2020版高考数学北师大版一轮复习课件:9.3 圆的方程
北师版高考总复习一轮理科数精品课件 第9章 解析几何 第3节 圆的方程
+
7 2
3
=
65
.
9
(2)由圆 C 的圆心在直线 x+y=0 上,可设圆心坐标为(a,-a),又圆 C 与直线 x-y
=0 相切,所以圆的半径 r= 2|a|.因为圆心到直线 x-y-3=0 的距离 d=
圆 C 被直线 x-y-3=0 截得的弦长为 6,所以由勾股定理知 d2+
(2-3)2
2
+
1+ 2
=1,解得
-2
故+1的取值范围为
3
k=-4,
3
−∞, − 4
,故选 D.
(2)设 P(x,y),则 ·a=2x+y,
则向量在向量 a
·
方向上投影为 ||
=
2+
,
5
令 t=2x+y,则原问题转化为求 t 的最大值,
当直线 2x+y-t=0 与圆相切时,t 能取得最值,
又圆 x2-4x+y2-2y+3=0 的圆心为(2,1),半径为 2,
则|PQ|min=
|2+1+1|
12 +12
− 2 = 2.
(2)由x2+y2-2x+2y+1=0,得(x-1)2+(y+1)2=1,
∴ ( + 2)2 + 2 =2 (-1)2 + 2 ,化为 x2+(y-2)2=4.
(-2)2 + 2 = 4,
联立
得(1+k2)x2-(2k2+4)x+k2=0,
= (-1),
则 Δ=(2k2+4)2-4k2(k2+1)=12k2+16>0,故直线和圆有 2 个交点.
2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版
第四节
直线与圆、圆与圆的位置关系
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.能根据给定直线、圆的方程,
判断直线与圆、圆与圆的位置 1.直线与圆的位置关系 直观想象
关系.
2.圆的切线与弦长问题 数学运算
2.能用直线和圆的方程解决一
3.圆与圆的位置关系
些简单的数学问题与实际问题.
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线的方程可由①-②得到,即
(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方
典例突破
例1.(1)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法错误的
是(
)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
(2)(2021北京人大附中模拟)已知圆C过点(-1,0)和(1,0),且与直线y=x-1只有
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
北师大版高中数学必修《圆的一般方程》课件(完整版)1
(3)4x2 4 y2 8x 4 y 15 0.
解:方程两边除以4,得 x2 y2 2x y 15 0. 4
原方程可以化为 x2 2x 1 y2 y 1 5, 4
即,(x 1)2 ( y 1)2 5.
2
所以这是圆心大版 高中数 学必修 《圆的 一般方 程》课 件(完 整版)1
所以方程①表示一个点 ( D , E ) .
2
2
22
当 D2 E2 4F 0 时,方程①没有实数解,所以方程①不
表示任何图形.
北师大版 高中数 学必修 《圆的 一般方 程》课 件(完 整版)1
新知提炼
一般地,二元二次方程
x2 y2 Dx Ey F 0 ①
(1)当 D2 E2 4F 0 时,称①式为圆的一般方程.
(
D, 2
E) 2
为圆心,
1 D2 E2 4F 为半径的圆. 2
北师大版 高中数 学必修 《圆的 一般方 程》课 件(完 整版)1
x2 y2 Dx Ey F 0
(x D)2 (y E)2 D2 E2 4F
2
2
4
当 D2 E2 4F 0 时,方程①只有实数解 x D , y E ,
(D2 E2 4F 0)
(x D)2 (y E)2 D2 E2 4F
2
2
4
x2 y2 Dx Ey F 0 (D2 E2 4F 0)
x2 y2 Dx Ey F 0
(D2 E2 4F 0)
(x D)2 (y E)2 D2 E2 4F
2
2
4
解:其中,D 6, E 0, F 10. 因为,D2 E2 4F 4 0, 所以此方程不是圆的方程.
北师大版 高中数 学必修 《圆的 一般方 程》课 件(完 整版)1
一轮复习北师大版第8章第3节 圆的方程课件
圆的方程是( )
A.(x-3)2+(y+1)2=4
B.(x+3)2+(y-1)2=4
C.(x-1)2+(y-1)2=4
D.(x+1)2+(y+1)2=4
C [设圆心 C 的坐标为(a,b),半径为 r.因为圆心 C 在直线 x+y -2=0 上,
所以 b=2-a. 又|CA|2=|CB|2, 所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,所以 a=1,b=1. 所以 r=2. 所以方程为(x-1)2+(y-1)2=4.]
A [P 是 x 轴上任意一点,则|PM|的最小值为|PC1|-1,同理|PN| 的最小值为|PC2|-3(图略),则|PM|+|PN|的最小值为|PC1|+|PC2|- 4.作 C1 关于 x 轴的对称点 C′1(2,-3).所以|PC1|+|PC2|=|PC1′|+ |PC2|≥|C1′C2|=5 2,即|PM|+|PN|=|PC1|+|PC2|-4≥5 2-4.]
联立①②③,解得E=2, F=0,
故所求圆的方程为 x2+y2-2x+2y=0,
即(x-1)2+(y+1)2=2.]
点评:(1)几何法的关键是定圆心. (2)已知圆心位置常设圆的标准形式,已知圆上三点常设圆的一 般式. (3)涉及圆的弦长问题,一般是利用半弦长、弦心距和半径构成 直角三角形求解. (4)方程 Ax2+By2+Cxy+Dx+Ey+F=0 表示圆的充要条件为 A =B>0,C=0,D2+E2-4AF>0.
2.一束光线从点 A(-3,2)出发,经 x 轴反射到圆 C:(x-2)2 +(y-3)2=1 上的最短路径的长度是( )
A.4 B.5 C.5 2-1 D.2 6-1
C [根据题意,设 A′与 A 关于 x 轴对称,且 A(-3,2),则 A′ 的坐标为(-3,-2),又由 A′C= 25+25=5 2,则 A′到圆 C 上的 点的最短距离为 5 2-1.故这束光线从点 A(-3,2)出发,经 x 轴反 射到圆 C:(x-2)2+(y-3)2=1 上的最短路径的长度是 5 2-1,故选 C.]
2020届高考数学(理)一轮复习讲义 9.3 圆的方程
§9.3圆的方程圆的定义与方程概念方法微思考1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.2.已知⊙C :x 2+y 2+Dx +Ey +F =0,则“E =F =0且D <0”是“⊙C 与y 轴相切于原点”的什么条件?提示 由题意可知,⊙C 与y 轴相切于原点时,圆心坐标为⎝⎛⎭⎫-D2,0,而D 可以大于0,所以“E =F =0且D <0”是“⊙C 与y 轴相切于原点”的充分不必要条件. 3.如何确定圆的方程?其步骤是怎样的?提示 确定圆的方程的主要方法是待定系数法,大致步骤: (1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组. (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. 4.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种.已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程x 2+2ax +y 2=0一定表示圆.( × )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )(5)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的圆.( × ) 题组二 教材改编2.圆心为(1,1)且过原点的圆的方程是( )A .(x -1)2+(y -1)2=1B .(x +1)2+(y +1)2=1C .(x +1)2+(y +1)2=2D .(x -1)2+(y -1)2=2答案 D解析 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2.3.以点(3,-1)为圆心,并且与直线3x +4y =0相切的圆的方程是( ) A .(x -3)2+(y +1)2=1 B .(x -3)2+(y -1)2=1 C .(x +3)2+(y -1)2=1 D .(x +3)2+(y +1)2=1 答案 A4.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),半径|CA |=(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10. 题组三 易错自纠5.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( ) A .(-∞,-2)∪(2,+∞) B .(-∞,-22)∪(22,+∞) C .(-∞,-3)∪(3,+∞) D .(-∞,-23)∪(23,+∞) 答案 B 解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝⎛⎭⎫x +m 22+(y -1)2=m24-2. 由其表示圆可得m 24-2>0,解得m <-22或m >2 2.6.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .-1<a <1B .0<a <1C.a>1或a<-1 D.a=±4答案 A解析∵点(1,1)在圆内,∴(1-a)2+(a+1)2<4,即-1<a<1.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1答案 A解析由于圆心在第一象限且与x轴相切,可设圆心为(a,1)(a>0),又圆与直线4x-3y=0相切,∴|4a-3|5=1,解得a=2或a=-12(舍去).∴圆的标准方程为(x-2)2+(y-1)2=1. 故选A.题型一 圆的方程例1 (1)已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( ) A.⎝⎛⎭⎫x -322+y 2=254 B.⎝⎛⎭⎫x +342+y 2=2516 C.⎝⎛⎭⎫x -342+y 2=2516 D.⎝⎛⎭⎫x -342+y 2=254答案 C解析 方法一 (待定系数法)根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎨⎧a =34,r 2=2516,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 方法二 (待定系数法)设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝⎛⎭⎫x -342+y 2=2516.方法三 (几何法)因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上, 所以圆E 的圆心坐标为⎝⎛⎭⎫34,0. 则圆E 的半径为|EB |=⎝⎛⎭⎫2-342+(0-0)2=54,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. (2)(2018·鞍山模拟)已知圆C 的圆心在直线x +y =0上,圆C 与直线x -y =0相切,且在直线x -y -3=0上截得的弦长为6,则圆C 的方程为____________. 答案 (x -1)2+(y +1)2=2解析 方法一 所求圆的圆心在直线x +y =0上, ∴设所求圆的圆心为(a ,-a ). 又∵所求圆与直线x -y =0相切, ∴半径r =2|a |2=2|a |.又所求圆在直线x -y -3=0上截得的弦长为6, 圆心(a ,-a )到直线x -y -3=0的距离d =|2a -3|2,∴d 2+⎝⎛⎭⎫622=r 2,即(2a -3)22+32=2a 2,解得a =1,∴圆C 的方程为(x -1)2+(y +1)2=2. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则圆心(a ,b )到直线x -y -3=0的距离d =|a -b -3|2,∴r 2=(a -b -3)22+32,即2r 2=(a -b -3)2+3.① 由于所求圆与直线x -y =0相切,∴(a -b )2=2r 2.② 又∵圆心在直线x +y =0上,∴a +b =0.③联立①②③,解得⎩⎪⎨⎪⎧a =1,b =-1,r =2,故圆C 的方程为(x -1)2+(y +1)2=2.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =12D 2+E 2-4F , ∵圆心在直线x +y =0上, ∴-D 2-E2=0,即D +E =0,①又∵圆C 与直线x -y =0相切,∴⎪⎪⎪⎪-D 2+E 22=12D 2+E 2-4F , 即(D -E )2=2(D 2+E 2-4F ), ∴D 2+E 2+2DE -8F =0.②又知圆心⎝⎛⎭⎫-D 2,-E2到直线x -y -3=0的距离d =⎪⎪⎪⎪-D 2+E 2-32,由已知得d 2+⎝⎛⎭⎫622=r 2, ∴(D -E +6)2+12=2(D 2+E 2-4F ),③ 联立①②③,解得⎩⎪⎨⎪⎧D =-2,E =2,F =0,故所求圆的方程为x 2+y 2-2x +2y =0, 即(x -1)2+(y +1)2=2.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练1 一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为_____________.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0 解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ), 又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.① 由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③ 联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E2, 半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .① 圆心⎝⎛⎭⎫-D 2,-E2到直线y =x 的距离为 d =⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2,即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝⎛⎭⎫-D 2,-E2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.题型二 与圆有关的轨迹问题例2 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在,所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·y x -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹方程. 解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2, 线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分, 所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285,不符合题意,舍去, 所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285.题型三 与圆有关的最值问题例3 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1. ∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题. 跟踪训练3 已知实数x ,y 满足方程x 2+y 2-4x +1=0. 求:(1)yx 的最大值和最小值;(2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值. 解 原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.(1)yx 的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值和最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值和最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6.(3)如图所示,x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(2-3)2=7-4 3.1.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3 答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay+2a 2+a -1=0表示圆,故选B.2.已知圆C :x 2+y 2-2x +4y +1=0,那么与圆C 有相同的圆心,且经过点(-2,2)的圆的方程是( )A .(x -1)2+(y +2)2=5B .(x -1)2+(y +2)2=25C .(x +1)2+(y -2)2=5D .(x +1)2+(y -2)2=25答案 B解析 圆C 的标准方程为(x -1)2+(y +2)2=4,圆心C (1,-2),故排除C ,D ,代入(-2,2)点,只有B 项经过此点.也可以设出要求的圆的方程为(x -1)2+(y +2)2=r 2,再代入点(-2,2),可以求得圆的半径为5.故选B.3.已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为( )A .(x +3)2+(y -1)2=1B .(x -3)2+(y +1)2=1C .(x +3)2+(y +1)2=1D .(x -3)2+(y -1)2=1答案 C解析 到直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧ 3x -4y +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1,又两平行线之间的距离为2,所以所求圆的半径为1,从而圆M 的方程为(x +3)2+(y +1)2=1.故选C.4.(2018·锦州调研)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0. 5.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4 答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.6.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是( )A .(-3,-1)∪(1,3)B .(-3,3)C .[-1,1]D .[-3,-1]∪[1,3]答案 D解析 圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22,由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,∴1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1.∴实数a 的取值范围是[-3,-1]∪[1,3].故选D.7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是____________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆.8.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________. 答案3π4解析 由题意知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.9.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________. 答案 (x -2)2+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解得m =-32.所以圆C 的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 10.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中,得(x -2)2+(y +1)2=1.11.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上, (1)求yx 的最大值和最小值;(2)求x +y 的最大值和最小值.解 方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4,则圆C 的半径为2. (1)(转化为斜率的最值问题求解)yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆C 相切时,斜率最大或最小,如图所示.设切线方程为y =kx ,即kx -y =0,由圆心C (3,3)到切线的距离等于圆C 的半径, 可得|3k -3|k 2+1=2,解得k =9±2145.所以yx 的最大值为9+2145,最小值为9-2145.(2)(转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2,即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2. 12.已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解 (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2.化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题意知直线l 2是此圆的切线, 连接CQ ,则|QM |=|CQ |2-|CM |2 =|CQ |2-16,当|QM |最小时,|CQ |最小,此时CQ ⊥l 1, |CQ |=|5+3|2=42, 则|QM |的最小值为32-16=4.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________. 答案 74解析 设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,则x 2+y 2的最大值为________. 答案 2 2 解析x 2+y 2表示曲线上的任意一点(x ,y )到原点的距离.当x ≥0,y ≥0时,x 2+y 2-2x -2y =0化为()x -12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y <0时,x 2+y 2+2x +2y =0化为()x +12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x ≥0,y <0时,x 2+y 2-2x +2y =0化为()x -12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y ≥0时,x 2+y 2+2x -2y =0化为()x +12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=2 2. 综上可知,x 2+y 2的最大值为2 2.15.圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是( )A .2 3 B.203 C.323 D.163答案 C解析 由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39,∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,∴该直线经过圆心(-2,6),即-2a -6b +6=0,∴a +3b =3(a >0,b >0),∴2a +6b =23(a +3b )⎝⎛⎭⎫1a +3b =23⎝⎛⎭⎫1+3a b +3b a +9≥23⎝⎛⎭⎫10+2 3a b ·3b a =323, 当且仅当3b a =3a b,即a =b 时取等号,故选C. 16.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧ r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧ a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.。
高三数学一轮复习北师大PPT课件
第42页/共61页
[点评] 求锥体的体积常用方法为:割补法和等积变 换法:(1)割补法:求一个几何体的体积可以将这个几何 体分割成几个柱体、锥体,分别求出柱体和锥体的体积, 从而得出几何体的体积.有时将几何体补成易求几何体的 体积,如长方体、正方体,然后求出两个或几个几何体的 体积之差.
第12页/共61页
5.(2010·浙江理)若某几何体的三视图(单位:cm)如 图所示,则此几何体的体积是________cm3.
第13页/共61页
[答案] 114 [解析] 三视图还原为一个正棱台和长方体的组合体, 对棱台:下底边长8,上底边长为4,高为3,对其上的长 方体,边长为4,4,2,则体积为144cm3.
第25页/共61页
如图,在直三棱柱ABC-A1B1C1中,AB=BC=,AA1 =2,∠ABC=90°,E、F分别为AA1、B1C1的中点,沿棱 柱的表面从E点到F点的最短路径的长度为d,求d的最小 值.
第26页/共61页
[分析] 可将直三棱锥的表面展开,利用“两点间线 段最短”来解决.
[解析] 将三棱柱的侧面、底面展开有三种情形:
方体各个面的中心为顶点的凸多面体的体积为
()
2
2
3
2
A. 6
B. 3
C. 3
D.3
[答案] B
第10页/共61页
[解析] 本小题主要考查正方体的有关性质和凸多 面体的体积公式.
如图,凸多面体为两个相同正四棱锥的组合体, ∵AC= 2,AE=1, 且 AECF 为正方形, ∴EC=1,∴SAECF=1, ∵高为 22, ∴V=2×31× 22= 32,故选 B.
2020版高考理科数学(人教版)一轮复习课件:第九章 第三节 圆的方程
基础——在批注中理解透
单纯识记无意义,深刻理解提能力
课时跟踪检测
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
基础——在批注中理解透
单纯识记无意义,深刻理解提能力
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
几何 根据圆的几何性质,直接求出圆心坐标和半径,进而 法 写出方程
待定 ①根据题意,选择标准方程与一般方程; 系数 ②根据条件列出关于a,b,r或D,E,F的方程组;
法 ③解出a,b,r或D,E,F,代入标准方程或一般方程
看 个 性
找 共 性
(单击进入电子文档)
高考数学大一轮复习 第九章 平面解析几何 9.3 圆的方程试题 理 北师大版-北师大版高三全册数学试
第九章平面解析几何 9.3 圆的方程试题理北师大版圆的定义与方程定义在平面内,到定点的距离等于定长的点的集合叫作圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心(a,b)半径为r一般x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:(-D2,-E2)半径r=12D2+E2-4F【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D、E、F的方程组;(3)解出a、b、r或D、E、F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0 答案 C解析 圆心是(1,2),所以将圆心坐标代入检验选项C 满足.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5 D .4 答案 B解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP , 易知|OP |=12|AB |=m .要求m 的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.3.(2015·)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案 D解析圆的半径r=12+12=2,∴圆的方程为(x-1)2+(y-1)2=2.4.(教材改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为______________.答案(x-2)2+y2=10解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即a+12+1=a-12+9,解得a=2,∴圆心为C(2,0),半径|CA|=2+12+1=10,∴圆C的方程为(x-2)2+y2=10.5.(2016·某某)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是______,半径是______.答案(-2,-4) 5解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·某某)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)(x -2)2+y 2=9 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2),令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52.思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.(2016·某某八校联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧12+-b2=r 2,|b |=12r ,解得⎩⎪⎨⎪⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43. 题型二 与圆有关的最值问题例2 已知点(x ,y )在圆(x -2)2+(y +3)2=1上.求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+-3-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求y x的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233.所以y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.解x 2+y 2+2x -4y +5=x +12+y -22,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,所以x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)y x的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设y x=k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3. (2)设y -x =b ,则y =x +b ,当且仅当直线y=x+b与圆切于第四象限时,在y轴上的截距b取最小值,由点到直线的距离公式,得|2-0+b|2=3,即b=-2±6,故(y-x)min=-2- 6.(3)x2+y2是圆上的点与原点的距离的平方,故连接OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=|OC′|2=(2+3)2=7+43,(x2+y2)min=|OB|2=(2-3)2=7-4 3.题型三与圆有关的轨迹问题例3 (2016·潍坊模拟)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·某某模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON为两边作平行四边形MONP ,求点P 的轨迹. 解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规X 解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,3+222+D3+22+F =0,3-222+D3-22+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0). 故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+t -12=3,所以圆C 的方程为(x -3)2+(y -1)2=9.1.(2016·某某检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0 答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.2.(2016·某某一模)方程|x |-1=1-y -12所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆 答案 D解析 由题意得⎩⎪⎨⎪⎧|x |-12+y -12=1,|x |-1≥0,即⎩⎪⎨⎪⎧x -12+y -12=1,x ≥1,或⎩⎪⎨⎪⎧x +12+y -12=1,x ≤-1.故原方程表示两个半圆.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A .1B .5C .4 2D .3+2 2 答案 D解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2a b≥3+2b a ×2ab =3+22, 当且仅当b a =2ab,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2.4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中得(x -2)2+(y +1)2=1.5.(2016·某某诊断)圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( )A .x 2+(y -1)2=1B .x 2+(y -3)2=3C .x 2+(y +1)2=1D .x 2+(y +3)2=3答案 A解析 依题意,得题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1)、半径是1,因此其方程是x 2+(y -1)2=1.6.(2016·某某模拟)已知P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形PACB 的面积的最小值是( ) A. 2 B .2 2 C. 3 D .2 3答案 C解析 圆的方程可化为(x -1)2+(y -1)2=1,则C (1,1),当|PC |最小时,四边形PACB 的面积最小,|PC |min =|3-4+11|32+42=2,此时|PA |=|PB |= 3. 所以四边形PACB 的面积S =2×12×3×1=3,故选C. 7.(2016·某某模拟)若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是______________. 答案 (x -2)2+(y +32)2=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |,解之得m =-32. 所以圆C 的方程为(x -2)2+(y +32)2=254. 8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________.答案 x +y -2=0 解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1,所求直线方程为y -1=-(x -1),即x +y -2=0.9.已知D 是由不等式组⎩⎪⎨⎪⎧ x -2y ≥0, x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________.答案 π2解析 作出可行域D 及圆x 2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求.易知图中两直线的斜率分别为12、-13,得tan α=12,tan β=-13, tan θ=tan(α-β)=12+131-12×13=1, 得θ=π4,得弧长l =θ·R =π4×2=π2(R 为圆的半径). 10.(2016·某某模拟)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.答案 7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x-1,y +3),∴|OA →+OB →+OD →|=x -12+y +32. 问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为3-12+0+32=7, ∴x -12+y +32的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)由题意知直线PQ 的方程为x +y -2=0.设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.①由圆C 在y 轴上截得的线段的长为43,知r 2=12+a 2,可得(a +1)2+(b -3)2=12+a 2,②由①②得a =1,b =0或a =5,b =4.当a =1,b =0时,r 2=13,满足题意,当a =5,b =4时,r 2=37,不满足题意.故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m (m ≠2), A (x 1,m -x 1),B (x 2,m -x 2).由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0,化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎪⎨⎪⎧ y =-x +m ,x -12+y 2=13得 2x 2-2(m +1)x +m 2-12=0,∴x 1+x 2=m +1,x 1x 2=m 2-122,代入③,得m 2-12-m ·(1+m )+m 2=0,∴m =4或m =-3,经检验都满足题意,∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0),则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=2+22+7-32=4 2. 所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.。
2020年高考数学一轮复习专题9.3空间几何体外接球和内切球练习(含解析)
9.3 空间几何外接球和内切球一.公式1.球的表面积:S =4πR 22.球的体积:V =43πR 3二.概念1.2.考向一 长(正)方体外接球【例1】若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为__________. 【答案】29π【解析】因为长方体的顶点都在球上,所以长方体为球的内接长方体,其体对角线l ==为球的直径,所以球的表面积为24292l S ππ⎛⎫== ⎪⎝⎭,故填29π.【举一反三】1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝ ⎛⎭⎪⎫323=92π.2.如图是一个空间几何体的三视图,则该几何体的外接球的表面积是________.【答案】48π【解析】由几何体的三视图可得该几何体是直三棱柱ABC A B C '-'',如图所示:其中,三角形ABC 是腰长为4的直角三角形,侧面ACC A ''是边长为4的正方形,则该几何体的外接球的半径为2=∴该几何体的外接球的表面积为(2448ππ⨯=.故答案为48π.考向二 棱柱的外接球【例2】直三棱柱AAA −A ′A ′A ′的所有棱长均为2√3,则此三棱柱的外接球的表面积为( ) A .12π B .16π C .28π D .36π【答案】C【解析】由直三棱柱的底面边长为2√3,得底面所在平面截其外接球所成的圆O 的半径r =2, 又由直三棱柱的侧棱长为2√3,则球心到圆O 的球心距d =√3,根据球心距,截面圆半径,球半径构成直角三角形,满足勾股定理,我们易得球半径R 满足:R 2=r 2+d 2=7,∴外接球的表面积S =4πR 2=28π.故选:C .【举一反三】1. 设直三棱柱ABC-A 1B 1C 1的所有顶点都在一个球面上,且球的表面积是40π,AB=AC=AA 1,∠BAC=120°,则此直三棱柱的高是________.【答案】【解析】设三角形BAC 边长为a ,则三角形BAC外接圆半径为122sin 3a π⋅=,因为2244010R R ππ=∴=所以22210,2a R a a ⎛⎫=+== ⎪⎝⎭即直三棱柱的高是.2.直三棱柱AAA −A 1A 1A 1中,已知AA ⊥AA ,AA =3,AA =4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________. 【答案】50π【解析】AAA −A 1A 1A 1是直三棱柱,∴A 1A ⊥AA ,又三棱柱的所有顶点都在同一球面上,A 1A 是球的直径,∴A =A 1A2;∵AA ⊥AA ,∴AA =√32+42=5 ,∴A 1A 2=52+52=50 ;故该球的表面积为A =4AA 2=4A (A 1A 2)2=AA 1A 2=50A考向三 棱锥的外接球类型一:正棱锥型【例3-1】已知正四棱锥P ABCD -的各顶点都在同一球面上,体积为2,则此球的体积为 ( )A.1243π B. 62581π C. 50081π D. 2569π【答案】C【解析】如图所示,设底面正方形ABCD 的中心为O ',正四棱锥P ABCD -的外接球的球心为O1O D ∴'=正四棱锥的体积为22123P ABCDV PO -⨯⨯'∴==,解得3PO '=3OO PO PO R ∴-'=='-在 Rt OO D '中,由勾股定理可得: 222OO O D OD '+='即()22231R R -+=,解得53R =2344550033381V R πππ⎛⎫∴==⨯= ⎪⎝⎭球故选C【举一反三】1.已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( ) A. 4π B. 6π C. 8π D. 16π 【答案】C【解析】设点P 在底面ABCD 的投影点为O ',则12,2AO AC PA PO ==''=⊥平面ABCD,故PO =='而底面ABCD 所在截面圆的半径AO '=故该截面圆即为过球心的圆,则球的半径,故外接球的表面积为248,S R ππ==故选C.2.如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为则球O 的表面积是( )A .4πB .323πC .16πD .36π【答案】C【解析】如图,设OM x =,OB OD r ==,3AB =,BM ∴=DB =3DM ∴=,在Rt OMB ∆中,22(3)3x x -=+,得:1x =,2r ∴=,16O S π∴=球,故选:C .类型二:侧棱垂直底面型【例3-2】在三棱锥P ABC -中, 2AP =, AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C=-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边),则该三棱锥外接球的表面积为( ) A. 40π B. 20π C. 12π D.203π【答案】A【解析】设该三棱锥外接球的半径为R .在三角形ABC 中, ()cos 2cos c B a b C =-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边). ∴cos cos 2cos c B b C a C +=∴根据正弦定理可得sin cos sin cos 2sin cos C B B C A C +=,即()sin 2sin cos B C A C +=.∵sin 0A ≠∴1cos 2C =∵()0,C π∈∴3C π= ∴由正弦定理,332sin3r π=,得三角形ABC 的外接圆的半径为3r =.∵PA ⊥面ABC∴()()()22222PA r R +=∴210R =∴该三棱锥外接球的表面积为2440S R ππ==故选A.【举一反三】1.已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.214π3 B. 127π3 C. 115π3 D. 124π3【答案】D【解析】根据几何体的三视图可知,该几何体为三棱锥A −AAA 其中AA =AA =2,AA =4且AA ⊥底面AAA ,∠AAA =120° 根据余弦定理可知:AA 2−AA 2+AA 2−2AA ∙AA ∙AAA 120°=42+22−2×4×2×(−12)=28可知AA =2√7根据正弦定理可知∆AAA 外接圆直径2A =AAAAA ∠AAA=2√7AAA 120°=4√7√3∴A =2√213,如图,设三棱锥外接球的半径为A ,球心为A ,过球心A 向AA 作垂线,则垂足A 为AA 的中点AA =1,在AA ∆AAA 中,A 2=AA 2=(2√213)2+1=313∴外接球的表面积A =4AA 3=4A ×313=124A3故选A2.已知三棱锥S ABC -中, SA ⊥平面ABC ,且30ACB ∠=︒, 21AC AB SA ===.则该三棱锥的外接球的体积为( )B. 13π 【答案】D【解析】∵30ACB ∠=︒, 2AC AB ==ABC 是以AC 为斜边的直角三角形其外接圆半径2ACr ==,则三棱锥外接球即为以ABC C 为底面,以SA 为高的三棱柱的外接球∴三棱锥外接球的半径R 满足R ==故三棱锥外接球的体积34.3V R π== 故选D. 类型三:侧面垂直与底面型【例3】已知四棱锥A −AAAA 的三视图如图所示,则四棱锥A −AAAA 外接球的表面积是( )A. 20AB. 101A5C. 25AD. 22A【答案】B【解析】由三视图得,几何体是一个四棱锥A-BCDE,底面ABCD是矩形,侧面ABE⊥底面BCDE.如图所示,矩形ABCD的中心为M,球心为O,F为BE中点,OG⊥AF.设OM=x,由题得AA=√5,在直角△OME中,A2+5=A2(1),又MF=OG=1,AF=√32−22=√5,AA=√A2−1,AA=A,∴√A2−1+A=√5(2),解(1)(2)得A2=10120,∴A=4AA2=1015A.故选B.【举一反三】1.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如下图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A. 81AB. 33AC. 56AD. 41A 【答案】D【解析】由三视图可得,该几何体是一个如图所示的四棱锥A −AAAA ,其中AAAA 是边长为4的正方形,平面AAA ⊥平面AAAA .设A 为AA 的中点,A 为正方形AAAA 的中心,A 为四棱锥外接球的球心,A 1为AAAA 外接圆的圆心,则球心A 为过点A 且与平面AAAA 垂直的直线与过A 1且与平面AAA 垂直的直线的交点. 由于AAAA 为钝角三角形,故A 1在AAAA 的外部,从而球心A 与点P 在平面AAAA 的两侧. 由题意得AA =1,AA =A 1A ,AA 1=AA , 设球半径为A ,则A 2=AA 2+AA 2=AA 2+A 1A 2, 即AA 2+(2√2)2=22+(1+AA )2,解得AA =32, ∴A 2=(32)2+(2√2)2=414, ∴A 球表=4AA 2=41A .选D .2.已知如图所示的三棱锥D ABC -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在平面相互垂直,3AB =,AC =BC CD BD ===O 的表面积为( )A .4πB .12πC .16πD .36π【答案】C【解析】3AB =,AC =BC =222AB AC BC ∴+=,AC AB ∴⊥,ABC ∴∆ ABC ∆和DBC ∆所在平面相互垂直,∴球心在BC 边的高上,设球心到平面ABC 的距离为h ,则2223()2h R h +==, 1h ∴=,2R =,∴球O 的表面积为2416R ππ=.故选:C .3.三棱锥P ABC -的底面是等腰三角形,120C ∠=︒,侧面是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为( ) A .12π B .20πC .32πD .100π【答案】B【解析】 如图, 在等腰三角形ABC 中, 由120C ∠=︒,得30ABC ∠=︒, 又2AC =,设G 为三角形ABC 外接圆的圆心, 则22sin sin 30AC CG ABC ==∠︒,2CG ∴=.再设CG 交AB 于D ,可得1CD =,AB =1DG =. 在等边三角形PAB 中, 设其外心为H , 则223BH PH PD ===. 过G 作平面ABC 的垂线, 过H 作平面PAB 的垂线, 两垂线相交于O ,则O 为该三棱锥的外接球的球心, 则半径R OB ===∴该三棱锥的外接球的表面积为2420ππ⨯=.故选:B .类型四:棱长即为直径【例3-4】已知底面边长为√2,各侧面均为直角三角形的正三棱锥A −AAA 的四个顶点都在同一球面上,则此球的表面积为( )A. 3AB. 2AC. 43A D. 4A 【答案】A【解析】由题意得正三棱锥侧棱长为1,将三棱锥补成一个正方体(棱长为1),则正方体外接球为正三棱锥外接球,所以球的直径为√1+1+1=√3,故其表面积为A =4×A ×(√32)2=3A .选A .【举一反三】1.已知三棱锥P ABC -的所有顶点都在球O 的球面上,PC 是球O 的直径.若平面PCA ⊥平面PCB ,PA AC =,PB BC =,三棱锥P ABC -的体积为a ,则球O 的体积为( )A .2a πB .4a πC .23a πD .43a π【答案】B【解析】如下图所示,设球O 的半径为R ,由于PC 是球O 的直径,则PAC ∠和PBC ∠都是直角,由于PA AC =,PB BC =,所以,PAC ∆和PBC ∆是两个公共斜边PC 的等腰直角三角形,且PBC ∆的面积为212PBC S PC OB R ∆==, PA AC =,O 为PC 的中点,则OA PC ⊥,平面PAC ⊥平面PBC ,平面PAC ⋂平面PBC PC =,OA ⊂平面PAC ,所以,OA ⊥平面PBC , 所以,三棱锥P ABC -的体积为23111333PBC OA S R R R a ∆⨯⨯=⨯==,因此,球O 的体积为33414433R R a πππ=⨯=,故选:B .考向四 墙角型【例4】某几何体的三视图如图所示,则该几何体的外接球的体积是( )A B .2 C .3π D .【答案】B【解析】根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径2r ==则:343V π=⋅⋅=⎝⎭.故选:B .【举一反三】1.已知四面体AAAA 的四个面都为直角三角形,且AA ⊥平面AAA ,AA =AA =AA =2,若该四面体的四个顶点都在球A 的表面上,则球A 的表面积为( ) A .3AB .2√3AC .4√3AD .12A【答案】D【解析】∵AA =AA =2且AAAA 为直角三角形 ∴AA ⊥AA 又AA ⊥平面AAA ,AA ⊂平面AAA ∴AA ⊥AA ∴AA ⊥平面AAA 由此可将四面体AAAA 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球A正方体外接球半径为体对角线的一半,即A =12⋅√22+22+22=√3 ∴球A 的表面积:A =4AA 2=12A 本题正确选项:A2.已知一个棱长为2的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体外接球的表面积是( )A .24πB .20πC .16πD .12π【答案】D【解析】该几何体是把正方体1AC 截去两个四面体111AA B D 与111CC B D , 其外接球即为正方体1AC 的外接球,由1AC ==∴外接球的半径R =∴该几何体外接球的表面积是2412ππ⨯=.故选:D .3.在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,则三棱锥P ABC -的外接球的表面积为( ) A .12π B .6πC .4πD .3π【答案】A 【解析】在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,∴以PA 、PB 、PC 为棱构造棱长为1的正方体,则这个正方体的外接球就是三棱锥P ABC -的外接球,∴三棱锥P ABC -的外接球的半径2r ==∴三棱锥P ABC -的外接球的表面积为:2412S r ππ==.故选:A .考向五 内切球【例5】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【答案】πππ)625(8)26(4422-=-==R S 球,33)26(3434-==ππR V 球.∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球.∴33)26(3434-==ππR V 球. 【举一反三】1.球内切于圆柱, 则此圆柱的全面积与球表面积之比是( ) A .1:1 B .2:1C .3:2D .4:3【答案】C【解析】设球的半径为R ,则圆柱的底面半径为R ,高为2R ,222226S R R R R πππ∴=⨯+⨯=圆柱,24S R π=球.∴此圆柱的全面积与球表面积之比是:226342S R S R ππ==圆柱球.故选:C .2.若三棱锥A BCD -中,6AB CD ==,其余各棱长均为 5 ,则三棱锥内切球的表面积为 .【答案】6316π【解析】由题意可知三棱锥的四个面全等, 且每一个面的面积均为164122⨯⨯=. 设三棱锥的内切球的半径为r ,则三棱锥的体积14163ABC V S r r ∆==, 取CD 的中点O ,连接AO ,BO ,则CD ⊥平面AOB ,4AO BO ∴==,162AOB S ∆=⨯=12233A BCD C AOB V V --∴==⨯⨯=,16r ∴=,解得r =. ∴内切球的表面积为263416S r ππ==. 故答案为:6316π.3.一个几何体的三视图如图所示, 三视图都为腰长为 2 的等腰直角三角形, 则该几何体的外接球半径与内切球半径之比为( )A BC D 【答案】A【解析】 由题意可知几何体是三棱锥, 是正方体的一部分, 如图: 正方体的棱长为 2 ,内切球的半径为r ,可得:21111222(322)3232r ⨯⨯⨯⨯=⨯⨯⨯⨯,解得r ==故选:A .考向六 最值问题【例6】已知球O 的内接长方体ABCD A B C D -''''中,2AB =,若四棱锥O ABCD -的体积为2,则当球O 的表面积最小时,球的半径为( )A.B .2 CD .1【答案】B【解析】由题意,球O 的内接长方体ABCD A B C D -''''中,球心O 在T 对角线交点上, 可得:四棱锥O ABCD -的高为1(2h h 是长方体的高), 长方体的边长2AB =,设BC a =,高为h , 可得:112223a h ⨯⨯⨯⨯=,即6ah =,6h a∴=那么:23614222R ==+=,(当且仅当a =故选:B . 【举一反三】1.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯⨯==,故6R =,则球O 的表面积为24144R ππ=, 故选:C .1.已知正三棱柱111ABC A B C -的底面边长为3,外接球表面积为16π,则正三棱柱111ABC A B C -的体积为( )A .4B .2C D .2【答案】D【解析】正三棱柱111ABC A B C -的底面边长为3,故底面的外接圆的半径为:03,2sin 60r r r =⇒=外接球表面积为16π242R R π=⇒=外接球的球心在上下两个底面的外心MN 的连线的中点上,记为O 点,如图所示在三角形1OMB 中,22211112MB r OB R MB OM OB ===+=解得1,2OM MN h ===故棱柱的体积为:133222V Sh ==⨯⨯⨯= 故答案为:D. 2.已知P ,A ,B ,C ,D 是球O 的球面上的五个点,四边形ABCD 为梯形,//AD BC ,2AB DC AD ===,4BC PA ==,PA ⊥面ABCD ,则球O 的体积为( )A .3B C .D .16π【答案】A【解析】取BC 中点E ,连接,,AE DE BD//AD BC 且12AD BC EC ==∴四边形ADCE 为平行四边形AE DC ∴=,又12DC BC =12DE BC ∴=AE DE BE EC ∴===E ∴为四边形ABCD 的外接圆圆心设O 为外接球的球心,由球的性质可知OE ⊥平面ABCD 作OF PA ⊥,垂足为F ∴四边形AEOF 为矩形,2OF AE == 设AF x =,OP OA R ==则()22444x x +-=+,解得:2x =R ∴==∴球O 的体积:3433V R π==本题正确选项:A3.已知三棱锥S ABC -的各顶点都在一个球面上,球心O 在AB 上,SO ⊥底面ABC ,球的体积与三棱锥体积之比是4π,AC = ( )A .πB .2πC .3πD .4π【答案】D 【解析】由于OA OB OC OS ===,且SO ⊥平面ABC ,所以π2ACB ∠=,设球的半径为R ,根据题目所给体积比有34π114π332R R =⋅⋅,解得1R =,故球的表面积为4π.4.某三棱锥的三视图如图所示,则此三棱锥的外接球表面积是( )A .163π B .283πC .11πD .323π【答案】B【解析】根据几何体得三视图转换为几何体为:该几何体为:下底面为边长为2的等边三角形,有一长为2的侧棱垂直于下底面的三棱锥体,故:下底面的中心到底面顶点的长为:3,所以:外接球的半径为:R =故:外接球的表面积为:27284433S R πππ==⋅=.故选:B . 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的外接球的体积是( )A B C .193πD .223π【答案】A的四棱锥,且侧面PAB 垂直底面ABCD ,如图所示:还原长方体的长是2,宽为1设四棱锥的外接球的球心为O ,则过O 作OM 垂直平面PAB ,M 为三角形PAB 的外心,作ON 垂直平面ABCD ,则N 为矩形ABCD 的对角线交点,11,233OM ON ===所以外接球的半径222221912R ON AN R =+=+=∴=所以外接球的体积343V R π== 故选A 6.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的表面积为( )A .√6AB .6AC .9AD .24A【答案】B【解析】如图所示,该几何体为四棱锥A −AAAA .底面AAAA 为矩形,其中AA ⊥底面AAAA .AA =1,AA =2,AA =1.则该阳马的外接球的直径为AA =√1+1+4=√6.∴该阳马的外接球的表面积为:4A ×(√62)2=6A .故选:A .7.如图,边长为2的正方形AAAA 中,点A、A 分别是AA、AA 的中点,将AAAA ,AAAA ,AAAA分别沿AA ,AA ,AA 折起,使得A 、A 、A 三点重合于点A ′,若四面体A ′AAA 的四个顶点在同一个球面上,则该球的表面积为( )A .5AB .6AC .8AD .11A【答案】B【解析】由题意可知△A′AA 是等腰直角三角形,且A′A ⊥平面A′AA . 三棱锥的底面A′AA 扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球, 正四棱柱的对角线的长度就是外接球的直径,直径为:√1+1+4=√6. ∴球的半径为√62,∴球的表面积为4A ·(√62)2=6A .故选:A .8.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球A 的球面上,则球A 的表面积是:( )A .8AB .12√3AC .12AD .48A【答案】C【解析】由三视图还原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2. 把该三棱柱补形为正方体,则正方体对角线长为√22+22+22.∴该三棱柱外接球的半径为:√3.则球O 的表面积是:4A ×(√3)2=12π.故选:C .9.已知三棱锥A −AAA 的底面AAAA 的顶点都在球A 的表面上,且AA =6,AA =2√3,AA =4√3,且三棱锥A −AAA 的体积为4√3,则球A 的体积为( ) A .32A3B .64A3C .128A3D .256A3【答案】D【解析】由O 为球心,OA =OB =OC =R ,可得O 在底面ABC 的射影为△ABC 的外心,AB =6,AA =2√3,AA =4√3,可得△ABC 为AC 斜边的直角三角形,O 在底面ABC 的射影为斜边AC 的中点M ,可得13•OM •12AB •BC =16OM •12√3=4√3,解得OM =2, R 2=OM 2+AM 2=4+12=16,即R =4,球O 的体积为43πR 3=43π•64=2563π.故选:D .10.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.现有一如图所示的堑堵,AC BC ⊥,若12A A AB ==,则堑堵111ABC A B C -的外接球的体积为( )AB .8πCD .43π 【答案】C【解析】由题意,在直三棱柱111ABC A B C -中,因为AC BC ⊥,所以ABC ∆为直角三角形,且该三角形的外接圆的直径22r AB ==, 又由12AA =,所以直三棱柱111ABC A B C -的外接球的直径2R ==所以R =,所以外接球的体积为334433V R ππ==⨯=C. 11.在三棱锥P ABC -中.2PA PB PC ===.1AB AC ==,BC =则该三棱锥的外接球的表面积为( )A .8πB .163π C .43π D【答案】B【解析】因为1,AB AC BC ===,由余弦定理可求得23BAC π∠=, 再由正弦定理可求得ABC ∆的外接圆的半径122sin3BCr π==, 因为2PA PB PC ===,所以P 在底面上的射影为ABC ∆的外心D,且PD =,设其外接球的半径为R,则有2221)R R =+,解得R =24164433S R πππ==⨯=,故选B.12.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( ) A .6π B .12πC .32πD .48π【答案】B【解析】由题得几何体原图如图所示,其中SA ⊥平面ABC,BC ⊥平面SAB,SA=AB=BC=2,所以SC =设SC 中点为O,则在直角三角形SAC 中,在直角三角形SBC 中,OB=12SC =所以,所以点O所以四面体外接球的表面积为4=12ππ.故选:B13.已知在三棱锥P ABC -中,1PA PB BC ===,AB =,AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( )A .2B C .2π D .3π【答案】D【解析】根据题意, AC 为截面圆的直径, AC =设球心到平面ABC 的距离为d ,球的半径为R 。
高考数学大一轮复习 第八章 平面解析几何 第3课时 圆的方程课件 理 北师大版.ppt
不表示圆,而表示一个点-D2 ,-E2,当 D2+E2-4F<0 不表示任何图形.
时,
(3)当已知圆心坐标和半径求圆的方程时,一般设为标准方程 (x-a)2+(y-b)2=r2(r>0),当已知圆上三点时一般设为一般方程
x2+y2+Dx+Ey+F=0(D2+E2-4F>0),当已知圆的直径的两个 端点时,一般设为 (x-x1)(x-x2)+(y-y1)·(y-y2)=0 .
解①②得a=2,b=4或a=-2,b=-4. ∴所求圆的方程为(x-2)2+(y-4)2=10 或(x+2)2+(y+4)2=10.
法二:根据图形的几何性质:半径、弦长的一半、弦心距构 成直角三角形.如图,由勾股定理,可得弦心距
d= r2-4 2 22= 10-8= 2.
∵弦心距等于圆心(a,b)到直线x-y=0的距离, ∴d=|a-2b|= 2.③ 又已知b=2a.④ 解③④得a=2,b=4或a=-2,b=-4. ∴所求圆的方程是(x-2)2+(y-4)2=10 或(x+2)2+(y+4)2=10.
是( )
1
3
A.2
B.2
2 C. 2
32 D. 2
解析:配方得(x-1)2+(y+1)2=1,圆心(1,-1)到直线的距 离d=|1+12+1|=3 2 2,故选D.
答案:D
2.若原点(0,0)在圆(x-m)2+(y+m)2=2的内部,则实数m的
取值范围是( )
A.(0,1)
B.(-1,1)
C.(- 2, 2)
(1)从题组求解可以看出,确定一个圆的方程,需要三个独立 的条件;“选形式,定参数”是求圆的方程的基本方
法,即根据题设条件恰当选择圆的方程的形式,进而确定其 中的三个参数.
(2)解答与圆有关的问题,应注意数形结合,充分运用圆的几 何性质,简化运算.
2025年高考数学一轮复习-9.3-圆的方程【课件】
4.(2022·全国甲卷)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在☉M上,则☉M的方程
2+(y+1)2=5
(x-1)
为__________________.
【命题意图】本题主要考查求圆的标准方程的方法,关键是确定圆心和半径.
【解析】因为点M在直线2x+y-1=0上,所以设点M为(a,1-2a),
(2)没有xy项;(3)D2+E2-4F>0.
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
2+(y -b)2>r2
(x
-a)
0
0
(1)若M(x0,y0)在圆外,则________________.
2+(y -b)2=r2
(x
-a)
0
0
(2)若M(x0,y0)在圆上,则________________.
第九章
直线与圆、圆锥曲线
第三节
圆的方程
必备知识·逐点夯实
核心考点·分类突破
【课标解读】
【课程标准】
1.掌握圆的标准方程的特征,能根据所给条件求圆的标准方程.
2.掌握圆的一般方程,能对圆的一般方程与标准方程进行互化,了解二元二次方程表
示圆的条件.
【核心素养】
数学运算、逻辑推理.
【命题说明】
考向
圆的方程高考一般不单独考查,它常与直线、平面向量及圆锥曲
考点一 求圆的方程
[例1](1)(一题多法)过点A(1,-1)与B(-1,1),且圆心在直线x+y-2=0上的圆的方程
为(
)
A.(x-3)2+(y+1)2=4
届高考数学(北师大版)一轮复习讲义课件:8.2圆的方程
(2)圆的切线方程 ①若圆的方程为 x2+y2=r2,点 P(x0,y0)在圆上,则过 P 点且 与圆 x2+y2=r2 相切的切线方程为 x0x+y0y=r2. 注:点 P 必须在圆 x2+y2=r2 上. ②若圆的方程为 x2+y2+Dx+Ey+F=0,点 P(x0,y0)在圆上, 则过 P 点且与该圆相切的切线方程为
解得 a1=-7,a2=3,∴r21=80,r22=20. ∴所求圆的方程为(x+7)2+(y-6)2=80,或(x-3)2+(y-6)2=20.
题型二 求圆的一般方程 例 2.求经过 A(4,2)、B(-1,3)两点,且在两坐标轴上的四个截距 之和是 2 的圆的方程.
解析 已知圆过两点,且圆心不明确,故可用一般式求之. 设所求圆的方程为 x2+y2+Dx+Ey+F=0. 令 y=0,得 x2+Dx+F=0, ∴圆在 x 轴上的截距之和为 x1+x2=-D. 令 x=0,得 y2+Ey+F=0, ∴圆在 y 轴上的截距之和为 y1+y2=-E. 由题设 x1+x2+y1+y2=-(D+E)=2, ∴D+E=-2. ① 又 A(4,2)、B(-1,3)在圆上, ∴16+4+4D+2E+F=0, ② 1+9-D+3E+F=0. ③ 由①②③解得 D=-2,E=0,F=-12, 故所求圆的方程为 x2+y2-2x-12=0. 点评 用待定系数法求圆的方程有两种不同的选择:一般地,
解析 (1)设圆心在 x 轴上、半径为 5 的圆的方程为(x-a)2+y2= 52.
∵点 A 在圆上,∴(2-a)2+(-3)2=25, 解得 a=-2 或 a=6. 故所求圆的方程为
(x+2)2+y2=25 或(x-6)2+y2=25. (2)设所求圆的方程为(x-a)2+(y-b)2=r2,线段 AB 的垂直平分 线为 y=6,而所求圆的圆心在直线 y=6 上,所以圆心坐标为(a,6). 因为直线 x-2y-1=0 与圆相切, 所以|a-21×+64-1|= a-12+6-22,
2020版高考数学北师大版(理)一轮复习课件:9.3 圆的方程 .pdf
考点1
考点2
考点3
-12-
考点1
考点2
考点3
-13-
(2)方法一 ∵所求圆的圆心在直线x-3y=0上, ∴设所求圆的圆心为(3a,a), 又所求圆与y轴相切,∴半径r=3|a|,
故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9, 即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
C.x2+(y-1)2=1 D.(x+1)2+y2=1
解析:由题得圆心坐标为(0,1),所以圆的标准方程为x2+(y-1)2=1.
故选C.
3.(2018河南南阳联考,6)以(a,1)为圆心,且与两条直线2x-y+4=0与
2x-y-6=0同时相切的圆的标准方程为( A )
A.(x-1)2+(y-1)2=5
由|x1-x2|=6,即(x1+x2)2-4x1x2=36,
得D2-4F=36,④ 由①②④解得D=-2,E=-4,F=-8或D=-6,E=-8,F=0.
故圆C的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
考点1
考点2
考点3
-10-
思考求圆的方程有哪些常见方法? 解题心得求圆的方程时,应根据条件选用合适的圆的方程.一般 来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求
求圆的方程
例1(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的
方程为 (x -3) 2+y2 =2 .
(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,
北师大版高考数学一轮复习统考第9章平面解析几何第3讲圆的方程课件
围是( )
A.(-∞,-2) C.(-2,0)
B.-23,0 D.-2,32
解析 由圆的一般方程的系数关系可得 a2+(2a)2-4(2a2+a-1)>0,化
简得 3a2+4a-4<0,解得-2<a<32.
最新 PPT 欢迎下载 可修改
解析 9答案
4.圆心在 y 轴上且通过点(3,1)的圆与 x 轴相切,则该圆的方程是( )
② 11 __(x_0_-__a_)2_+__(_y_0-__b_)_2_>_r_2 _⇔点在圆外⇔d>r;
③ 12 _(_x_0_-__a_)2_+__(_y_0-__b_)_2_<_r2__⇔点在圆内⇔d<r.
最新 PPT 欢迎下载 可修改
5
求圆的方程,如果能借助圆的几何性质,能使解题思路简化减少计算 量,常用的几何性质有:
最新 PPT 欢迎下载 可修改
4
2.点与圆的位置关系
(1)理论依据
09 ___点__与__圆__心__的__距__离_____与半径的大小关系.
(2)三个结论
圆的标准方程(x-a)2+(y-b)2=r2,点 M(x0,y0),d 为圆心到点 M 的
距离.
① 10 _(_x_0-__a_)_2_+__(y_0_-__b_)_2=__r_2_⇔点在圆上⇔d=r;
则实数 m 的取值范围是( )
A.(-1,1)
B.(- 3, 3)
C.(- 2, 2)
D.-
22,
2
2
解析 ∵原点(0,0)在圆(x-m)2+(y+m)2=4 的内部,∴(0-m)2+(0+
m)2<4,解得- 2<m< 2,故选 C.
高考总复习(北师大版)数学(文)【配套课件】第八章第三节 圆的方程(32张)
+(y-2)2=1. 答案:A
2.经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的
方程为
()
A.(x-1)2+y2=1 B.(x-1)2+(y-1)2=1
C.x2+(y-1)2=1 D.(x-1)2+(y-1)2=2 解析:由xx=+1y=,2 得xy==11,,
即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半
A.(x-2)2+y2=5
B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=5
D.x2+(y+2)2=5
解析:由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方
程为 x2+(y+2)2=5.
答案:D
4. 已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一
点,则△ABC面积的最小值是________.
•7、能培养独创性和唤起对知识愉悦的,是教师的最高本领2021/10/162021/10/16October 16, 2021
•8、先生不应该专教书,他的责任是教人做人;学生不应该专读书,他的责任是学习人生之道。2021/10/162021/10/162021/10/162021/10/16
圆的方程
(2)若M(x0,y0)在圆上,则 (x0-a)2+(y0-b)2=r2 . (3)若M(x0,y0)在圆内,则 (x0-a)2+(y0-b)2<r2 .
对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F >0这一成立条件.
[试一试]
方程 x2+y2+4mx-2y+5m=0 表示圆的充要条件是( )
角度四 利用对称性求最值
4.(2013·重庆高考)已知圆C1:(x-2)2+(y-3)2=1,圆CN分别是圆C1,C2上的动点,P为x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选C.
3.(2018河南南阳联考,6)以(a,1)为圆心,且与两条直线2x-y+4=0与
2x-y-6=0同时相切的圆的标准方程为( A )
A.(x-1)2+(y-1)2=5
B.(x+1)2+(y+1)2=5
C.(x-1)2+y2=5
D.x2+(y-1)2=5
解析:由题意,得圆心在直线2x-y-1=0上,将点(a,1)代入可得a=1,即
又所求圆在直线 y=x 上截得的弦长为 2√7, 圆心(3a,a)到直线 y=x 的距离 d=|√2���2���|,
∴d2+(√7)2=r2,即 2a2+7=9a2,∴a=±1.
故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9, 即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
A.2√6
B.8
C.4√6
D.10
(2)一个圆与 y 轴相切,圆心在直线 x-3y=0 上,且在直线 y=x 上截
得的弦长为 2√7,则该圆的方程为
.
x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0
随堂巩固
-12-
考点1
考点2
考点3
解析: (1)设圆的方程为 x2+y2+Dx+Ey+F=0,
随堂巩固
-15-
考点1
考点2
考点3
方法三 设所求圆的方程为 x2+y2+Dx+Ey+F=0,
则圆心坐标为(-���2���,-���2���),半径 r=12 ������2 + ������2-4������.
在圆的方程中,令 x=0,得 y2+Ey+F=0.
由于所求圆与 y 轴相切,∴Δ=0,则 E2=4F.①
������ = -20,
∴x2+y2-2x+4y-20=0,
令 x=0,得 y2+4y-20=0,
∴y=-2±2√6, ∴|MN|=4√6.
考点1
考点2
考点3
Байду номын сангаас
随堂巩固
-13-
(2)方法一 ∵所求圆的圆心在直线x-3y=0上, ∴设所求圆的圆心为(3a,a), 又所求圆与y轴相切,∴半径r=3|a|,
解析:设三角形OAB的外接球方程是x2+y2+Dx+Ey+F=0,
由点O(0,0),A(2,4),B(6,2)在圆上可得,
������ = 0,
������ = 0,
4 + 16 + 2������ + 4������ + ������ = 0,解得 ������ = -6,
36 + 4 + 6������ + 2������ + ������ = 0,
考点1
考点2
考点3
随堂巩固
-9-
(2)设圆C的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
将 P,Q 两点的坐标分别代入得 2������-4������-������ = 20,① 3������-������ + ������ = -10.②
在圆C的方程中令y=0,得x2+Dx+F=0.③ 设x1,x2是方程③的两根,
故选 C.
(2)设点 M(x,y),依题意,||������������������������|| = 即曲线 C 的方程为 x2+y2=4.
(������+4)2
+������2
=2,化简得
x2+y2=4,
(������+1)2+������2
考点1
考点2
考点3
随堂巩固
-18-
思考求与圆有关的轨迹方程都有哪些常用方法? 解题心得1.求与圆有关的轨迹问题时,根据题设条件的不同常采 用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义 法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方 程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系 式等. 2.求与圆有关的轨迹问题时,题目的设问有两种常见形式,作答也 应不同.若求轨迹方程,则把方程求出化简即可;若求轨迹,则必须根 据轨迹方程,指出轨迹是什么曲线.
考点1
考点2
考点3
随堂巩固
-19-
对点训练2已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.则M的轨迹方程 为 (x-1)2+(y-3)2=2 .
2.点与圆的位置关系
2
圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0), (1)(x0-a)2+(y0-b)2 = r2⇔点在圆上; (2)(x0-a)2+(y0-b)2 > r2⇔点在圆外; (3)(x0-a)2+(y0-b)2 < r2⇔点在圆内.
知识梳理 考点自诊
随堂巩固
-3-
随堂巩固
-5-
知识梳理 考点自诊
2.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的
标准方程为( C )
A.(x-1)2+y2=1 B.x2+(y+1)2=1
C.x2+(y-1)2=1 D.(x+1)2+y2=1
解析:由题得圆心坐标为(0,1),所以圆的标准方程为x2+(y-1)2=1.
������ = -2,
故三角形OAB的外接球方程为x2+y2-6x-2y=0.
考点1
考点2
考点3
随堂巩固
-7-
求圆的方程 例1(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的 方程为 (x-3)2+y2=2 . (2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6, 则圆C的方程为 x2+y2-2x-4y-8=0或x2+y2-6x-8y=0 .
圆心(-���2���,-���2���)到直线 y=x 的距离 d=|-���2√���+2���2���|,
由已知得 d2+(√7)2=r2,
即(D-E)2+56=2(D2+E2-4F).②
又圆心(-���2���,-���2���)在直线 x-3y=0 上,∴D-3E=0.③
������ = -6, ������ = 6,
随堂巩固
-8-
考点1
考点2
考点3
解析: (1)方法一 由已知得kAB=0,所以线段AB的中垂线方程为x=3.
①
过点B且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②
联立①②,解得
������ ������
= =
30,,所以圆心坐标为(3,0),
半径 r= (4-3)2 + (1-0)2 = √2,所以圆 C 的方程为(x-3)2+y2=2.
9.3 圆的方程
随堂巩固
-2-
知识梳理 考点自诊
1.圆的定义及方程
定义
平面内到 定点 迹)叫做圆
的距离等于 定长
的点的集合(轨
标准 方程
一般 方程
(x-a)2+(y-b)2=r2(r>0)
圆心 C:(a,b) 半径: r
x2+y2+Dx+Ey+F=0(D2+E2-4F>0) 圆心:(-D2,-E2) 半径:r= ������2+������2-4������
解析:曲线C的方程可以化为(x+a)2+(y-2a)2=4,则该方程表示圆 心为(-a,2a),半径等于2的圆.因为圆上的点均在第二象限,所以a>2.
5.(2018四川成都三诊,14)在平面直角坐标系中,已知三点O(0,0),
A(2,4),B(6,2),则三角形OAB的外接圆方程是 x2+y2-6x-2y=0 .
点Q(3,0)相连,线段PQ的中点M的轨迹方程是( C )
A.(x+3)2+y2=4
B.(x-3)2+y2=1
C.(2x-3)2+4y2=1
D.(2x+3)2+4y2=1
(2)已知点A(-4,0),直线l:x=-1与x轴交于点B,动点M到A,B两点的距
离之比为2.则动点M的轨迹C的方程为 x2+y2=4 .
随堂巩固
-4-
知识梳理 考点自诊
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)已知圆的方程为x2+y2-2y=0,过点A(1,2)作该圆的切线只有一
条. ( × )
(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个
圆. ( × )
(3)方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆心为
方法二 设圆 C 的方程为(x-a)2+(y-b)2=r2(r>0),
因为点 A(4,1),B(2,1)都在圆 C 上,
故
(4-������)2 (2-������)2
+ (1-������)2 + (1-������)2