流体力学学习课件流体力学习题.

合集下载

流体力学习题PPT课件

流体力学习题PPT课件

解: 1. 底盖分析: 底盖左、右
Vp1
两半部分水平压力大小相等,
方向相反, 故底盖水平分力为
零。其液体总压力就是曲面
Fpz1
总压力的垂直分力, 即
d
H h
Fpz1 Vp1
d d
d2
4
H
h 2
d3
12
7.052k N 方向向下
.
2. 顶盖分析: 水平分力亦为零, 其液体总压力就是曲面总压力的垂直分力。
f z
g
pgzC
p0 h
z0 z
代入初始条件解得:
pp0 gh
.
例1: 矩形平面两侧均受密度为ρ的静止液体作用,且水深分别为h1及 h2 试求作用在矩平壁的合力及压力中心(平壁在垂直于图面方向宽度 为b)。
pa
yD1
yD
h1
Fp
Fp1
pa
yD2
h2
h1 h2
Fp2
b
b
.
例1: (1) 图解法: 画压强分布图
δ
13 5
12
v
G
.
例4: μ1=0.14Pa·s,μ2=0.24Pa·s; δ1=0.8mm,δ2=1.2mm, 速度为直 线分布, 求推动A=1000cm2以
υ0=0.4m/s 运动所需的力?
解:在交界面0-0处,应力平衡,即τ1= τ2,上下两种液体 速度分布均成直线分布规律。设O-O面上流体速度为v
Fpz3
Vp3
d3
12
0.321kN
H
方向向下
侧盖所受液体总压力为 Fp3为
d
Vp3 Fpz3 d
h d
F p 3F p 2 x3F p 2 z34 .8k2Nta nF F p px z3 3 3 5' 1

流体力学流体动力学完美版PPT

流体力学流体动力学完美版PPT

h ' h
气〔ρ〕-液〔ρ’〕 h ' h
解:水温40℃,汽化压强为7.38kPa 大气压强 pa 97.3103 10m
g 99.229.807
汽化压强
pgv 979.3.22891.803070.76m
p 12 v 1 2 ag 注z2意 z :1 z 2-p z2 1 ——2 v 2 2 下 游p 断w面高 度减上游断面高度〔±〕; ——用相对ρ压a-ρ强—计—算外的界气大体气伯密努度利减方管程内
常与连续性微分方程 ux uy uz 0 联立 x y z
2.粘性流体运动微分方程〔粘性作用→切应力〕
f 1 p 2 u d u u u u d t t
——纳维-斯托克斯方程〔N-S方程〕
分量式
X 1 p x 2 u x u tx u x u x x u y u y x u z u z x
pAagz2z1v 2 29v 2 2
1 9 2 .8 1 .2 0 .8 9 .8 4 0 0 0 .8 v 2 9 0 .8 v 2
2
2
1 1 18 528 .6 7 2.48 即 27 2 6.6 724 .48
Y 1 p y 2 u y u ty u x u x y u y u y y u z u z y Z 1 p z 2 u z u tz u x u x z u y u y z u z u z z
元流的伯努利方程
1.理想流体元流的伯努利方程 〔1〕推导方法一
将〔1〕、〔2〕、〔3〕各式分别乘以dx、dy、 dz,并相加
g 2g
单位重量流体的机械能守恒〔总水头不变〕
2.粘性流体元流的伯努利方程
z1pg 12 u1 g 2 z2pg 22 ug 2 2hw'

流体力学例题及答案PPT学习教案

流体力学例题及答案PPT学习教案

证明 理想流体的运动(yùndòng)方程为
dV f 1 p
dt
对于(duìyú)正压流1 体p: ρ
PF
对于有势质量力: f Π
dV dt
PF
d
dt
dV ds L dt
PF ds
L
d PF 0
L
定理得证
第16页/共22页
第十七页,共22页。
例 y =0 是一无限(wúxiàn)长固壁,
c2
T0 1 1 Ma2
T
2
T c 2 2 T0 c0 2 1
1
0
2
1
1
p p0
第2111页/共221页
1
1 2
T1 T2
1
p1 p2
T1 T2
1
1
0
1
2
1
Ma2
1
p0 p
1
1 Ma2 2
1
第十二页,共22页。
例 空 气 在缩 放管内 (ɡuǎ n nè i)流动, 气流的 滞止参 数为p 0 =10 6 Pa , T0 = 350 K ,出口 截面积 Ae = 10 cm2 ,背压 为 p b= 9 .3 10 5 Pa 。 如果要 求喉部 的马赫 数达到 Ma1 = 0.6 ,试求 喉部面 积A1。
0-1截面:
H p1 V12 g 2g
p1
g
H
u12 2g
91887
pa
第3页/共22页
0
H
喷 嘴 1
2
喷嘴流体动量 方程 x 方向:
x
F
p1
p2 0
控 制 体
p1A1 F Qu2 u1

《流体力学入门》课件

《流体力学入门》课件

03
气体压力计利用弹性元 件的变形来测量压力, 适用于测量较低的压力 。
04
流体静压力的计算需要 考虑流体的密度、重力 加速度和作用面积等因 素。
03
流体动力学基础
流体动力学基本概念
01
流体
流体是气体和液体的总称,具有流 动性和不可压缩性。
流线
流线是表示流体运动方向的几何线 条。
03
02
流场
流场是流体运动所占据的空间区域 。
伯努利方程
伯努利方程描述了流体在 封闭管道中流动时,流体 的压力、速度和高度之间 的关系。
连续性方程
连续性方程描述了流体在 流动过程中质量守恒的规 律。
流体流动的阻力与损失
摩擦阻力
摩擦阻力是由于流体与管 壁之间的摩擦而产生的阻 力,通常用达西-韦伯定律 来描述。
局部损失
局部损失是由于流体在管 道中流动时,由于管道形 状、方向变化等原因而产 生的能量损失。
《流体力学入门》 ppt课件
xx年xx月xx日
• 流体力学简介 • 流体静力学基础 • 流体动力学基础 • 流体流动现象与规律 • 流体力学在工程中的应用
目录
01
流体力学简介
流体的定义与特性
总结词
流体的定义与特性是流体力学研究的基础。
详细描述
流体是指在任何微小剪切力作用下都能发生连续变形的物体,具有粘性、压缩性和流动性等特性。
流体动力学还用于解决一些工程问题,例如管 道流动的阻力和传热问题,以及流体动力学的 振动和稳定性问题等。
流体动力学在航空航天、交通运输、能源等领 域也有着重要的应用,例如飞机和汽车的设计 、发动机的工作原理等。
流体流动现象与规律在工程中的应用

流体力学例题ppt课件

流体力学例题ppt课件
化简上式,得到
F2p 1 hc Bo sv1 2h B 2co s3 2 2 7
【例题5】在水箱水面下H=3m处装有一个收缩 -扩张形的文丘里管嘴,其喉部直径d1=4cm, 喉部绝对压强为24.5kPa,大气压强为101.3kPa。 渐扩部分的损失假定是从d1突扩到d2时所产生 损失的20%,收缩部分的阻力可以不计,其他
已知:斜激波表(k=1.4)为:
【解】可以知道,气流在三角翼头部处将产生斜
激波。经过斜激波后,气流的参数如下变化: 由波前马赫数M1=4及气流偏转角 5 ,查表
得到气流的激波角 、对应的波后1:
17.26 ,M2=3.709,p2 p11.476
vh 5.8(cm)
ve
【例题6】在汽油发动机吸气过程中,如图所示的汽 化器喉部绝对压力为p=88kPa,已知喉部截面面积 A=4cm2,环境温度T0=27oC,环境压强为p0=105Pa, 试按不可压缩以及等熵绝热可压缩两种情况计算: (1)喉部空气速度; (2)发动机进口的质量流量。
[解]从外部大气中,引 一条流线至汽化器的喉 道。
故F=149.45N。
【例题4】混流器的横断面如图所示,两股水分别从 左边两口流入。混合后经右边流出。任何横断面 的流动情况与图示断面相同。
已知入口高度为h,入口夹角为θ ,水的密 度口为处平ρ 均,速混度流为器宽v1。度为B,入口处的表压为p1,入 出口处压力为大气压,
出口处的速度如图: 在中心两侧各为h的
所以,波后气流的静压为:p2=29.52kPa,总压


p2* p2121M221 =3017.52kPa。
因为波后仍然是超音速的,因此在翼弦最高点处,
将产生膨胀波。由于后翼面BC段的马赫数为4.45。

流体力学题目整理PPT优秀课件

流体力学题目整理PPT优秀课件
∵ 水箱水位差一定 ∴ 不论并联或是串联,h相等
Hale Waihona Puke ∴nπ 82d λ 5L gQ2串π 82d λ 5L gQn2 并 2 ∴
Q并 Q串
3
n2
4
例5-7 如图,用一条管路将水从高水池输入低水池, 两水池水面高差H=8m,管路是一个并联、串联管路, 各管段长度L4=800m,L5=400m,L1=300m,L2=100m, L3=250m,管段4和管段5直径均为d4=d5=0.3m,管段 1、2、3均为d1=d2=d3=0.2m,各管段λ=0.03m,不计 局部损失,求Q。
Pγγ HSHQ2
SPγH S8(π L dλ 2d 4ζ

单位
kg7/m
例5-4 某矿渣混凝土板风道粗 糙 度 K1.5mm,断面积为
1m1.2,m 长为50m,局部阻力系数 ζ2.5,流量为
14 m 3 s ,空气温度为20℃ ,求压强损失。 解:1) 20℃空气运动粘滞系数 ν15.1706m2s 对矩形风管计算阻力损失应用当量直径
洁空气在此压强作用下,能过孔板的孔口向房间流
出,μ=0.6,φ=0.97,孔口直径1cm,求每个孔口
13
出流的流量及速度。
Δp 300Pa
解:由孔口流量公式:
Pa
Q μA
2Δp ρ
Aπ 4d20.71 8 0 54m2
Q0. 06. 7 1 4 8 02 5 13.0 2 100 1 . 4 0 m 5 3s
dea2ab b21 1 11..221.09m
8
流动速度 VA Q1114. 211.m6s5
求雷诺数 ReV ν ed1 11 5 . . 1 16 7 0 6 .5 08 9150

流体力学习题讲解(修)PPT课件

流体力学习题讲解(修)PPT课件

p1 Hg gh gh1

p1
g

Hg
d 2 0.0352
4
4
列等压面1—1的平衡方程
p 油 gh Hg gh
解得Δh为: h p 油 h 15590 0.92 0.70 16.4
Hg g Hg 13600 9.806 13.6
2019/10/28
10
2019/10/28
2019/10/28
13
2019/10/28
14
1-11.如 图 所 示 盛 水U 形 管, 静 止 时, 两 支 管 水 面 距 离 管 口 均 为h, 当U 形 管 绕OZ 轴 以 等 角 速 度ω 旋 转 时, 求 保 持 液 体 不 溢 出 管 口 的 最 大 角 速 度ωmax 。
解:由 液 体 质 量 守 恒 知, 管 液 体 上 升 高 度 与 管 液 体 下 降 高 度 应 相 等,且 两 h 者 液 面 同 在 一 等 压 面 上, 满 足 等 压 面 方
5.59 m s
21
排出水的流量:
q

v

4
D2

v3

4
D2

v

v3


4
D2
5.59 4.43 0.052 0.02 m3 s
4
22
3-2:注 液 瓶 为 了 使 下 部 管 口 的 出 流 量 不 随 时 间 而 变, 在 上 部 瓶 塞 中 插 人 通 气 管, 试 分 析 出 流 量 恒 定 的 原 理 和 调 节。
h hD

hc

JC hc A

第一章 流体力学基础优秀课件

第一章 流体力学基础优秀课件

2021/3/15
第一章 流体力学基础
12
第二节 流体静力学
二、静压力基本方程 (-)静压力基本方程
p Ap0 Ag h A
pp0 gh
l)静止液体内任一点的压力由两部分组成:一部分是液面上的压力p0,另
一部分是该点以上液体重力所形成的压力gh。
2)静止液体内的压力随液体深度呈线性规律递增。
3)同一液体中,离液面深度相等的各点压力相等。由压力相等的点组成的 面称为等压面。在重力作用下静止液体中的等压面是一个水平面。
2021/3/15
第一章 流体力学基础
13
第二节 流体静力学
(二)静压力基本方程的物理意义
p p 0 g h p 0 g (z 0 z )
pgzpg0 z0 常数
(三)压力的表示方法
2021/3/15
第一学
一、基本概念 (一)理想液体、恒定流动和一维流动 一般把既无粘性又不可压缩的假想液体称为理想液体; 液体流动时,如液体中任何一点的压力、速度和密度都不随时间而变化,便
恩氏粘度用恩氏粘度计测定,即将200mL温度为t℃的被测液体装入粘度计的 容器内,由其底部2.8mm的小孔流出,测出液体流尽所需时间t1,再测出相同 体积温度为20℃的蒸馏水在同一容器中流尽所需的时间t2;这两个时间之比即为 被测液体在t℃下的恩氏粘度,即
oEt1 /t2
思氏粘度与运动粘度间的换算关系式为
7.3o1 E6o.E 311 06m2/s
2021/3/15
第一章 流体力学基础
10
第一节 工作介质
(3)温度对粘度的影响 (4)压力对粘度的影响 (5)气泡对粘度的影响 (三)选用和维护
2021/3/15

《流体力学基础知识》课件

《流体力学基础知识》课件
流体粘性
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。

流体力学课件 ppt

流体力学课件 ppt

流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。

最新流体力学--第3章习题学习资料精品课件

最新流体力学--第3章习题学习资料精品课件

解: 确定流动类型(lèixíng),计算雷诺数
4 Q 4 1700
vd23 .1 4 0 .2 2 361 0m 5 0 /s
Rev d11.7 5 50 1.20 61.9 1150
计算(jìsuàn)边界雷诺数
8
8
R 1 e 2.9 6 8 d 72.9 6 8 0 2 .10 5 7 0 100 1 .9 6 1 0 150 0
第二十六页,共48页。
列1-1面和C面的伯努利方程,基准面取为通过 (tōngguò)C面中心的水平面
h1h22 vg 2(12 dl)2 vg 2
代入数据(shùjù)得到20.5
第二十七页,共48页。
4. 水从直径d,长L的铅垂管路流入大气中,水箱中 液面高度为h,管路局部阻力可忽略(hūlüè) 沿程阻 力系数为λ。 (1)求管路起始断面A处压强。 (2)h等于多少时,可使A点的压强等于大气压。
A. 增加; B. 减小; C. 不变; D. 不定。
第十页,共48页。
例2. 长度l=1000m,内径d=200mm的普通镀锌钢管,用 来输送运动粘度ν=0.355×10-4m2/s的重油,已经测得其 流量Q=0.038m3/s,问其沿程水头(shuǐtóu)损失为多少 ?(△=0.2mm)
解: 确定(quèdìng)流动类型,计算雷诺数
L
第三十三页,共48页。
解:管路输送功率为:
∴ 输送流量
N Qh Q 2 H
3
Q 3N 310001000 1.2 m3 s
2H 21000 9.81127.4
沿程水头损失
hf
H 3
l
d
v2 2g
l d
1 4Q 2

《流体力学》习题答案48页PPT

《流体力学》习题答案48页PPT
1-6:在圆筒的侧面和底面都存在摩擦
• 侧面摩擦应力 • 侧面摩擦力矩
1
dur dy
T侧1dhr 4d3h
• 底面摩擦应力
2
dur dy
• 半径r处的微元摩擦力矩 dT 底 rr2rdr
0 .5 d
0 .5 d
• 底面摩擦合力矩 0 d底 T 0
rr2rd r d 4 32
TT侧T底4 d 3h 32 d 4
3 d23Td18h
1-7:简谐运动,需求瞬时功率和积分求平均功率。
• 往复速度 • 摩擦力
udxLcost
dt
d du yuL cots
• 瞬时功率
PFudlud l 2L2co2st
3.140.090.080. 1(236)020.22co2s236t0
60
60
25.68co2s12t
• 平均功率
z
12
uy x
ux y
1(b(b))b
2
3-5:流场成立,即连续性方程成立
uxux 2x2y2x2y0, 流场成立 x y
切应 x y1 2 ( u 变 x y u y x )|( 率 a ,b ) 1 2 ( 2 y 2 x )|(a ,b ) a b
z1 2 u x y u y x |(a ,b )1 2( 2 y 2 x )|(a ,b ) a b
(yb)dx(xa)dy0 (xybx)(xyay) C bxayC
lnx(a)lny(b)t3/3
由题目可知,通过(a,b)点,因此,积分常数C=0
所以,通过(a,b)点的迹线方程为:
bxay0
3-3:流线方程
dx dy ux uy
代入流场

流体力学例题及答案 ppt课件

流体力学例题及答案 ppt课件
x 方向动量方程: V1 Q V2 Q VcQ θ o 0 s
y 方向动量方程: FVQ siθn

输送润滑油的管子直径d = 8mm,管长l=15m,如图所
示。油的运动粘度v=15×10-6m2/s,流量qv=12cm3/s,求油箱的 水头(不计局部损失)。
解: V 4q dV 23 4 .1 4 1 20 .1 0 0 0 8 420.239m /s
F
1 2
g (h1 2
h2 2 )
Q(V2
V1 )

1--1截面上压强合力:
1 2
gh 1 2
2--2截面的压强合力:
1 2
gh22
对控制体内流体列出动量方程
F1 2g(h12h22)Q (V 2V 1)
连续性方程 伯努利方程
Q V1h1 V2h2
h1
pa
g
V12 2g
h2
pa
g
V22 2g
2
1
1
1
1 2
T1 T2
1
p1 p2
T1 T2
1
1
0
1
2
1
Ma
2
1
p0 p
1
2
1
Ma
2
1
例 空气在缩放管内流动,气流的滞止参数为p0 =106 Pa , T0 = 350 K,出口截面积 Ae =10 cm2,背压为 pb= 9.3105 Pa 。如果要求喉部的马赫数达到Ma1 = 0.6,试求喉部面积A1。
解:
3
3
L
l2
H
2 h
平均速度:
1
1
V4d Q 24 0. 50 2 .21.02m /s

《流体力学》课件

《流体力学》课件

流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等

流体力学专题教育课件

流体力学专题教育课件

§1.1 流体力学及其任务
流体力学旳研究措施
理论措施:根据实际问题建立理论模型,涉及微分体 积法、速度势法、保角变换法等。
数值措施:根据理论分析旳措施建立数学模型,选择 合适旳计算措施,涉及有限差分法、有限元法、特征线法、 边界元法等,利用计算机计算,得出成果。
试验措施:根据模化理论对所研究旳流动进行模拟, 经过观察和测量,取得所需成果,可直接处理工程中复杂 旳问题,并能发觉新旳流动现象。
§1.3 流体旳主要物理性质
dV / V 1 dV
dp
V dp

1 d dp
压缩系数旳倒数是体积弹性模量,即:
K 1 V dp dp
dV d
(1- 6) (1- 7) (1- 8)
§1.3 流体旳主要物理性质
液体旳热膨胀性用热膨胀系数来表达,它表达在一 定旳压强下,温度增长1度,密度旳相对减小率。
三种圆板旳衰减时间均相等。库仑得出结论:衰减旳 原因,不是圆板与液体之间旳相互摩擦,而是液体内部旳 摩擦。
§1.3 流体旳主要物理性质
3. 牛顿内摩擦定律
根据牛顿内摩擦定律,流体旳内摩擦力可表达为:
以应力表达
T A du
dy
du
dy
(1- 2) (1- 3)
du/dy为速度在垂直于速度旳方向上旳变化率,也称 为速度梯度 。
§1.3 流体旳主要物理性质
4. 黏性流体和无黏性流体
黏性流体(实际流体):实际中旳流体都具有黏性, 因为都是由分子构成,都存在分子间旳引力和分子旳热运 动,故都具有黏性。
无黏性流体(理想流体):假想没有黏性旳流体。
因为实际流体存在黏性使问题旳研究和分析非常复杂, 甚至难以进行,为简化起见,引入理想流体旳概念。某些 黏性流体力学旳问题往往是根据理想流体力学旳理论进行 分析和研究旳。

流体力学 习题PPT课件

流体力学 习题PPT课件

【解】 此题用极坐标求解比较方便,坐标变换为:
x r cos y r sin
速度变换为
vr vx cos vy sin , v vy cos vx sin
v 4r cos2 3r sin 2
2 (4r cos2 3r sin 2 )rd r 2
0
2 (4cos2 3sin2 )d
3-9图2-42所示为双液式微压计,A、B两杯的直径均为 d1=50mm,用U形管连接,U形管直径d2=5mm,A杯盛有酒 精,密度ρ1=870kg/m3,B杯盛有煤油,密度ρ2=830kg/m3。 当两杯上的压强差Δp=0时,酒精煤油的分界面在0—0线上。 试求当两种液体的分界面上升到0’—0’位置、h=280mm时Δp 等于多少?
cosrx?速度变换为rvv?4v???0?y试求绕vx3??xvy4?222?cos?sinry?sin??22?????ysinr?rdxrv?????sincosxyvvv????223cos???2?22sin3cos4rr??d??????rsin3cos4022????2202227cos6rdrr????????的圆区域内流体的涡通量径处的速度分量为常数它的值是多少
a m2g f 259.80665 29.42 6.1642 m / s2
m2 m1 mw
25 4 6
a g
H
b
h
H
ab 2g
h
6.1642 0.1 2 9.80665
0.15
0.181
m图2-48所示为一圆柱形容器,直径
d=300mm,高H=500mm,容器内装水,
0
6r 2 r 2 2 cos2d 7r 2 0
第25页/共29页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、有一直径d 0.2m 的圆形锐缘薄壁孔口,其中心在上游 水面下的深度 H 5.0m ,孔口前的来流流速 v0 0.5m/s , 孔口出流为全部完善收缩的自由出流,求孔口出流量Q。 解:对薄壁小孔口的全部完善收缩的自由出流有: 流量系数 0.62 ,作用水头 p
a
H 0 H1
d2
2
v2 Rz
d1
1
Rx v1
1
G
L
2
镇墩
P 1P 2 G sin Rx Q(v2 v1 )
G cos Ry 0
Rx 10.13kN
2 2
Ry 1.732kN
R Rx Ry 10.277kN
Ry / Rx 9.7 arctan
w 0.65
,出口 2 1 。试求当涵管通过流量为 Q 3m3 /s
时,有压涵管的管径。 解:以2-2断面为基准面,写出1-1,2-2之间的液体的伯诺里 方程, H 0 0 0 0 0 hw
l v2 v2 v2 v2 v2 hw h f h j 0.5 0.65 0.65 1 d 2g 2g 2g 2g 2g v2 (0.03 50 / d 0.5 1.3 1) 19.6 4Q Q Av, v d2
d2
2
v2 Rz
d1
1
Rx v1
G
L
Байду номын сангаас
2
镇墩
1
d2
2
v2 Rz
d1
1
Rx v1
1
G
L
2
镇墩
1 Q A1v1 0.2 2 1 0.03142 m3 / s 4 Q 1 v2 0.03142/ 0.12 4m / s A2 4
P 1 p1 A 1 15.39kN P2 p2 A2 4.17kN
2 0v0
2g
H
1 0.52 5 5.0128m 2 9.8
题5.3图
Q 2 gH 0 0.62
0.22
4
2 9.8 5.0128 0.193m3 / s
四、圆形有压涵管如图所示,管长 l 50m 。上、下游水位差 H=3m,各项阻力系数:沿程 0.03 ,进口 1 0.5 ,弯头
一. 一离心式水泵,如图示,已知:Q=20m3/h ,hs=5.5m, 吸水管直径d=100mm,吸水管总水头损失hw=0.25m,求: (1) 水泵进口处真空压强; (2) 管内A点处压强水头,(吸水管底至A点处水头损失为 0.20m)。
进口 水泵 Q
hs
1m
A
(1) 水泵进口处真空压强
进口 水泵 Q
z1 p1 / v1 /(2g ) z2 p2 / v2 /(2g )
2 2
p2 [(z1 z2 ) p1 / v1 /(2g ) v2 /(2g )]
2 2
9.8 10 sin 30 50 (1 16) / 19.6 531 .5kPa
hs
1m
A
0 0 0 hs p / v2 /(2g ) hw p / hs v2 /(2g ) hw
v Q / A 0.707m/s
p / 5.78 p 56.6kPa
(2) 管内A点处压强水头(吸水管底至A点处水头损失为0.20m)
3.1415 Q Av 0.22 1.53 4 0.0481m3 / s
l1 1
1
l2 z
H
2
l3
集水井
2
钻井 题5.15图
六、 从水池取水,离心泵管路系统布置如题5.19图。水泵流量
Q 25 m3 / h 。吸水管长 l1 3.5 m,l2 1.5 m 。压水管长
l3 20 m 。水泵提水高度 z 18 m ,水泵最大真空度不超过
解:
1 1/ 6 C R n 1 0.2 1/ 6 ( ) 0.0125 4 48.557
l2 l1 1
1
z
H
2
l3
集水井
2
8g 8 9.8 2 0.0333 2 C 48.557
钻井 题5.15图
以2-2断面为基准面,写出1-1、2-2间液体的伯努力方程:
H 0 0 0 0 0 hw
3d 5 1.16 2.08d
1
1
H
2
l=50m 题5.13图
2
d 1.015m
五、 用虹吸管自钻井输水至集水井如图所示。虹吸管长 ,钻井与集水井间的 l l1 l2 l3 60m ,直径 d 200mm 恒定水位高差 H 1.5m 。试求虹吸管的流量。 已知选用钢管 n 0.0125 管道进口、弯头及出口的局部 阻力系数分别为 1 0.5 , 2 3 0.5 , 4 1.0
6m。试确定水泵的允许安装高度 hs 并计算水泵的扬程H。 解:以1-1断面为基准面写出1-1与2-2之间液体的伯诺里方程:
pa pa v 2 0 0 H hw g g 2g
pa p v 2 Hs ( hw ) g 2g
进口 水泵 Q
hs
1m
A
0 0 0 hA pA / v2 /(2g ) hw1 A pA / hA v2 /(2g ) hw1 A
pA / 0.77m
二. 一管路渐变段剖面图如图所示,已知:渐变段长度 L=10m,水重G=2KN,管轴线与水平夹角 30 ,d1=200mm, d2=100mm,v1=1m/s,1-1断面表压强 p1 / 50 m水柱,不计水 头损失。求:固定渐变段镇墩所受的力。
l v2 v2 v2 v2 v2 hw h f h j 0.5 0.5 0.5 1 d 2g 2g 2g 2g 2g v2 (0.0333 60 / 0.2 0.5 3 1) 0.64v 2 19.6
1.5 0.64v2 , v 1.53m / s
相关文档
最新文档