -7∴ x 1 = 2, z 1 = 5∴n 2 = (2, -7, 5)⎩ 11 1ur uu r ∴cos < -6 1 n 1, n 2 >= = -因此sin θ = = 13【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.25. 甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 X n ,恰有 2 个黑球的概率为 p n ,恰有 1 个黑球的概率为 q n . (1)求 p 1·q 1 和 p 2·q 2; (2)求 2p n +q n 与 2p n-1+q n-1 的递推关系式和 X n 的数学期望 E (X n )(用 n 表示) .【答案】(1) p = 1 , q = 2;p = 7, q = 16 (2) 2 p + q = 1 (2 p +q ) + 2【解析】【分析】1 3 1 32 27 2 27 n n 3n -1 n -1 3 (1) 直接根据操作,根据古典概型概率公式可得结果;(2) 根据操作,依次求 p n ,q n ,即得递推关系,构造等比数列求得2 p n + q n ,最后根据数学期望公式求结果.1⨯ 3 1 2 ⨯ 3 2【详解】(1) p 1 =3⨯ = , q 1 = = , 3 3 3⨯ 3 3p = p ⨯ 1⨯ 3 +q ⨯ 1⨯ 2 = 1 ⨯ 1 + 2 ⨯ 2 = 7, 21 3⨯ 3 1 3⨯ 3 3 3 3 9 27q = p ⨯ 2⨯ 3 +q ⨯ 1⨯1+ 2⨯ 2 + 0 = 2 ⨯ 2 + 2 ⨯ 5 = 162 13⨯ 3 1 3⨯ 3 3 3 3 9 271⨯ 3 1⨯ 2 1 2(2)p n = p n -1 ⨯ 3⨯ 3 +q n -1 ⨯ 3⨯ = p n -1 + q n -1 , q = p ⨯ 2⨯ 3 +q ⨯ 1⨯1+ 2⨯ 2 + (1- p - q ) ⨯ 3⨯ 2 = - 1q + 2 , n n -1 3⨯ 3 n -1 3⨯ 3 n -1 n -1 3⨯ 3 9 n -1 3因此2 p + q = 2 p + 1 q + 2,n n3 n -1 3 n -1 3 从而2 p + q = 1 (2 p +q ) + 2 ,∴2 p + q -1 = 1(2 p +q -1) ,n n 3 n -1 n -1 3 n n3 n -1 n -113 2 39即2 p +q-1 = (2 p +q-1)1,∴2 p +q=1+1.n n11又X n的分布列为3n-1n n3n故E( X) = 2 p +q=1+1 .n n n3n【点睛】本题考查古典概型概率、概率中递推关系、构造法求数列通项、数学期望公式,考查综合分析求解能力,属难题.。

2020年江苏省高考数学试卷(文科)

2020年江苏省高考数学试卷(文科)

2020年江苏省高考数学试卷(文科)试题数:20.满分:1501.(填空题.5分)已知集合A={-1.0.1.2}.B={0.2.3}.则A∩B=___ .2.(填空题.5分)已知i是虚数单位.则复数z=(1+i)(2-i)的实部是___ .3.(填空题.5分)已知一组数据4.2a.3-a.5.6的平均数为4.则a的值是___ .4.(填空题.5分)将一颗质地均匀的正方体骰子先后抛掷2次.观察向上的点数.则点数和为5的概率是___ .5.(填空题.5分)如图是一个算法流程图.若输出y的值为-2.则输入x的值是___ .6.(填空题.5分)在平面直角坐标系xOy中.若双曲线x2a2 - y25=1(a>0)的一条渐近线方程为y= √52x.则该双曲线的离心率是___ .7.(填空题.5分)已知y=f(x)是奇函数.当x≥0时.f(x)=x 23 .则f(-8)的值是___ .8.(填空题.5分)已知sin2(π4+α)= 23.则sin2α的值是___ .9.(填空题.5分)如图.六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm.高为2cm.内孔半径为0.5cm.则此六角螺帽毛坯的体积是___ cm3.10.(填空题.5分)将函数y=3sin (2x+ π4 )的图象向右平移 π6 个单位长度.则平移后的图象中与y 轴最近的对称轴的方程是___ .11.(填空题.5分)设{a n }是公差为d 的等差数列.{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).则d+q 的值是___ .12.(填空题.5分)已知5x 2y 2+y 4=1(x.y∈R ).则x 2+y 2的最小值是___ .13.(填空题.5分)在△ABC 中.AB=4.AC=3.∠BAC=90°.D 在边BC 上.延长AD 到P.使得AP=9.若 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32 -m ) PC⃗⃗⃗⃗⃗ (m 为常数).则CD 的长度是 ___ .14.(填空题.5分)在平面直角坐标系xOy 中.已知P ( √32 .0).A 、B 是圆C :x 2+(y- 12 )2=36上的两个动点.满足PA=PB.则△PAB 面积的最大值是___ .15.(问答题.14分)在三棱柱ABC-A 1B 1C 1中.AB⊥AC .B 1C⊥平面ABC.E.F 分别是AC.B 1C 的中点. (1)求证:EF || 平面AB 1C 1; (2)求证:平面AB 1C⊥平面ABB 1.16.(问答题.14分)在△ABC中.角A、B、C的对边分别为a、b、c.已知a=3.c= √2 .B=45°.(1)求sinC的值;(2)在边BC上取一点D.使得cos∠ADC=- 45.求tan∠DAC的值.17.(问答题.4分)某地准备在山谷中建一座桥梁.桥址位置的竖直截面图如图所示:谷底O在水平线MN上.桥AB与MN平行.OO′为铅垂线(O′在AB 上).经测量.左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1= 140a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=- 1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF.且CE为80米.其中C.E在AB上(不包括端点).桥墩EF每米造价k(万元).桥墩CD每米造价32k(万元)(k>0).问O′E为多少米时.桥墩CD与EF的总造价最低?18.(问答题.16分)在平面直角坐标系xOy中.已知椭圆E:x24 + y23=1的左、右焦点分别为F1、F2.点A在椭圆E上且在第一象限内.AF2⊥F1F2.直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P.直线AP 与椭圆E 的右准线相交于点Q.求 OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ 的最小值; (3)设点M 在椭圆E 上.记△OAB 与△MAB 的面积分别为S 1.S 2.若S 2=3S 1.求点M 的坐标.19.(问答题.16分)已知关于x 的函数y=f (x ).y=g (x )与h (x )=kx+b (k.b∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x.g (x )=-x 2+2x.D=(-∞.+∞).求h (x )的表达式; (2)若f (x )=x 2-x+1.g (x )=klnx.h (x )=kx-k.D=(0.+∞).求k 的取值范围;(3)若f (x )=x 4-2x 2.g (x )=4x 2-8.h (x )=4(t 3-t )x-3t 4+2t 2(0<|t |≤ √2 ).D=[m.n]⊂[- √2 . √2 ].求证:n-m≤ √7 .20.(问答题.16分)已知数列{a n }(n∈N*)的首项a 1=1.前n 项和为S n .设λ和k 为常数.若对一切正整数n.均有Sn+1 1k-S n 1k =λan+1 1k成立.则称此数列为“λ-k”数列.(1)若等差数列{a n }是“λ-1”数列.求λ的值;(2)若数列{a n }是“ √33 -2”数列.且a n >0.求数列{a n }的通项公式;(3)对于给定的λ.是否存在三个不同的数列{a n }为“λ-3”数列.且a n ≥0?若存在.求出λ的取值范围;若不存在.说明理由.2020年江苏省高考数学试卷(文科)参考答案与试题解析试题数:20.满分:1501.(填空题.5分)已知集合A={-1.0.1.2}.B={0.2.3}.则A∩B=___ .【正确答案】:[1]{0.2}【解析】:运用集合的交集运算.可得所求集合.【解答】:解:集合B={0.2.3}.A={-1.0.1.2}.则A∩B={0.2}.故答案为:{0.2}.【点评】:本题考查集合的交集运算.考查运算能力.属于基础题.2.(填空题.5分)已知i是虚数单位.则复数z=(1+i)(2-i)的实部是___ .【正确答案】:[1]3【解析】:利用复数的乘法的运算法则.化简求解即可.【解答】:解:复数z=(1+i)(2-i)=3+i.所以复数z=(1+i)(2-i)的实部是:3.故答案为:3.【点评】:本题考查复数的乘法的运算法则以及复数的基本概念的应用.是基本知识的考查.3.(填空题.5分)已知一组数据4.2a.3-a.5.6的平均数为4.则a的值是___ .【正确答案】:[1]2【解析】:运用平均数的定义.解方程可得a的值.【解答】:解:一组数据4.2a.3-a.5.6的平均数为4.则4+2a+(3-a)+5+6=4×5.解得a=2.故答案为:2.【点评】:本题考查平均数的定义的运用.考查方程思想和运算能力.属于基础题.4.(填空题.5分)将一颗质地均匀的正方体骰子先后抛掷2次.观察向上的点数.则点数和为5的概率是___ . 【正确答案】:[1] 19【解析】:分别求得基本事件的总数和点数和为5的事件数.由古典概率的计算公式可得所求值.【解答】:解:一颗质地均匀的正方体骰子先后抛掷2次.可得基本事件的总数为6×6=36种. 而点数和为5的事件为(1.4).(2.3).(3.2).(4.1).共4种. 则点数和为5的概率为P= 436= 19. 故答案为: 19.【点评】:本题考查古典概率的求法.考查运算能力.属于基础题.5.(填空题.5分)如图是一个算法流程图.若输出y 的值为-2.则输入x 的值是___ .【正确答案】:[1]-3【解析】:由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值.模拟程序的运行过程.分析循环中各变量值的变化情况.可得答案.【解答】:解:由题意可得程序框图表达式为分段函数y= {2x ,x >0x +1,x ≤0 .若输出y 值为-2时.由于2x >0. 所以解x+1=-2.即x=-3. 故答案为:-3.【点评】:本题考查了程序框图的应用问题.解题时应模拟程序框图的运行过程.以便得出正确的结论.是基础题.6.(填空题.5分)在平面直角坐标系xOy 中.若双曲线 x 2a 2 - y 25 =1(a >0)的一条渐近线方程为y= √52x.则该双曲线的离心率是___ . 【正确答案】:[1] 32【解析】:利用双曲线的渐近线方程.求出a.然后求解双曲线的离心率即可.【解答】:解:双曲线 x 2a 2 - y 25=1(a >0)的一条渐近线方程为y= √52 x.可得√5a=√52.所以a=2.所以双曲线的离心率为:e= c a =√4+52 = 32. 故答案为: 32.【点评】:本题考查双曲线的简单性质的应用.是基本知识的考查.7.(填空题.5分)已知y=f (x )是奇函数.当x≥0时.f (x )=x 23.则f (-8)的值是___ . 【正确答案】:[1]-4【解析】:由奇函数的定义可得f (-x )=-f (x ).由已知可得f (8).进而得到f (-8).【解答】:解:y=f (x )是奇函数.可得f (-x )=-f (x ). 当x≥0时.f (x )=x 23.可得f (8)=8 23=4. 则f (-8)=-f (8)=-4. 故答案为:-4.【点评】:本题考查函数的奇偶性的定义和运用:求函数值.考查转化思想和运算能力.属于基础题.8.(填空题.5分)已知sin 2( π4 +α)= 23 .则sin2α的值是___ . 【正确答案】:[1] 13【解析】:根据二倍角公式即可求出.【解答】:解:因为sin 2( π4 +α)= 23.则sin 2( π4 +α)= 1−cos(π2+2α)2 = 1+sin2α2 = 23.解得sin2α= 13 . 故答案为: 13【点评】:本题考查了二倍角公式.属于基础题.9.(填空题.5分)如图.六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm.高为2cm.内孔半径为0.5cm.则此六角螺帽毛坯的体积是___ cm 3.【正确答案】:[1]12 √3−π2【解析】:通过棱柱的体积减去圆柱的体积.即可推出结果.【解答】:解:六棱柱的体积为: 6×12×2×2×sin60°×2=12√3 . 圆柱的体积为:π×(0.5)2×2= π2 .所以此六角螺帽毛坯的体积是:(12 √3− π2 )cm 3. 故答案为:12 √3− π2.【点评】:本题考查柱体体积公式.考查了推理能力与计算能力.属于基本知识的考查. 10.(填空题.5分)将函数y=3sin (2x+ π4 )的图象向右平移 π6 个单位长度.则平移后的图象中与y 轴最近的对称轴的方程是___ . 【正确答案】:[1]x=- 5π24【解析】:利用三角函数的平移可得新函数g (x )=f (x- π6).求g (x )的所有对称轴x= 7π24+ kπ2 .k∈Z .从而可判断平移后的图象中与y 轴最近的对称轴的方程.【解答】:解:因为函数y=3sin (2x+ π4)的图象向右平移 π6个单位长度可得 g (x )=f (x- π6 )=3sin (2x- π3 + π4 )=3sin (2x- π12 ). 则y=g (x )的对称轴为2x- π12= π2+kπ.k∈Z .即x= 7π24 + kπ2.k∈Z . 当k=0时.x= 7π24 . 当k=-1时.x= −5π24. 所以平移后的图象中与y 轴最近的对称轴的方程是x= −5π24 . 故答案为:x= −5π24.【点评】:本题考查三角函数的平移变换.对称轴方程.属于中档题.11.(填空题.5分)设{a n }是公差为d 的等差数列.{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).则d+q 的值是___ . 【正确答案】:[1]4【解析】:由{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).由{a n }是公差为d 的等差数列.设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列.设首项为b 1.讨论当q 为1和不为1时的前n 项和的表达式.由题意可得q≠1.由对应项的系数相等可得d.q 的值.进而求出d+q 的值.【解答】:解:因为{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).因为{a n }是公差为d 的等差数列.设首项为a 1;{b n }是公比为q 的等比数列.设首项为b 1. 所以{a n }的通项公式a n =a 1+(n-1)d.所以其前n 项和S a n = n [a 1+a 1+(n−1)d ]2 = d 2 n 2+(a 1- d2)n.当{b n }中.当公比q=1时.其前n 项和S b n =nb 1.所以{a n +b n }的前n 项和S n =S a n +S b n = d2n 2+(a 1- d 2)n+nb 1=n 2-n+2n -1(n∈N*).显然没有出现2n .所以q≠1. 则{b n }的前n 项和为S b n =b 1(q n −1)q−1 = b 1q n q−1 - b1q−1. 所以S n =S a n +S b n = d2 n 2+(a 1- d2 )n+ b 1q nq−1 - b1q−1 =n 2-n+2n -1(n∈N*).由两边对应项相等可得: {d 2=1a 1−d 2=−1q =2b 1q−1=1解得:d=2.a 1=0.q=2.b 1=1. 所以d+q=4. 故答案为:4【点评】:本题考查等差数列及等比数列的综合及由前n 项和求通项的性质.属于中档题.12.(填空题.5分)已知5x 2y 2+y 4=1(x.y∈R ).则x 2+y 2的最小值是___ . 【正确答案】:[1] 45【解析】:方法一、由已知求得x 2.代入所求式子.整理后.运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)•4y 2.运用基本不等式.计算可得所求最小值.【解答】:解:方法一、由5x 2y 2+y 4=1.可得x 2= 1−y 45y 2. 由x 2≥0.可得y 2∈(0.1]. 则x 2+y 2=1−y 45y 2 +y 2= 1+4y 45y 2 = 15 (4y 2+ 1y 2) ≥ 15•2 √4y 2•1y 2 = 45.当且仅当y 2= 12 .x 2= 310.可得x 2+y 2的最小值为 45 ; 方法二、4=(5x 2+y 2)•4y 2≤( 5x 2+y 2+4y 22 )2= 254(x 2+y 2)2. 故x 2+y 2≥ 45 .当且仅当5x 2+y 2=4y 2=2.即y 2= 12.x 2= 310时取得等号. 可得x 2+y 2的最小值为 45 . 故答案为: 45 .【点评】:本题考查基本不等式的运用:求最值.考查转化思想和化简运算能力.属于中档题. 13.(填空题.5分)在△ABC 中.AB=4.AC=3.∠BAC=90°.D 在边BC 上.延长AD 到P.使得AP=9.若 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32-m ) PC⃗⃗⃗⃗⃗ (m 为常数).则CD 的长度是 ___ .【正确答案】:[1]0或 185【解析】:以A 为坐标原点.分别以AB.AC 所在直线为x.y 轴建立平面直角坐标系.求得B 与C 的坐标.再把 PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP=9列式求得m 值.然后分类求得D 的坐标.则CD 的长度可求.【解答】:解:如图.以A 为坐标原点.分别以AB.AC 所在直线为x.y 轴建立平面直角坐标系. 则B (4.0).C (0.3).由 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32 -m ) PC ⃗⃗⃗⃗⃗ .得 PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) . 整理得: PA⃗⃗⃗⃗⃗ =−2mAB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =-2m (4.0)+(2m-3)(0.3)=(-8m.6m-9). 由AP=9.得64m 2+(6m-9)2=81.解得m= 2725 或m=0. 当m=0时. PA ⃗⃗⃗⃗⃗ =(0,−9) .此时C 与D 重合.|CD|=0; 当m= 2725 时.直线PA 的方程为y= 9−6m8mx. 直线BC 的方程为 x4+y3=1 .联立两直线方程可得x= 83 m.y=3-2m . 即D ( 7225 . 2125 ).∴|CD|= √(7225)2+(2125−3)2=185.∴CD 的长度是0或 185. 故答案为:0或 185.【点评】:本题考查向量的概念与向量的模.考查运算求解能力.利用坐标法求解是关键.是中档题.14.(填空题.5分)在平面直角坐标系xOy 中.已知P ( √32 .0).A 、B 是圆C :x 2+(y- 12 )2=36上的两个动点.满足PA=PB.则△PAB 面积的最大值是___ . 【正确答案】:[1]10 √5【解析】:求得圆的圆心C 和半径.作PC 所在直径EF.交AB 于点D.运用垂径定理和勾股定理.以及三角形的面积公式.由三角换元.结合函数的导数.求得单调区间.计算可得所求最大值.【解答】:解:圆C :x 2+(y- 12 )2=36的圆心C (0. 12 ).半径为6. 如图.作PC 所在直径EF.交AB 于点D.因为PA=PB.CA=CB=R=6.所以PC⊥AB .EF 为垂径. 要使面积S △PAB 最大.则P.D 位于C 的两侧. 并设CD=x.可得PC= √14+34 =1. 故PD=1+x.AB=2BD=2 √36−x 2 .S △PAB = 12 |AB|•|PD|=(1+x ) √36−x 2 .0<x <6. 方法一、可令x=6cosθ.S △PAB =(1+6cosθ)•6sinθ=6sinθ+18sin2θ.0<θ≤ π2 . 设函数f (θ)=6sinθ+18sin2θ.0<θ≤ π2 . f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ-6).由f′(θ)=6(12cos 2θ+cosθ-6)=0.解得cosθ= 23 (cosθ=- 34 <0舍去).显然.当0≤cosθ< 23 .f′(θ)<0.f (θ)递减;当 23 <cosθ<1时.f′(θ)>0.f (θ)递增. 结合cosθ在(0. π2 )递减.故cosθ= 23 时.f (θ)最大.此时sinθ= √1−cos 2θ = √53 . 故f (θ)max =6× √53 +36× √53 × 23 =10 √5 .则△PAB 面积的最大值为10 √5 .方法二、S △PAB = 12 |AB|•|PD|=(1+x ) √36−x 2 .0<x <6.设u=(x+1)2(36-x 2).0<x <6.可得u′=-2(x+1)(2x+9)(x-4). 当4<x <6时.u′>0.函数u 递减;当0<x <4时.u′>0.函数u 递增. 所以函数u 在x=4处取得最大值500. 即有△PAB 面积的最大值为10 √5 . 故答案为:10 √5 .【点评】:本题考查圆的方程和运用.以及圆的弦长公式和三角形的面积公式的运用.考查换元法和导数的运用:求单调性和最值.属于中档题.15.(问答题.14分)在三棱柱ABC-A1B1C1中.AB⊥AC.B1C⊥平面ABC.E.F分别是AC.B1C的中点.(1)求证:EF || 平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.【正确答案】:【解析】:(1)证明EF || AB1.然后利用直线与平面平行的判断定理证明EF || 平面AB1C1;(2)证明B1C⊥AB.结合AB⊥AC.证明AB⊥平面AB1C.然后证明平面AB1C⊥平面ABB1.【解答】:证明:(1)E.F分别是AC.B1C的中点.所以EF || AB1.因为EF⊄平面AB1C1.AB1⊂平面AB1C1.所以EF || 平面AB1C1;(2)因为B1C⊥平面ABC.AB⊂平面ABC.所以B1C⊥AB.又因为AB⊥AC.AC∩B1C=C.AC⊂平面AB1C.B1C⊂平面AB1C.所以AB⊥平面AB1C.因为AB⊂平面ABB1.所以平面AB1C⊥平面ABB1.【点评】:本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用.直线与平面平行的判断定理的应用.是中档题.16.(问答题.14分)在△ABC中.角A、B、C的对边分别为a、b、c.已知a=3.c= √2 .B=45°.(1)求sinC的值;(2)在边BC上取一点D.使得cos∠ADC=- 45.求tan∠DAC的值.【正确答案】:【解析】:(1)由题意及余弦定理求出b边.再由正弦定理求出sinC的值;(2)三角形的内角和为180°.cos∠ADC=- 45.可得∠ADC为钝角.可得∠DAC与∠ADC+∠C互为补角.所以sin∠DAC=sin(∠ADC+∠C)展开可得sin∠DAC及cos∠DAC.进而求出tan∠DAC的值.【解答】:解:(1)因为a=3.c= √2 .B=45°..由余弦定理可得:b= √a2+c2−2accosB =√9+2−2×3×√2×√22= √5 .由正弦定理可得csinC = bsinB.所以sinC= cb•sin45°= √2√5•√22= √55.所以sinC= √55;(2)因为cos∠ADC=- 45 .所以sin∠ADC= √1−cos2∠ADC = 35.在三角形ADC 中.易知C为锐角.由(1)可得cosC= √1−sin2C = 2√55.所以在三角形ADC中.sin∠DAC=sin(∠ADC+∠C)=sin∠ADCcos∠C+cos∠ADCsin∠C= 2√525.因为∠DAC ∈(0,π2) .所以cos∠DAC= √1−sin2∠DAC = 11√525.所以tan∠DAC= sin∠DACcos∠DAC = 211.【点评】:本题考查三角形的正弦定理及余弦定理的应用.及两角和的正弦公式的应用.属于中档题.17.(问答题.4分)某地准备在山谷中建一座桥梁.桥址位置的竖直截面图如图所示:谷底O在水平线MN上.桥AB与MN平行.OO′为铅垂线(O′在AB 上).经测量.左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1= 140a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=- 1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF.且CE为80米.其中C.E在AB上(不包括端点).桥墩EF每米造价k(万元).桥墩CD每米造价32k(万元)(k>0).问O′E为多少米时.桥墩CD与EF的总造价最低?【正确答案】:无【解析】:(1)由题意可令b=40.求得h2.即O'O的长.再令h1=|OO'|.求得a.可得|AB|=a+b;(2)可设O′E=x.则CO'=80-x.0<x<40.求得总造价y= 32 k[160- 140(80-x)2]+k[160-(6x-1800x3)].化简整理.应用导数.求得单调区间.可得最小值.【解答】解:(1)h2=- 1800b3+6b.点B到OO′的距离为40米.可令b=40.可得h2=- 1800×403+6×40=160.即为|O'O|=160.由题意可设h1=160.由140a2=160.解得a=80.则|AB|=80+40=120米; (2)可设O′E=x .则CO'=80-x.由 {0<x <400<80−x <80.可得0<x <40.总造价为y= 32 k[160- 140 (80-x )2]+k[160-(6x- 1800 x 3)] = k800 (x 3-30x 2+160×800).y′= k800 (3x 2-60x )= 3k800 x (x-20).由k >0.当0<x <20时.y′<0.函数y 递减; 当20<x <40时.y′>0.函数y 递增.所以当x=20时.y 取得最小值.即总造价最低. 答:(1)桥|AB|长为120米;(2)O′E 为20米时.桥墩CD 与EF 的总造价最低. 【点评】本题考查函数在实际问题中的应用.考查导数的应用:求最值.考查运算能力和分析问题与解决问题的能力.属于中档题.18.(问答题.16分)在平面直角坐标系xOy 中.已知椭圆E : x 24 + y 23 =1的左、右焦点分别为F 1、F 2.点A 在椭圆E 上且在第一象限内.AF 2⊥F 1F 2.直线AF 1与椭圆E 相交于另一点B . (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P.直线AP 与椭圆E 的右准线相交于点Q.求 OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ 的最小值; (3)设点M 在椭圆E 上.记△OAB 与△MAB 的面积分别为S 1.S 2.若S 2=3S 1.求点M 的坐标.【正确答案】:【解析】:(1)由椭圆标准方程可知a.b.c 的值.根据椭圆的定义可得△AF 1F 2的周长=2a+2c.代入计算即可.(2)由椭圆方程得A (1. 32 ).设P (t.0).进而由点斜式写出直线AP 方程.再结合椭圆的右准线为:x=4.得点Q 为(4. 32 • 4−t 1−t ).再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时.AB 可以最为同底.所以若S 2=3S 1.则O 到直线AB 距离d 1与M 到直线AB 距离d 2.之间的关系为d 2=3d 1.根据点到直线距离公式可得d 1= 35 .d 2= 95 .所以题意可以转化为M 点应为与直线AB 平行且距离为 95 的直线与椭圆的交点.设平行于AB 的直线l 为3x-4y+m=0.与直线AB 的距离为 95 .根据两平行直线距离公式可得.m=-6或12.然后在分两种情况算出M 点的坐标即可.【解答】:解:(1)由椭圆的标准方程可知.a 2=4.b 2=3.c 2=a 2-b 2=1. 所以△AF 1F 2的周长=2a+2c=6. (2)由椭圆方程得A (1. 32 ).设P (t.0).则直线AP 方程为y=321−t(x −t ) .椭圆的右准线为:x= a 2c =4.所以直线AP 与右准线的交点为Q (4. 32 • 4−t1−t ).OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ =(t.0)•(t-4.0- 32 • 4−t 1−t )=t 2-4t=(t-2)2-4≥-4. 当t=2时.( OP ⃗⃗⃗⃗⃗ •QP ⃗⃗⃗⃗⃗ )min =-4.(3)若S 2=3S 1.设O 到直线AB 距离d 1.M 到直线AB 距离d 2.则 12 ×|AB|×d 2= 12 ×|AB|×d 1.即d 2=3d 1.A (1. 32 ).F 1(-1.0).可得直线AB 方程为y= 34 (x+1).即3x-4y+3=0.所以d 1= 35 .d 2= 95 . 由题意得.M 点应为与直线AB 平行且距离为 95的直线与椭圆的交点. 设平行于AB 的直线l 为3x-4y+m=0.与直线AB 的距离为 95.√9+16= 95 .即m=-6或12. 当m=-6时.直线l 为3x-4y-6=0.即y= 34 (x-2).联立 {y =34(x −2)x 24+y 23=1 .可得(x-2)(7x+2)=0.即 {x M =2y N =0 或 {x M =−27y M =−127. 所以M (2.0)或(- 27 .- 127 ).当m=12时.直线l 为3x-4y+12=0.即y= 34(x+4).联立 {y =34(x +4)x 24+y 23=1 .可得 214x 2 +18x+24=0.△=9×(36-56)<0.所以无解.综上所述.M 点坐标为(2.0)或(- 27 .- 127 ).【点评】:本题考查椭圆的定义.向量的数量积.直线与椭圆相交问题.解题过程中注意转化思想的应用.属于中档题.19.(问答题.16分)已知关于x的函数y=f(x).y=g(x)与h(x)=kx+b(k.b∈R)在区间D上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x2+2x.g(x)=-x2+2x.D=(-∞.+∞).求h(x)的表达式;(2)若f(x)=x2-x+1.g(x)=klnx.h(x)=kx-k.D=(0.+∞).求k的取值范围;(3)若f(x)=x4-2x2.g(x)=4x2-8.h(x)=4(t3-t)x-3t4+2t2(0<|t|≤ √2).D=[m.n]⊂[-√2 . √2 ].求证:n-m≤ √7.【正确答案】:【解析】:(1)由f(x)=g(x)得x=0.求导可得f′(0)=g′(0)=2.能推出函数h(x)的图象为过原点.斜率为2的直线.进而可得h(x)=2x.再进行检验即可.(2)由题可知h(x)-g(x)=k(x-1-lnx).设φ(x)=x-1-lnx.求导分析单调性可得.φ(x)≥φ(1)=0.那么要使的h(x)-g(x)≥0.则k≥0;令p(x)=f(x)-h(x)为二次函数.则要使得p(x)≥0.分两种情况.当x=k+1≤0时.当k+1>0时进行讨论.进而得出答案.(3)分三种情况① 当1≤t≤ √2时. ② 当0<t<1时. ③ 当- √2≤t<0时.讨论f(x)≥h(x)≥g(x).进而得出结论.【解答】:解:(1)由f(x)=g(x)得x=0.又f′(x)=2x+2.g′(x)=-2x+2.所以f′(0)=g′(0)=2.所以.函数h(x)的图象为过原点.斜率为2的直线.所以h(x)=2x.经检验:h(x)=2x.符合任意.(2)h(x)-g(x)=k(x-1-lnx).设φ(x)=x-1-lnx.设φ′(x)=1- 1x = x−1x.在(1.+∞)上.φ′(x)>0.φ(x)单调递增. 在(0.1)上.φ′(x)<0.φ(x)单调递减. 所以φ(x)≥φ(1)=0.所以当h(x)-g(x)≥0时.k≥0.令p(x)=f(x)-h(x)所以p(x)=x2-x+1-(kx-k)=x2-(k+1)x+(1+k)≥0.得.当x=k+1≤0时.即k≤-1时.f(x)在(0.+∞)上单调递增.所以p(x)>p(0)=1+k≥0.k≥-1.所以k=-1.当k+1>0时.即k>-1时.△≤0.即(k+1)2-4(k+1)≤0.解得-1<k≤3.综上.k∈[0.3].(3)① 当1≤t≤ √2时.由g(x)≤h(x).得4x2-8≤4(t3-t)x-3t4+2t2.≤0.(*)整理得x2-(t3-t)x+ 3t4−2t2−84令△=(t3-t)2-(3t4-2t2-8).则△=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤ √2).则φ′(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0.恒成立.所以φ(t)在[1. √2 ]上是减函数.则φ(√2)≤φ(t)≤φ(1).即2≤φ(t)≤7. 所以不等式(*)有解.设解为x1≤x≤x2.因此n-m≤x2-x1= √△≤ √7.② 当0<t<1时.f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1.则v′(t)=12t3+12t2-4t-4=4(t+1)(3t2-1)..令v′(t)=0.得t= √33)时.v′(t)<0.v(t)是减函数.当t∈(0. √33.1)时.v′(t)>0.v(t)是增函数.当t∈(√33v(0)=-1.v(1)=0.则当0<t<1时.v(t)<0.则f(-1)-h(-1)<0.因此-1∉(m.n).因为[m.n]⊆[- √2 . √2 ].所以n-m≤ √2 +1<√7 .③ 当- √2≤t<0时.因为f(x).g(x)为偶函数.因此n-m≤ √7也成立.综上所述.n-m≤ √7 .【点评】:本题考查恒成立问题.参数的取值范围.导数的综合应用.解题过程中注意数形结合思想的应用.属于难题.20.(问答题.16分)已知数列{a n }(n∈N*)的首项a 1=1.前n 项和为S n .设λ和k 为常数.若对一切正整数n.均有Sn+1 1k-S n 1k =λan+1 1k成立.则称此数列为“λ-k”数列.(1)若等差数列{a n }是“λ-1”数列.求λ的值;(2)若数列{a n }是“ √33-2”数列.且a n >0.求数列{a n }的通项公式;(3)对于给定的λ.是否存在三个不同的数列{a n }为“λ-3”数列.且a n ≥0?若存在.求出λ的取值范围;若不存在.说明理由.【正确答案】:【解析】:(1)由“λ-1”数列可得k=1.结合数列的递推式.以及等差数列的定义.可得λ的值; (2)运用“ √33-2”数列的定义.结合数列的递推式和等比数列的通项公式.可得所求通项公式; (3)若存在三个不同的数列{a n }为“λ-3”数列.则S n+1 13 -S n 13 =λa n+1 13 .由两边立方.结合数列的递推式.以及t 的讨论.二次方程的实根分布和韦达定理.即可判断是否存在λ.并可得取值范围.【解答】:解:(1)k=1时.a n+1=S n+1-S n =λa n+1.由n 为任意正整数.且a 1=1.a n ≠0.可得λ=1; (2) √S n+1 - √S n = √33 √a n+1 .则a n+1=S n+1-S n =( √S n+1 - √S n )•( √S n+1 + √S n )= √33 • √a n+1 ( √S n+1 + √S n ).因此 √S n+1 + √S n = √3 • √a n+1 .即 √S n+1 = 23 √3a n+1 .S n+1= 43 a n+1= 43 (S n+1-S n ). 从而S n+1=4S n .又S 1=a 1=1.可得S n =4n-1. a n =S n -S n-1=3•4n-2.n≥2.综上可得a n = {1,n =13•4n−2,n ≥2 .n∈N*;(3)若存在三个不同的数列{a n }为“λ-3”数列. 则Sn+1 13-S n 13 =λan+1 13.则S n+1-3S n+1 23S n 13+3Sn+1 13S n 23-S n =λ3a n+1=λ3(S n+1-S n ).由a1=1.a n≥0.且S n>0.令p n=(S n+1S n)13>0.则(1-λ3)p n3-3p n2+3p n-(1-λ3)=0.λ=1时.p n=p n2.由p n>0.可得p n=1.则S n+1=S n.即a n+1=0.此时{a n}唯一.不存在三个不同的数列{a n}.λ≠1时.令t= 31−λ3.则p n3-tp n2+tp n-1=0.则(p n-1)[p n2+(1-t)p n+1]=0.① t≤1时.p n2+(1-t)p n+1>0.则p n=1.同上分析不存在三个不同的数列{a n};② 1<t<3时.△=(1-t)2-4<0.p n2+(1-t)p n+1=0无解.则p n=1.同上分析不存在三个不同的数列{a n};③ t=3时.(p n-1)3=0.则p n=1.同上分析不存在三个不同的数列{a n}.④ t>3时.即0<λ<1时.△=(1-t)2-4>0.p n2+(1-t)p n+1=0有两解α.β. 设α<β.α+β=t-1>2.αβ=1>0.则0<α<1<β.则对任意n∈N*. S n+1S n =1或S n+1S n=α3(舍去)或S n+1S n=β3.由于数列{S n}从任何一项求其后一项均有两种不同的结果.所以这样的数列{S n}有无数多个.则对应的数列{a n}有无数多个.则存在三个不同的数列{a n}为“λ-3”数列.且a n≥0.综上可得0<λ<1.【点评】:本题考查数列的新定义的理解和运用.考查等差数列和等比数列的通项公式的运用.以及数列的递推式的运用.考查分类讨论思想.以及运算能力和推理论证能力.是一道难题.。

精品解析:2020年江苏省高考数学试卷(解析版)

精品解析:2020年江苏省高考数学试卷(解析版)

2020年高三全国统一考试(江苏卷)数学Ⅰ一、耐心填空题:(本大题共14小题,每小题5分,共计70分.)1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =故答案为:{}0,2.【点睛】本题考查了交集及其运算,是基础题型.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.【答案】3【解析】【分析】根据复数的运算法则,化简即可求得实部的值.【详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+∴复数的实部为3.故答案为:3.【点睛】本题考查复数的基本概念,是基础题.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.【答案】2【解析】【分析】根据平均数的公式进行求解即可.【详解】∵数据4,2,3,5,6a a -的平均数为4∴4235620a a ++-++=,即2a =.故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【解析】【分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可.【详解】根据题意可得基本事件数总为6636⨯=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==. 故答案为:19. 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题. 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】【分析】根据指数函数的性质,判断出1y x =+,由此求得x 的值.【详解】由于20x >,所以12y x =+=-,解得3x =-.故答案为:3-【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____. 【答案】32【解析】【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为y x =,即2b a a =⇒=,所以3c =,所以双曲线的离心率为32c a =. 故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 7.已知y =f (x )是奇函数,当x ≥0时,( f 的值是____.【答案】4-【解析】【分析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.8.已知2sin ()4πα+ =23,则sin 2α的值是____. 【答案】13【解析】 【分析】 直接按照两角和正弦公式展开,再平方即得结果.【详解】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴= 故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】1232π【解析】 【分析】 先求正六棱柱体积,再求圆柱体积,相减得结果. 【详解】正六棱柱体积为23622=1234⨯⨯⨯ 圆柱体积为21()222ππ⋅= 所求几何体体积为1232π-故答案为: 1232π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x π=-【解析】【分析】先根据图象变换得解析式,再求对称轴方程,最后确定结果.【详解】3sin[2()]3sin(2)6412y x x πππ=-+=-72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈ 当1k =-时524x π=-故答案为:524x π=- 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.【答案】4【解析】【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +.【详解】设等差数列{n a 1q ≠.等差数列{}n a 的前n 等比数列{}n b 的前n 项和公式为依题意n n n S P Q =+,即通过对比系数可知111212211d d a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=. 故答案为:4【点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.12.已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______. 【答案】45【解析】【分析】根据题设条件可得42215yxy-=,可得4222222114+555y yx y yy y-+=+=,利用基本不等式即可求解.【详解】∵22451x y y+=∴0y ≠且42215yxy-=∴422222222114144+2555555y y yx y yy y y-+=+=≥⋅=,当且仅当221455yy=,即2231,102x y==时取等号.∴22x y+的最小值为45.故答案为:45.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).13.在△ABC中,43=90AB AC BAC==︒,,∠,D在边BC上,延长AD到P,使得AP=9,若3()2PA mPB m PC=+-(m为常数),则CD的长度是________.【答案】185【解析】【分析】根据题设条件可设()0PA PDλλ=>,结合32PA mPB m PC⎛⎫=+-⎪⎝⎭与,,B D C三点共线,可求得λ,再根据勾股定理求出BC,然后根据余弦定理即可求解.【详解】∵,,A D P三点共线,∴可设()0PA PDλλ=>,∵32PA mPB m PC⎛⎫=+-⎪⎝⎭,∴32PD mPB m PCλ⎛⎫=+-⎪⎝⎭,即32mmPD PB PCλλ⎛⎫-⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-. ∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-, ∵()cos cos 0θπθ+-=, ∴()()2570665x x x --+=-,解得185x =, ∴CD 5当m =32PA PC =,,C D 重合,此时CD 的长度为0, 当m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去. 【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=>.14.在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y+-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.【答案】【解析】【分析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以2221236(1)(36)(1)2PAB S d d d d ≤⋅-+=-+ 令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去)当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PAB S取最大值为105,故答案为:105【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题. 二、精心解答题:(本大题共6小题,共计90分,)15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【解析】【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB 平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB 平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin C =;(2)2tan 11DAC ∠=. 【解析】【分析】 (1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值.【详解】(1)由余弦定理得22222cos 9223252b ac ac B =+-=+-⨯=,所以5b =由正弦定理得sin 5sin sin sin 5c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.2020年高考(江苏卷) 由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin 5C C =-=.所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅3254525555525⎛⎫=⨯+-⨯= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin 25DAC DAC ∠=-∠=. 所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?【答案】(1)120米(2)20O E '=米【解析】【分析】(1)根据A,B 高度一致列方程求得结果;(2)根据题意列总造价的函数关系式,利用导数求最值,即得结果. 【详解】(1)由题意得2311||40640||8040800O A O A ''=-⨯+⨯∴= ||||||8040120AB O A O B ''∴=+=+=米(2)设总造价为()f x 万元,21||8016040O O '=⨯=,设||O E x '=, 32131()(1606)[160(80)],(040)800240f x k x x k x x =+-+--<<3221336()(160),()()0208008080080f x k x x f x k x x x '∴=+-∴=-=∴=(0舍去)当020x <<时,()0f x '<;当2040x <<时,()0f x '>,因此当20x 时,()f x 取最小值,答:当20O E '=米时,桥墩CD 与EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【解析】 【分析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长;(2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标.【详解】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2,根据题意可得01x ≠.∵点A 上,且在第一象限,212AF F F ⊥ ∴A ⎛ ⎝∴(Q Q ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫ ⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+ ∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d ==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据2S =是解答本题的关键. 19.(),()f x y g x ==与()(,)h x kx b k b =+∈R()f x .(1()22()g x x x D =-+=∞-∞+,,,求h (x )的表达式;(2 ln ,()()(0) g k x h kx k D x x ==-=+∞,,,,求(3()2242() (48 () 4 3 2g x x h x t t x t t =-=--+, ,求证:n m -【答案】(1)()2h x x =;(2)[]0,3k ∈;(3)证明详见解析 【解析】 【分析】(1)求得()f x 与()g x 的公共点,并求得过该点的公切线方程,由此求得()h x 的表达式.(2)先由()()0h x g x -≥,求得k 的一个取值范围,再由()()0f x h x -≥,求得k 的另一个取值范围,从而求得k 的取值范围.(3)先由()()f x h x ≥,求得t 的取值范围,由方程()()0g x h x -=的两个根,求得n m -的表达式,利用导数证得不等式成立.【详解】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立.令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.(2)令()()()()()1ln 0F x h x g x k x x x =-=-->,()01F =. 又()1x F x k x-'=⋅. 若k 0<,则()F x 在0,1上递增,在1,上递减,则()()10F x F ≤=,即()()0h x g x -≤,不符合题意.当0k =时,()()()()()0,F x h x g x h x g x =-==,符合题意. 当0k >时, ()F x 在0,1上递减,在1,上递增,则()()10F x F ≥=,即(h ,符合题意. 由(()1f x kx k +--()()2110x k x k =-+++≥当x =1<-时,()211y x k x k =-+++在0,为增函数,因为10+<,故存在()00,x ∈+∞,使()()0f x h x -<,不符合题意. 当102k x +==,即1k =-时,()()20f x h x x -=≥,符合题意. 当102k x +=>,即1k >-时,则需()()21410kk ∆=+-+≤,解得13k -<≤. 综上所述,k 的取值范围是[]0,3k ∈.(3)因为()423422243248x x t t x t tx -≥--+≥-对任意[,][x m n ∈⊂恒成立,()423422432x x tt x t t -≥--+对任意[,][x m n ∈⊂恒成立,等价于()222()2320x t xtx t -++-≥对任意[,][x m n ∈⊂恒成立.故222320x tx t ++-≥对任意[,][x m n ∈⊂恒成立 令22()232M x x tx t =++-,当201t <<,2880,11t t ∆=-+>-<-<,此时1n m t -≤<<, 当212t ≤≤,2880t ∆=-+≤,但()234248432x t t x t t -≥--+对任意的[,][x m n ∈⊂恒成立.等价于()()()2322443420x t t x t t --++-≤对任意的[,][x m n ∈⊂恒成立.()()()2322443420x t t x t t --++-=的两根为12,x x ,则4231212328,4t t x x t t x x --+=-⋅=,所以12=n m x x --==.令[]2,1,2t λλ=∈,则n m -=[])51,2∈,()()()23103331P λλλλλ'=-+=--,所以λλ递减,()()max 17P P λ==. 所以(【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2-”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由, 【答案】(1)1(2)21,134,2n n n a n -=⎧=⎨⋅≥⎩(3)01λ<<【解析】 【分析】(1)根据定义得+11n n n S S a λ+-=,再根据和项与通项关系化简得11n n a a λ++=,最后根据数列不为零数列得结果;(2)根据定义得111222+1+1()3n n n n S S S S -=-,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ; (3)根据定义得111333+11n n n SS a λ+-=,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)+111111101n n n n n n S S a a a a a λλλ++++-=∴==∴≡∴=/(2)11221100n n n n n a S S S S ++>∴>∴->111222)n n S S -(n n S S ∴1124n n n n S S S -∴∴= 11S a ==4n -1224434,2n n n n a n ---∴=-=⋅≥21,134,2n n n a n -=⎧∴=⎨⋅≥⎩(3)假设存在三个不同的数列{}n a 为"3"λ-数列.111113333333+11+1+1()()n n n n n n n S S a S S S S λλ+-=∴-=- 1133+1n nS S ∴=或11221123333333+1+1+1()()n n n n n n SS S S S S λ-=+++1n n S S ∴=或22113333333+1+1(1)(1)(2)0n n n n S S S S λλλ-+-++=∵对于给定的λ,存在三个不同的数列{}n a 为"3"λ-数列,且0n a ≥1,10,2n n a n =⎧∴=⎨≥⎩或()22113333333+1+1(1)(1)(2)01n n n nS S S S λλλλ-+-++=≠有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S SS λλλλ-+-++=≠可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S λλλλ-++-+=≠,不妨设()1310n n S x x S +⎛⎫=> ⎪⎝⎭,则()3233(1)(2)(1)01x x λλλλ-+++-=≠有两个不等正根,设()()3233(1)(2)(1)01f x x x λλλλ=-+++-=≠.① 当1λ<时,32323(2)4(1)004λλλ∆=+-->⇒<<,即01λ<<,此时()3010f λ=-<,33(2)02(1)x λλ+=->-对,满足题意.② 当1λ>时,32323(2)4(1)004λλλ∆=+-->⇒<<,即1λ<<()3010f λ=->,33(2)02(1)x λλ+=-<-对,此情况有两个不等负根,不满足题意舍去.综上,01λ<<【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -. (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵1M -.【答案】(1)22a b =⎧⎨=⎩;(2)121 5512 55M -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 【解析】 【分析】(1)根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数,a b 的值; (2)设出逆矩阵,由定义得到方程,即可求解.【详解】(1)∵平面上点()2,1A -在矩阵 11 a M b ⎡⎤=⎢⎥-⎣⎦对应的变换作用下得到点()3,4B -∴ 1 2 31 14a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦∴21324a b -=⎧⎨--=-⎩,解得22a b =⎧⎨=⎩(2)设1m n Mc d -⎡⎤=⎢⎥⎣⎦,则12 2 1 0=2 20 1m c n d MM m c n d -++⎡⎤⎡⎤=⎢⎥⎢⎥-+-+⎣⎦⎣⎦∴21202021m c n d m c n d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解得251515m n c ⎧=⎪⎪⎪=-⎪⎨⎪=⎪∴1M -【点睛】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标. 【答案】(1)1242ρρ==,(2))4π【解析】 【分析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为3y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=,由22340y x x y y ⎧=⎪⎨⎪+-=⎩解得00x y ==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=, 当4πθ=时ρ= 当5πθ=时0ρ=-<,舍;即所求交点坐标为当),4π【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.C .[:不等式选讲]23.设x 2|1|||4x x ++≤. 【分析】根据绝对值定义化为三个方程组,解得结果 【详解】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD=5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 【答案】(1)15(2)239 【解析】 【分析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.详解】(1)连,COBC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴15(1,0,2),(1,1,1)cos ,1553AB DE AB DE ∴=-=∴<>==-2020年高考(江苏卷)从而直线AB 与DE所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =11200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩ 令112,1(2,1,1)y x z n =∴=-=∴=-设平面DEF 一个法向量为2111(,,),n x y z =11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩ 令111272,5(2,7,5)y x z n =-∴==∴=-cos ∴因此【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.25.个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2; (2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示) .【答案】(1)112212716,,332727p q p q ====;;(2)()111222+33n n n n p q p q --+=+ 【解析】【分析】(1)直接根据操作,根据古典概型概率公式可得结果;(2)根据操作,依次求n n p q ,,即得递推关系,构造等比数列求得2n n p q +,最后根据数学期望公式求结果.【详解】(1)11131232,333333p q ⨯⨯====⨯⨯,2020年高考(江苏卷)211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯. (2)1111131212++333339n n n n n p p q p q ----⨯⨯=⨯⨯=⨯⨯, 111112*********+(1)+33333393n n n n n n q p q p q q -----⨯⨯+⨯⨯=⨯⨯+--⨯=-⨯⨯⨯, 因此112122+333n n n n p q p q --+=+, 从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+∴+-=-, 即1111121(2+1),2133n n n n n n p q p q p q -+-=-∴+=+. 又n X 的分布列为。

2020年全国高考数学-江苏卷解析(Word域、极致精编版)

2020年全国高考数学-江苏卷解析(Word域、极致精编版)

2020年普通高等学校招生全国统一考试——江苏数学Ⅰ参考公式:柱体的体积V =Sh ,其中S 是柱体的底面积,h 是柱体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合A ={-1,0,1,2},B ={0,2,3},则A ∩B =▲________. 答案:{0,2}2.已知i 是虚数单位,则复数z =(1+i )(2-i )的实部是▲________. 答案:3解析:因为复数z =(1+i )(2-i )=2-i +2i -i 2=3+i ,所以复数的实部为3.3.已知一组数据4,2a ,3-a ,5,6的平均数为4,则a 的值是▲________. 答案:2解析:由题得4+2a +3-a +5+6=20,解得a =2.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲________. 答案:19解析:基本事件总数为6×6=36个,点数和为5的基本事件有(1,4),(4,1),(2,3),(3,2),共4个,所以概率为436=19.5.如图是一个算法流程图,若输出y 的值为-2,则输入x 的值是▲________. 答案:-3解析:由于2x >0,所以y =x +1=-2,得x =-3.6.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 25=1(a >0)的一条渐近线方程为y =52x ,则该双曲线的离心率是▲________. 答案:32解析:由题得5a =52,得a =2,所以c =a 2+b 2=3,所以双曲线的离心率为c a =32.7.已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23,则f (-8)的值是▲________.答案:-4解析:f (-8)=-f (8)=-823=-4.8.已知sin 2(π4+α)=23,则sin2α的值是▲________.答案:13解析:因为sin 2(π4+α)=(22cos α+22sin α)2=12(1+sin2α)=23,所以sin2α=13.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲________cm . 答案:123-π2解析:正六棱柱体积为6×34×22×2=123,圆柱体积为π(12)2·2=π2,所求几何体体积为123-π2.10.将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是▲________. 答案:x =-5π24解析:平移得y =3sin[2(x -π6)+π4]=3sin(2x -π12),令2x -π12=π2+k π,得x =7π24+k π2(k ∈Z ).当k =-1时,x =-5π24是与y 轴最近的对称轴.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是▲________. 答案:4解析:易知等差数列{a n }的前n 项和为n 2-n ,故d =2.等比数列{b n }的前n 项和为2n -1,故q =2. 故d +q =4.12.已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是▲________. 答案:45解析:因为5x 2y 2+y 4=1,所以y ≠0且x 2=1-y 45y2.于是x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即x 2=310,y 2=12时取等号.所以x 2+y 2的最小值为45.法二:4=(5x 2+y 2)4y 2≤(5x 2+y 2+4y 22)2=25(x 2+y 2)24,得x 2+y 2≥45.13.在△ABC 中,AB =4,AC =3,∠BAC =90º,D 在边BC 上,延长AD 到P ,使得AP =9.若P A →=m PB →+(32-m )PC →(m 为常数),则CD 的长度是▲________.答案:0或185解析:设P A →=λPD →(λ>0),因为P A →=m PB →+(32-m )PC →,所以λPD →=m PB →+(32-m )PC →,即PD →=mλPB →+(32-m )λPC →.因为B ,D ,C 三点共线,所以m λ+(32-m )λ=1,故λ=32.因为AP =9,所以AD =3,因此△ACD 为等腰三角形或C ,D 重合.若△ACD 为等腰三角形,作AE ⊥BC 于E ,故E 为CD 中点,由等面积法得AE =125,由勾股定理得CE =DE =95,所以CD =185.若C ,D 重合,则CD =0. 所以,CD 的长度为0或185.14.在平面直角坐标系xOy 中,已知P (32,0),A ,B 是圆C :x 2+(y -12)2=36上的两个动点,满足P A =PB ,则△P AB 面积的最大值是▲________. 答案:10 5解析:因为P A =PB ,易得PC ⊥AB .设圆心C 到直线AB 距离为d ,则|AB |=236-d 2,|PC |=34+14=1,S △P AB =12·AB ·d P -AB ≤12·236-d 2·max{d -1,1-d ,d +1}=12·236-d 2·(d +1)=(36-d 2)(d +1)2. 令y =(36-d 2)(d +1)2(0≤d <6),由y'=2(d +1)(-2d 2-d +36)=0,得d =4. 当0≤d <4时,y'>0,y (x )递增;当4<d <6时,y'<0,y (x )递减. 因此当d =4时,y max =500,故(S △P AB )max =105.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.解析:(1)因为E ,F 分别是AC ,B 1C 的中点,所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1,所以EF ∥平面AB 1C 1. (2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC ,所以B 1C ⊥AB .又AB ⊥AC ,AC ∩B 1C =C ,所以AB ⊥平面AB 1C . 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =3,c =2,B =45º.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠ADC =-45,求tan ∠DAC 的值.解析:(1)由余弦定理得b 2=a 2+c 2-2ac cos B =9+2-2×3×2×22=5,所以b =5.由正弦定理得c sin C =b sin B ,故sin C =c sin B b =55.(2)由于cos ∠ADC =-45,∠ADC ∈(π2,π),所以sin ∠ADC =1-cos 2∠ADC =35.易知C ∈(0,π2),所以cos C =1-sin 2C =255.所以sin ∠DAC =sin(π-∠DAC )=sin(∠ADC +∠C )=sin ∠ADC ·cos C +cos ∠ADC ·sin C =35×255+(-45)×55=2525. 因为∠DAC ∈(0,π2),所以cos ∠DAC =1-sin 2∠DAC =11525.于是,tan ∠DAC =sin ∠DAC cos ∠DAC =211.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO'为铅垂线(O'在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO'的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO'的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO'的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO'的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k>0).问O'E 为多少米时,桥墩CD 与EF 的总造价最低?解析:(1)当b =40时,OO'=-1800×403+6×40=160,又140|O'A |2=OO'=160,所以|O'A |=80.所以|AB |=|O'A |+|O'B |=80+40=120米. (2)设|O'E |=x ,总造价为f (x )万元.f (x )=k (160+1800x 3-6x )+32k [160-140(80-x )2]=k (160+1800x 3-380x 2)(0<x <40),由f'(x )=k (3800x 2-680x )=0,得x =20(0舍去).当0<x <20时,f'(x )<0,f (x )递减;当20<x <40时,f'(x )>0,f (x )递增.因此当x =20时,f (x )取最小值.答:当O'E =20米时,桥墩CD 与EF 的总造价最低.18.在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →·QP →的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.解析:(1)因为椭圆E 的方程为x 24+y 23=1,所以a =2,c =1,所以△AF 1F 2的周长为2a +2c =6.(2)设P (x 0,0),x 0≠1,Q (4,y Q ).易得A (1,32).所以OP →·QP →=(x 0,0)·(x 0-4,-y Q )=(x 0-4)x 0=(x 0-2)2-4≥-4,当且仅当x 0=2时取等号. 所以OP →·QP →的最小值为-4.(3)设M (x 1,y 1),点M 到直线AB 的距离为d .因为A (1,32),F 1(-1,0),所以直线AF 1的方程为y =34(x +1),即3x -4y +3=0,因此点O到直线AB 的距离为35.因为S 2=3S 1,12|AB |·d M -AB =3×12×|AB |×35,所以d M -AB =95=|3x 1-4y 1+3|5,得3x 1-4y 1+12=0或3x 1-4y 1-6=0.由⎩⎪⎨⎪⎧3x 1-4y1+12=0,x 124+y 123=1,得7x 2+24x +32=0,此方程无解;由⎩⎪⎨⎪⎧3x 1-4y 1-6=0,x 124+y 123=1,得7x 2-12x -4=0,解得M (2,0)或(-27,-127).19.已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=-x 2+2x ,D =(-∞,+∞),求h (x )的表达式; (2)若f (x )=x 2-x +1,g (x )=k ln x ,h (x )=kx -k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4-2x 2,g (x )=4x 2-8,h (x )=4(t 3-t )x -3t 4+2t 2(0<|t |≤2),D =[m ,n ]⊆[-2,2],求证:n -m ≤7.解析:(1)由题得-x 2+2x ≤kx +b ≤x 2+2x 对任意的x ∈R 恒成立.令x =0,则0≤b ≤0,所以b =0.由kx ≤x 2+2x ,即x 2+(2-k )x ≥0对任意的x ∈R 恒成立,所以Δ=(2-k )2≤0,因此k =2. 此时也满足-x 2+2x ≤2x 对任意的x ∈R 恒成立. 所以h (x )=2x .(2)令F (x )=h (x )-g (x )=k (x -1-ln x )(x >0),则F (1)=0,由题得F (x )≥F (1)恒成立.易得F'(x )=k ·x -1x.若k <0,则F (x )在(0,1)上递增,在(1,+∞)上递减,则F (x )≤F (1)=0,不合题意. 当k =0时,F (x )=F (1)=0,h (x )=g (x ),符合题意.当k >0时,F (x )在(0,1)上递减,在(1,+∞)上递增,则F (x )≥F (1)=0,符合题意. 综上,k ≥0.又f (x )-h (x )=x 2-x +1-(kx -k )=x 2-(k +1)x +(k +1)≥0.当x =k +12<0,即k <-1时,y =x 2-(k +1)x +k +1在(0,+∞)为增函数,因为y (0)=k +1<0,不合题意.当x =k +12=0,即k =-1时,f (x )-h (x )=x 2≥0,符合题意.当x =k +12>0,即k >-1时,应有Δ=(k +1)2-4(k +1)≤0,解得-1<k ≤3.综上,k 的取值范围是k ∈[0,3].(3)由题得x 4-2x 2≥4(t 3-t )x -3t 4+2t 2≥4x 2-8对任意x ∈[m ,n ]⊆[-2,2]恒成立.x 4-2x 2≥4(t 3-t )x -3t 4+2t 2对任意x ∈[m ,n ]⊆[-2,2]恒成立, 等价于(x -t )2(x 2+2tx +3t 2-2)≥0对任意x ∈[m ,n ]⊆[-2,2]恒成立, 故x 2+2tx +3t 2-2≥0对任意x ∈[m ,n ]⊆[-2,2]恒成立.令M (x )=x 2+2tx +3t 2-2.当Δ=-8t 2+8>0,即0<t 2<1时,对称轴x =-t ∈(-1,1),记M (x )的两个零点为x 1<x 2,此时n -m ≤max{2-x 2,x 1-(-2)}≤max{2-(-t ),(-t )-(-2)}=max{2±t }≤2+|t |<2+1<7.当Δ=-8t 2+8≤0,即1≤t 2≤2时,M (x )≥0对x ∈R 恒成立. 而4x 2-8≤4(t 3-t )x -3t 4+2t 2对任意的x ∈[m ,n ]⊆[-2,2]恒成立, 等价于4x 2-4(t 3-t )x +(3t 2+4)(t 2-2)≤0对任意的x ∈[m ,n ]⊆[-2,2]恒成立.记4x 2-4(t 3-t )x +(3t 2+4)(t 2-2)=0的两根为x 1,x 2,则x 1+x 2=t 3-t ,x 1·x 2=3t 4-2t 2-84,所以n -m =|x 1-x 2|=(x 1+x 2)2-4x 1x 2=t 6-5t 4+3t 2+8.令λ=t 2∈[1,2],则n -m =λ3-5λ2+3λ+8.记P (λ)=λ3-5λ2+3λ+8,λ∈[1,2],P'(λ)=3λ2-10λ+3=(λ-3)(3λ-1),所以当λ∈[1,2]时,P'(λ)<0,P (λ)递减,所以P (λ)max =P (1)=7.所以(n -m )max =7,即n -m ≤7.20.已知数列{a n }(n ∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有Sn +11k -S n 1k=λa n +11k 成立,则称此数列为“λ-k ”数列.(1)若等差数列{a n }是“λ-1”数列,求λ的值; (2)若数列{a n }是“33-2”数列,且a n >0,求数列{a n }的通项公式; (3)对于给定的λ,是否存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.解析:(1)若等差数列{a n }是“λ-1”数列,则S n +1-S n =λa n +1,即a n +1=λa n +1.因为a n 不恒为0,所以λ=1. (2)因为S n +112-S n 12=33a n +112,所以(S n +112-S n 12)2=13(S n +1-S n )=13(S n +112-S n 12)(S n +112+S n 12). 因为a n >0,所以S n +1>S n ,因此S n +112-S n 12>0,于是S n +112-S n 12=13(S n +112+S n 12),即S n +112=2S n 12,所以S n +1=4S n .因为S 1=a 1=1,所以S n =4n -1,a n =4n -1-4n -2=3·4n -2,n ≥2.所以a n =⎩⎨⎧1,n =1,3·4n -2,n ≥2.(3)假设存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0.由S n +113-S n 13=λa n +113,得(S n +113-S n 13)3=λ3(S n +1-S n ),所以S n +113=S n 13或(S n +113-S n 13)2=λ3(S n +123+S n 23+S n +113S n 13),即S n +1=S n 或(λ3-1)Sn +123+(λ3-1)S n 23+(λ3+2)S n +113S n 13=0.由S n +1=S n ,得a n =⎩⎨⎧1,n =1,0,n ≥2.因为存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0,所以(λ3-1)S n +123+(λ3-1)S n 23+(λ3+2)S n +113S n 13=0(λ≠1)有两个不等的正根.(λ3-1)S n +123+(λ3-1)S n 23+(λ3+2)S n +113S n 13=0(λ≠1)可转化为(λ3-1)S n +123S n 23+(λ3-1)+(λ3+2)S n +113S n 13=0(λ≠1),不妨设(S n +1S n )13=x (x >0),则(λ3-1)x 2+(λ3+2)x +(λ3-1)=0(λ≠1)有两个不等正根,设f (x )=(λ3-1)x 2+(λ3+2)x +(λ3-1)=0(λ≠1).①当λ<1时,令Δ=(λ3+2)2-4(λ3-1)2>0,得0<λ3<4,故0<λ<1,此时f (0)=λ3-1<0,对称轴x =-(λ3+2)2(λ3-1)>0,满足题意.②当λ>1时,令Δ=(λ3+2)2-4(λ3-1)2>0,得0<λ3<4,故1<λ<34,此时f (0)=λ3-1>0,对称轴x =-(λ3+2)2(λ3-1)<0,此情况有两个不等负根,不满足题意,舍去.综上,0<λ<1.数学Ⅱ(附加题)[选做题]本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换] 21.平面上点A (2,-1)在矩阵M =⎣⎡⎦⎤a 1 -1b 对应的变换作用下得到点B (3,-4).(1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵M -1.解析:(1)由题得⎣⎡⎦⎤ a 1 -1 b ⎣⎡⎦⎤2-1=⎣⎡⎦⎤ 3-4,所以⎩⎨⎧2a -1=3,-2-b =-4,解得a =2,b =2.(2)设M -1=⎣⎡⎦⎤m n c d ,则MM -1=⎣⎡⎦⎤2m +c 2n +d -m +2c -n +2d =⎣⎡⎦⎤1 00 1,所以⎩⎨⎧2m +c =1,2n +d =0,-m +2c =0,-n +2d =1,解得m =25,n =-15,c =15,d =25,所以M -1=⎣⎢⎡⎦⎥⎤25 -1515 25.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点A (ρ1,π3)在直线l :ρcos θ=2上,点B (ρ2,π6)在圆C :ρ=4sin θ上(其中ρ≥0,0≤θ<2π).(1)求ρ1,ρ2的值;(2)求出直线l 与圆C 的公共点的极坐标.解析:(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系。

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷一、填空题1. 已知集合B={0,2,3},A={−1,0,1,2},则A∩B=________.2. 已知i是虚数单位,则复数z=(1+i)(2−i)的实部是________.3. 已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是________.4. 将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.5. 下图是一个算法流程图,若输出y值为−2,则输入x的值是________.6. 在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是________.7. 已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(−8)的值是________.8. 已知sin2(π4+α)=23,则sin2α的值是________.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正________cm 2.10. 将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是________.12. 已知5x 2y 2+y 4=1(x,y ∈R ),则x 2+y 2的最小值是________.13. 在△ABC 中,AB =4, AC =3, ∠BAC =90∘,D 在边BC 上,延长AD 到P ,使得AP =9.若PA →=mPB →+(32−m)PC →(m 为常数),则CD 的长度是________.14. 在平面直角坐标系xOy 中,已知P (√32,0),A ,B 是圆C:x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________. 二、解答题15. 在三棱柱ABC −A 1B 1C 1中, AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证: EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC中,角A,B,C的对边分别为a,b,c,己知a=3,c=√2,∠B=45∘.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF. 且CE为80米,其中C,E在AB上(不包括端点). 桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18. 在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →⋅QP →的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f (x ) ,y =g (x )与ℎ(x )=kx +b (k,b ∈R )在区间D 上恒有f (x )≥ℎ(x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=−x 2+2x ,D =(−∞,+∞),求ℎ(x )的表达式;(2)若f (x )=x 2−x +1,g (x )=k ln x ,ℎ(x )=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4−2x 2,g (x )=4x 2−8,ℎ(x )=4(t 3−t )x −3t 4+2t 2(0<|t|≤√2),D =[m,n ]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k=λa n+11k成立,则称此数列为“λ−k ”数列. (1)若等差数列是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.参考答案与试题解析2020年江苏省高考数学试卷一、填空题1.【答案】{0,2}【考点】交集及其运算【解析】集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素组成的集合,叫做集合A与集合B的交集,记作A∩B.【解答】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2}.故答案为:{0,2}.【点评】此题暂无点评2.【答案】3【考点】复数代数形式的混合运算复数的基本概念【解析】此题暂无解析【解答】解:z=(1+i)(2−i)=3+i,则实部为3.故答案为:3.【点评】此题暂无点评3.【答案】2【考点】众数、中位数、平均数【解析】此题暂无解析【解答】=4,解:由4+2a+(3−a)+5+65可知a=2.故答案为:2.此题暂无点评4.【答案】19【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:总事件数为6×6=36,满足条件的事件为(1, 4),(2, 3),(3, 2),(4, 1)为共4种,则点数和为5的概率为436=19.故答案为:19.【点评】此题暂无点评5.【答案】−3【考点】程序框图【解析】此题暂无解析【解答】解:由题可知当y=−2时,当x>0时,y=2x=−2,无解;当x<0时,y=x+1=−2,解得:x=−3. 故答案为:−3.【点评】此题暂无点评6.【答案】32【考点】双曲线的渐近线双曲线的离心率【解析】此题暂无解析【解答】解:由x 2a2−y25=1得渐近线方程为y=±√5ax.∴c2=a2+5=9,∴c=3,∴离心率e=ca =32.故答案为:32. 【点评】此题暂无点评7.【答案】−4【考点】函数奇偶性的性质函数的求值【解析】此题暂无解析【解答】解:y=f(x)是奇函数,当x≥0时,f(x)=x 2 3,则f(−8)=−f(8)=−823=−4.故答案为:−4.【点评】此题暂无点评8.【答案】13【考点】二倍角的余弦公式运用诱导公式化简求值【解析】此题暂无解析【解答】解:因为sin2(π4+α)=23,由sin2(π4+α)=12[1−cos(π2+2α)]=12(1+sin2α)=23,解得sin2α=13.故答案为:13.9.【答案】12√3−π2【考点】柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,内孔的体积为V2,则V1=6×12×2×2×sin60∘×2=12√3,V2=π×(0.5)2×2=π2,所以V=V1−V2=12√3−π2.故答案为:12√3−π2.【点评】此题暂无点评10.【答案】x=−5π24【考点】函数y=Asin(ωx+φ)的图象变换正弦函数的对称性【解析】此题暂无解析【解答】解:因为f(x)=3sin(2x+π4),将函数f(x)=3sin(2x+π4)的图象向右平移π6个单位长度得:g(x)=f(x−π6)=3sin(2x−π3+π4)=3sin(2x−π12),则y=g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z.当k=0时,x=7π24,当k=−1时,x=−5π24,故答案为:x =−5π24. 【点评】 此题暂无点评 11.【答案】 4【考点】等差数列与等比数列的综合 数列的求和【解析】 此题暂无解析 【解答】解:因为{a n +b n }的前n 项和为: S n =n 2−n +2n −1(n ∈N ∗), 当n =1时,a 1+b 1=1,当n ≥2时,a n +b n =S n −S n−1 =2n −2+2n−1, 所以当n ≥2时,a n =2(n −1),b n =2n−1,且当n =1时,a 1+b 1=0+1=1成立, 则d =a 2−a 1=2−0=2, q =b 2b 1=21=2,则d +q =4. 故答案为:4. 【点评】 此题暂无点评 12. 【答案】45【考点】基本不等式在最值问题中的应用 【解析】 此题暂无解析 【解答】解:4=(5x 2+y 2)⋅4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2, 即x 2=310,y 2=12时取(x 2+y 2)min =45.【点评】 此题暂无点评 13. 【答案】 185【考点】二倍角的正弦公式 正弦定理 向量的共线定理 【解析】 此题暂无解析 【解答】解:由向量系数m +(32−m)=32为常数, 结合等和线性质可知|PA →||PD →|=321,故PD =23PA =6,AD =PA −PD =3=AC ,故∠C =∠CDA ,故∠CAD =π−2C . 在△ABC 中,cos C =ACBC =35.在△ADC ,由正弦定理CDsin ∠CAD =ADsin C , 即CD =sin (π−2C)sin C⋅AD =sin 2C sin C⋅AD =2AD cos C=2×35×3=185.故答案为:185. 【点评】 此题暂无点评 14. 【答案】10√5 【考点】与圆有关的最值问题 利用导数研究函数的最值【解析】 此题暂无解析 【解答】解:如图,作PC 所在直径EF ,交AB 于点D ,∵PA=PB,CA=CB=R=6,∴PC⊥AB.∵EF为直径,要使面积S△PAB最大,则P,D位于C点两侧,并设CD=x,计算可知PC=1,故PD=1+x, AB=2BD=2√36−x2,故S△PAB=12AB⋅PD=(1+x)⋅√36−x2.令x=6cosθ,其中θ∈(0, π2),S△PAB=(1+x)√36−x2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ.记函数f(θ)=6sinθ+18sin2θ,则f′(θ)=6cosθ+36cos2θ=6(12cos2θ+cosθ−6).令f′(θ)=6(12cos2θ+cosθ−6)=0,解得cosθ=23或cosθ=−34<0(舍去),显然,当0≤cosθ<23时,f′(θ)<0,f(θ)单调递减;当23<cosθ<1时,f′(θ)>0,f(θ)单调递增.结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos2θ=√53,故f(θ)max=6×√53+36×√53×23=10√5,即△PAB面积的最大值是10√5.故答案为:10√5.【点评】此题暂无点评二、解答题15.【答案】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【考点】平面与平面垂直的判定直线与平面平行的判定【解析】此题暂无解析【解答】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【点评】此题暂无点评16.【答案】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【考点】两角和与差的正弦公式余弦定理正弦定理同角三角函数间的基本关系【解析】此题暂无解析【解答】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【点评】此题暂无点评17.【答案】解:(1)过A,B分别作MN的垂线,垂足为A1,B1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【考点】利用导数研究函数的最值 函数模型的选择与应用【解析】 此题暂无解析 【解答】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【点评】 此题暂无点评 18.【答案】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32), 设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0, 所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点.设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0,或{x M =−27,y M =−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4). 联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【考点】圆锥曲线中的定点与定值问题 椭圆中的平面几何问题 直线与椭圆结合的最值问题【解析】 此题暂无解析 【解答】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32),设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t 2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4).联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127). 【点评】 此题暂无点评 19. 【答案】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为由函数y=f x的图像可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【考点】利用导数研究不等式恒成立问题函数与方程的综合运用利用导数研究曲线上某点切线方程利用导数研究函数的单调性导数的几何意义【解析】此题暂无解析【解答】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【点评】此题暂无点评20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1.(2)√S n+1−√S n=√3√a n+1,3a n+1=S n+1−S n=√3√a n+1(√S n+1+√S n),3因此√S n+1+√S n=√3√a n+1,√3a n+1,即√S n+1=23S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n }; ④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β, 则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【考点】数列递推式一元二次方程的根的分布与系数的关系 等比数列的通项公式等差数列的性质【解析】此题暂无解析【解答】解:(1)k =1时,a n+1=S n+1−S n =λa n+1, 由n 为任意正整数,且a 1=1,a n ≠0, 可得λ=1.(2)√S n+1−√S n =√33√a n+1, a n+1=S n+1−S n =√33√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3√a n+1, 即√S n+1=23√3a n+1, S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n };④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β,则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【点评】此题暂无点评。

2020年江苏省高考数学试卷(文科)

2020年江苏省高考数学试卷(文科)

2020年江苏省高考数学试卷(文科)副标题题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10.将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是______.11.设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.已知数列{a n+b n}的前n项和S n=n2−n+2n−1(n∈N∗),则d+q的值是______.12.已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是______.13.在△ABC中,AB=4,AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9.若PA⃗⃗⃗⃗⃗ =m PB⃗⃗⃗⃗⃗ +(32−m)PC⃗⃗⃗⃗⃗ (m为常数),则CD的长度是______.14.在平面直角坐标系xOy中,已知P(√32,0),A、B是圆C:x2+(y−12)2=36上的两个动点,满足PA=PB,则△PAB面积的最大值是______.二、解答题(本大题共6小题,共90.0分)15.在三棱柱ABC−A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF//平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.16.在△ABC中,角A、B、C的对边分别为a、b、c.已知a=3,c=√2,B=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO′为铅垂线(O′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离ℎ1(米)与D 到OO′的距离a(米)之间满足关系式ℎ1=140a 2;右侧曲线BO 上任一点F 到MN 的距离ℎ2(米)与F 到OO′的距离b(米)之间满足关系式ℎ2=−1800b 3+6b.已知点B 到OO′的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k(万元),桥墩CD 每米造价32k(万元)(k >0),问O′E 为多少米时,桥墩CD 与EF 的总造价最低?18. 在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x). (1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式;(2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7. 20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有Sn+11k−S n 1k=λa n+11k成立,则称此数列为“λ−k ”数列. (1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.答案和解析1.【答案】{0,2}【解析】解:集合B ={0,2,3},A ={−1,0,1,2}, 则A ∩B ={0,2}, 故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题. 2.【答案】3【解析】解:复数z =(1+i)(2−i)=3+i , 所以复数z =(1+i)(2−i)的实部是:3. 故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查. 3.【答案】2【解析】解:一组数据4,2a ,3−a ,5,6的平均数为4, 则4+2a +(3−a)+5+6=4×5, 解得a =2. 故答案为:2.运用平均数的定义,解方程可得a 的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种, 而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种, 则点数和为5的概率为P =436=19. 故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值. 本题考查古典概率的求法,考查运算能力,属于基础题. 5.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3.由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.【答案】32【解析】解:双曲线x 2a2−y 25=1(a >0)的一条渐近线方程为y =√52x ,可得√5a=√52,所以a =2,所以双曲线的离心率为:e =c a=√4+52=32,故答案为:32.利用双曲线的渐近线方程,求出a ,然后求解双曲线的离心率即可. 本题考查双曲线的简单性质的应用,是基本知识的考查. 7.【答案】−4【解析】 【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题. 由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8). 【解答】解:y =f(x)是奇函数,可得f(−x)=−f(x), 当x ≥0时,f(x)=x 23,可得f(8)=823=4, 则f(−8)=−f(8)=−4, 故答案为:−4.8.【答案】13【解析】解:因为sin 2(π4+α)=23,则sin 2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23, 解得sin2α=13, 故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.【答案】12√3−π2【解析】 【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题. 通过棱柱的体积减去圆柱的体积,即可推出结果. 【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3, 圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm 3,故答案为:12√3−π2.10.【答案】x =−5π24【解析】 【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x −π6),求g(x)的所有对称轴x =7π24+kπ2,k ∈Z ,从而可判断平移后的图象中与y 轴最近的对称轴的方程, 【解答】解:因为函数y =3sin(2x +π4)的图象向右平移π6个单位长度可得 g(x)=f(x −π6)=3sin(2x −π3+π4)=3sin(2x −π12),则y =g(x)的对称轴为2x −π12=π2+kπ,k ∈Z , 即x =7π24+kπ2,k ∈Z ,当k =0时,x =7π24,当k =−1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24.11.【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和:n[a 1+a 1+(n−1)d]2=d 2n 2+(a 1−d2)n ,{b n }中,当公比q =1时,其前n 项和S n =nb 1,所以{a n +b n }的前n 项和S n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1,则{b n }的前n 项和为:b 1(q n −1)q−1=b 1q n q−1−b1q−1,所以S n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4,故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值. 本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12.【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值;方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系, 则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 整理得:PA⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0. 当m =0时,PA ⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求. 本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题. 14.【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6, 如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径, 要使面积S △PAB 最大,则P ,D 位于C 的两侧,并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2, 可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去),显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5.故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点. 所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1,所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1; (2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1.本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.16.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55, 所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525, 因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值;(2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.17.【答案】解:(1)ℎ2=−1800b 3+6b ,点B 到OO′的距离为40米,可令b =40, 可得ℎ2=−1800×403+6×40=160, 即为|O′O|=160,由题意可设ℎ1=160, 由140a 2=160,解得a =80, 则|AB|=80+40=120米; (2)可设O′E =x ,则CO′=80−x ,由{0<x <400<80−x <80,可得0<x <40,总造价为y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)] =k800(x 3−30x 2+160×800),y′=k 800(3x 2−60x)=3k800x(x −20),由k >0,当0<x <20时,y′<0,函数y 递减; 当20<x <40时,y′>0,函数y 递增,所以当x =20时,y 取得最小值,即总造价最低. 答:(1)桥|AB|长为120米;(2)O′E 为20米时,桥墩CD 与EF 的总造价最低.【解析】(1)由题意可令b =40,求得ℎ2,即O′O 的长,再令ℎ1=|OO′|,求得a ,可得|AB|=a +b ; (2)可设O′E =x ,则CO′=80−x ,0<x <40,求得总造价y =32k[160−140(80−x)2]+k[160−(6x −1800x 3)],化简整理,应用导数,求得单调区间,可得最小值.本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.18.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t1−t )=t 2−4t =(t −2)2−4≥−4,当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1×3,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95, 由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =−6或12,当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP 方程,再结合椭圆的右准线为:x =4,得点Q 为(4,32⋅4−t1−t ),再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时,AB 可以最为同底,所以若S 2=3S 1,则O 到直线AB 距离d 1与M 到直线AB 距离d 2,之间的关系为d 2=3d 1,根据点到直线距离公式可得d 1=35,d 2=95,所以题意可以转化为M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,根据两平行直线距离公式可得,m =−6或12,然后在分两种情况算出M 点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.19.【答案】解:(1)由f(x)=g(x)得x =0,又f′(x)=2x +2,g′(x)=−2x +2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x , 经检验:ℎ(x)=2x ,符合任意, (2)ℎ(x)−g(x)=k(x −1−lnx), 设φ(x)=x −1−lnx ,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减, 所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k ≥0, 令p(x)=f(x)−ℎ(x)所以p(x)=x 2−x +1−(kx −k)=x 2−(k +1)x +(1+k)≥0,得, 当x =k+12≤0时,即k ≤−1时,p(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k ≥0,k ≥−1, 所以k =−1, 当 k+12>0 时,即k >−1时,△≤0,即(k +1)2−4(k +1)≤0, 解得−1<k ≤3, 综上,k ∈[0,3].42,所以f′(x)=4x 31)(x −1), 0y =(4x 03−4x 0)(x −x 0)+(x 04−2x 02)=(4x 03−4x 0)x −3x 04+2x 02,可见直线y =ℎ(x)为函数y =f(x)的图象在x =t(0<|t|≤√2)处的切线.由函数y =f(x)的图象可知,当f(x)≥ℎ(x)在区间D 上恒成立时,|t|∈[1,√2], 又由g(x)−ℎ(x)=0,得4x 2−4(t 3−t)x +3t 4−2t 2−8=0, 设方程g(x)−ℎ(x)=0的两根为x 1,x 2,则x 1+x 2=t 3−t ,x 1x 2=3t 4−2t 2−84,所以|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√(t 3−t)2−(3t 4−2t 2−8)=√t 6−5t 4+3t 2+8, t 2=λ,则λ∈[1,2],由图象可知,n −m =|x 1−x 2|=√λ3−5λ2+3λ+8, 设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1), 所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减, 所以φ(λ)max =φ(1)=7,故(n −m)max =|x 1−x 2|max =√7,即n −m ≤√7.【解析】(1)由f(x)=g(x)得x =0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x ,再进行检验即可. (2)由题可知ℎ(x)−g(x)=k(x −1−lnx),设φ(x)=x −1−lnx ,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k ≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x =k +1≤0时,当k +1>0时进行讨论,进而得出答案.(3)因为f(x)=x 4−2x 2,求导,分析f(x)单调性及图象得函数y =f(x)的图象在x =x 0处的切线为:y =(4x 03−4x 0)x −3x 04+2x 02,可推出直线y =ℎ(x)为函数y =f(x)的图象在x =t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D 上恒成立;在分析g(x)−ℎ(x)=0,设4x 2−4(t 3−t)x +3t 4−2t 2−8=0,两根为x 1,x 2,由韦达定理可得x 1+x 2,x 1x 2,所以n −m =|x 1−x 2|=√t 6−5t 4+3t 2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20.【答案】解:(1)k =1时,a n+1=S n+1−S n =λa n+1,由n 为任意正整数,且a 1=1,a n ≠0,可得λ=1; (2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1,a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ),由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1S n=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件.对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值; (2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.。

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷一、填空题1. 已知集合B={0,2,3},A={−1,0,1,2},则A∩B=________.2. 已知i是虚数单位,则复数z=(1+i)(2−i)的实部是________.3. 已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是________.4. 将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.5. 下图是一个算法流程图,若输出y值为−2,则输入x的值是________.6. 在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是________.7. 已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(−8)的值是________.8. 已知sin2(π4+α)=23,则sin2α的值是________.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正________cm 2.10. 将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是________.12. 已知5x 2y 2+y 4=1(x,y ∈R ),则x 2+y 2的最小值是________.13. 在△ABC 中,AB =4, AC =3, ∠BAC =90∘,D 在边BC 上,延长AD 到P ,使得AP =9.若PA →=mPB →+(32−m)PC →(m 为常数),则CD 的长度是________.14. 在平面直角坐标系xOy 中,已知P (√32,0),A ,B 是圆C:x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________. 二、解答题15. 在三棱柱ABC −A 1B 1C 1中, AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证: EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC中,角A,B,C的对边分别为a,b,c,己知a=3,c=√2,∠B=45∘.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF. 且CE为80米,其中C,E在AB上(不包括端点). 桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18. 在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →⋅QP →的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f (x ) ,y =g (x )与ℎ(x )=kx +b (k,b ∈R )在区间D 上恒有f (x )≥ℎ(x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=−x 2+2x ,D =(−∞,+∞),求ℎ(x )的表达式;(2)若f (x )=x 2−x +1,g (x )=k ln x ,ℎ(x )=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4−2x 2,g (x )=4x 2−8,ℎ(x )=4(t 3−t )x −3t 4+2t 2(0<|t|≤√2),D =[m,n ]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k=λa n+11k成立,则称此数列为“λ−k ”数列. (1)若等差数列是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.参考答案与试题解析2020年江苏省高考数学试卷一、填空题1.【答案】{0,2}【考点】交集及其运算【解析】集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素组成的集合,叫做集合A与集合B的交集,记作A∩B.【解答】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2}.故答案为:{0,2}.【点评】此题暂无点评2.【答案】3【考点】复数代数形式的混合运算复数的基本概念【解析】此题暂无解析【解答】解:z=(1+i)(2−i)=3+i,则实部为3.故答案为:3.【点评】此题暂无点评3.【答案】2【考点】众数、中位数、平均数【解析】此题暂无解析【解答】=4,解:由4+2a+(3−a)+5+65可知a=2.故答案为:2.此题暂无点评4.【答案】19【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:总事件数为6×6=36,满足条件的事件为(1, 4),(2, 3),(3, 2),(4, 1)为共4种,则点数和为5的概率为436=19.故答案为:19.【点评】此题暂无点评5.【答案】−3【考点】程序框图【解析】此题暂无解析【解答】解:由题可知当y=−2时,当x>0时,y=2x=−2,无解;当x<0时,y=x+1=−2,解得:x=−3. 故答案为:−3.【点评】此题暂无点评6.【答案】32【考点】双曲线的渐近线双曲线的离心率【解析】此题暂无解析【解答】解:由x 2a2−y25=1得渐近线方程为y=±√5ax.∴c2=a2+5=9,∴c=3,∴离心率e=ca =32.故答案为:32. 【点评】此题暂无点评7.【答案】−4【考点】函数奇偶性的性质函数的求值【解析】此题暂无解析【解答】解:y=f(x)是奇函数,当x≥0时,f(x)=x 2 3,则f(−8)=−f(8)=−823=−4.故答案为:−4.【点评】此题暂无点评8.【答案】13【考点】二倍角的余弦公式运用诱导公式化简求值【解析】此题暂无解析【解答】解:因为sin2(π4+α)=23,由sin2(π4+α)=12[1−cos(π2+2α)]=12(1+sin2α)=23,解得sin2α=13.故答案为:13.9.【答案】12√3−π2【考点】柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,内孔的体积为V2,则V1=6×12×2×2×sin60∘×2=12√3,V2=π×(0.5)2×2=π2,所以V=V1−V2=12√3−π2.故答案为:12√3−π2.【点评】此题暂无点评10.【答案】x=−5π24【考点】函数y=Asin(ωx+φ)的图象变换正弦函数的对称性【解析】此题暂无解析【解答】解:因为f(x)=3sin(2x+π4),将函数f(x)=3sin(2x+π4)的图象向右平移π6个单位长度得:g(x)=f(x−π6)=3sin(2x−π3+π4)=3sin(2x−π12),则y=g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z.当k=0时,x=7π24,当k=−1时,x=−5π24,故答案为:x =−5π24. 【点评】 此题暂无点评 11.【答案】 4【考点】等差数列与等比数列的综合 数列的求和【解析】 此题暂无解析 【解答】解:因为{a n +b n }的前n 项和为: S n =n 2−n +2n −1(n ∈N ∗), 当n =1时,a 1+b 1=1,当n ≥2时,a n +b n =S n −S n−1 =2n −2+2n−1, 所以当n ≥2时,a n =2(n −1),b n =2n−1,且当n =1时,a 1+b 1=0+1=1成立, 则d =a 2−a 1=2−0=2, q =b 2b 1=21=2,则d +q =4. 故答案为:4. 【点评】 此题暂无点评 12. 【答案】45【考点】基本不等式在最值问题中的应用 【解析】 此题暂无解析 【解答】解:4=(5x 2+y 2)⋅4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2, 即x 2=310,y 2=12时取(x 2+y 2)min =45.【点评】 此题暂无点评 13. 【答案】 185【考点】二倍角的正弦公式 正弦定理 向量的共线定理 【解析】 此题暂无解析 【解答】解:由向量系数m +(32−m)=32为常数, 结合等和线性质可知|PA →||PD →|=321,故PD =23PA =6,AD =PA −PD =3=AC ,故∠C =∠CDA ,故∠CAD =π−2C . 在△ABC 中,cos C =ACBC =35.在△ADC ,由正弦定理CDsin ∠CAD =ADsin C , 即CD =sin (π−2C)sin C⋅AD =sin 2C sin C⋅AD =2AD cos C=2×35×3=185.故答案为:185. 【点评】 此题暂无点评 14. 【答案】10√5 【考点】与圆有关的最值问题 利用导数研究函数的最值【解析】 此题暂无解析 【解答】解:如图,作PC 所在直径EF ,交AB 于点D ,∵PA=PB,CA=CB=R=6,∴PC⊥AB.∵EF为直径,要使面积S△PAB最大,则P,D位于C点两侧,并设CD=x,计算可知PC=1,故PD=1+x, AB=2BD=2√36−x2,故S△PAB=12AB⋅PD=(1+x)⋅√36−x2.令x=6cosθ,其中θ∈(0, π2),S△PAB=(1+x)√36−x2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ.记函数f(θ)=6sinθ+18sin2θ,则f′(θ)=6cosθ+36cos2θ=6(12cos2θ+cosθ−6).令f′(θ)=6(12cos2θ+cosθ−6)=0,解得cosθ=23或cosθ=−34<0(舍去),显然,当0≤cosθ<23时,f′(θ)<0,f(θ)单调递减;当23<cosθ<1时,f′(θ)>0,f(θ)单调递增.结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos2θ=√53,故f(θ)max=6×√53+36×√53×23=10√5,即△PAB面积的最大值是10√5.故答案为:10√5.【点评】此题暂无点评二、解答题15.【答案】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【考点】平面与平面垂直的判定直线与平面平行的判定【解析】此题暂无解析【解答】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【点评】此题暂无点评16.【答案】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【考点】两角和与差的正弦公式余弦定理正弦定理同角三角函数间的基本关系【解析】此题暂无解析【解答】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【点评】此题暂无点评17.【答案】解:(1)过A,B分别作MN的垂线,垂足为A1,B1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【考点】利用导数研究函数的最值 函数模型的选择与应用【解析】 此题暂无解析 【解答】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【点评】 此题暂无点评 18.【答案】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32), 设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0, 所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点.设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0,或{x M =−27,y M =−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4). 联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【考点】圆锥曲线中的定点与定值问题 椭圆中的平面几何问题 直线与椭圆结合的最值问题【解析】 此题暂无解析 【解答】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32),设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t 2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4).联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127). 【点评】 此题暂无点评 19. 【答案】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为由函数y=f x的图像可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【考点】利用导数研究不等式恒成立问题函数与方程的综合运用利用导数研究曲线上某点切线方程利用导数研究函数的单调性导数的几何意义【解析】此题暂无解析【解答】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【点评】此题暂无点评20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1.(2)√S n+1−√S n=√3√a n+1,3a n+1=S n+1−S n=√3√a n+1(√S n+1+√S n),3因此√S n+1+√S n=√3√a n+1,√3a n+1,即√S n+1=23S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n }; ④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β, 则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【考点】数列递推式一元二次方程的根的分布与系数的关系 等比数列的通项公式等差数列的性质【解析】此题暂无解析【解答】解:(1)k =1时,a n+1=S n+1−S n =λa n+1, 由n 为任意正整数,且a 1=1,a n ≠0, 可得λ=1.(2)√S n+1−√S n =√33√a n+1, a n+1=S n+1−S n =√33√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3√a n+1, 即√S n+1=23√3a n+1, S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n };④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β,则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【点评】此题暂无点评。

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =▲ .2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是▲ . 3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是▲ .4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ . 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是▲ .6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是▲ .7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是▲ . 8.已知2sin ()4απ+=23,则sin 2α的值是▲ .9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是▲ cm.10.将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ .11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是▲ . 12.已知22451(,)x y y x y +=∈R ,则22x y +的最小值是▲ .13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC=+-(m 为常数),则CD 的长度是▲ .14.在平面直角坐标系xOy 中,已知3(0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标. 19.(本小题满分16分)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422342() 2() (48 () 4 3 0)2 2f x x x g x x h x t t x t t t =-=-=--+<≤,,,[] , 2,2D m n =⊆-⎡⎣,求证:7n m -≤. 20.(本小题满分16分)已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k kk n n n S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a 是“3~23”数列,且0n a >,求数列{}n a 的通项公式; (3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由.数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{0,2} 2.3 3.24.195.3-6.327.4- 8.139.1232π- 10.524x π=-11.412.4513.185或014.105二、解答题15.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .16.本小题主要考查正弦定理、余弦定理、同角三角函数关系、两角和与差的三角函数等基础知识,考查运算求解能力.满分14分.解:(1)在ABC △中,因为3,2,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292232cos455b =+-⨯⨯︒=, 所以5b =.在ABC △中,由正弦定理sin sin b cB C=, 得52=sin 45sin C︒, 所以5sin .5C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故225cos 1sin ,5C C =-=则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以23sin 1cos 5ADC ADC ∠=-∠=,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯. 17.本小题主要考查函数的性质、用导数求最值、解方程等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)设1111,,,AA BB CD EF 都与MN 垂直,1111,,,A B D F 是相应垂足. 由条件知,当40O'B =时, 31140640160,800BB =-⨯+⨯=则1160AA =. 由21160,40O'A =得80.O'A = 所以8040120AB O'A O'B =+=+=(米).(2)以O 为原点,OO'为y 轴建立平面直角坐标系xOy (如图所示). 设2(,),(0,40),F x y x ∈则3216,800y x x =-+ 3211601606800EF y x x =-=+-.因为80,CE =所以80O'C x =-. 设1(80,),D x y -则211(80),40y x =- 所以22111160160(80)4.4040CD y x x x =-=--=-+ 记桥墩CD 和EF 的总造价为()f x ,则3232131()=(1606)(4)80024013(160)(040).80080f x k x x k x x k x x x +-+-+=-+<<2333()=(160)(20)80040800k f x k x x x x '-+=-, 令()=0f x ',得20.x =所以当20x =时,()f x 取得最小值.答:(1)桥AB 的长度为120米;(2)当O'E 为20米时,桥墩CD 和EF 的总造价最低.18.本小题主要考查直线方程、椭圆方程、椭圆的几何性质、直线与椭圆的位置关系、向量数量积等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分16分.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x yE +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍.由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =.由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =.(2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞.令() 1ln u x x x =--,则1()1,u'x x=-令()=0u'x ,得1x =.所以min () 0(1)u x u ==.则1ln x x -≥恒成立, 所以当且仅当0k ≥时,()()f x g x ≥恒成立.另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立, 也即2()1 1 +0x k x k -++≥恒成立.因为0k ≥,对称轴为102kx +=>, 所以2141)0(()k k +-+≤,解得13k -≤≤. 因此,k 的取值范围是0 3.k ≤≤ (3)①当12t ≤由()()g x h x ≤,得2342484()32x t t x t t -≤--+,整理得4223328()0.()4t t x t t x ----+≤*令3242=()(328),t t t t ∆----则642=538t t t ∆-++. 记64253()1),28(t t t t t ϕ-++=≤≤则53222062(31)(3())06t t t t t t 't ϕ-+=--<=恒成立,所以()t ϕ在[1,2]上是减函数,则(2)()(1)t ϕϕϕ≤≤,即2()7t ϕ≤≤. 所以不等式()*有解,设解为12x x x ≤≤, 因此217n m x x ∆-≤-= ②当01t <<时,432()()11 34241f h t t t t ---=+---.设432 = 342(41)t t t t v t +---,322 ()=1212444(1)(31),v't t t t t t +--=+- 令()0v t '=,得3t =. 当3(0t ∈,时,()0v t '<,()v t 是减函数;当(1)3t ∈时,()0v t '>,()v t 是增函数. (0)1v =-,(1)0v =,则当01t <<时,()0v t <.(或证:2()(1)(31)(1)0v t t t t =++-<.) 则(1)(1)0f h ---<,因此1()m n -∉,.因为22m n ⊆[][-,,],所以217n m -< ③当20t <时,因为()f x ,()g x 均为偶函数,因此7n m -≤ 综上所述,7n m -≤20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=, 也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-, 这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列) (2)因为数列*{}()n a n ∈N 3”数列, 1133n n n S S a ++-=1133n n n n S S S S ++- 因为0n a >,所以10n n S S +>>113113n n n nS S S S ++=-. 1n n n S b S +=,则23113n n b b -=-221(1)(1)(1)3n n n b b b -=->. 解得2n b =12n n S S +=,也即14n nS S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩(3)设各项非负的数列*{}()n a n ∈N 为“~3λ”数列, 则11133311n n n SS aλ++-=33311n n n n S S S S ++=-因为0n a ≥,而11a =,所以10n n S S +≥>,则31311=1n n n nS SS S λ++--.令31=n nn S S c +,则3311( 1)n n n c c c λ-=-≥,即333(1)(1)( 1)n n n c c c λ-=-≥.(*) ①若0λ≤或=1λ,则(*)只有一解为=1n c ,即符合条件的数列{}n a 只有一个. (此数列为1,0,0,0,…)②若1λ>,则(*)化为3232(1)(1)01n n nc c c λλ+-++=-, 因为1n c ≥,所以3232101n nc c λλ+++>-,则(*)只有一解为=1n c , 即符合条件的数列{}n a 只有一个.(此数列为1,0,0,0,…)③若01λ<<,则3232101nnc c λλ+++=-的两根分别在(0,1)与(1,+∞)内, 则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ). 所以1n n S S +=或31n n S t S +=.由于数列{}n S 从任何一项求其后一项均有两种不同结果,所以这样的数列{}n S 有无数多个,则对应的{}n a 有无数多个.综上所述,能存在三个各项非负的数列{}n a 为“~3λ”数列,λ的取值范围是01λ<<.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选..定其中两小题,并在相应的答题区域内作答....................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分)平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -. (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵1-M .B .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sin C ρθ=上(其中0ρ≥,02θ≤<π).(1)求1ρ,2ρ的值;(2)求出直线l 与圆C 的公共点的极坐标. C .[选修4-5:不等式选讲](本小题满分10分)设x ∈R ,解不等式2|1|||4x x ++<.【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 23.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4-2:矩阵与变换]本小题主要考查矩阵的运算、逆矩阵等基础知识,考查运算求解能力.满分10分. 解:(1)因为123=114a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,所以213,24,a b -=⎧⎨--=-⎩解得2a b ==,所以2112⎡⎤=⎢⎥-⎣⎦M . (2)因为2112⎡⎤=⎢⎥-⎣⎦ M ,det 221150=⨯-⨯-=≠()()M ,所以M 可逆,从而121551255-⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ - M.B .[选修4-4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)由1cos 23ρπ=,得14ρ=;24sin 26ρπ==,又(0,0)(即(0,6π))也在圆C 上,因此22ρ=或0.(2)由cos 2,4sin ,ρθρθ=⎧⎨=⎩得4sin cos 2θθ=,所以sin21θ=.因为0ρ≥,0 2θ≤<π,所以4θπ=,=22ρ. 所以公共点的极坐标为(22,)4π.C .[选修4-5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x >0时,原不等式可化为224x x ++<,解得203x <<; 当10x -≤≤时,原不等式可化为224x x +-<,解得10x -≤≤; 当1x <-时,原不等式可化为224x x ---<,解得 2 1x -<<-. 综上,原不等式的解集为2|2}3{x x -<<.22.【必做题】本小题主要考查空间向量、异面直线所成角和二面角等基础知识,考查空间想象能力和运算求解能力.满分10分.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D . 又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以{}OB OC OA ,,为基底,建立空间直角坐标系O –xyz . 因为BD =2,5CB CD ==,AO =2,所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 则AB =(1,0,–2),DE =(1,1,1),所以|||102|15||15||||53cos AB DE AB DE AB DE +-=⋅⋅==<>⨯,.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,14BF BC =,BC =(–1,2,0). 所以111(,,0)442BF BC ==-. 又20,0DB =(,), 故71(,,0)42DF DB BF =+=.设1111()x y z =,,n 为平面DEF 的一个法向量, 则1100,DE DF ⎧⎪⎨⎪⎩⋅=⋅=,n n 即111110710,42x y z x y +⎧+=⎪+=⎪⎨⎩, 取12x =,得1–7y =,15z =,所以1(275)n =-,,. 设2222()x y z =,,n 为平面DEC 的一个法向量,又DC =(1,2,0), 则2200,DE DC ⎧⎪⎨⎪⎩⋅=⋅=,n n 即22222020,x y z x y ++=+=⎧⎨⎩,取22x =,得2–1y =,2–1z =,所以2(211)n =--,,. 故2112|||475|13|||||co |13786s θ+-⋅===⋅⨯n n n n .所以22391cos s n 13i θθ=-=.23.【必做题】本小题主要考查随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .。

2020年江苏省高考数学试卷(含详细解析)

2020年江苏省高考数学试卷(含详细解析)

保密★启用前2020年江苏省高考数学试卷—.■总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分1.已知集合A=(—l,0,l,2},g=(0,2,3},则AC\B=.2.己知i是虚数单位,则复数Z=(l+i)(2-i)的实部.3.己知一组数据4.2劣3—",5,6的平均数为4,则。

的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图.若输出)'的值为-2,则输入.1的值是•6.在平而直角坐标系X。

),中,若双曲线竺-22=l(a>0)的一条渐近线方程为y=2^/52 x,则该双曲线的离心率是—・7.己知.汽心)是奇函数,当官时,门刁=指,则直罚的值是8.已知sin'U+a)=二.则sin2tz的值是____.439.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.己知螺帽的底面正六边形边长为2cm.高为2cm.内孔半轻为0.5cm.则此六角螺帽右坯的体枳是—cm.10,将函数y=3sin(2wf)的图象向右平移兰个单位长度,则平移后的图象中与y轴最46近的对称轴的方程是—.11.设{叫}是公差为,的等差数列,(加J是公比为g的等比数列.已知数列{”〃+“}的前〃项和/一〃+2〃一1(〃£FT),则d+q的值是12.已知5亍八寸=1(矽苗),则J2的最小值是________.13.在△ABC中,仙=4AC=3,ZBAC=90°,D在边8C上,延长AO到F,使得AP=9.14.在平而直角坐标系xOy中.己知,0),1△是圆G”+。

-或)・=36上的两个动点,满足PA=PB,则△用8而积的最大值是二、解答题评卷人得分15.在三棱柱ABC-A\B\C}中,AB1AC.&C1平而ABC,E,F分别是AC,3C的中点......O...........O.....I-.....O.....滨......O............O ※※寒※※即※※田※※s?I※※II※※堞※※I※※群※※点※※军浓※(1)求证:段〃平而/IF i C i:(2)求证:平面AB.CL平而ABB,.16.在△ABC中,角A. B.C的对边分别为〃,b,c,己知”=3.c=JI b=45Q.1)⑴求sinC的值:4(2)在边8C上取一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1页(共9页) 数学试卷 第2页(共9页) 数学试卷 第3页(共9页)绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注 意 事 项考生在答题前请认真阅读注意事项及各题答题要求1. 本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4. 作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1. 已知集合{124}A =,,,{246}B =,,,则A B =U _________.2. 某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_________名学生.3. 设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为_________.4. 右图是一个算法流程图,则输出的k 的值是_________.5. 函数6()12log f x x =-的定义域为_________.6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是_________.7. 如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为_________3cm .8. 在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m 的值为_________.9. 如图,在矩形ABCD 中,2AB =,2BC =,点E 为BC 的中点,点F 在边CD 上,若2AB AF =u u u r u u u r g ,则AE BF u u u r u u u rg 的值是_________.10. 设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若13()()22f f =,则3a b +的值为_________.11. 设α为锐角,若4cos()65απ+=,则sin(2)12απ+的值为_________. 12. 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.13. 已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c<的解集为(6)m m +,,则实数c 的值为_________.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是_________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =u u u r u u u r u u u r u u u r g g . (1)求证:tan 3tan B A =;(2)若5cos 5C =,求A 的值.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D ,E 分别是棱BC ,1CC 上的点(点D 不同于点C ),且AD DE ⊥,F 为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.DABC--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------姓名________________ 准考证号_____________数学试卷 第4页(共9页) 数学试卷 第5页(共9页) 数学试卷 第6页(共9页)18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值,则称0x 为函数()y f x =的极值点 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3()2e ,都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i )若1262AF BF -=,求直线1AF 的斜率;(ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a b a n a b *++=∈+N ,.(1)设11n n n b b n a *+=+∈N ,,求证:数列2{()}n n ba 是等差数列;(2)设12n n nbb n a *+=⋅∈N ,,且{}n a 是等比数列,求1a 和1b 的值.数学Ⅱ(附加题)注 意 事 项考生在答题前请认真阅读注意事项及各题答题要求1. 本试卷共2页,均为非选择题(第21题~第23题).本卷满分为40分,考试时间为30分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4. 作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答..若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD DC =,连结AC ,AE ,DE . 求证:E C ∠=∠.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.C .[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标中,已知圆C 经过点()24P π,,圆心为直线()3sin 32ρθπ-=-与极轴的交点,求圆C 的极坐标方程.D .[选修4—5:不等式选讲](本小题满分10分) 已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.23.(本小题满分10分)AEB D CO数学试卷 第7页(共9页) 数学试卷 第8页(共9页) 数学试卷 第9页(共9页)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示).。

相关文档
最新文档