【学习课件】第一章流体力学基础

合集下载

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学基础 ppt课件

流体力学基础  ppt课件
➢流体介质是由连续的质点组成的;
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0

2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3

流体力学基础讲解PPT课件

流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。

第一章 流体力学基础课件

第一章 流体力学基础课件
(三)实际液体的能量方程
2 p1 u12 p2 u2 ′ + z1 + = + z2 + + hw ρg 2 g ρg 2g
2010-9-11 第一章 流体力学基础 19
2 1
2 2
第三节 流体运动学和流体动力学
例1-5推导文丘利流量计的流量公式。
p1 υ p2 υ + = + ρg 2 g ρg 2 g
23
2010-9-11
第一章 流体力学基础
第六节 管道流动
一、流态与雷诺数 (一)层流和紊流 层流和紊流是两种不同性质的 流态。层流时,液体流速较低, 质点受粘性制约,不能随意运 动,粘性力起主导作用;紊流 时,液体流速较高,粘性的制 约作用减弱,惯性力起主导作 用。 (二)雷诺数 液体的流动状态可用雷诺数 来判别。
第一章 流体力学基础 6
第一节 工作介质 一般情况下,工作介质的可压缩性对液压系统性能影响不大, 但在高压下或研究系统动态性能及计算远距离操纵的液压机构 时,则必须予以考虑。 石油基液压油的体积模量与温度、压力有关:温度升高时, K值减小,在液压油正常工作温度范围内,K值会有5%~25% 的变化;压力增加时,K值增大,但这种变化不呈线性关系, 当p>3MPa时,K值基本上不再增大。 由于空气的可压缩性很大,因此当工作介质中有游离气泡时, K值将大大减小,且起始压力的影响明显增大。但是在液体内 游离气泡不可能完全避免,因此,一般建议石油基液压油 K的 取值为(0. 7~1. 4)×103MPa,且应采取措施尽量减少液压系 统工作介质中的游离空气的含量。
第三节 流体运动学和流体动力学
例1-8 图1-20所示为一锥阀,锥阀的锥角为2。 当液体在压力p下以流量q流经锥阀时,液流通过 阀口处的流速为υ2,出口压力为p2= 0。试求作用 在锥阀上的力的大小和方向。 对于图 a)

流体力学基本知识 ppt课件

流体力学基本知识 ppt课件
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品

(二)恒定流与非恒定流
2 .非恒定流:流体运动时,流体中任一 位置的压强、流速等运动要素随时间的 变化而变动的流动。如水位随水放出不 断改变的水流运动。
自然界中都是非恒定流,建筑设备工程 中取为恒定流。
(三)流线与迹线: 1.流线:是流体中同一瞬间由许多质点组成的
曲线。在该曲线上所有各点的速度向量都与 该曲线相切。

该关系式表达了流量(Q)、过流断面(ω)和 平均流速(v)三者之间的关系。
二、恒定流的连续性方程式
如图所示,在恒定总流中任取一元流,元流 在1-1过流断面上的面积为dω1,流速为u1;在 2-2过流断面上的面积为dω2,流速为u2。
二、恒定流的连续性方程式
应用质量守恒定律,在dt时段内流入的质量 与流出的质量相等:
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
rhω1-2--1-2两过流断面间压强损 失。
第4节 流:
本节的任务:计算水头损失(或压强损失、流 动阻力)和计算管段。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
z1、z2:位置水头,表示单位 p1/γ、 p2/γ:重压量强的水位头置。势P能为。相
对压强(静压)。
α1v12/2g、 α2v22/2g:流 速水头(动

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品
ρ1u1dω1dt=ρ2u2dω2dt 或 ρ1u1dω1=ρ2u2dω2
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v

ud


Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。

《流体力学基础知识》课件

《流体力学基础知识》课件
流体粘性
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

流体力学学习课件第一章绪论(流体力学)

流体力学学习课件第一章绪论(流体力学)
流体力学
李传奇 土建与水利学院
教学基本内容
第一章 第二章 第三章 第四章
第六章 第七章 第八章
绪论 流体静力学 流体运动学 流体动力学基础
流动阻力与水头损失 孔口、管嘴和有压流 明渠流动
2020/1/27
2
第一章 绪论
第一节 流体力学及任务 第二节 作用在流体上的力 第三节 流体的主要物理性质 第四节 牛顿流体与非牛顿流体
(3)城市防洪工程中的应用。如堤、坝的作用力与渗流问题、防 洪闸坝的过流能力等。 (4)其它应用:气象,航空,动力工程,生物医学,体育等等。
2020/1/27
15
市政
London Sewer
交通
Culverts
岩土工程
Groundwater and Seepage
结构
Snow Load
结构
2020/1/27
26
(2)当流体处于绝对静止时:
有:
2020/1/27
fx= 0 fy= 0 fz= -g
z
o x
y g
27
1.3 流体的主要物理性质
1、惯性 2、粘性 3、可压缩性和热膨胀性
2020/1/27
28
1. 3.1 惯性
z
(1)密度(Density):是指单位体积流体的质量。
V
2020/1/27
3
1.1 流体力学及其任务
1.1.1 流体力学的研究对象
力学 基础学科,它同数、理、化、天、地、生并列
为七大基础学科。 流体力学
是力学的一个分支,流体力学是研究流体静止 或运动的力学规律及其在工程技术中的应用。
2020/1/27
4
• 流体最主要的物理特性

流体力学课件第一章

流体力学课件第一章
) m






kg

s
3
m
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
1.4 流体的输运性质
更精确计算
对空气,温度为288K时实测结果
1.4 流体的输运性质
1.4 流体的输运性质
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
2.3 流场中的速度分解
1.3 流体的可压缩性与热膨胀性
1.3 流体的可压缩性与热膨胀性
1.3 流体的可压缩性与热膨胀性
1.3 流体的可压缩性与热膨胀性
在1atm下,温度从273K变化到373K,水的体积仅增加4.3%
P360 附录 表D.3,
T=273.15, 比容vf=1/1000(m3/kg), T=373.15, vf=1.044/1000(m3/kg)
态,也就是说分子在邻近分子力场中具有的势能远小于分子本身具有

的动能,势能可以被忽略

➢ 在偶尔的场合下,高能量分子也可能在运动过程中与其他分子十分靠
近,出现分子间短暂的强相互作用,通常,这种偶然出现的强相互作
用过程被称为碰撞
➢ 对于分子热运动平均能量高的物质,在分子碰撞以外的绝大部分时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——静力学基本方程
返回
前页
10
后页
主题
西 1.2.2 流体静力学基本方程

交 • 讨论
大 (1)适用于重力场中静止、连续的同种不可压缩性流体;
化 (2)在静止的、连续的同种流体内,处于同一水平面上各点的压力 工 处处相等。压力相等的面称为等压面;
原 (3)压力具有传递性:液面上方压力变化时,液体内部各点的压力
安 交
大 • 2.压差计
上的应用
化 (1)U形压差计
工 设U形管中指示液液面高度差为R,指示
原 液密度为0,被测流体密度为,则由静
理 力学方程可得:
流向
1
z1
2 z2

p 1g z1 R p 3

R
3
3

p 2g2z 0g R p 3 图 1-7
0
U 形压差计

前页
15
后页
返回 主题
西 1.2.3 静力学原理在压力和压力差测量
上的应用 安
交 根据而3、3面为等压面 及广义压力的定义 大
化 工
p 1 g 1 z p 2 g 2 z 0 gR

120gR
理 两边同除以g得: 电
1
2
0
R
g g
子 课
式中:
理 关系为:
电 1atm(标准大气压)=1.033at(工程大气压)

=1.013105Pa

=760mmHg

=10.33mH2O
前页
8
后页
返回 主题
西
1.2.1静止流体所受的力

交 (2)压力的两种表征方法

化 绝对压力 以绝对真空为基准测得的压力。
工 表压或真空度 以大气压为基准测得的压力。
电 ij),例如图中与z轴垂直的面上

受到的应力为zz(法向)、zx和zy (切向),它们的矢量和为:
课 件
τ zzx izy jzzk
前页
5
后页
返回 主题
西
1.1 概述

交 • 3 作用在流体上的力

化 类似地,与x轴、y轴相垂直的面(参见图1-2)上受到
工 的应力分别为:

τ xxixxjy xkz τ yyixyjyykz
原 相连、彼此间没有间隙的流体质点(或微团)所组成
理 的连续介质。
电 质点:由大量分子构成的微团,其尺寸远小于设备 子 尺寸、远大于分子自由程。 课

前页
2
后页
返回 主题
西
1.1 概述

交 大

2
流体的压缩性


流体体积随压力变化而改变的性质称为压缩
原 性。实际流体都是可压缩的。 液体的压缩性很
理 小,在大多数场合下都视为不可压缩,而气体
前页
13
后页
返回 主题
西 1.2.3 静力学原理在压力和压力差测量
安 交
上的应用
大 若容器A内为气体,则gh项很小可忽略,于是:

工 原
p1pa0gR
理 电 子
显然,U形压力计既可用来测量气体压力,又 可用来测量液体压力,而且被测流体的压力比
课 大气压大或小均可。

前页
14
后页
返回 主题
西 1.2.3 静力、

课 件
离心力等。
F gxigyjgzk
前页
4
后页
返回 主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化 表面力:表面力是指作用在所考察对象表面上的力。
工 任一面所受到的应力均可分解为一
原 个法向应力(垂直于作用面,记为

ii)和两个切向应力(又称为剪应 力 , 平 行 于 作 用 面 , 记 为 ij,



前页
7
后页
返回 主题
西
1.2.1静止流体所受的力

交 • 静止流体所受的外力有质量力和压应力两种,流体垂直
大 作用于单位面积上的力,称为流体的静压强,习惯上
化 又称为压力。
工 (1)压力单位

在国际单位制(SI制)中,压力的单位为N/m2,称 为帕斯卡(Pa),帕斯卡与其它压力单位之间的换算


表压绝压当地大气压


真空度 当地大气 绝压 压


前页
9
后页
返回 主题
西 1.2.2 流体静力学基本方程


大 • 对连续、均质且不可压缩流体, =常数,

gz p常数
工 • 对于静止流体中任意两点1和2,则有:
原 理
p 2p 1g (z1z2)
电 两边同除以g
子 课
p2
g
p1
g
z1
z2

理 也将发生相应的变化。即压力可传递,这就是巴斯噶定理;


(4)若记, 称为广义压力,代表单位体积静止流体的总势能(即 静压能p与位能gz之和),静止流体中各处的总势能均相等。因

此,位置越高的流体,其位能越大,而静压能则越小。

前页
11
后页
返回 主题
西 1.2.3 静力学原理在压力和压力差测量
西 安
第一章 流体力学基础

大 1.1 概述
化 1.2 流体静力学及其应用
工 1.3 流体流动的基本方程

理 1.4 管路计算
电 1.5 流速、流量测量



前页
1
后页
返回 主题
西
1.1 概述

交 • 1 连续介质模型


流体是由分子或原子所组成,分子或原子无时无刻
工 不在作无规则的热运动。假定流体是由无数内部紧密
安 交
上的应用
大 • 1.压力计

工 (1)单管压力计
pa

p1pa gR
理 或表压

p1 p1pagR
子 式中pa为当地大气压。 课 单管压力计只能用来测量高于
R
A 1• ..
图 1-5 单 管 压 力 计
件 大气压的液体压力,不能测气体压力。
前页
12
后页
返回 主题
西 1.2.3 静力学原理在压力和压力差测量
安 交
大 • 1.压力计
上的应用
化 (2)U形压力计
pa
工 设U形管中指示液液面高度差为R,指示液
A 1•
原 理 电
密度为0,被测流体密度为,则由静力学
方程可得:
p1p2 gh
p2 p3
p3pa 0gR
h
R
2
3
子 将以上三式合并得:
0

p1pa0g Rgh 图 1 - 6 U 形 压 力 计

电 压缩性比液体大得多,一般应视为可压缩,但
子 如果压力变化很小,温度变化也很小,则可近
课 似认为气体也是不可压缩的。

前页
3
后页
返回 主题
西
1.1 概述

交 • 3 作用在流体上的力

作用在流体上的所有外力F可以分为两类:质量力
化 工
和表面力,分别用FB、FS表示,于是:

FFBFS
理 电
质量力:质量力又称体积力,是指作用在所考察对象
理 电 子 课 件
z
xx
yx
xy
yy
M
xz
yz
zx
zy
zz
o
y
x
图 1-2 任 一 点 所 受 到 的 应 力
返回
前页
6
后页
主题
西 1.2 流体静力学及其应用


大 • 1.2.1 静止流体所受的力

工 原
• 1.2.2 流体静力学基本方程

电 • 1.2.3 静力学原理在压力和压力差测量上的应用
相关文档
最新文档