人教版数学八年级上册14.3.2公式法(2)导学案
14.3.2公式法(2)导学案
SX-13-11-041《14.3.2 公式法(2)》导学案编写人:王朝龙编写时间: 2014.10.18班级:组名:姓名:等级:【学习目标】:1、会用完全平方公式分解因式。
2、会综合运用提取公因式法、公式法分解因式。
3、通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展观察、类比、归纳、预见等能力,体会换元思想,提高处理数学问题的技能。
【学习重点】:用完全平方公式因式分解。
【学习难点】:1、准确判断一个多项式是否为完全平方式2、用换元的思想来因式分解【知识链接】:1、分解因式学了哪些方法?2、分解因式:①ax4-ax2②x4-163、除了平方差公式外你还学过什么公式?【学习过程】:探究一、1、完全平方式指的是2、整式乘法的完全平方公式是分解因式的完全平方公式是3、填空(1)a2+ +b2=(a+b)2 (2)a2-2ab+ =(a-b) 2 (3)m2+2m+ =( ) 2 (4)n2-2n+ =( ) 2(5)x2-x+0.25=( ) 2(6)4x2+4xy+( ) 2=( ) 24、分解因式①16x2+24x+9 ②-x2+4xy -4y2③25x2+10x+1④ 9a2-6ab+b2⑤49a2+b2+14ab ⑥y2+y+41⑦ 3ax2+6axy+3ay2⑧探究二、分解因式①-a3b3+2a2b3-ab3② 9 - 12(a-b) + 4 (a-b )2③16a4+24a2b2+9b4探究三、1. 已知22是一个完全平方式,求的值2、已知x2+4x+y2-2y+5=0, 求x-y的值【课堂小结】:本节课你有什么收获?【当堂检测】:1、下列多项式能用完全平方公式分解因式的是()A X2-6X-9B a2-16a+32C x2-2xy+4y2D 4a2-4a+12、若9x2-12x+k是一个完全平方式,则K的值是若9x2-12x+k2是一个完全平方式,则K的值是若m2-km+41是一个完全平方式,则m的值是3、分解因式①–x2-8x-16 ②2x4+4x3+2x3③ ma2-4ma+4m④ a4-8a2b2+16b4⑤9(a-b)2-6(a-b)+1 ⑥–x4+x2y2⑦-2xy-x2-y2⑧x2+3x+49⑨(x+2)(x+3)-x2-27 4、已知x2-4x+y2-10y+29=0,求x2y2+2x3y2+x4y2的值。
2024年人教版八年级数学上册教案及教学反思第14章14.3.2 公式法(第2课时)
第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
人教版数学八年级上册教学设计14.3.2《公式法》
人教版数学八年级上册教学设计14.3.2《公式法》一. 教材分析人教版数学八年级上册第14章是关于二次根式的,而14.3.2《公式法》是这一章节中的一个重要内容。
公式法是解一元二次方程的一种方法,它通过将方程转化成标准形式,应用求根公式来求解。
本节课的内容对于学生来说,既熟悉又陌生。
说熟悉,是因为学生在七年级已经接触过一元二次方程,但当时并未深入探究其解法。
说陌生,是因为学生还没有系统地学习过公式法,对于公式法的推导和应用还不够熟练。
因此,本节课的教学设计既要考虑学生已有的知识基础,又要注重引导学生深入理解公式法的原理和应用。
二. 学情分析学生在七年级已经接触过一元二次方程,但当时并未深入探究其解法。
在学习本节课之前,学生已经掌握了整式的加减、乘除和因式分解等基本运算,对于解一元二次方程,学生可能还停留在“试错法”和“图像法”等直观解法上。
因此,学生对于公式法的理解和应用会有一定的困难。
另外,学生在学习过程中可能存在以下问题:1. 对公式法的推导过程理解不深,只是机械记忆公式;2. 在应用公式法解题时,容易忽视对方程条件的判断,导致解题错误;3. 对于一些特殊类型的一元二次方程,学生可能无法熟练运用公式法求解。
三. 教学目标1.理解公式法的推导过程,掌握求解一元二次方程的基本步骤。
2.能够灵活运用公式法解一元二次方程,并能够判断解题过程中可能出现的错误。
3.通过对公式法的深入学习,提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.公式法的推导过程和原理的理解。
2.在解题过程中,如何正确运用公式法,并判断解题过程中可能出现的错误。
3.对于一些特殊类型的一元二次方程,如何运用公式法求解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来理解公式法的原理和应用。
2.使用多媒体课件,通过动画演示和步骤解析,帮助学生直观地理解公式法的推导过程。
3.设计具有梯度的练习题,让学生在实践中巩固公式法的应用。
八年级数学上册14.3.2公式法(二)优质课教案
2、我们把a2+2ab+b2和a2-2ab+b2这样的式子叫做完全平方式
教师引导学生从运算顺序上分析运算得到特点。
先独立思考,后合作交流
学习完全平方式
1.下列多项式是不是完全平方式?为什么?
(1)(2)
(3)(4).
(5) x2+2xy-y2
三、教学目标
(一)知识目标:
(1)掌握完全平方式的特点。
(2)用完全平方式分解因式。
(二)能力目标:
(1)会判定一个多项式是否是完全平方式。
(2)能熟练应用完全平方公式分解因式。
(3)能够综合运用提公因式公式法分解因式。
(三)情感目标:
通过综合应用提公因式法、公式法分解因式进一步培养学生的观察能力,整体思想,分析解决问题的能力。
四、教学流程设计
教学环节
教师活动
学生活动
设计意图
导入:问题情境:
计算
20172-2×2017×2007+20072.
你能快速口算得到答案吗?
课件展示提出问题。
学生独立思考。
激发学生的学习兴趣引入课题
讲授探究新知
知识点一:完全平方式
1、从运算的角度看多项式a2+2ab+b2与a2-2ab+b2.有什么特点?
教师讲解定义
学生回答记忆
学习定义
探究新知
例1分解因式:(1)16x2+24x+9
分析16x2=(4x)2,9=32,24x=2×4x·3,所以16x2+24x+9是一个完全平方式,即
16x2+24x+9=(4x)2+ 2×4x·3+32
人教版八年级数学上册14.3.2《公式法》教案
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《公式法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将一个表达式平方的情况?”(如:计算一个长方形的面积时,需要将长和宽相加后的结果平方。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索完全平方公式的奥秘。
其次,理论讲授环节,我发现学生们对公式的记忆和应用感到困惑。在讲解过程中,我强调了公式记忆的重要性,并通过反复举例来强化记忆。但我也注意到,单纯的重复可能不足以帮助所有学生理解。今后,我考虑引入更多变式题目,让学生在不同的情境中运用公式,以此提高他们的理解和应用能力。
在实践活动和小组讨论中,学生们表现得相当积极。他们通过讨论和实验操作,加深了对完全平方公式的理解。然而,我也观察到一些学生在讨论中较为沉默,可能是因为他们对公式还不够熟悉,或者是对小组讨论这种形式不太适应。为了解决这个问题,我计划在未来的课堂中,为这些学生提供更多的支持和鼓励,帮助他们更好地融入小组活动。
4.思维发展:引导学生从具体的实例中提炼出数学规律,培养学生的抽象思维能力,为后续数学学习奠定基础。
三、教学难点与重点
1.教学重点
-完全平方公式的推导与记忆:完全平方公式是本节课的核心内容,包括(a+b)²和(a-b)²两种形式。教师需重点讲解公式的推导过程,并通过实例强化学生对公式的记忆。
-公式法的应用:培养学生将完全平方公式应用于因式分解的能力,解决具体的数学问题。
-因式分解中的符号处理:在运用完全平方公式进行因式分解时,学生可能会对符号处理感到困惑,例如在(a-b)²中,如何正确转换为a²-2ab+b²。
-抽象思维的培养:从具体的数字运算过渡到字母表示的公式,对学生的抽象思维能力有较高要求,是学生学习的难点。
最新人教版初中数学八年级上册 14.3.2 公式法学案
14.3.2 公式法 知识技能 用完全平方公式分解因式. 重点难点 重点:用完全平方公式分解因式. 难点:灵活运用公式分解因式.导学过程预习导航阅读教材169页至170页的部分内容,尝试完成以下问题.收获和疑惑 活动一 【复习引入】1.叙述平方差公式,并写出公式.2.把下列各式分解因式:(1)216x +- (2)23xy x - (3)14-m(4)()()x y ab y x ab -+-333.填空(1)()=+2b a (2)()=-2b a活动二【探索新知】 思考:你能将多项式222b ab a ++与222b ab a +-分解因式吗?这两个多项式有什么特点? 归纳:即: .()2222=++b ab a ()2222=+-b ab a预习导航活动三【应用新知】例5 分解因式(1)924162++xx(2)2244yxyx-+-例6 分解因式(1)22363ayaxyax++(2)()()36122++-+baba活动四【巩固新知】1.下列多项式是不是完全平方式?为什么?(1)442+-aa(2)241a+(3)1442-+bb(4)22baba++2. 分解因式(1)36122++xx(2)222yxxy---(3)122++aa(4)1442+-xx(5)3222axaax++(6)22363yxyx-+-自我检测1.填空(1)若多项式912++kxx是完全平方式,则k的值为(). (2)在多项式:①22yxyx-+②222yxyx-+-③22yxxy++④412xx+-中能用完全平方公式分解因式的是().2.把下列各式分解因式(1)1222+-xyyx(2)()()962++++yxyx。
人教版八年级数学上册14-3-2(2)公式法(完全平方公式)导学案
14.3.2公式法(完全平方公式)备课时间: 授课时间: 授课 学习目标:1、知识与技能:会用完全平方公式对多项式进行因式分解,发展观察、比较和判断的能力.2、过程与方法:经历用完全平方公式分解因式的探索过程,体会公式中字母的意义,树立整体的思想.3、情感态度与价值观:体会从正、逆两个方面认识和研究事物的方法。
学习重点:用完全平方公式分解因式;学习难点:正确运用完全平方公式进行因式分解.学习过程:一、自主学习 :1.前面我们在学习整式乘法时用到了完全平方公式,其公式内容为 。
像用平方差公式逆过来用可以分解因式一样,若把完全平方公式逆过来,就得到a +2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2。
这样,我们就可以利用它们对多项式进行因式分解了.2.因式分解:⑴ a 2+22a+121; ⑵a 2+41b 2-ab. (3)16a 2+24a+9 (4)-a 2+4ab-4b 23.我们看到,凡是可以写成a 2+2ab+b 2或a 2-2ab+b 2这样形式的多项式,都可以用完全平方公式分解因式,即可以把它们化为(a+b)2或(a-b)2的形式。
因此,我们把形如a 2+2ab+b 2或a 2-2ab+b 2的式子称为 。
二、合作探究、交流展示:1.23616x kx ++是一个完全平方式,则k 的值为( )A .48B .24C .-48D .±482.分解因式n n n +-2344= .3.分解因式:2mx 2+4mx +2m =4.在多项式2a +1中添加一个单项式,使其成为一个完全平方式,则添加的单项式为 .5.把下列各式分解因式:⑴ ⑵ ⑶22363ax axy ay ++2()4()4x y x y ---+2()12()36a b a b +-++三、拓展延伸:1.用简便方法计算:(1)20012-4002+1 (2) 9992 (3 ) 200222.因式分解:(1) (2)22()4()4m n m n m m ---+22344xy x y y --四、课堂检测:1.下列多项式能用完全平方公式分解因式的是( )A .x 2-6x-9B .a 2-16a+32C .x 2-2xy+4y 2D .4a 2-4a+12.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2 3.已知9x2-6xy+k是完全平方式,则k的值是________.4.9a2+(________)+25b2=(3a-5b)25.-4x2+4xy+(_______)=-(_______)2.6.已知a2+14a+49=25,则a的值是_________.7.把下列各式分解因式:①x2+10x+25 ②x2-12xy+36y2③ab3-2a2b2+a3b ④(a2+4b2)2-16a2b2五、学(教)后反思:收获:不足:答案:一、自主学习 :1.(a+b)2=a 2+2ab+b 2,(a-b)2=a 2-2ab+b 22.因式分解:⑴ a 2+22a+121=(a+11)2 ⑵a 2+41b 2-ab=2)21(b a -(3)16a 2+24a+9=(4a+3)2 (4)-a 2+4ab-4b 2=-(a-2b)23.完全平方公式二、合作探究、交流展示:1.D2.n(2n-1)23.2m(x+1)24.a 25.把下列各式分解因式:⑴=3a(x+y)2 ⑵=(x-y-2)2 22363ax axy ay ++2()4()4x y x y ---+⑶=(a+b+6)22()12()36a b a b +-++三、拓展延伸:1.用简便方法计算:(1)20012-4002+1=(2)9992=(3)20022=2.因式分解:(1)=(3m-n)2 (2)=-y(2x-y)222()4()4m n m n m m ---+22344xy x y y --四、课堂检测:1.D2.D3.y24.-30ab5.-y2,2x-y6.-2,-127.把下列各式分解因式:①x2+10x+25=(x+5)2②a2-12ab+36b2=(a-6b)2③ab3-2a2b2+a3b=ab(a-b)2④(a2+4b2)2-16a2b2 =(a+2b)2(a-2b)2。
【最新人教版八年级数学上册全套导学案58份】14.3.2公式法(2)导学案
因式分解 14.3.2公式法(二)导学案【学习目标】:1、会用完全平方公式分解因式。
2、会综合运用提取公因式法、公式法分解因式。
3、通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、预见等能力,进一步体会换元思想,提高处理数学问题的技能。
学习重点:用完全平方公式因式分解。
学习难点:1、准确判断一个多项式是否为完全平方式2、用换元的思想来因式分解学习过程:(一)、用完全平方公式因式分解之引入篇你能根据下列图形的面积写出一个等式吗?(a ±b)2 a2±2ab+b2(a ±b)2=a2±2ab+b2反过来,可得a2±2ab+b2=(a ±b)2两数的平方和,加上(或减去)这两数的积的两倍,等于这两数和(或者差)的平方。
形如a2±2ab+b2的多项式称为完全平方式.实质为:两数的平方和,加上(或减去)这两个数的积的两倍.给出完全平方式的概念。
(二)、用完全平方公式因式分解之辨析篇判别下列各式是不是完全平方式:(1)x2+y2; (2)a2-6a+9;(3)△2-2×△×□+□2; (4)m2+2mn-n2.(三)、用完全平方公式因式分解之归纳篇a2±2ab+b2完全平方式的特点:1.有三项组成.2.其中有两项分别是某两个数(或式)的平方.3. 另一项是上述两数(或式)的乘积的2倍,符号可正可负.(四)、用完全平方公式因式分解对照a2±2ab+b2=(a ±b)2,你会吗?1、x2+4x+4= ( )2+2( )( )+( )2 =( + )22、m2-6m+9=( )2- 2( )( )+( )2 =( - )2注意:公式中的a 、b 可以表示单项式甚至是多项式。
(五)、用完全平方公式因式分解下列各式能因式分解吗?若能,请分解;若不能,请把某一项的系数作适当改变,使之能分解: a ab b整式乘法(1)a2+4ab+4b2(2) 4x2-8 x+1其中第(2)题为变式练习。
人教版-数学-八年级上册-14.3.2《公式法(2)》 教案
14.3.2 公式法(2)一、教学目标(一)学习目标1.掌握完全平方公式的特点.2.会运用完全平方公式因式分解.3.能熟练运用公式法和提公因式法分解因式.(二)学习重点掌握完全平方公式的特点,运用完全平方公式分解因式.(三)学习难点灵活运用公式分解分解因式.二、教学设计(一)课前设计1.预习任务(1)完全平方式:形如222a ab b ++和222a ab b -+的式子叫完全平方式. 它的特点是:①完全平方式是一个二 次三 项式;②首末两项是两个数(或整式)的 平方 ,而且符号 相同 ,中间相是这两个数(或整式)的 积的2倍 ,符号正负均可.(2)用完全平方公式分解因式:文字语言:两个数的平方和加上或减去这两个数的积的2倍,等于这两个数的和(或差)的平方.符号语言:2222()a ab b a b ++=+;2222()a ab b a b -+=-.(3)公式法:把乘法公式的等号两边 互换位置 ,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.预习自测(1)下列多项式中能用完全平方公式分解因式的是( )A .224a b +B .221a a --C .22a ab b ++D .2244a ab b ++【知识点】完全平方公式【思路点拨】判断一个多项式是否能用平方差公式因式分解的关键是该多项式是否为完全平方式,它应具有以下特点:①完全平方式是一个二次三项式;②首末两项是两个数(或整式)的平方,而且符号相同,中间项是这两个数(或整式)的积的2倍.【解题过程】A只有两项,不能用完全平方公式因式分解;B首末两项的符号不同,不能用完全平方公式因式分解;C的中间项不是A.b的2倍,不能用完全平方公式因式分解;D能.故选D.【答案】D(2)把多项式22496a ab b-+因式分解正确的是()A.2(9)a b-B.2(3)a b-C.22(3)a b-D.22(3)a b+【知识点】用完全平方公式分解因式.【思路点拨】用完全平方公式分解因式时,关键是识别该多项式是否符合完全平方公式的特点,并能确定是哪两个数(或整式)的和(或差)的平方.【解题过程】22422222296(3)23()(3)a ab b a a b b a b-+=-+=-,选项C正确.【答案】C(3)若多项式22x kxy y++是完全平方式,则k的值为.【知识点】完全平方式.【思路点拨】用完全平方式的特点来分析该多项式,关键是注意中间项应是首末积的2倍,同时它的符号正负均可.【解题过程】∵22x kxy y++是完全平方式,∴22222x kxy y x xy y++=±+,则2k=±.【答案】±2(4)因式分解:①21236x x-+;②2244x y xy+-【知识点】用完全平方公式分解因式.【思路点拨】用完全平方公式分解因式时,关键是识别该多项式是否符合完全平方公式的特点,并能确定是哪两个数(或整式)的和(或差)的平方.公式中三项的位置是可以调换的.【解题过程】①2222 1236266(6)x x x x x-+=-+=-;②22222 44(2)22(2) x y xy x x y y x y+-=-+=-.【答案】①2(6)x-;②2(2)x y-.(二)课堂设计1.知识回顾把下列各式因式分解:(1)22936x y xy xy +-; (2)3a b ab -.学生独立完成后回答:(1)229363(32)x y xy xy xy x y +-=+-. (2)32(1)(1)(1)a b ab ab a ab a a -=-=+- 做后强调:分解因式时有时要考虑综合运用各种方法,一般先观察是否有公因式可提,再考虑能否用平方差公式分解;分解因式要彻底,一直到不能分解为止.2.问题探究探究一 探索因式分解的方法——完全平方公式.●活动① 类比学习问题1:上节课我们将乘法公式中的平方差公式等号两边互换位置得到因式分解的又一种方法:运用平方差公式分解因式,类似地,乘法还有完全平方公式,你能类比学习得到因式分解的新方法吗?学生回顾乘法中的完全平方公式:222()2a b a ab b +=++ ;222()2a b a ab b -=-+.互换位置可得:2222()a ab b a b ++=+;2222()a ab b a b -+=-问题2:类比平方差公式,你能用语言叙述该公式吗?文字语言:两个数的平方和加上(或减去)这两个数的积2倍,等于这两个数的和(或差)的平方. 问题3:运用完全平方公式分解因式时,最后分解为和的完全平方还是差的完全平方,有谁来决定? 学生思考后分小组讨论交流:由2倍项的符号来确定,若2倍项的符号为正,则分解为和的完全平方,若2倍项的符号为负,则分解为差的完全平方.【设计意图】本节课的学习是在学生已掌握运用平方差公式分解因式的基础上进行的,学生已掌握运用因式分解与整式乘法的互逆关系可得到运用平方差公式分解因式的方法,因此根据这样的经验,类比学习得到运用完全平方公式分解因式就迎刃而解了.●活动② 剖析完全平方公式. ★问题4:我们将形如222a ab b ++和222a ab b -+的式子叫完全平方式.完全平方式有哪些特点呢? 学生思考后分小组讨论,再归纳总结:完全平方式的特点是:①完全平方式是一个二次三项式;②首末两项是两个数(或整式)的 平方,而且符号相同,中间相是这两个数(或整式)的积的2倍 ,符号正负均可.口诀:首平方,末平方,首末积的2倍中间放.追问:平方差公式中的A.b 可代表多项式,类似地,完全平方公式中的A.b 是否也可以代表一个多项式呢?【设计意图】类比平方差公式分解因式的学习过程,剖析完全平方式的特点,为熟练运用完全平方公式分解因式奠定基础.●活动③ 辨析完全平方公式问题5:下列多项式中,哪些是完全平方式?若是完全平方式,请指出谁相当于公式中的A.b.(1)224129x xy y ++ ;(2)244x x -++ ;(3)2269x xy y -+- ;(4)221x x +-学生独立思考后,集体订正.【设计意图】通过辨析完全平方式,为运用完全平方式分解因式作准备.尤其是对于(2)、(3)这种形式的完全平方式,学生辨析较困难,关键是掌握:完全平方式首末两项是两个数(或整式)的平方,而且符号相同,各项的位置是可以调换的,为本节课突破难点奠定基础.探究二 直接运用完全平方公式因式分解 ★●活动① 公式中的A.b 代表单项式的因式分解例1 分解因式:(1)216249x x ++ ;(2)2244x xy y -+-【知识点】运用完全平方公式分解因式【解题过程】解:(1)222216249(4)2433(43)x x x x x ++=++=+;(2)222222244(44)22(2)(2)x xy y x xy y x x y y x y ⎡⎤-+-=--+=--+=--⎣⎦【思路点拨】(1)先将原多项式变形为22(4)2433x x ++,认清谁是公式中的A.b ,再进行因式分解 ;(2)可将负号提出是本题的关键,变形为2222(44)22(2)x xy y x x y y ⎡⎤--+=--+⎣⎦,再因式分解.【答案】 (1)2(43)x +;(2)2(2)x y --.练习:因式分解(1)2242025x xy y -+ (2)221294xy x y --【知识点】运用完全平方公式分解因式【解题过程】解:(1)2222242025(2)225(5)(25)x xy y x x y y x y -+=-+=-;(2)22222221294(9124)(3)232(2)(32)xy x y x xy y x x y y x y ⎡⎤--=--+=--+=--⎣⎦【思路点拨】(1)先将原多项式变形为22(2)225(5)x x y y -+,辨析公式中的 A.b ,再进行因式分解 ;(2)将负号提出是本题的关键,变形为22(3)232(2)x x y y ⎡⎤--+⎣⎦,再因式分解.【答案】 (1)2(25)x y -;(2)2(32)x y --.●活动② 公式中的A.b 代表多项式的因式分解例2 分解因式:(1)2()12()36a b a b +-++ ;(2)22()4()4m n m m n m +-++ .【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)2222()12()36()2()66(6)a b a b a b a b a b +-++=+-++=+-;(2)222222()4()4()2()2(2)(2)()m n m m n m m n m n m m m n m n m +-++=+-++=+-=-.【思路点拨】此类题的关键是整体思想的运用,(1)中将a+b 看成一个整体,设a+b=m ,则原多项式就化为21236m m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后有同类项还需合并同类项.【答案】 (1)2(6)a b +-;(2)2()n m -.练习:因式分解(1)222()()a a b c b c -+++ ;(2)2222(1)4(1)4x x x x ++++ 【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)[]22222()()()()a a b c b c a b c a b c -+++=-+=--; (2)22222222224(1)4(1)4(1)2(21)(1)(1)x x x x x x x x x x ⎡⎤⎡⎤++++=++=++=+=+⎣⎦⎣⎦.【思路点拨】解此类题的关键是整体思想的运用,(1)中将b+c 看成一个整体,设b+c=m ,则原多项式就化为222a am m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后还需继续利用完全平方公式分解彻底.【答案】 (1)2()a b c --;(2)4(1)x +. 探究三 综合应用 ★ ▲●活动①例3 分解因式:(1)22363ax axy ay++;(2)2()4a b ab-+;(3)22(4)16x x+-.【知识点】运用提公因式法、公式法分解因式【解题过程】解:(1)22222 3633(2)3() ax axy ay a x xy y a x y ++=++=+;(2)222222 ()4242() a b ab a ab b ab a ab b a b-+=-++=++=+.(3)222222(4)16(44)(44)(2)(44) x x x x x x x x x+-=+++-=++-【思路点拨】对于(1),关键是先提公因式3a,之后才能运用完全平方公式分解因式;对于(2),观察式子后发现不能直接进行因式分解,需将2()a b-展开后,与2ab,合并同类项方可进行. 对于(3)应先运用平方差公式分解因式,再继续用完全平方公式分解,注意分解彻底.【答案】(1)23()a x y+;(2)2()a b+;(3)22(2)(44)x x x++-题后反思:(1)把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.(2)分解因式的一般步骤:一提,二套,三检查①观察多项式的各项是否有公因式,若有,应先提公因式;②再观察多项式是否可套用平方差公式或完全平方公式进行分解因式;③检查每个多项式是否分解彻底,每个多项式都不能分解时,分解因式就结束了.注意:有时多项式既不能提公因式,也不能运用平方差或完全平方公式分解,则需根据多项式的特点作适当变形后再进行因式分解.练习:把下列各式分解因式:(1)33222ax y axy ax y+-;(2)24(1)a a--;(3)222(3)(1)x x x--+【知识点】运用提公因式法、公式法分解因式【解题过程】解:(1)33222222(2)() ax y axy ax y axy x y xy axy x y +-=+-=-;(2)222 4(1)44(2)a a a a a--=-+=-;(3)2222222(3)(1)(31)(31)(21)(41) x x x x x x x x x x x x x --+=-++---=-+--22(1)(41)x x x=---【思路点拨】对于(1),关键是先提公因式axy,之后才能运用完全平方公式分解因式;对于(2),观察式子后发现不能直接进行因式分解,需将多项式变形后,再进行因式分解. 对于(3)应先运用平方差公式分解因式,再继续用完全平方公式分解,注意分解彻底.【答案】(1)2()axy x y -;(2)2(2)a -;(3)22(1)(41)x x x --- ●活动② 因式分解的运用例4 计算:(1) 228001600798798-⨯+ ;(2)2225685622244⨯+⨯⨯+⨯【知识点】运用因式分解简化运算【解题过程】解:(1)22222280016007987988002800798798(800798)24-⨯+=-⨯⨯+=-==; (2)222222256856222442(562564444)2(5644)210020000⨯+⨯⨯+⨯=⨯+⨯⨯+=⨯+=⨯=;【思路点拨】此类题的关键是将算式进行适当变形,变为完全平方式的形式,这样即可运用完全平方公式进行因式分解,从而达到简化运算的目的.【答案】(1)4;(2)20000.练习:计算(1)221999399819981998-⨯+ ;(2)2299599+【知识点】运用因式分解简化运算【解题过程】解:(1)22222199939981998199819992199919981998(19991998)1-⨯+=-⨯⨯+=-=;(2)222299599(3001)59930023001159990000+=-+=-⨯⨯++=; 【思路点拨】此类题的关键是将算式进行适当变形,变为完全平方式的形式,这样即可运用完全平方公式进行因式分解,从而达到简化运算的目的.【答案】(1)1;(2)90000.3. 课堂总结知识梳理(1)完全平方式:形如222a ab b ++和222a ab b -+的式子叫完全平方式.(2)用完全平方公式分解因式:文字语言:两个数的平方和加上或减去这两个数的积的2倍,等于这两个数的和(或差)的平方.符号语言:2222()a ab b a b ++=+;2222()a ab b a b -+=-. (3)公式法:把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.重难点归纳(1)完全平方公式使用的条件是:①多项式是一个二次三项式;②首末两项是两个数(或整式)的平方,而且符号相同,中间项是这两个数(或整式)的积2倍,符号正负均可.(2)分解因式的一般步骤:一提,二套,三检查①观察多项式的各项是否有公因式,若有,应先提公因式;②再观察多项式是否可以用平方差公式或完全平方公式进行分解因式;③检查每个多项式是否分解彻底,每个多项式都不能分解时,分解因式就结束了.(3)有时多项式既不能提公因式,也不能运用平方差或完全平方公式分解,则需根据多项式的特点作适当变形后再进行因式分解.。
2014年秋人教版八年级上册:14.3.2《公式法》学案
x2 ④1 x 4
中能用完全平方公式分解因式的是(
2.把下列各式分解因式 (1) x
2
y 2 2 xy 1
自 我 检 测
(2)
x y2 6x y 9
预 习 导 航
【巩固新知】 1.下列多项式是不是完全平方式?为什么? (1) a
2
4a 4
2
(2) 1 4a
2
(3) 4b
4b 1
(4) a
2
ab b 2
2. 分解因式
活 动 四
(1) x
2
12x 36
(2) 2 xy x
2
y2
(3) a
2
2a 1
14.3.2 公式法
知 能 识 用完全平方公式分解因式. 技
重点:用完全平方公式分解因式. 重 点 点 难 难点:灵活运用公式分解因式. 导学过程 阅读教材 169 页至 170 页的部分内容,尝试完成以下问题. 【复习引入】 1.叙述平方差公式,并写出公式. 2.把下列各式分解因式: (1) 16 收获和 疑惑
(4) 4 x
2
4x 1
(5) ax
2
2a 2 x a 3
(6) 3x
2
6 xy 3 y 2
1.填空 (1)若多项式 x
2
kx
1 是完全平方式,则 k 的值为( 9
).
(2)在多项式:① x
2
xy y 2 ② x 2 2 xy y 2 ③ xy x 2 y 2
归纳:
活 动 二
a 2 2ab b2
a 2 2ab b2
14.3.2 因式分解 —平方差公式 教案 (含答案)2023--2024学年人教版八年级数学上册
第十四章整式的乘法与因式分解·14.3因式分解·第二课时平方差公式教案班级:课时:课型:一、学情分析平方差公式是最基本、用途最广泛的公式之一,它在整式乘法、因式分解、分式运算及其他代数式的变形中起十分重要的作用.但是这一阶段的学生抽象思维能力还不够完整,需要在教师的引导下进行探索.二、教学目标1.探索并运用平方差公式进行因式分解,体会转化思想;2.会综合运用提公因式法和平方差公式对多项式进行因式分解.三、重点难点【教学重点】运用平方差公式分解因式.【教学难点】综合运用提公因式法与平方差公式来分解因式.四、教学过程设计第一环节【复习旧知引入新课】1.师:因式分解的定义?生:把一个多项式分解成几个整式的积的形式.2.师:提公因式法的定义?生:在一个多项式中,若各项都含有公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.3.5ab3+20ab2的公因式是什么?(答案)5ab2(b+4).4.x2-1和4m2-n2可以用提公因式法分解吗?设计意图:通过师生互动共同回顾上节课所学知识,避免学生遗忘知识,同时为这节课所学知识做铺垫.第二环节【合作交流探索新知】1.观察多项式x2-1和4m2-n2,试着用已经学过的知识找出他们之间有什么特点?学生通过因式分解发现x2-1可以变成(x-1)(x+1),4m2-n2可以变成(2m-n)(2m-n),老师引出平方差概念.(答案)都可以写成a2-b2(两个数的平方差)的形式.x2-1=x2-12和4m2-n2=(2m)2-n2.2.师:你能将a2-b2分解因式吗?学生思考后将其变成(a-b)(a+b),老师给出互逆过程,给出相关概念.两个数的平方差,等于这两个数的和与这两个数的差的积.这种分解因式的方法称为公式法.3.下列多项式能用平方差公式法进行因式分解吗?x2-1=4m2-n2=-4m2-9=x2-(x+y)2=(答案)x2-1=(x+1)(x-1)4m2-n2=(2m)2-n2=(2m+n)(2m-n)-4m2-9不能转变为平方差形式x2-(x+y)2=[x+(x+y)][x-(x+y)]=-y(2x+y)4.老师带领学生进行知识归纳,让学生印象更加深刻.因式分解的平方差公式:公式中的ɑ,b可以是单独的数字、字母,也可以是单项式、多项式.5.师:多项式2x2-8y2怎么分解?老师强调:如果多项式的各项含有公因式,那么先提公因式,且必须分解到不能分解为止.设计意图:通过观察两个多项式运用因式分解引出平方差的概念,再由特殊到一般总结规律.通过几道习题让学生能够熟悉的运用公式法进行因式分解,让学生更清楚哪些式子是不能用平方差公式法.第三环节【应用迁移巩固提高】例1:(1) 4x2-9;(2)(x+p)2-(x+q)2 .例2.把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.例3.分解因式:(1)x4-y4;(2)ɑ3b-ɑb.设计意图:本环节通过三道例题的练习,考察学生对平方差公式法运用的熟练程度,巩固基础.【答案】例1.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式= [(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).例2.(1)解:原式= [3(m+n)]2-(m-n)2=(4m+2n)(2m+4n)= 4(2m+n)(m+2n);(2)原式= 2x(x2-4)= 2x(x+2)(x-2).例3.(1)解:原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y);(2)原式=ɑb(ɑ2-1)=ɑb(ɑ+1)(ɑ-1).第四环节 【随堂练习 巩固新知】1.下列多项式不能用平方差公式分解因式的是( )A.-ɑ2+b 2B.16m 2-25m 4C.2x 2-21y 2D.-4x 2-92.下列各式能用平方差公式分解因式的是( )A .2x 2+y 2B .-x 2+y 2C .-x 2-y 2D .x 3+(-y )23.将(ɑ-1)2-1 分解因式,结果正确的是( )A.ɑ(ɑ-1)B.ɑ(ɑ-2)C.(ɑ-2)(ɑ-1)D.(ɑ-2)(ɑ+1)4.分解因式:x 2y 2-49 = ;5.分解因式:-25ɑ2+9b 2 = .设计意图:本环节在于夯实基础,通过解答简单练习让学生在习题中找到学习的乐趣,增强学生学习的主动性.【答案】1.D2. B3.B4.(xy+7)(xy-7)5.(3b+5ɑ)(3b-5ɑ)第五环节【当堂检测及时反馈】1.(2019秋•乳山市期末)下列多项式,不能用平方差公式分解因式的是()A.a2b2-1 B.4-0.25a2C.-x2+1 D.-a2-b22.(2019•贺州)把多项式4a2-1 分解因式,结果正确的是()A.(4a+1)(4a-1)B.(2a+1)(2a-1)C.(2a-1)2D.(2a+1)23.把ɑ3-4ɑ分解因式,结果正确的是()A.ɑ(ɑ2-4)B.(ɑ+2)(ɑ-2)C.ɑ(ɑ+2)(ɑ-2)D.ɑ(ɑ+4)(ɑ-4)4.(2019春•金坛区期中)已知x-y= 3,y-z= 2,x+z= 4,则代数式x2-z2的值是()A.9 B.18 C.20 D.245.下列分解因式正确的是()A.ɑ2-2b2=(ɑ+2b)(ɑ-2b)B.-x2+y2=(-x+y)(x-y)C.-ɑ2+9b2=-(ɑ+9b)(ɑ-9b)D.4x2-0.01y2=(2x+0.1y)(2x-0.1y)6.(珠海·中考)因式分解:ɑx2-ɑy2=.7.(2020•哈尔滨模拟)分解因式:-(a+2)2+16(a-1)2=.8.(2020秋•广西期中)运用公式“a2-b2=(a+b)(a-b)”计算:9992-1 =,99982=.9.把下列各式分解因式:(1)(a-1)+a2(1-a);(2)x5-16x.10.已知4m+n= 40,2m-3n= 5.求(m+2n)2-(3m-n)2的值.设计意图:通过本环节的练习,深化学生对平方差公式的运用,同时让学生体会到公式法的优越性.【答案】1.D2.B3.C4.C5.D6.ɑ(x+y)(x-y)7.3(5a-2)(a-2)8.998000;999600049.解:(1)原式=(a-1)-a2(a-1)=(a-1)(1-a2)=(a-1)(1+a)(1-a)=-(a-1)2(1+a);(2)原式=x(x4-16)=x[(x2)2-42]=x(x2+4)(x2-4)=x(x2+4)(x+2)(x-2).10.解:(m+2n)2-(3m-n)2=(m+2n+3m-n)(m+2n-3m+n)=(4m+n)(3n-2m)=-(4m+n)(2m-3n),当4m+n= 40,2m-3n= 5 时,原式=-40×5 =-200.第六环节【拓展延伸能力提升】1.利用因式分解计算:1002-992+982-972+962-952+…+22-12.2.已知乘法公式a5+b5=(a+b)(a4-a3b+a2b2-ab3+b4);a5-b5=(a-b)(a4+a3b+a2b2+ab3+b4).利用或者不利用上述公式,分解因式:x8+x6+x4+x2+1.设计意图:本环节习题在于考察学生能够灵活的运用公式法求解,对式子的转化能力要求较高.【答案】1.解:原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)= 100+99+98+97+…+2+1= 5050.2.解:x 10-1=(x 5)2-1=(x 2)5-1=(x 2-1)(x 8+x 6+x 4+x 2+1),则有x 8+x 6+x 4+x 2+1=11210--x x =()()()()111155-+-+x x x x= (x 4+x 3+x 2+x +1)(x 4-x 3+x 2-x +1).第七环节 【总结反思 知识内化】课堂小结:1.利用平方差公式分解因式: ɑ2-b 2 = (ɑ+b )(ɑ-b ).2.因式分解的步骤是:首先提取公因式,然后考虑用公式法.3.因式分解应进行到每一个因式不能分解为止.4.将因式分解应用到计算中,简化计算.设计意图:通过知识小结,使学生梳理本节课所学内容,理解本课核心知识,提高学习质量.第八环节 【布置作业 夯实基础】。
人教版八年级数学上册《14-3-2 第2课时 运用完全平方公式因式分解》导学案设计优秀公开课
第十四章整式的乘法与因式分解教学备注学生在课前完成自主学习部分14.3 因式分解14.3.2 公式法第 2 课时运用完全平方公式因式分解学习目标:1.理解并掌握用完全平方公式分解因式.2.灵活应用各种方法分解因式,并能利用因式分解进行计算.重点:掌握用完全平方公式分解因式.难点:灵活应用各种方法分解因式.一、知识链接1.前面我们学习了因式分解的意义,并且学会了一些因式分解的方法,运用学过的方法你能将a2+2a+1分解因式吗?2.(1) 填一填:在括号内填上适当的式子,使等式成立:①(a+b)2=;②(a-b)2=.③a2++1=(a+1)2;④a2-+1=(a-1)2.(2)想一想:①你解答上述问题时的根据是什么?②第(1)①②两式从左到右是什么变形?第(1)③④两式从左到右是什么变形?二、新知预习1.观察完全平方公式:=(a+b)2;=(a-b)2完全平方公式的特点:左边:①项数必须是;②其中有两项是;③另一项是.右边:.自主学习典例精析要点归纳:把 a²+ +b²和 a²- +b²这样的式子叫作完全平方式.2. 乘法公式完全平方公式与因式分解完全平方公式的联系是. 把乘法公式逆向变形为:a 2+2ab +b 2= ; a 2-2ab +b 2= . 要点归纳:用完全平方公式因式分解,即两个数的平方和加上(或减去)这两个数的积的 2 倍,等于这两个数的和(或差)的平方.三、自学自测1.下列式子为完全平方式的是()A .a 2+ab +b 2B .a 2+2a +2C .a 2-2b +b 2D .a 2+2a +12.若 x 2+6x +k 是完全平方式,则 k =.3.填空:(1)x²+4x+4= ()² +2·( )·( )+( )² =( )²(2)m² -6m+9=()² - 2· ( )·()+( )² =( )²(3)a²+4ab+4b²=( )²+2· () ·()+()²=()²4.分解因式:a 2-4a +4= .四、我的疑惑教学备注 配套 PPT 讲授1. 复习引入(见幻灯片 3)2. 探究点 1 新知讲授( 见 幻 灯 片4-12)3. 探究点 2 新知讲授( 见 幻 灯 片13-21)课堂探究一、要点探究探究点 1:完全平方式例 1:如果 x 2-6x+N 是一个完全平方式,那么 N 是( )A . 11 B. 9 C. -11 D. -9变式训练如果 x 2-mx+16 是一个完全平方式,那么 m 的值为 .教学备注配套 PPT 讲授3.探究点 2 新知讲授(见幻灯片13-21)4.课堂小结方法总结:本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2 倍的符号,避免漏解.探究点2:用完全平方公式进行因式分解议一议:(1)将一个多项式因式分解的一般步骤是什么?(2)应注意的事项有哪些?(3)分解因式的方法有哪些?要点归纳:(1)利用公式把某些具有特殊形式(如,等)的多项式分解因式,这种分解因式的方法叫做公式法.(2)分解因式应根据多项式的特征,有公因式的一般先提,再套用公式,没有公因式的,则直接套用公式.分解因式应注意最后的结果中,多项式的每一个因式均不能再继续分解.例2:因式分解:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.例3:简便计算.(1)1002-2×100×99+99²;(2)342+34×32+162.方法总结:在较为复杂的有理数运算中,通常要先观察式子的特征,利用因式分解将其变形,转化为较为简单的运算.例4:已知x2-4x+y2-10y+29=0,求x2y2+2xy+1 的值..典例精析方法总结:此类问题一般情况是将原式进行变形,将其转化为非负数的和的形式,然后利用非负数性质求出未知数的值,然后代入,即可得到所求代数式的值.例5:已知a,b,c分别是△AB C三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.针对训练1.下列式子中为完全平方式的是( )A.a2+b2 B.a2+2a C.a2-2ab-b2 D.a2+4a+42.若x2+mx+4 是完全平方式,则m 的值是.3.分解因式:(1)y2+2y+1;(2)16m2-72m+81.4.分解因式:(1)(x+y)2+6(x+y)+9;(2)4xy2-4x2y-y3.5.已知|xy-4|+(x-2y-2)2=0,求x2+4xy+4y2 的值.二、课堂小结因式分解公式法方法提公因式法平方差公式完全平方公式当堂检测公式 pa+pb+pc= a 2-b 2=a2±2ab+b2=步骤1.提:提 ;2.套:套; 3.检查:检查.易错题型 1.提公因式时易出现漏项、丢系数或符号错误;2.因式分解不彻底.1.下列四个多项式中,能因式分解的是()A .a 2+1B .a 2-6a +9C .x 2+5yD .x 2-5y2.把多项式 4x 2y -4xy 2-x 3 分解因式的结果是( )A .4xy(x -y)-x 3B .-x(x -2y)2C .x(4xy -4y 2-x 2)D .-x(-4xy +4y 2+x 2)3.若 m =2n +1,则 m 2-4mn +4n 2 的值是.4. 若关于 x 的多项式 x 2-8x +m 2 是完全平方式,则 m 的值为 .5. 把下列多项式因式分解.(1)x 2-12x+36; (2)4(2a+b)2-4(2a+b)+1; (3) y 2+2y+1-x 2.6.计算:(1)38.92-2×38.9×48.9+48.92.(2)20142-2014×4026+20132.1x 2 - 2x + 37.分解因式:(1)4x 2+4x +1;(2) 3.小聪和小明的解答过程如下:教学备注 配套 PPT 讲授5.当堂检测 ( 见 幻 灯 片22-26)他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a-b=3,求a(a-2b)+b2 的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3 的值.。
八年级数学上册14.3.2 公式法导学案2(新版)新人教版
八年级数学上册14.3.2 公式法导学案2(新
版)新人教版
14、3、2 公式法学习目标
1、运用完全平方公式分解因式、
2、能说出完全平方公式的特点、
3、会用提公因式法与公式法分解因式学习重点:用完全平方公式分解因式学习难点:灵活应用公式分解因式
【学前准备】
1、请回忆并写出完全平方公式及公式特点
2、利用完全平方公式计算下列各题: ① ②
3、把整式乘法的完全平方公式反过来
【导入】
【自主学习,合作交流】
1、思考:你能将多项式与分解因式吗?这两个多项式有什么特点? 两个数的平方和加(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
观察下列各式是不是完全平方式?(1)a2-4a+4 (2)x2+4x+4y2 (3)4a2+2ab+b2(4)a2-ab+b2 (5)x2-6x-9 (6)a2+a+0、2
51、分解因式:(1);(2);
2、分解因式:(1);(2)
【精讲点拔:】
即两个数的平方和加上或减去这两个数的积的二倍,等于这两个数的和或差的平方
【本节小结】
【当堂测试】
(1)(2)(3)(4)(5)(6)纠错栏
【课后作业】
Ⅰ必做题
1、下列多项式能否用完全平方公式来分解因式?为什么?①
② ③ ④⑤ ⑥
2、填空:对下列各式分解因式① ②③ ④Ⅱ选做题
3、分解因式:(1)(2)
4、若是完全平方式,则=
5、已知:是完全平方式,则的值为 ( )
A、2
B、2
C、 -6
D、6
【评价】
准确程度评价优良中差书写整洁程度评价优良中差
【课后反思】。
人教版八年级数学上册导学案14.3.2公式法
新人教版八年级数学上册导教学设计:14.3.2 公式法教师寄语1.经历用平方差公式法分解因式的研究过程,理解公式中字母的意义。
学习目标2.会用平方差公式法对多项式进行因式分解。
3.领悟从正、逆两个方面认识和研究事物的方法。
教学重点应用平方差公式分解因式授课难点正确运用平方差公式进行因式分解.授课方法小组结合教学过程学习过程:一、自主学习(a+2)(a-2)=(-x+3)(-x-3)=(3a+2b)(3a-2b)=自学课本P116-117,完成以下问题。
1.什么条件下可以用平方差公式进行因式分解?3.如何将多项式x 2 -1 和 9x 2 -4 分解因式?二、合作研究1.你能像分解 x 2 -1 和 9x 2 -4 相同将下面的多项式分解因式吗?⑴ p 2 -16=;⑵y 2 -4=;⑶ x 2 - 1=;⑷ a 2 - b 2 =. 9本质上,把平方差公式(a+b)(a- b)= a 2 - b 2逆过来,就获取a 22=( a+b)( a- b) 。
- b那么,一个整式只要表示成两个整式的平方差的形式,就可以用平方差公式分解因式,这种分解因式的方法叫做。
1把以下各式分解因式:⑴ 36- a 2;⑵ 4x 2 -9 y 2 .2 把以下各式分解因式:⑴a3-16 a;⑵ 2ab3-2 ab.三、随堂练习1.以下多项式,能用均分差公式分解的是()A .- x 2- 4y 2B . 9 x 2+4 y 2C .- x 2+4y 2D . x 2+( -2y ) 22. 分解因式: 25-(m+2p)2=3.分解因式: 2ax 2- 2ay 2 =4.分解因式: x 4y 4.5. 分解因式: a 3b ab =.6. 分解因式: (xp)2 ( x q)2 =7. 课本练习 P 117 练习 1,2 题四、盘点提升1. 9( m+n) 2 -16( m- n) 22.小明说:对于任意的整数n ,多项式( 4n 2+5) 2- 9 都能被 8 整除.他的说法正确 吗?说明你的原由.五.达标检测1 填空: (1)a 6=( ) 2;(2)9x 2=( )2;(3) m8n 10=( )2;(4)25 4)22n2x =( (5 =( ) ;4(6)36 x 4-0.81=()2-( )2492 以下多项式可以用平方差公式分解因式吗?(1) a 2+4b 2; (2) 4a 2-b 2; (3) a 2-(-b) 2; (4)–4+a 2;(5) – 4-a 2;(6) x2- 1 ; (7) x2n+2-x 2n43 分解因式:(1) 1-25a2; (2 ) -9x2+y 2;(3) a2b 2-c 2;(4)16x 4-9y 2.25164. 分解因式:(1) (a+b) 2-(a-c)2; ( 2) x 4-16; ( 3) 3x 3-12x;( 4) (9y 2-x 2 )+(x+3y ).5.分解因式:(1) -a 4+ 16(2)6a2b 54b(3) (x+y+z)2- (x-y-z)2(4) (x-y)3+(y-x).(5) x2n+2-x2n6.用便方法算:(1) 999 2-1000 2;(2) (1-1)(1-1)(1-1)⋯⋯(1- 1 ) 22324210 2六.小反思教学反思年科目教。
八年级数学上册《14.3.2(2)公式法(完全平方公式)》 精品导学案 新人教版
【学习目标】1.会用完全公式进行因式分解。
2.进一步明确因式分解对结果的要求。
3.学会逆向思维,渗透化归的思想方法。
【学习重点】运用完全平方公式分解因式。
【学习难点】对需要综合运用多种方法的多项式的因式分解。
【知识准备】1.平方差公式(用字母表示) 。
2. 2()a b += ;2()a b -= 。
3.因式分解:2(1)436b - 22(2)()()x p x q +-+【自习自疑文】一、阅读教材P117-P118内容,并思考回答下列问题。
1.辩一辩:下列各式是完全平方式?为什么?2(1)44a a -+ 22(2)44x x y ++ 221(3)424a ab b ++22(4)a ab b -+ 2(5)69x x -- 2(6)0.25a a ++2.完全平方公式(用字母表示): 。
3.完全平方公式的特征是 。
二、预习评估 分解因式2(1)11025t t ++ 2(2)1449m m -+21(3)4y y ++2(4)21a a ++【我想问】请你将预习中遇见的问题和疑问写下来,等待课堂上与同学、老师共同探究解决。
等级 组长(或家长)签字【自主探究文】【探究一】分解因式:2(1)1236x x ++ 4224(2)816a a b b -+2(3)(1)6(1)9x x -+-+ 22(4)363ax axy ay -+-【探究二】1、代数式22169y kxy x +-,求k 的值。
2、2244y y ---分解因式:9a【探究三】2246130,y x y x y +-++=已知:x 求、的值【探究四】222b c ABC 0,ABC a b c ab bc ac ∆++---=∆已知、、是的三条边,且满足a 试判断的形状。
【自测自结文】1.填空:()()()()()()222221924162a ab b ++=++=()()()()()()2222249141=2m m -+-+=()()()22349x ++= ()()()2444ay ++=2.下列各式可以用完全平方公式分解因式的是( ) A .2242b ab a +- B .4142+-m m C .269y y +- D .222y xy x --3.把下列各式分解因式22(1)2510a ab b ++ 3322(2)2ax y axy ax y +-【自我小结】通过本节课的学习,你有哪些收获?还有哪些困惑呢?教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.3.2公式法(二)导学案
【学习目标】:
1、会用完全平方公式分解因式。
2、会综合运用提取公因式法、公式法分解因式。
3、通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、预见等能力,进一步体会换元思想,提高处理数学问题的技能。
学习重点:用完全平方公式因式分解。
学习难点:
1、准确判断一个多项式是否为完全平方式
2、用换元的思想来因式分解
学习过程:
(一)、用完全平方公式因式分解之引入篇
(a ±b)2 a2±2ab+b2
(a ±b)2=a2±2ab+b2
反过来,可得a2±2ab+b2=(a ±b)2
两数的平方和,加上(或减去)这两数的积的两倍,等于这两数和(或者差)的平方。
形如a2±2ab+b2的多项式称为完全平方式.
实质为:两数的平方和,加上(或减去)这两个数的积的两倍.
给出完全平方式的概念。
(二)、用完全平方公式因式分解之辨析篇
判别下列各式是不是完全平方式:
(1)x2+y2; (2)a2-6a+9;
(3)△2-2×△×□+□2; (4)m2+2mn-n2.
(三)、用完全平方公式因式分解之归纳篇
a2±2ab+b2完全平方式的特点:
1.有三项组成.
2.其中有两项分别是某两个数(或式)的平方.
3. 另一项是上述两数(或式)的乘积的2倍,符号可正可负.
(四)、用完全平方公式因式分解
对照a2±2ab+b2=(a ±b)2,你会吗?
1、x2+4x+4= ( )2+2( )( )+( )2 =( + )2
2、m2-6m+9=( )2- 2( )( )+( )2 =( - )2
注意:公式中的a 、b 可以表示单项式甚至是多项式。
(五)、用完全平方公式因式分解
下列各式能因式分解吗?若能,请分解;若不能,请把某一项的系数作适当改变,使之能分解:
(1)a2+4ab+4b2
(2) 4x2-8 x+1
其中第(2)题为变式练习。
(六)、用完全平方公式因式分解
请根据你小组得到的单项式讨论:
(1)请将你手中的单项式粘贴在黑板上的合适的地方,使它能与黑板上的整式组成完全平方式;
(2)分解组成的多项式。
(七)、用完全平方公式因式分解
利用完全平方公式对下列多项式因式分解:
(1)a2-10a+25; (2)4a2+12ab+9b2;
(3)-x2+4xy-4y2 (4)3ax2+6axy+3ay2
(5)(2x+y)2-6(2x+y)+9
(八)、用完全平方公式因式分解
你能用简便方法求出
20052-4010×2003+20032的值吗?
(九)、用完全平方公式因式分解小结
我们看过我们听过,我们想过我们做过,我对过我错过,有过激烈的争议也有过意外的收获,亲爱的同学们,你不想说些什么吗?
因式分解多项式;先看有无公因式。
两项三项用公式;辩明是否标准式。
(十)、作业布置。